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Uber die untere Grenze der Ordnung

n-stufig nichtkommutativer Gruppen
Von I. SziLrAr, Szeged (Ungarn)

In einer Arbeit!) hat L. Réde: die Stufenzahl » (= 0) der Nicht-
kommutativitdt fiir endliche Gruppen folgendermaflen definiert : Durch
die Stufenzahl n» = 0 sind die kommutativen Gruppen charakterisiert,
und fiir eine beliebige Gruppe & soll » um 1 grofer sein als das Maximum
der Stufenzahlen der echten Untergruppen von G. Beziiglich dieser
Stufenzahl will ich jetzt folgenden Satz beweisen :

1) L. Rédet, Das ,,schiefe Produkt‘ in der Gruppentheorie, Comment. Math. Helv. 20
(1947), 225—264.
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Die untere Grenze der Ordnung einer n-stufig nichtkommutativen Gruppe
st 3.2,

Zum Beweis konstruiere ich zunédchst eine Gruppe @ von der Ordnung
3.2", die n-stufig nichtkommutativ ist. G sei das direkte Produkt von
n — 1 Gruppen 2-ter Ordnung Z,,...,Z,_; und von der symmetri-
schen Gruppe S der Ordnung 6 :

G:ZIX‘ . XZ"__IXSe .

Da §; eine 1-stufig nichtkommutative Gruppe ist, siecht man auf Grund
der Untergruppenkette

G)ZzX"‘XZﬂ_]_XSs) L | )Z.n_IXSG)SG s

daBl G' eine mindestens n-stufig nichtkommutative Gruppe ist. Anderer-
seits aber ist @ hochstens n-stufig nichtkommutativ, da das letzte Glied
U, einer beliebigen (streng abnehmenden) Untergruppenkette

@ >U,>.--->U,

als eine Gruppe von Primzahlordnung (oder von der Ordnung 1) immer
kommutativ ist.

Es soll nur noch gezeigt werden, dal eine beliebige Gruppe G' von
einer Ordnung < 3.2" hochstens (n — 1)-stufig nichtkommutativ ist.
Das ist fiir » = 1 klar. Nehmen wir an, daB die Behauptung fiir » — 1
statt n schon bewiesen ist, und betrachten wir eine Gruppe G' von einer
Ordnung < 3.2" Dann ist die Ordnung einer beliebigen echten Unter-
gruppe H von G <3.2"1, folglich ist H nach der Annahme héchstens
(n — 2)-stufig nichtkommutativ. Damit ist gezeigt, dafl die Gruppe G
hochstens (» — 1)-stufig nichtkommutativ ist, und der Beweis des
Satzes beendet.

(Eingegangen den 5. Juli 1952.)
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