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Uber die untere Grenze der Ordnimg
n-stufig îiîchtkomniutativer Gruppen

Von I. Szélpal, Szeged (Ungarn)

In einer Arbeit *) hat L. Rédei die Stufenzahl n 2* 0) der Nieht-
kommutativitât fur endliche Gruppen folgendermaBen definiert : Durch
die Stufenzahl n 0 sind die kommutativen Gruppen charakterisiert,
und fur eine beliebige Grappe 0 soll n um 1 grôBer sein als das Maximum
der Stufenzahlen der echten Untergruppen von 0. Bezûglich dieser
Stufenzahl will ich jetzt folgenden Satz beweisen :

-1) L. Rédei, Das ,,schiefe Produkt" in der Gruppentheorie, Comment. Math. Helv. 20
(1947), 226—264.
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Die untere Orenze der Ordnung einer n-stufig nichtkommutativen Gruppe
ist 3.2*\

Zum Beweis konstruiere ich zunâchst eine Grappe G von der Ordnung
3.2W, die w-stufig nichtkommutativ ist. G sei das direkte Produkt von
n — 1 Gruppen 2-ter Ordnung Zx,..., Zn_x und von der symmetri-
schen Gruppe $6 der Ordnung 6 :

Da Sq eine 1-stufig nichtkommutative Gruppe ist, sieht man auf Grand
der Untergruppenkette

G > Z2x • • • X Zn_xx S6 > • - • > Z^xS* d 8B

daB G eine mindestens w-stufig nichtkommutative Gruppe ist. Anderer-
seits aber ist G hôchstens %-stufig nichtkommutativ, da das letzte Glied
Un einer beliebigen (streng abnehmenden) Untergruppenkette

G U15 • • • 5 Î7n

als eine Gruppe von Primzahlordnung (oder von der Ordnung 1) immer
kommutativ ist.

Es soll nur noch gezeigt werden, da8 eine beliebige Gruppe G von
einer Ordnung <3.2W hôchstens (n — l)-stufig nichtkommutativ ist.
Das ist fur n 1 klar. Nehmen wir an, daB die Behauptung fur n — 1

statt n schon bewiesen ist, und betrachten wir eine Gruppe G von einer
Ordnung < 3. 2n. Dann ist die Ordnung einer beliebigen echten Unter-
gruppe H von G < 3. 2n-%, folglich ist H nach der Annahme hôchstens

(n — 2)-stufig nichtkommutativ. Damit ist gezeigt, daB die Gruppe G

hôchstens (n — l)-stufig nichtkommutativ ist, und der Beweis des

Satzes beendet.

(Eingegangen den 5. Juli 1952.)
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