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liber analytische Âbbildungen
Riemannscher Flachen in sich

Von Heinz Hubee, Zurich

§ 1. Einleitung und tlbersicht*

Ein Kreisring 51: 0<r<| z | <22 in der komplexen z-Ebene hat fol-
gende bemerkenswerte Eigenschaft1) : Unter allen analytischen
Abbildungen von Si in sich sind die Automorphismen2) von R die einzigen,
welche jede nicht nullhomotope geschlossene Kurve in R auf eine eben-
solche Kurve abbilden.

Indem wir nach analogen Erscheinungen bei komplizierteren Riemann-
schen Flachen suchten, wurden wir auf eine ausgedehnte, einfach zu
definierende Klasse von Flachen gefuhrt : auf die Riemannschen Flachen
mit diskretem Modulspektrum. Es sei schon hier bemerkt, daB dièse
Klasse insbesondere (abgesehen von einigen trivialen Ausnahmefâllen)
aile Riemannschen Flachen endlichen Zusammenhanges enthâlt.

In dieser Arbeit soll nun gezeigt werden : Innerhalb der Menge aller
analytischen Abbildungen in sich einer Riemannschen Flâche mit
diskretem Modulspektrum sind die Automorphismen auf âhnliche Weise
wie beim Kreisring stark ausgezeichnet. Die zu diesem Zwecke ent-
wickelten Methoden liefern aber auBerdem eine ganze Reihe weiterer
Ergebnisse ûber Riemannsche Flachen und deren Abbildungen in sich.

Nach dieser allgemeinen Orientierung geben wir nun eine eingehende
Ûbersicht ûber die wichtigsten Begriffe und Sâtze dieser Arbeit.

1. Wegklassen

Unter einem Weg p(t) auf der Riemannschen Flâche 91 verstehen
wir eine stetige Abbildung p p(t) des Intervalles 0 < t < 1 in die
Flâche 9t. Den zu einem Weg p{t) inversen Weg p^(t) erklâren wir

*) Vergleiche das Inhaltsverzeichnis am Ende der Arbeit.
%) Vergleiche [5]. Die obige Behauptung ist dort in Satz II, pag. 163, enthalten.
2) Unter einem Automorphismus einer Riemannschen Flâche 91 verstehen wir eine

umkehrbar eindeutige und analytische Abbildung von 9t auf sich selbst. Fur die genaue
Définition dieser Begriffe vergleiche man § 3, Nr. 1.



durch die Festsetzung: p~x{t) p(l — t), Der Weg p(t) heiBt ge-
schlossen, falls p(0) — p(l).

Zwei geschlossene Wege po(t), p1(t) auf 9Î heiBen homotop (in
Zeichen: pQ(t) ^^p^t)), wenn sie auf 91 stetig ineinander deformiert
werden kônnen, das heiBt wenn es eine solche stetige Abbildung
p P(t, t) des Quadrates 0 < t < 1, 0 < r < 1 in die Mâche 91

gibt, daB P($, 0) po(t), P(t,l) p^t) fur 0 < £ < 1 und P(0, r)
P(l, t) fur 0 < r < 1. Insbesondere heiBt ein geschlossener Weg

pQ(t) nullhomotop auf 91, wenn er homotop zu einem ,,punktfôrmigen"
Weg px(t)=q€9t ist.

Die Homotopierelation ist eine Âquivalenzrelation in der Menge aller
geschlossenen Wege auf 9î und bewirkt daher eine Klasseneinteilung
dieser Menge in Wegklassen W. Die Klasse der nullhomotopen Wege
nennen wir die Nullklasse von 9Î.

2. Oebiete auf Biemannschen Flachen

Es sei © ein Gebiet3) auf einer Riemannschen Flâche 9î. Dann definie-
ren wir :

I. Ein Punkt a e 9Î heiBt isolierter Randpunkt von © c 91, wenn
a $ © und wenn es eine solche Umgebung 93O c 9t von a gibt, daB

»a-ac©.
II. Ein Randpunkt a e 9t von © heiBe normaler Randpunkt, wenn

es eine solche Umgebung 9la c 9Î von a gibt, daB jeder geschlossene
Weg p(t), welcher im Durchschnitt 9la^© liegt, in © nullhomotop ist.

III. Wir nennen © ein Gebiet mit normalem Rand, falls jeder nicht-
isolierte Randpunkt von © normal ist.

IV. Eine Wegklasse W von © heiBe î5auf den isolierten Randpunkt
a € 9t von © reduzibel", wenn sie folgende Bedingungen erfullt :

a) W ist nicht die Nullklasse von ©.
b) Zu jeder Umgebung 93a c 9î von a gibt es einen solchen Weg p(t)

in der Klasse W, daB p(t) e 93a - a fur 0 < t < 1.

3. Der Modul einer Wegklasse

Es sei 91 eine Riemannsche Flâche von hyperbolischem Typus. Dann
lâBt sich ihre universelle Ûberlagerungsflâche konform auf die Poincaré-
sche Halbebene abbilden. Dadurch wird der Flâche 9Î in bekannter Weise
eine hyperbolische Metrik aufgeprâgt4). Wir bezeichnen die hyperboli-

8) © ist dann selbst eine Riemannsche Flâche.
4) Vergleiehe § 5.



sche Lange eines Weges p(t) auf 9t mit /%[p(£)]. Wir ordnen nun jeder
Wegklasse W von 9î eine nicht négative Zahl, den Modul M[W], zu,
indem wir definieren5) :

M[W]= inf /**[?(«)]
p(t)€W

Ist M[W]>0, so nennen wir W eine hyperbolische Wegklasse und
jeden ihrer Reprâsentanten einen hyperbolischen Weg. Ist dagegen
M [W] 0 und ist W nicht die Nullklasse, so heiBe W eine parabolische
Wegklasse und jeder ihrer Reprâsentanten ein parabolischer Weg.

In der Funktionentheorie treten vielfach Riemannsche Flâchen © auf,
welche Teilgebiete einer fest gegebenen Riemannschen Flâche 9t sind
(zum Beispiel Gebiete der komplexen Ebene usw.). Es erscheint dann
wunsehenswert, die metrischen Eigenschaften der Wegklassen von © in
Zusammenhang zu bringen mit (topologischen) Relativeigenschaften von
© bezuglich der einbettenden Flâche 9î. Wir beweisen hieruber das

folgende Kriterium :

Satz A. Es sei © ein Gebiet von hyperbolischem Typus auf einer

Riemannschen Flâche 91 ; die abgeschlossene Huile © c 5R von © sei

kompakt. Dann gilt : Eine Wegklasse W von © ist dann und nur dann
parabolisch, wenn sie auf einen isolierten Randpunkt a e 5R von © redu-
zibel ist.

Einfache Beispiele zeigen, da6 in Satz A auf die Kompaktheit von ©
nicht verzichtet werden kann.

Da jedes Gebiet auf einer geschlossenen Flâche g eine kompakte
abgeschlossene Huile besitzt, so folgt aus Satz A sofort

Satz A|. Ist © ein Gebiet von hyperbolischem Typus auf einer
geschlossenen Riemannschen Flâche gr, so gilt : Eine Wegklasse W von ©
ist dann und nur dann parabolisch, wenn sie auf einen isolierten Randpunkt

von © reduzibel ist.

Jede geschlossene Flâche %g vom Geschlechte g > 2 ist ein Gebiet
von hyperbolischem Typus ohne Randpunkte auf sich selbst. Daher
folgt aus Satz At sofort der auch auf andere Weise beweisbare und wohl-
bekannte6)

5) In § 4 wird zwar aus beweistechnischen Grûnden eine etwas anders lautende Définition

gegeben; man erkennt indessen unmittelbar die Âquivalenz beider Definitionen.
6) Siehe zum Beispiel [12], pag. 208.



Satz Av. Auf einer geschlossenen Riemannschen Flâche %g vom
Geschlechte g > 2 ist jeder geschlossene, nicht nullhomotope Weg
hyperbolisch.

Fur den Spezialfall von Satz A, daB (5 ein beschrânktes Gebiet der
komplexen 2-Ebene ist, gibt es einen Beweis von Carathéodory7). Die
Carathéodorysche Beweismethode ist aber auf unseren allgemeinen Fall
nicht iibertragbar, da sie wesentlich die Gûltigkeit des Jordanschen
Kurvensatzes in der z-Ebene voraussetzt. Die Hauptstûtze unseres Be-
weises von Satz A bildet die folgende Verallgemeinerung des GroBen
Picardschen Satzes :

Satz 2, § 6. Es sei 9t eine Riemannsche Flâche und © ein Gebiet
von hyperbolischem Typus auf 9t mit kompakter abgeschlossener Hiille.
Dann gilt : Jede analytische Abbildung A der punktierten Kreisscheibe ï :

0 < | z | < 1 in das Gebiet (5 c 9t kann zu einer analytischen Abbildung
der vollen Kreisscheibe | z \ < 1 in die Flâche 91 fortgesetzt werden.

Nimmt man speziell als Flâche 91 die Riemannsche Kugel und als
Gebiet von hyperbolischem Typus auf 91 die Kugel minus drei Punkte,
so erhâlt man den GroBen Picardschen Satz, welcher besagt, daB der
Punkt z 0 keine wesentliche Singularitât sein kann fur eine in ï :

0<|z|<l (eindeutige und) meromorphe Funktion, welche daselbst
drei Werte auslâBt. Unsere Verallgemeinerung des Picardschen Satzes
besteht also darin, daB wir die in î meromorphe und daselbst drei Werte
auslassende Funktion, welche ja als analytische Abbildung von ï in die
dreifach punktierte Kugel gedeutet werden kann, ersetzen durch eine

analytische Abbildung von ï in ein hyperbolisches Gebiet mit kompakter
abgeschlossener Huile auf einer beliebigen Riemannschen Flâche 9?. Fur
den Beweis dièses verallgemeinerten Satzes benutzen wir auBer den in
der ganzen Arbeit verwendeten Grundlagen der Uniformisierungs-
theorie8) als spezifisch funktionentheoretische Hilfsmittel nur das
Schwarzsche Lemma und den elementaren Satz von Casorati-Weier-
straB, welcher besagt, daB eine fur 0 < | z \ < 1 eindeutige und be-
schrânkte regulâr-analytische Funktion zu einer in der ganzen
Kreisscheibe | z | < 1 regulâren Funktion fortgesetzt werden kann. Wir er-
halten so eine Beweisanordnung, welche, weil von verschiedenen Zu-
fâlligkeiten befreit, sogar eher durchsichtiger ist als die ûblichen Beweise
des klassischen Picardschen Satzes.

7) [1], Bd. 2, Nr. 335.
8) das ist im wesentlichen der Riemannsche Abbildungssatz und die darauf grûndende

Typenklassifikation der Riemannschen Flachen.



4. Biemannsche Flâchen mit diskretem Modulspektrum

Eine hyperbolische Riemannsche Flâche heiBe Flâehe mit diskretem
Modulspektrum, wenn es auf ihr fur jede Zahl m > 0 hôchstens endlich
viele Wegklassen W mit

0<M[W]<m (1)

gibt. — Man beachte wohl, daB in dieser Définition dank der linken
Hâlfte der Ungleichung (1) keine Forderung ûber die Anzahl der allfâllig
vorhandenen parabolischen Wegklassen enthalten ist.

Die Eigenschaft einer Flâche, diskretes Modulspektrum zu besitzen,
ist eine innere Eigenschaft dieser Flâche und invariant gegenûber ein-
eindeutigen analytischen Abbildungen.

Es sei nun 91 eine beliebige Riemannsche Flâche und © ein hyperboli-
sches Teilgebiet von 91. Dann liegt die folgende Fragestellung nahe :

Gibt es (topologische) Relativeigenschaften von © bezuglich der ein-
bettenden Flâche 91, deren Erfulltsein garantiert, daB © eine Flâche mit
diskretem Modulspektrum ist Wir beweisen hieriiber den folgenden

Satz B. Es sei © ein Gebiet von hyperbolischem Typus auf einer

Riemannschen Flâche 9î. Die abgeschlossene Huile © c 91 von © sei

kompakt und der Rand von © sei normal. Dann ist © eine Riemannsche
Flâche mit diskretem Modulspektrum.

Satz B zeigt zugleich, daB die Klasse der Riemannschen Flâchen mit
diskretem Modulspektrum sehr umfangreich ist. DaB es aber auch wirk-
lich Flâchen mit nichtdiskretem Modulspektrum gibt, wird sehr leicht
aus den Sâtzen von Nr. 5 hervorgehen 9). Es sei hier noch darauf hinge-
wiesen, daB mit den in Satz B auftretenden Riemannschen Flâchen ©
die Gesamtheit aller Flâchen mit diskretem Modulspektrum nicht er-
schôpft ist. Wir hoffen bei spâterer Gelegenheit auf dièse Frage zurûck-
kommen zu kônnen.

Da die abgeschlossene Huile eines Teilgebietes einer geschlossenen
Flâche von selbst kompakt ist, so folgt aus Satz B sofort der

Satz B|. Jedes hyperbolische Gebiet mit normalem Rand auf einer
geschlossenen Riemannschen Flâche ist eine Flâche mit diskretem
Modulspektrum.

Jede geschlossene Riemannsche Flâche %g vom Geschlechte g > 2

•) Dièse Tatsache folgt zum Beispiel leicht aus Satz IV. Man vergleiche aber auch das
Beispiel zu Satz Vt'.

5



ist ein hyperbolisches Gebiet auf sich selbst, dessen Rand trivialerweise
normal ist. Daher folgt aus Satz Bt unmittelbar

Satz Bj,. Jede geschlossene Riemannsche Flâche $g vom Geschlechte

g > 2 ist eine Flâche mit diskretem Modulspektrum.

Dieser Satz ~BV stimmt inhaltlich iiberein mit einem Ergebnis, das
J. Nielsen10) auf ganz andere Weise erhalten hat.

Mit Hilfe eines bekannten, von Koebe11) herruhrenden Einbettungs-
satzes fur Riemannsche Flâchen endlichen Zusammenhanges werden wir
aus Satz Bx muhelos noch den folgenden Satz gewinnen :

Satz C. Jede hyperbolische Riemannsche Flâche mit endlicher Betti-
scher Zahl ist eine Flâche mit diskretem Modulspektrum.

Beim Beweise des grundlegenden Satzes B stiitzen wir uns in erster
Linie auf die folgende Verallgemeinerung eines bekannten Montelschen
Satzes :

Satz 4, § 8. Es sei © ein hyperbolisches Gebiet mit kompakter ab*
geschlossener Huile auf einer Riemannschen Flâche 91. {An(p)} sei eine
Folge von analytischen Abbildungen einer Riemannschen Flâche r in das
Gebiet (5 c 91. Dann gibt es eine Teilfolge {Ank(p)} von {An(p)},
welche auf t stetig konvergiert12) gegen eine analytische Abbildung
A (p) von r in die Flâche 91.

man speziell als Flâche 91 die Riemannsche Kugel und als
hyperbolisches Gebiet auf 9Î die Kugel minus drei Punkte, so erhâlt
man offenbar den bekannten Montelschen Satz, welcher besagt, daB jede
Folge von auf r meromorphen Funktionen normal ist, wenn aile Funk-
tionen der Folge drei feste Werte a,b, c nicht annehmen. Fur den Beweis

unserer Verallgemeinerung des Montelschen Satzes benôtigen wir an
spezifisch funktionentheoretischen Hilfsmitteln auBer den Grundlagen
der Uniformisierungstheorie nur das Schwarzsche Lemma.

5. Analytische Abbildungen Biemannscher Flachen in sich

I. Die von uns angewandte Méthode zur Untersuchung analytischer
Abbildungen einer hyperbolischen Flâche 9Î in sich besitzt eine funk-
tionentheoretische und eine gruppentheoretische Komponente ; sie kann

10) [12] pag. 209.

u) C8] § 37, pag. 139—141.
12 Ùber den von Carathéodory stammenden Begriff der stetigen Konvergenz vergleiche

man § 7.



etwa folgendermaBen kurz angedeutet werden : Bekanntlich besteht eine
umkehrbar eindeutige Zuordnung zwischen den Wegklassen auf 9t und
den Klassen konjugierter Elemente der Fundamentalgruppe F von 9t13).

Wir erklâren nun auf der Grappe F eine Klassenfunktion M [8], indem
wir jedem Elément S € F als Funktionswert den Modul der zur Klasse

von S gehôrigen Wegklasse zuordnen14). — Jede (analytische) Abbildung
von 9î in sich induziert in bekannter Weise einen Endomorphismus der

Fundamentalgruppe F15). Indem wir nun das Verhalten der
Klassenfunktion M [8] gegenuber diesen Endomorphismen untersuchen, werden

wir zu unseren Sâtzen iiber analytische Abbildungen Riemannscher
Flàchen in sich gefûhrt. Der wesentliche Kern unserer Méthode ist in den
vier Lemmata von § 12 enthalten ; sie bilden die Quelle, aus der aile
unsere folgenden Sàtze flieBen.

II. Zunâchst beweisen wir einige Sâtze, welche noch ohne die Voraus-
setzung auskommen, daB die Riemannsche Flâche 91 diskretes Modul-
spektrum besitze (Sâtze I bis III).

Satz I. Es sei 9î eine Riemannsche Flâche mit nichtabelscher
Fundamentalgruppe. Dann ist die Gruppe 2B aller analytischen Automorphis-
men von 9î, welche eine von der Nullklasse verschiedene Wegklasse W
festlassen, eine zyklische Gruppe von endlicher Ordnung.

Die Voraussetzung, daB die Fundamentalgruppe von 91 nicht abelsch
sei, ist dabei wesentlich ; man sieht dies etwa am Beispiel eines Kreis-
ringes, welcher ja sogar eine kontinuierliche Gruppe von Automorphis-
men besitzt, wrelche eine von der Nullklasse verschiedene Wegklasse
festlassen.

Wir beweisen ferner:

Satz II. Es sei 9î eine Riemannsche Flâche mit nichtabelscher
Fundamentalgruppe16) und A eine analytische Abbildung von 9t in sich.
Dann gilt : Gibt es auf 9Î einen hyperbolischen Weg p(t) derart, daB

A(p(t)) ~p(t), so ist A ein periodischer Automorphismus von 9î.

Man uberlegt sich sehr leicht an einfachen Beispielen, daB die
Voraussetzung, der Weg p (t) sei hyperbolisch, wesentlich ist fur die Gultigkeit
von Satz II. — Da jedes beschrânkte Gebiet der komplexen z-Ebene von
hyperbolischem Typus ist, so folgt aus Satz A und Satz II sofort

18) Siehe § 3, Nr. 4.
14) Siehe § 4.
15) Richtiger: Eine Klasse âhnlicher Endomorphismen. Siehe § 3, Nr. 5.
ie) Eine solche Flâche ist stets von hyperbolischem Typus; vergleiehe § 3, Nr. 6, IV.



Satz H'. Die Zusammenhangszahl17) des beschrânkten Gebietes (5

der 2-Ebene sei grôBer als 2. Es sei A eine analytisehe Abbildung von ©
in sich und es gebe in (g einen weder nullhomotopen noch auf einen iso-
lierten Randpunkt reduzibeln Weg p(t) derart, daB A(p(t)) ~p(t).
Dann ist A ein periodischer Automorphismus von ©.

Dieser Spezialfall unseres Satzes II wurde von H. Cartan18) mit Hilfe
seiner Théorie der Itération analytischer Abbildungen beschrànkter Ge-
biete bewiesen. Cartan zeigte allerdings nur, daB A ein Automorphismus
von © ist, nicht aber die Periodizitât von A. — Durch Kombination von
Satz II mit den Sâtzen A und Ax wiirden sich noch weitere (und allge-
meinere) Sàtze vom Typus II' ergeben ; wir wollen sie aber hier nicht
explizite anfuhren.

Als Gegenstiiek zu Satz II beweisen wir den folgenden

Satz IDE. Es sei 91 eine hyperbolische Riemannsehe Flaehe und A
eine analytische Abbildung von 9t in sich. Gibt es auf 91 einen nicht
nullhomotopen geschlossenen Weg p(t) derart, daB A(p(t)) ^p^it), so

gilt:
1. A ist ein Automorphismus von 91.

2. A besitzt die Période 2.

3. A besitzt mindestens einen Fixpunkt auf 91.

Es ist bemerkenswert, daB hier im Gegensatz zu Satz II keine Voraus-
setzung ûber die metrische Natur des Weges p(t) gemacht werden muB ;

in der Tat zeigt sich beim Beweise, daB ein Weg p(t) von selbst hyper-
bolisch ist, wenn er die Voraussetzungen von Satz III erfûllt. DaB die
Behauptung 3 nicht verschârft werden kann, lehrt das folgende Beispiel :

Es sei 91 die in den Punkten z ± 1 punktierte Kreisscheibe | z \ < 2.
Dann ist A (z) — z eine analytische Abbildung von 91 in sich. Wâhlen
wir nun als nichtnullhomotopen Weg p(t) in 9t eine Lemniskate, welche
die beiden Punkte z= ±1 umschlingt, so ist offenbar A(p(t)) ^'p"1^).
Und in der Tat ist A ein Automorphismus von 9î mit der Période 2,

welcher den einzigen Fixpunkt z 0 besitzt.

III. Die nun folgenden Sâtze IV bis VI handeln von Flâchen mit dis-
kretem Modulspektrum. Wir beweisen zunàchst den allgemeinen

Satz IV. Es sei 91 eine Riemannsche Flâche mit diskretem
Modulspektrum und nichtabelscher Fundamentalgruppe. Dann hat die Grappe
$t aller analytischen Automorphismen von 91 eine endliche Ordnung.

17) Zusammenhangszahl Bettisch© Zahl + 1.
18) [2] pag. 771.



In diesem Satz ist nun eine ganze Reihe von bemerkenswerten Spezial-
fâllen enthalten :

1. Da eine Riemannsche Flâche mit nichtabelscher Fundamental-

grappe stets von hyperbolischem Typus ist, so folgt aus Satz B und
Satz IV sofort

Satz IV! • Es se* © e^n Grebiet mit nichtabelscher Fundamental-

gruppe auf einer Riemannschen Flâche 91. Die abgeschlossene Huile von
© sei kompakt und der Rand von (5 normal. Dann hat die Grappe aller
analytischen Automorphismen von © eine endliche Ordnung.

Da die abgeschlossene Huile eines Teilgebietes einer geschlossenen
Flâche von selbst kompakt ist, so enthâlt Satz IV! den

Satz IVfc. Jedes Gebiet mit normalem Rand und nichtabelscher
Fundamentalgruppe auf einer geschlossenen Riemannschen Flâche be-
sitzt nur endlich viele analytische Automorphismen.

Da offenbar jedes endlichfach zusammenhàngende Gebiet auf der
Riemannschen Kugel, dessen Zusammenhangszahl grôBer als zwei ist,
einen normalen Rand und eine nichtabelsche Fundamentalgruppe be-

sitzt, so enthâlt Satz IV2 insbesondere den wohlbekannten19)

Satz IVr. Jedes endlichfach zusammenhàngende Gebiet auf der
Riemannschen Kugel, dessen Zusammenhangszahl grôBer als zwei ist,
besitzt nur endlich viele analytische Automorphismen.

Weil jede geschlossene Riemannsche Flâche vom Geschlechte g > 2

ein Gebiet auf sich selbst ist, dessen Fundamentalgruppe nichtabelsch
und dessen Rand trivialerweise normal ist, so enthâlt Satz IV2 ferner den

Satz IVg*. Jede geschlossene Riemannsche Flâche vom Geschlechte

g > 2 besitzt nur endlich viele analytische Automorphismen.

Damit haben wir einen neuen Beweis dièses bekannten, zuerst von
H. A. Schwarz aufgestellten Satzes20).

2. Aus Satz IV und Satz C folgt endlich

Satz IV5. Jede Riemannsche Flâche mit nichtabelscher Fundamentalgruppe

und endlicher Bettischer Zahl besitzt nur endlich viele analytische

Automorphismen.

M) Siehe zum Beispiel [7], § 5, pag. 323—326.
*°) [16] pag. 285—291. Vergleiche auch [6] pag. 241—259 und [14], pag. 16—19.



Dieser Spezialfall von Satz IV darf seit den Arbeiten von Koebe als
bekannt gelten, da er durch das Verfahren der ,,Verdoppehmga einer
endHchfach zusammenhângenden Flàche21) und Anwendung des Schwarz-
schen Spiegelungsprinzipes auf Satz IV2/, zuruckgefuhrt werden kann.
Immerhin sind bei der exakten Durchfûhrung dièses Beweises einige un-
angenehme Fallunterscheidungen und zusâtzliche Betrachtungen nicht
zu vermeiden ; sie ruhren vom môglichen Auftreten parabolischer Enden
der Flâche her — ein Umstand, der sich bei unserer Beweismethode
nicht bemerkbar macht.

Der folgende Satz zeigt nun deutlich die starke Auszeiehnung der
Automorphismen innerhalb der Menge aller analytischen Abbildungen
in sich einer Riemannsehen Flâche mit diskretem Modulspektrum.

Satz V. Es sei 9t eine Riemannsche Flâche mit diskretem
Modulspektrum, welche keine parabolischen Wegklassen enthâlt. Dann gibt
es zu jedem geschlossenen Weg p(t) auf 91 eine nur von der Homotopie-
klasse dièses Weges abhângige ganze Zahl n > 1 derart, daB gilt : Fur
jede analytische Abbildung A von 9t in sich, welche kein Automorphis-
mus von 91 ist, ist der Weg An(p(t)) nullhomotop auf 91.

Aus Satz A, Satz B und Satz V ergibt sich sofort

Satz Vj. Es sei © ein hyperbolisches Gebiet auf einer Riemannschen
Flâche 9Î. Die abgeschlossene Huile von © sei kompakt und jeder Rand-
punkt von © sei normal. Dann gibt es zu jedem geschlossenen Weg p(t)
in © eine nur von der Homotopieklasse dièses Weges abhângige ganze
Zahl n > 1 derart, daB gilt : Fur jede analytische Abbildung A von ©
in sich, welche kein Automorphismus von © ist, ist der Weg An(p(t))
nullhomotop in ©.

Dieser Satz enthâlt reichlich den folgenden Spezialfall :

Satz V|/. Es sei © ein nicht einfach zusammenhângendes, beschrânk-
tes Gebiet der komplexen z-Ebene. Der Rand von © sei normal und ent-
halte keine isolierten Punkte. Dann gilt : Fiihrt die analytische Abbildung

A von © in sich keine von der Nullklasse verschiedene Wegklasse
von © in die Nullklasse ûber, so ist A ein Automorphismus von ©.

In der Tat : Ein beschrânktes Gebiet der komplexen z-Ebene ist ein
Gebiet von hyperbolischem Typus mit kompakter abgeschlossener Huile.
Da der Rand von © normal ist und keine isolierten Punkte enthâlt, so ist

21) [8], § 37, pag. 139—141.
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offenbar jeder Randpunkt von (g normal. Es sind also aile Voraussetzun-

gen von Satz Vx erfûllt. Da © auBerdem nicht einfach zusammenhângend
ist, so gibt es in © eine von der Nullklasse verschiedene Wegklasse W.
Nach Voraussetzung sind dann die Wegklassen Ak(W), k 1, 2,...,
aile von der Nullklasse verschieden. Folglich mu8 A nach Satz V1 ein
Automorphismus von © sein, q. e. d. Dieser Satz Vv wurde von H. Car-
tan22) behauptet, ohne daB er dabei unsere einschrânkende Voraussetzung

machte, da8 der Rand von © normal sein soll. DaB ohne dièse

Voraussetzung Satz Vv aber unrichtig ist, erkennt man sehr leicht an
folgendem Beispiel : Aus der punktierten Kreisscheibe ï : 0 < | z \ < 1

entferne man die unendlich vielen ,,Kreisbogenschlitze"

Sn: |z| 2-", |argz| <nj2 »= 1,2,3,....
oo

Die tibrigbleibende Punktmenge © ï — U Qn ist nun wohl ein nicht
n—1

einfach zusammenhângendes, beschrànktes Gebiet ohne isolierte Rand-
punkte, aber der Randpunkt z 0 ist offenbar nicht normal. A (z) z/2
ist eine analytische Abbildung von © in sich, welche gewiB keine von der
Nullklasse verschiedene Wegklasse von © in die Nullklasse Iiberfuhrt.
Offensichtlich ist aber A(z) trotzdem kein Automorphismus von ®23).
Einfache Beispiele zeigen, daB fur die Richtigkeit von Satz V die Nicht-
existenz parabolischer Wegklassen auf 9Î wesentlich ist. Verzichtet man
auf dièse Voraussetzung, so làBt sich immerhin noch der folgende allge-
meine Satz beweisen :

Satz VI. Es sei 91 eine Riemannsche Flâche mit diskretem Modul-
spektrum und nichtabelscher Fundamentalgruppe. Dann gilt : Unter
allen analytischen Abbildungen von 9î in sich sind die Automorphismen
von 9î die einzigen, welche jeden nicht null-homotopen geschlossenen
Weg von 91 auf einen ebensolchen Weg abbilden.

Durch Kombination von Satz VI mit den Sâtzen aus Nr. 4 erhàlt man
wieder eine ganze Reihe von spezielleren Resultaten. Wir beschranken
uns darauf, ein einziges explizite anzufuhren : Aus Satz VI und Satz C

ergibt sich der besonders bemerkenswerte

Satz VI|. Die Automorphismen einer Riemannschen Flâche 91 mit
endlicher Bettischer Zahl und nichtabelscher Fundamentalgruppe sind

22) [2] pag. 772.
28 Daraus und aus Satz V ergibt sich noch, dafi das Gebiet © eine Kiemannsche Flâche

mit nicht diskretem Modulspektrum ist.
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die einzigen analytischen Abbildungen von 9$ in sich, welche jeden nicht
nullhomotopen geschlossenen Weg von SR auf einen ebensolchen Weg
abbilden.

IV. Nimmt man wiederum die Voraussetzung hinzu, daB 91 keine
parabolischen Wegklassen enthalte, so lâBt sich fur endlichfach zu-
sammenhângende Flàchen ein bedeutend prâgnanteres Résultat ge-
winnen. Um dièses aber formulieren zu kônnen, benôtigen wir noch
einen neuen Begriff :

Eine analytisehe Abbildung A(p) einer Riemannschen Flâche 9t in
sich heiBe analytisch nullhomotop, wenn es eine solche stetige Abbildung

A (p, t) des topologischen Produktes 91X t24) in 91 gibt, daB gilt :

1. A(p,O) A(p), A(p,l)E=p0€<3l fur aile pcSl.
2. Fur jedes feste t et ist A (p, t) eine analytische Abbildung von SR

in sich.

Mit Hilfe des eben eingefiihrten Begriffes lâBt sich nun der angekun-
digte Satz folgendermaBen aussprechen :

Satz VII. Es sei 9Î eine hyperbolische Riemannsche Flache ohne para-
bolische Wegklassen mit der endlichen Bettischen Zahl 6 > 1. Dann
gilt : Ist die analytische Abbildung A von 91 in sich kein Automorphismus
von 9t, so ist die 6-fach iterierte Abbildung Ab analytisch nullhomotop25).

Dieser Satz enthâlt u. a. folgenden Spezialfall :

Satz VII|. Es sei (S ein (n ;> 2)-fach zusammenhângendes Gebiet der
Riemannschen Kugel ohne isolierte Randpunkte. Dann gilt : Ist die
analytische Abbildung A von © in sich kein Automorphismus von ©, so ist
die iterierte Abbildung An~x analytisch nullhomotop26).

In der Tat : Ein (n > 2)-fach zusammenhângendes Gebiet der
Riemannschen Kugel ohne isolierte Randpunkte ist eine hyperbolische
Riemannsche Flache mit der Bettischen Zahl b n — 1 > 1 ; auf ihr
gibt es nach Satz Ax keine parabolischen Wegklassen.

DaB in Satz Vlli der Exponent n — 1 durch keine kleinere Zahl
ersetzt werden kann, zeigt uns das folgende Beispiel : Aus der Kreis-
scheibe R : | z | < 1 entferne man die n — 1 ,,Kreisbogenschlitze"

**) t bedeute das Intervall 0 < t < l.
u) Fur geschlossene Plâchen $g vom Geschlechte g > 2 gilt sogar : Ist die analytische

Abbildung A einer {Jff in sich kein Automorphismus, so ist A konstant. (Siehe Satz 1, § 18
und die zugehôrige Fuônote 83.)

*•) Fût den Spezialfall n « 2 vergleiche [5], pag. 163, Satz II.
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n-1
Die ûbrigbleibende Punktmenge © 51 — U Qk ist ein (n > 2)-fach

zusammenhângendes Gebiet ohne isolierte Randpunkte. A (z) z/2 ist
nun eine analytische Abbildung von © in sich, aber offenbar kein Auto-
morphismus von ©. Und in der Tat ist hier die (n — l)-fach iterierte
Abbildung An"1(z) analytisch nullhomotop, wâhrend die Iterierten
Ak(z) fur k<n — 1 nicht analytisch nullhomotop sind. Satz VH^ stellt
eine betràchtliche Verschârfung von Resultaten von Maurice Heins und
Michel Hervé dar. Heins27) gewann nâmlich mit ganz andern Methoden
das folgende, in unserem Satze reichlich enthaltene Ergebnis : Unter den
Voraussetzungen von Satz VIIj gibt es zu jeder analytischen Abbildung
A von © in sich, welche kein Automorphismus von © ist, eine ganze Zahl
g g (A, ©) > 1 derart, daB die gr-fach iterierte Abbildung Ag jeden
geschlossenen Weg in © auf einen nullhomotopen Weg abbildet. Hervé
zeigte dann in einer kûrzlich erschienenen Arbeit28), daB es bei gegebenem
Gebiete © eine von A unabhàngige solche Zahl g gr(©) gibt, ohne
daB er allerdings die Art der Abhângigkeit dieser Zahl g vom Gebiete ©
abklârte. Es sei noch bemerkt, daB mit Hilfe unseres Satzes VHi aus den

von Hervé nur fur nullhomotope Abbildungen entwickelten Abschàtzun-

gen der Starrheitskonstanten von © sofort Abschàtzungen dieser Kon-
stanten fur beliebige Abbildungen gewonnen werden kônnen.

§ 2. Mchteuklidisehe Bewegungen

I. In dieser Arbeit bezeichnen wir mit fl stets die komplexe Halb-

ebene 3(f)>0, f £ + itj. Durch die Metrik ds* -\ (d£2 + drf)

wird in Q eine nichteuklidische Géométrie erklârt. (Poincarésches ModeU
der Lobatschewskyschen Ebene.) Ihre Geodâtischen sind die zur reellen
Achse rj 0 orthogonalen (euklidischen) Kreise und Geraden (im fol-
genden kurz Orthogonalkreise genannt). Die Lange eines (stetig differen-
zierbaren) Weges Ç(t) e2, (0 <t < 1), bezeichnen wir mit
es ist x

27) [3] Theorem 3.2, pag. 479.
28) [4] pag. 151.
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Die Distanz zweier Punkte Çl9 f2 efi bezeichnen wir mit ju[^l9 £2] ;

es ist
(2)

Définition 1. Unter einer (nichteuklidischen) Bewegung von £ ver-

stehen wir eine lineare Abbildung L(Ç) — ad — bc ^ 0 der
Halbebene fi auf sich selbst.

Bekanntlich kônnen die Koeffizienten a, b, c, d einer Bewegung

stets so normiert werden, daB die a, b, c, d reell sind

und daB ad — bc ~ 1. Statt £(f) =— schreiben wir dannauch

(a
6\ c; + »

I In dieser symbolischen Schreibweise soll aber

die rechte Seite stets eine réelle unimodulare Matrix bedeuten. Zwei réelle

unimodulare Matrizen I 71, I 7.} liefern ofEenbar dann und nur dann
\c dj \cr d1]

a- iu t> tik aC + b a'Ç + b' (ab\ [f bf
dieselbeBewegung L(C) -^^^-^^^ wenn ^̂
Jeder Bewegung L I

^ I ist demnach in eindeutiger Weise die Spur

o{L) \a + d\ (3)
zugeordnet.

II. Die Bewegungen von fi lassen sich bekanntlich in eindeutiger
Weise in vier Klassen einteilen :

1. Die Identitat ; /(£) £.

2. Elliptische Bewegungen. Eine Bewegung L heiBt elliptisch, falls
a(L)<2. Jede elliptische Bewegung besitzt in der C-Ebene genau zwei
Fixpunkte, und dièse liegen symmetrisch zur reellen Achse.

3. Parabolische Bewegungen. Eine Bewegung L heiBt parabolisch, falls
a (L) 2 und L =£ /. Eine parabolische Bewegung besitzt in der ab-

geschlossenen £-Ebene einen einzigen Fixpunkt, und dieser ist Randpunkt
von fi. Zu jeder parabolischen Bewegung L von fi und zu jeder reellen
Zahl h t^ 0 gibt es solche Bewegungen U von fi, daB die Bewegung
L* ULU-1 die Gestalt L*(Ç) Ç ±h erhâlt.

4. Hyperbolische Bewegungen. Eine Bewegung heiBt hyperbolisch,
falls <y(Iy)>2. Eine hyperbolische Bewegung besitzt in der abge-
schlossenen f-Ebene genau zwei Fixpunkte, und dièse sind Randpunkte
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von fi. Zu jeder hyperbolischen Bewegung L von fi gibt es solche Bewe-

gungen V von fi, daB die Bewegung L* VLV~X die Gestalt £*(£)
A- f, A>0, A =£ 1 erhâlt29). Dabei ist die Zahl | log A | >0 durch L

eindeutig bestimmt.
Sind S und T irgend zwei Bewegungen von fi, so gehôren die Bewegun-

gen 8 und TST*1 stets zur selben Klasse.

III. Bekanntlich gilt :

Satz 1. Ist L eine Bewegung von fi, so ist p[L(Ç(t)) /*[£(£)] fur
jeden Weg £(*) cfi und ^[i(Ci), L{ÇJ] /ifo, C2] fur aile C1? C2 cfi.

Satz 2. Jede analytische30) und topologische Abbildung von fi auf
sich selbst ist eine Bewegung von fi.

Définition 2. Ist L eine Bewegung von fi, so heifie die Zahl M[L]
inf fj,[C, L(C)] der Modul von L.

Satz 3. Sind L und T Bewegungen von fi, so ist M [TLT'1] M[L].

Beweis. Nach Satz 1 ist /i[CyTLT'1{C)]=:/A[T''1(C)9L(T'1(i))l
Beachtet man auBerdem, daB der Punkt Î7~1(C) gleichzeitig mit C aile
Punkte von fi durchlâuft, so folgt : M[TLT'1] inf ^[f,

inf ai [C, L(Ç)] M[L]. q. e. d.

Mit Hilfe von (2) beweist man unschwer

Satz 4. a) Es ist M [L] 0 dann und nur dann, wenn L keine
hyperbolische Bewegung ist.

b) Ist L eine hyperbolische Bewegung, so ist M [L] //[£, £(£)]
dann und nur dann, wenn f e fi ein Punkt des Orthogonalkreises durch
die beiden Fixpunkte von L ist.

c) Hat die (hyperbolische) Bewegung L die Gestalt L(C) A-C,
A>0, A^l, so ist M[L] | log A|.

Man zeigt ferner leicht

Satz 5. Ist L eine Bewegung von fi und n eine ganze Zahl, so ist

29) In unserer symbolisehen Sehreibweise wird L* I ,— I

*) Vergleiche § 3, Nr. 1. \ 0 1/K A /
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IV. Man beweist sehr leicht die folgenden Hilfssatze :

Satz 6. Die Bewegung H habe die Gestalt H(Ç) X

XH ^ 1. Dann hat jede Bewegung S von fi, fur welche SES"1 H ist,
die Gestalt 8(0 VC>

Satz 6'. Die Bewegung P habe die Gestalt P(£) f + AP, AP # 0
reell. Dann hat jede Bewegung S von fi, fur welche SPS'1 P gilt,
die Gestalt 8(Ç) Ç + hs, hs reeU.

Satz 7. Die Bewegung H habe die Gestalt #(£)== A •£, A>0,
A ^ 1. Dann hat jede Bewegung 8 von fi, fur welche 8H8"1 JET-1

gilt, die Gestalt flf(f) —-y- c5>0.

V.

Définition 3. Eine Bewegungsgruppe P von fi heifie eigentlich dis-
kontinuierlich, falls die Punktmenge 501^ U 8(£) fiir kein f cfi einen
Hàufungspunkt in fi besitzt.

Man zeigt leicht :

Satz 8. Es sei F eine eigentlich diskontinuierliche Bewegungsgruppe
von fi, deren Elemente aile die Gestalt 8(Ç) A5«f, A5>0, haben.
Dann ist jT zyklisch von der Ordnung 1 oder oo.

Satz 8;. Es sei F eine eigentlich diskontinuierliche Bewegungsgruppe
von fi, deren Elemente aile die Gestalt 8(Ç) Ç -{- hs, hs reell, haben.
Dann ist F zyklisch von der Ordnung 1 oder oo.

Satz 9. Die eigentlich diskontinuierliche Bewegungsgruppe F von fi
enthalte weder elliptische noch hyperbolische Elemente. Dann ist F
zyklisch.

Beweis. F bestehe nicht aus der Identitât allein. (Sonst wâre nichts
zu beweisen!) Dann enthâlt F gewiB eine parabolische Bewegung P.
Wir durfen annehmen, P habe die Gestalta)

P(C) f + hP hP ^ 0 reell. (1)
Wir zeigen nun :

Jedes Elément 8 eF hat die Gestalt 8(Ç) Ç + hs, hs reell. (2)

81) Hat P zunachst nicht dièse Gestalt, so gibt es doch eine solche Bewegung V von L,
dafi P* VPV-1 die Gestalt (1) erhalt (vergleiche II). Statt der Grappe F betrachte
man dann die transformierte Gruppe F* VFV"1, welehe ebenfalls eigentlich diskonti-
nuierlich ist und weder elliptische noch hyperbolische Bewegungen enthâlt,
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In der Tat : Sei 8 e F und

Da S nach Voraussetzung weder elliptisch noch hyperbolisch ist, so ist

a (S) | a + d | 2 (4)

Aus (1) und (3) folgt sofort

a(SPn) | hP en + a + d | (5)

Nach Voraussetzung ist fur jedes ganze n SPn e F weder elliptisch noch

hyperbolisch, das heiBt a(8Pn) 2. Folglich ist wegen (5) fur aile

ganzen n \hPcn + a + d\=2. Dies ist aber wegen hP ^= 0 und
wegen (4) nur môglich, wenn

c 0 (6)

Wegen ad — bc 1 folgt hieraus ad 1. Daraus und aus (4) ergibt
sich

a d ± 1 (7)

Aus (3), (6), (7) folgt jetzt, dafi 8 wirklich die Gestalt (2) besitzt. q. e. d.
Aus (2) und Satz 87 folgt nun aber, daB die eigentlich diskontinuier-

liche Gruppe F zyklisch ist. Damit ist Satz 9 bewiesen.

§ 3. Allgemeines ûber Biemannsche Flâchen und analytische Abbildungen

1. Analytische Abbildungen Riemannscher Flâchen

I. Unter einer Riemannschen Flâche 5R verstehen wir im folgenden
stets eine zweidimensionale Mannigfaltigkeit, welcher durch ein System
ortsuniformisierender Parameter eine analytische Struktur aufgeprâgt
ist32).

II. Es seien 5RX, 5R2 zwei Riemannsche Flâchen und A (p) eine stetige
Abbildung von 3lt in 9{2. p0 sei ein Punkt von 9Î1? z t (p) sei eine zu
p0 gehôrige Ortsuniformisierende und w r(q) eine zu q0 Aipoje^
gehôrige Ortsuniformisierende33). Dann ist w a(z) r(A(t~1(z)))
eine in einer gewissen Umgebung von z 0 eindeutige komplexe Funk-

82) Vergleiche [17], pag. 36.
88) z t(p) respektive w r(q) bildet eine gewisse XJmgebung von p0 ç 9^ respektive

q0 € 9la au^ eine gewisse Umgebung des Nullpunktes der komplexen z- respektive w-Ebene
topologisch ab.

2 Oommentarii Mathematici Helvetici j *j



tion. Falls nun dièse Funktion a(z) in einer Umgebung von z 0

regulâr analytisch ist, so heiBt die Abbildung A(p) analytisch im
Punkte p0. — Eine stetige Abbildung A (p) von 9ÎX in 9t2 heiBt analytisch,

wenn sie in jedem Punkte p e 9^ analytisch ist.

III. Ist A eine analytische Abbildung von 9^ in 9t2, B eine analytisehe
Abbildung von 5R2 in 9t3, so ist BA (p) B(A (p)) eine analytische
Abbildung von 9lx in 9t3.

IV. Eine analytische und topologische Abbildung einer Riemannschen
Flâche 91 auf sich selbst nennen wir einen analytischen Automorphismus
von 91.

2. Universelle tîberlagerungsflachen

I. Unter einer universellen Ûberlagerungsflâche einer Riemannschen
Flâche 91 verstehen wir ein Paar (9T, n) bestehend aus einer einfach zu-
sammenhângenden34) Riemannschen Flâche 91' und einer analytischen
Abbildung n von 9t' auf 91, welche folgende Bedingung erfullt : Ist
© c 91 ein beliebiges einfach zusammenhângendes Teilgebiet von 9î, so

bildet n jede Komponente der offenen Menge jr~1((5) c 9T topologisch
auf © ab. Die Abbildung n nennen wir Projektion, und wir sagen, der
Punkt p c9T ùberlagere den Punkt n(p) e9î. Statt von der universellen

Ûberlagerungsflache (9T, n) von 9Î zu sprechen, werden wir auch
etwa sagen : Die Flâche 91' wird vermôge der Projektion n zur universellen

Ûberlagerungsflache von 91. — Es gilt

Satz 1. a) Zu jeder Riemannschen Flâche 91 gibt es eine universelle
Ûberlagerungsflache (9T, n).

b) Ist (9T,:7r) universelle Ûberlagerungsflache von 91, G eine analytische

und topologische Abbildung von 91' auf eine Riemannsche Flâche
91" und definiert man

so ist auch (91", jrx) universelle Ûberlagerungsflache von 91.

c) Sind (9T,:7z1), (9T, n2) irgend zwei universelle Ûberlagerungs-
flâchen von 9î, so gibt es eine analytische und topologische Abbildung
0 von 9T auf 91" derart, daB

n%{p) Tt^O-^p)) fiir aile p e9l"

u) W heifît einfach zusammenhângend, wenn jeder geschlossene Weg auf W null-
homotop ist.
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3. Decktransformationen. Fundamentalgruppe

Sei 9Î eine Riemannsehe Flâehe und (91', n) universelle Ûberlagerungs-
flâche von 9î. Eine topologische Abbildung 8 von 91' auf sich selbst heiBt
Decktransformation von (91',^), falls n(S(p)) n(p) fur aile peW.
Jede Decktransformation von (9r,7r) ist offenbar ein analytischer
Automorphismus von 9T. Es gilt der

Satz S. Ist p €91', q c9T und n(p) n(q), so gibt es genau eine
Decktransformation von (91', n), welche den Punkt p in den Punkt q
uberfuhrt.

Die Gesamtheit aller Decktransformationen einer universellen Ûber-
lagerungsflâche (91', n) von 9î ist ofïensichtlich eine Gruppe ; sie heiBe
die Fundamentalgruppe F{WtJT) von (91', rc). Wie aus dem untenstehen-
den Satz 4 hervorgehen wird, sind die Fundamentalgruppen zweier uni-
verseller Ûberlagerungsflâchen derselben Flâche 9t stets isomorph. So-
fern wir nur die gruppentheoretische Struktur im Auge haben, kônnen
wir daher kurz von der Fundamentalgruppe F der Riemannschen Flâche
91 sprechen.

Die Fundamentalgruppe r^fjr) enthâlt stets hôchstens abzâhlbar
viele Elemente und ist eigentlich diskontinuierlich auf 91', das heiBt die
Punktmenge

8(p)

hat fur kein p e 9Î' einen Hâufungspunkt auf 9Î;.

4. Die Zuordnung @w)7T) der Wegklassen von 91 zu den Klassen kon-
jugierter Elemente der Fundamentalgruppe F(WftrT)

I. Wir definieren nun eine Abbildung 0(W7r)(W) der Wegklassen W
von 91 auf die Klassen Si konjugierter Elemente der Fundamentalgruppe

F^, n) : Sei W eine Wegklasse von 91 und der geschlossene Weg
p(t) ein Reprâsentant von W. Wir wâhlen einen solchen Punkt q0 €91',
daB 7t(q0) p(0) p(l). Dann gibt es genau einen Weg q(t) auf W
derart, daB q(0) q0 und n(q{t)) p(t) fur 0 < t < 1. Dann ist
offenbar 7i(q(0)) ==¦ n{q{l)). Nach Satz 2 gibt es daher genau eine
Decktransformation S €Fm,>7T) derart, daB q(l) 8(q(0)). Nun definieren
wir

dabei bedeute $ts diejenige Klasse konjugierter Elemente von FiW n),
welche durch das Elément S reprâsentiert wird. Die so definierte Klasse
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konjugierter Elemente ist unabhângig von der Wahl des

Reprasentanten p(t) von W und unabhângig von der Wahl des den
Punkt p(0) ûberlagernden Punktes q^eW. Es gilt ferner

Satz 3. Die Abbildung 0(^i1T)(W) ist eine umkehrbar eindeutige
Abbildung der Gesamtheit aller Wegklassen von 9Î auf die Gesamtheit
aller Klassen konjugierter Elemente von F^,>7r).

Die inverse Abbildung &^f j7r), welche die Klassen 51 konjugierter
Elemente auf die Wegklassen W abbildet, kann nun offenbar folgender-
maBen beschrieben werden : Sei 8 €FiW7T) ein beliebiger Reprasentant
der Klasse 5t. Sei ferner q0 ein beliebiger Punkt auf 9T und q(t) ein Weg
auf 5R;, welcher q0 mit S(q0) verbindet. Dann ist p(t) n(q(t)) ein ge-
schlossener Weg auf 91, welcher gerade die Wegklasse &^, ^ 5t) reprâ-
sentiert.

II. Ist WQ insbesondere die Nullklasse von 91, so besteht die Klasse
0(WO) offenbar nur aus der Identitât / eF^^ n).

III. Ist W eine Wegklasse und p(t) ein Reprasentant von W, so be-
zeichnen wir die Bildklasse &(W) auch mit &[p(t)]. Auf Grund dieser

Verabredung gilt dann : Es ist ^[Pxit)] &[p2(t)] dann und nur dann,
wenn die geschlossenen Wege px{t) und p2(t) auf 5R homotop sind.

IV. Ist Si eine Klasse konjugierter Elemente und S ein Reprasentant
von 51, so bezeichnen wir die Wegklasse 0~1($t) auch mit 0~1[S].
Auf Grund dieser Konvention gilt dann : Es ist 0~1[S1] 0~1[S2] dann
und nur dann, wenn die Elemente Sx,82 eF^, n) konjugiert sind.

V. Ist p(t) ein geschlossener Weg auf 9t und 8 €0[p(t)], so ist
S-1 e0[p-1{t)l

VI. Man beweist leicht

Satz 4. Es seien (9t', ttJ und (9t", n2) universelle tîberlagerungs-
flachen der Riemannschen Flâche 9Î und es sei G die nach Satz 1 c exi-
stierende analytische und topologische Abbildung von $R' auf 9î" fur
welche gilt : n2(p) ^i{O~x(p)) fiir aile p e 5R". Dann ist die Zuordnung

8-+080-*, Ser{n,tWi)

ein Isomorphismus der Fundamentalgruppe F^Wni) auf die Fundamen-
talgruppe F{WtlT2) und es gilt

&, iro [] i*. Wi)t] 8
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VII. Ein nicht nullhomotoper geschlossener Weg p(t) auf 9t heiBe

Kommutatorweg, falls &(Wy7T)[p(t)] in der Kommutatoruntergruppe
von r^, ^ enthalten ist. Aus Satz 4 folgt sofort, daB dièse Définition
unabhàngig ist von der speziellen Wahl der universellen Ùberlagerungs-
flâche (W,n) vonSR.

5. Induzierte Abbildungen und zugehôrige Homomorphismen der Funda-
mentalgruppen

I. Es sei A eine analytische Abbildung der Riemannschen Flâche 9?x

in die Riemannsche Flâche 9?2. (91^, jrx) bzw. (9î£, 7t2) sei universelle
Ûberlagerungsflâche von ^ bzw. 5R2.

Définition 1. Eine analytische Abbildung a von 9?^ in SRg heiBt indu-
ziert durch die Abbildung A, wenn

Es gilt der

Satz 6. a) Sei poe9îi> ?o^2 und ^fe) ^KW)' Dann gibt
es genau eine durch A induzierte Abbildung a von 5Rj in 9î^, welche p0
in g0 iiberfiihrt.

b) Ist a eine durch A induzierte Abbildung von 9l[ in Stg und ist
î1 CjTotf, tt2), so ist auch î7» eine durch ^4 induzierte Abbildung.

c) Sind a' und a" zwei durch dieselbe Abbildung A induzierte
Abbildungen von SRj in 3^, so gibt es genau eine Decktransformation
T €r<9?é,7r2) derart, daB

II. Sei a eine durch A induzierte Abbildung von 9t{ in Slg und
S e r^i, ttx). Dann ist offenbar a(S(p)) ebenfalls eine durch A induzierte
Abbildung ; daher gibt es nach Satz 5c zu jedem S e JT(9i{, m) eine ein-
deutig bestimmte Decktransformation T oc (S) c/fai, Wa) derart, daB

a(S(p)) T(a(p)) fiir aile p e%. Es gilt

Satz 6. a) Ist a irgendeine durch A induzierte Abbildung von 5R{ in
9Î2> so gibt es zu jeder Decktransformation S eTwi,^ eine eindeutig
bestimmte Decktransformation î1 a (fl) €jT< »*,«•,) derart, daB

T{a(p)) fur aile ^6^.
b) Die dadurch erklârte eindeutige Abbildung a von JT(«Ri, tti> in

-H «2, tt2) ist ein Homomorphismus.

c) Sind a und a' zwei durch dieselbe Abbildung A induzierte
Abbildungen, so sind die gemâB a) zu a respektive a' gehôrigen Homomorphis-
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men a respektive oc âhnlich, das heiBt es gibt eine solche Deektransfor-
mation ReFM,^), daB a'(S) R • a (S) • R-1 ftir aile 8 c/fai, *,). Zu
jeder analytisehen Abbildung J. von Sîx in 9l2 gehôrt somit eine Klasse
£>A ahnlicher Homomorphismen von FcRi,^ in Jfai.ir,).

d) Ist p(£) ein geschlossener Weg auf 9?! und q(t) A(p(t)) sein

Bildweg auf 9?2> so gilt : Ist 8 €&&{,*{) [p(t)] und a€§^, so ist

III. Es sei 5R eine Riemannsehe Flâche, (91', n) universelle Ûber-
lagerungsflâche von 91 und A eine analytisehe Abbildung von 9î in sich.
Dann folgt aus Satz 6 sofort der

Satz 6'. a) Ist a irgendeine durch A induzierte analytisehe Abbildung
von 91' in sich, so gibt es zu jeder Deektransformation S € F^, ny eine

eindeutig bestimmte Decktransformation T oc (8) e FiW w) derart,
daB a(S(p))= T(a(p)) fur aile p€»'.

b).Die dadurch erklârte eindeutige Abbildung oc von JT(9l/ n) in sich ist
ein Endomorphismus von F^f ff).

c) Sind a und ar zwei durch dieselbe Abbildung A induzierte Abbil-
dungen, so sind die gemâB a) zu a respektive af gehôrigen Endomorphis-
men a respektive a' ahnlich, das heiBt es gibt eine solche Deektransformation

R €Fmfn), daB ocf(8) R • a (8) • jR-1 fur aile S e/^,^. Zu
jeder analytischen Abbildung A von 91 in sich gehôrt somit eine Klasse
QA ahnlicher Endomorphismen von F^w n).

d) Ist p(t) ein geschlossener Weg auf 9t und q(t) A(p(t)) sein

Bildweg auf 91, so gilt: Ist 8 €0^,s7r)[p(t)] und oc edèA, so ist

Man beweist ferner sehr leicht den

Satz 7. Es seien A und B zwei analytisehe Abbildungen von 9t in sich
und es sei oc e (£A, ($ € (£#. Dann ist a/Se (èAB.

6. Die Typenklassifikation der Riemannschen Flachen

I. Jede einfach zusammenhangende Riemannsche Mâche lâBt sich be-
kanntlich analytisch und topologisch abbilden, entweder

(a) auf die Riemannsche Kugel Si, oder
(b) auf die komplexe Ebene (è : | z \ <oo, oder
(c) auf die Halbebene fi: 3(£)>0.
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Keine dieser drei Normalflâehen kann analytisch und topologisch auf
eine der beiden andern abgebildet werden. Dieser Sachverhalt gibt An-
laB zu folgender Klassifikation der einfachzusammenhângenden Flâchen :

Eine einfachzusammenhângende Riemannsche Flâche heiBe von ellipti-
schem, parabolischem oder hyperbolischem Typus, je nachdem ob
Fall (a), FaU (b) oder Fall (c) eintritt.

II. Wegen Satz 1 c gilt offenbar : Sind (9f, a^), (9T, 7t2) zwei universelle

Ûberlagerungsflâchen derselben Riemannschen Flache 91, so haben
die einfachzusammenhângenden Flàchen 91' und 9t" den gleichen Typus.
Daher wird folgende Définition sinnvoll :

Définition 2. Ist 91 eine beliebige Riemannsche Flache und (91' n)
irgendeine universelle Ûberlagerungsflâche von 9t, so verstehen wir unter
dem Typus von 91 den Typus der einfachzusammenhângenden Flache 9î'.

Durch dièse Définition wird die Gesamtheit aller Riemannschen
Flâchen in eindeutiger Weise in drei Klassen eingeteilt. — Aus dem
bisher Gesagten und aus Satz 1 folgt nun :

(a) Ist 91 von elliptischem Typus, so wird die Riemannsche Kugel 51

vermôge einer geeigneten Projektion zur universellen Ûberlagerungs-
flâche (Si, ri) von 9t.

(b) Ist 91 von parabolischem Typus, so wird die komplexe Ebene
(Ê: | z | <oo vermôge einer geeigneten Projektion p n(z) zur
universellen Ûberlagerungsflâche ((£, n) von 9Î.

(c) Ist 91 von hyperbolischem Typus, so wird die Halbebene fi :

3(C)>0 vermôge einer geeigneten Projektion p n(Ç) zur universellen

Ûberlagerungsflâche (fi, n) von 9Î.

III. Bekanntlich gilt35):
a) Eine Riemannsche Flache von elliptischem Typus lâBt sich stets

analytisch und topologisch auf die Riemannsche Kugel abbilden ; ihre
Fundamentalgruppe ist daher von der Ordnung 1.

b) Eine Flache von parabolischem Typus ist entweder eine geschlossene
Flache vom Geschlechte 1 oder sie lâBt sich analytisch und topologisch
auf die ein- oder zweifach punktierte Riemannsche Kugel abbilden ; ihre
Fundamentalgruppe ist daher gewiB abelsch.

IV. Aus III folgt nun offenbar : Eine Riemannsche Flache mit nicht-
abelscher Fundamentalgruppe ist stets von hyperbolischem Typus.

86) Vergleiche [17], pag. 150—152.
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V. In einigen unserer Satze werden die hyperbolischen Flàchen mit
abelscher Fundamentalgruppe eine Ausnahmerolle spielen, indem dièse
Sâtze fur solche Flâchen entweder falsch oder inhaltslos werden. Wie
man sich leicht ûberlegt, gilt : Eine hyperbolische Riemannsche Flâche
mit abelscher Fundamentalgruppe lâBt sich stets analytisch und topolo-
gisch abbilden, entweder

(a) auf den Einheitskreis | z \ < 1, oder
(b) auf den punktierten Einheitskreis 0 < | z | < 1, oder
(c) auf einen Kreisring 0 < r < \ z \ < 1.

In allen diesen Fâllen ist die Fundamentalgruppe sogar zyklisch von
der Ordnung 1 (Fall (a)) oder oo (Fâlle (b), (c)).

VI. Mit Hilfe des elementaren Liouvilleschen Satzes beweist man
leicht den

Satz 8. Ist 5R eine Riemannsche Flâche von hyperbolischem Typus,
so ist auch jedes Teilgebiet © C 9t eine Flâche von hyperbolischem
Typus.

Daraus und aus der Aufzâhlung der nichthyperbolischen Flâchen
(vgl. III) ergibt sich leicht der

Satz 9. Ist 91 eine Riemannsche Flâche von beliebigem Typus und
sind a, b, c drei voneinander verschiedene Punkte von 5R, so ist
5R* 5R — {a, b, c} eine Riemannsche Flâche von hyperbolischem
Typus.

§ 4. Die Moduln der Wegklassen einer hyperbolischen Biemannschen
Flâche. Flâchen mit diskretem Modulspektrum

I. Es sei 9Î eine Riemannsche Flâche von hyperbolischem Typus ;

(fi, n) sei universelle Ûberlagerungsflâche von 5R. Jede Decktransfor-
mation 8 von (fi, n) ist ein analytischer Automorphismus von fi, also
nach Satz 2, § 2 eine nichteuklidische Bewegung von fi. Ist S von der
Identitât verschieden, so besitzt S oflfenbar keinen Fixpunkt in fi, das

heifit S ist entweder eine hyperbolische oder eine parabolische Bewegung
von fi. Die Fundamentalgruppe Fnm) der universellen Ûberlagerungs-
flâche (fi,7r) von 5R ist also eine (eigentlich diskontinuierliche) Bewe-

gungsgruppe von fi, welche keine elliptischen Elemente enthâlt.

86) Wir sehreiben von nun an stets JV statt F^i7T) und 0^ statt ^(fi>7r).
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II. Durch die Définition 2, § 2 wird jedem Elément S der Fundamental-

gruppe Fn von (fi, n) die nichtnegative Zahl M [S] zugeordnet. Wegen
Satz 3, § 2 ist M [S] eine Klassenfunktion auf F^. Daher wird durch die

Définition 2. M [W ] M [S] 8 €&n(W)

jeder Wegklasse W von 91 in eindeutiger Weise eine nicht négative Zahl
M [W] zugeordnet, die wir den Modul der Wegklasse W nennen. Der so

definierte Modul der Wegklasse W ist unabhângig von der speziellen
Wahl der Projektion n, vermôge welcher fi zur universellen Ûberlage-
rungsflâche von 9î wird. Dies folgt sofort aus Satz 4, § 3, Satz 2 und
Satz 3, § 2.

III. Ist M[W]>0, so nennen wir W eine hyperbolische Wegklasse
und jeden ihrer Reprâsentanten einen hyperbolischen Weg. @n(W) be-
steht dann aus hyperbolischen Bewegungen von fi37).

IV. Ist if [IF] 0 und W nicht die Nullklasse, so nennen wir W
eine parabolische Wegklasse und jeden ihrer Reprâsentanten einen para-
bolischen Weg. ^n(W) besteht dann aus parabolischen Bewegungen
von fi.

V. Man beweist sehr leicht, daB der Modul einer Wegklasse W von 91

invariant ist gegeniiber analytischen und topologischen Abbildungen
von 91, das heiBt es gilt

Satz 1. Ist G eine analytische und topologische Abbildung der
hyperbolischen Riemannschen Plâche 9t auf die Riemannsche Flàche 91*, so

gilt fur aile Wegklassen W von 91 : M [W ] M [G{W)].

VI.

Définition 2. Eine Riemannsche Flâche 91 von hyperbolischem Typus
heiBe Flâche mit diskretem Modulspektrum, wenn es zu jeder Zahl
ra>0 auf 9î hôchstens endlich viele Wegklassen W mit 0<M[W]<m
gibt.

Aus dieser Définition folgt sofort :

Satz 2. Es sei 9t eine hyperbolische Riemannsche Flâche und (fi, ri)
universelle Ûberlagerungsflâche von 91. Dann gilt :

a) 9î besitzt dann und nur dann diskretes Modulspektrum, wenn fur
jedes m > 0 die Menge

37) Vergleiche Satz 4, § 2.
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0<M[S]<m}

in hôchstens endlich viele Klassen konjugierter Elemente zerfâllt.

b) Besitzt die Flâche 9t diskretes Modulspektrum und ist F* eine nicht-
leere, nur hyperbolische Elemente enthaltende Teilmenge von Fn9 so

gibt es ein Elément So eF* derart, da8 M [S] > M [80]>0 fur aile
S eF*.

Aus Satz 1 folgt schlieBlich noch der

Satz 3. Die Riemannsche Hache 91 sei analytisch und topologisch
abgebildet auf eine Riemannsche Flâche 9t* mit diskretem Modulspektrum.

Dann ist auch 9t eine Flâche mit diskretem Modulspektrum.

§ 5. Die hyperbolische Metrik und das Schwarzsche Leinma

I. Es sei 9t eine Riemannsche Flâche von hyperbolischem Typus und
(&,7t) universelle Ûberlagerungsflâche von 9t. Wir fiihren nun auf 9Î
ein LângenmaB /% ein :

Définition 1. Sei p(t) ein (stetig differenzierbarer) Weg auf 9Î und
Ç(t) efi ein Ùberlagerungsweg von p(t), das heifit n(Ç(t)) p(t).
Dann definieren wir ^[p(t)] {i[Ç(t)]. Dabei bezeichnet /^[£(0] die

hyperbolische Lange des Weges Ç(t) in der Halbebene £38). Die so defi-
nierte /^^-Lânge des Weges p (t) auf 91 ist unabhângig von der speziellen
Wahl des Ûberlagerungsweges Ç(t) von p(t), denn zwei verschiedene
Ûberlagerungswege von p (t) gehen durch eine Decktransformation von
(fi, n), also durch eine Bewegung von fi auseinander hervor und haben
daher nach Satz 1, § 2 dieselbe hyperbolische Lange. ^[p(t)] ist aber
auch unabhângig von der speziellen Wahl der Projektion n, vermôge
welcher fi zur universellen Ûberlagerungsflâche von 9Î wird. Dies folgt
aus Satz le, § 3, Satz 1 und Satz 2, § 2.

II. Man beweist auf Grund der Définition 1 sehr leicht den

Satz 1. Es sei { die punktierte Kreisscheibe 0<| z \ <1 und pQ(t)
2u Dann ist

III. Mit Hilfe des LângenmaBes ^[p(t)] definieren wir nun die
Distanz ^[Pi,p2] zweier Punkte p^p^eW.

u) Vergleiche § 2, I.



Définition 2. Essei W(pl9p%) die Menge aller (stetig differenzierbaren
Wege) p(t) auf 9t, fiir welche p(0) pl9 p(l) p2 ist. Dann setzen
wir ^[Pi> P2I nrf [W]

Wie man leicht sieht, gilt

Satz 2. Ist d, fa €#, ^r(Ci) Pi,

d> S(fa)]

und es gibt (wegen der eigentlichen Diskontinuitât von rn) stets ein
solches Elément 8* e/^, da8 ^[^, p2] A*[fi»^*(fs)]- Mit HiKe
von Satz 2 iiberzeugt man sich leicht, da6 fift[pl9 p2] ail© Axiome er-
fiillt, die man tiblicherweise von einer Distanzfunktion fordert. (Insbe-
sondere auch die Dreiecksungleichung Aus Satz 2 und aus der eigentlichen

Diskontinuitât von Fn folgt ferner :

Satz 3. Die durch die Distanzfunktion ^^[^i, p%\ auf 91 induzierte
Topologie ist âquivalent mit derjenigen Topologie, welche der Riemann-
schen Flâche a priori zukommt.

IV.

Définition S. Eine Punktmenge S0Î c 91 heiBe metrisch beschrânkt,
wenn es einen Punkt p0 e9l und eine positive Zahl m<oo derart gibt,
da6 ^[p,po]<m fur aile p

Man iiberlegt sich leicht, daB jede hyperbolische Riemannsche Flâche
9Î bezûglich der Metrik ^n vollstândig ist, das heiBt es gilt

Satz 4. Jede metrisch beschrânkte unendliche Punktfolge {pn} c5R

besitzt mindestens einen Hâufungspunkt auf 9î.

Aus Satz 3 und Satz 4 folgt sofort

Satz 5, Eine unendliche Punktfolge {pn} e 91 konvergiert dann und
nur dann gegen einen Punkt p €91, wenn es zu jedem e>0 einen
Index N(e) so gibt, daB ^[pn, pm]<£ fur aile n,m>N(e).

V. Das Schwarzsche Lemma kann in der invarianten Fassung von
Pick39) folgendermaBen ausgesprochen werden :

Satz 6. Es sei a(Ç) eine analytische Abbildung der Halbebene fi in
sich. Dann gilt :

39) Vergleiche [13], pag. 1—6.
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a) Ist Ç(t) ein (stetig differenzierbarer) Weg in fi und ist £*(£) ¦=
a(Ç(t)) sein Bildweg, so ist /*[£*(*)]</*[£(*)].

b) Fur je zwei Punkte fx, f, efi ist ^[«(d), a(fa)] < /4Ci> fa].

c) Gibt es zwei Punkte f1} £2 €Û derart, daB //[a(Ci), a(C2)] ~
^[Ci, C2]>0> so ist a(C) eine Bewegung von fi.

VI. Es seien 5RX und 5R2 hyperbolische Riemannsche Flàchen ; (fi, n^)
respektive (fi, n2) sei universelle tîberlagerungsflâche von 5R1 respektive
5R2. Es sei A(p) eine analytisehe Abbildung von SR1 in 9t2 und a (C) eine
durch .4 induzierte analytische Abbildung von fi in sich (vgl. Définition 1,

§ 3, Nr. 5 Wendet man nun auf a(Ç) den Satz 6a an und beachtet
man die Definitionen 1 und 2, so folgt sofort :

Satz 7. Es sei A (p) eine analytische Abbildung der hyperbolischen
Flâche 9?x in die hyperbolische Flâche 9Î2. Dann gilt :

a) Ist p(t) ein (stetig difïerenzierbarer) Weg auf 9^ und q(t) A(p(t))
sein Bildweg auf 9Î2, so ist

b) Fiir zwei beliebige Punkte pt, p2 e 9?! gilt stets

/%2 \A (Pl) y A (P2)] < P*x [Pi » P%\ -

§ 6, Verallgemeinerung des Grofien Picardschen Satzes

Satz 1. Es sei A(z) eine analytische Abbildung der punktierten
Kreisscheibe ï : 0 < | z \ < 1 in eine Riemannsche Flâche 9Î von hyper-
bolischem Typus. Dann liegt genau einer der beiden folgenden Tat-
bestànde vor :

(a) Es gibt einen Punkt aQ e 9t derart, daB die Abbildung

A*{z) A(z) fur 0<|z|<l, ^4*(0) ao

eine analytische Abbildung der vollen Kxeisscheibe | z \ < 1 in die
Flâche SR ist.

(b) Fiir jede unendliche Punktfolge

{zn}: 0<|zn|<l limzn=O
n—>oo

ist die Punktfolge {A(zn)} auf 9Î divergent40).

40) Eine Punktfolge {pn} C 91 heifit divergent auf 91, wenn aie auf 91 keinen Hâufungs-
punkt besitzt.
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Beweis. 1. Offenbar kônnen nicht beide Tatbestànde zugleich erfullt
sein. Liegt der Tatbestand (b) nicht vor, so gibt es offenbar eine Punkt-
folge

O (1)

derart, da8 die Punktfolge {A(zn)} gegen einen Punkt a0 e9î konver-
giert :

L(zn) a0€9î (2)

Wir haben zu zeigen, daB dann der Tatbestand (a) vorliegt.
2. Wir zeigen zunâchst :

(I) Fur jedesfeste q, (0<£<l), ist der geschlossene Weg A(QeZnit),
0 < t < 1, nullhomotop auf 91.

Beweis. Wir betrachten die geschlossenen Wege

qn(t) A(zne*"u) 0<*<l n= 1,2,3,... (3)

auf 9t. Dann gilt offenbar fur jedes n > 1

qn(O) A(zn) (4)

qn(t) ~A(Qe*"u) (0<e<l) (5)
Ferner gilt

*)] 0 (6)

In der Tat : Aus (3), Satz 1 und Satz 7a, § 5 folgt

Hieraus und aus (1) folgt aber die Behauptung (6). q. e. d.
Es sei nun 93ao c 9Î eine einfachzusammenhângende Umgebung des

Punktes a0 e9t. Dann folgt offenbar aus (2), (4) und (6) : Es gibt einen
Index n0 derart, daB der geschlossene Weg qUo(t) in der einfachzu-
sammenhângenden Umgebung 93ao liegt. Dieser Weg qnQ(t) ist daher
nullhomotop auf 9Î. Wegen (5) ist darum auch der Weg A (q e27™')

nullhomotop auf 9Î. q. e. d.

3. Die Halbebene Q wird offenbar vermôge der Projektion

3 ^(0 ^ (7)

zur universellen Ûberlagerungsflàche (£, 7tt) von ï : 0 < | z \ < 1. Da 9t
von hyperbolischem Typus ist, so wird der Einheitskreis (g : | w | < 1

29



vermôge einer geeigneten Projektion p n2(w) zur universellen Ûber-

lagerungsflâche ((£, n2) von 9t. Die analytisehe Abbildung A von î in 91

induziert dann eine analytische Abbildung w a(Ç) von fi in (S. Sei

a *§>a ^er zugehôrige Homomorphismus der Fundamentalgruppe r^Wi)
in die Fundamentalgruppe P^ 7rg). r^ni) ist offenbar die von derDeck-
transformation

Ç + 2tz (8)

erzeugte zyklische Gruppe und es ist T e <P(fif Wl)[g e27rie]. Daher ist nach
Satz 6d, §3 <x(T) e&^^iAige2™*)]. Daraus und aus (I) folgt aber,
daB a(T) die Identitât'ist. Folglich gilt nach Satz 6a, § 3: a(T(Ç))

a(C), also wegen (8) a(Ç + 2tz) a(C). Daher ist

â(z) a(-ilogz) (9)

eine (eindeutige analytische Abbildung von ï : 0 < | z \ < 1 in den Ein-
heitskreis (£ : | w | < 1. Daraus schlieBen wir mit Hilfe des elementaren
Satzes von Casorati-WeierstraB : Es gibt einen Punkt w0 e (£ derart,
daB die Abbildung

a*(z)=â{z) fur 0<|z|<l, a*(0) w0 (10)

eine analytische Abbildung der vollen Kreisscheibe | z | < 1 in die Kreis-
scheibe (£ ist. Setzen wir jetzt

A*(z)=n2(a*(z)) (11)
so gilt daher :

(II) A*(z) ist eine analytische Abbildung der vollen Kreisscheibe
| z | < 1 in die Riemannsche Flâche 5R.

Wegen (11), (10), (9) und (7) gilt aber fur 0<| z \ <1 :

A*(z) nt(a*(z)) 7t2(a(~ i log z)) A{n1{- i log z)) A(z) (12)
Aus (II) und (12) folgt nun ofifenbar, daB der Tatbestand (a) erfûllt ist.
Damit ist unser Satz 1 bewiesen.

Satz 2. Es sei 9î eine Riemannsche Flâche und © ein Gebiet von
hyperbolischem Typus auf 5R mit kompakter abgeschlossener Huile ©.
Dann gilt : Ist A eine analytische Abbildung der punktierten
Kreisscheibe { : 0<| z | < 1 in das Gebiet © c 91, so gibt es einen Punkt
aQ e 9t derart, daB die Abbildung

A(z) fiir 0<|z|<l, A*(0) aQ
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eine analytische Abbildung der vollen Kreisscheibe | z \ < 1 in die
Flâche 9t ist.

Beweis. Da © von hyperbolischem Typus ist, so liegt nach Satz 1

genau einer der beiden folgenden Tatbestânde vor:

(I) Es gibt einen Punkt a0 e © derart, da8 die Abbildung

A*(z) A(z) fur 0<|z|<l, A*(O) ao

eine analytische Abbildung der vollen Kreisscheibe | z \ < 1 in das
Gebiet © ist.

(II) Fur jede Punktfolge

ist die Punktfolge {A(zn)} in © divergent.
Liegt der Tatbestand (I) vor, so haben wir offenbar nichts mehr zu

beweisen. Es sei also der Tatbestand (II) erfûllt. Wir wâhlen drei von-
einander verschiedene Punkte

a,6,C€© (1)

Dann folgert man leicht aus (II) : Es gibt eine punktierte Kreisscheibe ï' :

0<| z | <r< 1 derart, daB fur aile z € î' A(z) ^ a, b,c ist ; es gilt also

(III) A (z) ist eine analytische Abbildung der punktierten Kreisscheibe
V : 0<| z | <r< 1 in die Riemannsche Flache %' 5R — {a, b, c}.

Wir zeigen ferner :

(IV) Ist 0<|2n|<r und lim^n O, so besitzt die Punktfolge
n—>oo

{A(zn)} mindestens einen Hâufungspunkt auf 9T 91 — {a, 6, c}.
In der Tat : Es ist A (zn) e © c © c 91 fiir aile n > 1. Da aber nach

Voraussetzung © kompakt ist, so folgt daraus, daB die unendliche Punktfolge

{A(zn)} mindestens einen Hâufungspunkt Aeffi besitzt. Wegen
(II) und (1) kann aber h mit keinem der drei Punkte a, b, c zusammen-
fallen. Daher ist h €9t' 91 — {a, b, c}. Nach Satz 9, § 3 ist 9T
9t — {a,b,c} eine Riemannsche Flâche von hyperbolischem Typus.
Daher folgt jetzt aus (III), (IV) nach Satz 1 : Es gibt einen Punkt a0 é9T

derart, daB die Abbildung

A*{z) A(z) fur 0<\z\<r
eine analytische Abbildung der vollen Kreisscheibe | z \ <r in die Flâche
91' 91 — {a, b, c} ist. — Damit ist aber offenbar unser Satz 2 voll-
stândig bewiesen.
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§ 7. Hilfssâtze iiber stetige Konvergenz von AbbMungsfolgen

In diesem Abschnitt werden einige leicht zu beweisende Hilfssâtze
uber stetige Konvergenz zusammengestellt.

I. Wir erinnern zunàchst an den von Carathéodory41) eingefiihrten
Begriff der stetigen Konvergenz : Es seien 5RX und 9l2 etwa regulâre
Hausdorffsche Ràume, in denen das zweite Abzâhlbarkeitsaxiom erfiillt
ist42). Eine Folge {An(p)} von Abbildungen von 9tx in 5R2 heiBt stetig
konvergent in 9î1? falls fur jede in 9îx konvergente Punktfolge {pn} die

Punktfolge {An(pn)} in 5R2 konvergiert. Aus dieser Définition folgt
sofort : Ist die Folge {An(p)} stetig konvergent, so existiert insbesondere

lim An (p) A(p) e % fur aile p e 5Rj
n—>oo

und es gilt fur jede gegen p c 5RX konvergente Punktfolge {pn} c 9^

lim An(pn) A(p)

Wir sagen daim auch : Die Folge {An(p)} konvergiert in 9^ stetig gegen
die Abbildung A(p) von 9tx in 5R2. — Man iiberlegt sich sofort, daB
auch jede Teilfolge {AnJc(p)} von {An(p)} in 9lx stetig gegen A(p)
konvergiert. SchlieBlich beweist man leicht den

Satz 1. Die Folge {An(p)} von Abbildungen von 9^ in 9t2 konver-
giere in 9^ stetig gegen die Abbildung A (p) von 9^ in 9t2. Dann gibt es

zu jeder Umgebung 93a c 9Î2 des Punktes q A (p) € 9Î2 eine solche

Umgebung ^Bpc3{1 des Punktes p €9tx und einen solchen Index n0,
daB An{<$v) c 93a fur aile n>n0.

II. Mit Hilfe des in I Gesagten beweist man leicht

Satz 2. Die Folge {pk{t)} von geschlossenen Wegen auf einer Rie-
mannschen Flâche 9Î konvergiere im Intervall 0 < t < 1 stetig gegen
den Punkt p(t) p0 e9î. Dann gibt es zu jeder Umgebung 93Po c 9î

von pQ einen solchen Index fc0, daB pk(t) €$5n fur 0 < t < 1 und
aile k>kQ.

Satz 3. Die Folge {pk(t)} von geschlossenen Wegen auf einer Rie-
mannschen Flâche © konvergiere im Intervall 0 < t < 1 stetig gegen

*) Vergleiche [1], Band 1.
42) Riemannsche Flâchen und auch das Intervall 0 < t < 1 der reellen Zahlgeraden

sind offenbar solche Râume.
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den geschlossenen Weg p (t) auf ©. Dann gibt es einen solchen Index k0,
daB fur aile k>k0 die Wege pk(t) und p(t) auf © homotop sind.

III. Mit Hilfe von Satz 1 folgert man aus klassischen Tatsachen der
Funktionentheorie leicht die beiden folgenden Sâtze :

Satz 4. Es sei {An(p)} eine Folge von analytischen Abbildungen der
Riemannschen Flâche 9^ in die Riemannsche Flâche 9Î2. Dann gilt : Ist
die Folge {An(p)} auf 9tx stetig konvergent, so konvergiert sie stetig
gegen eine analytische Abbildung A (p) von 9îi in 9t2.

Satz 5. Es seien 9tx, 9t2 Riemannsche Flâchen und © ein Gebiet auf
9t2. {An(p)} sei eine Folge von analytischen Abbildungen von 9îx in das
Gebiet © c 9Î2, welche auf 9l1 stetig gegen eine analytische Abbildung
A (p) von 9^ in 9t2 konvergiert. Dann gilt : Ist A (p) nicht konstant, so
ist A (p) sogar eine Abbildung von 9îx in ©.

§ 8. Yerallgemeinerung des Montelschen Satzes iiber Folgen meromorpher
Funktionen mit drei Ausnahmewerten

Satz 1. Es seien 9îx und 9t2 Riemannsche Flâchen von hyperbolischem
Typus und {An(p)} eine Folge von analytischen Abbildungen von 9^
in 9t2. Dann liegt genau einer der beiden folgenden Tatbestânde vor :

(a) Es gibt eine Teilfolge der Folge {An(p)}, welche auf 9tx stetig
konvergiert gegen eine analytische Abbildung A (p) von 9îx in 9Î2.

(b) Fur jede konvergente Punktfolge {pk} auf 9tx und fur jede
Teilfolge {nk} der Folge {n) der natûrlichen Zahlen ist die Punktfolge
{Ank(pk)} auf 9t2 divergent.

Beweis. 1. Offensichtlich kônnen nicht beide Tatbestânde gleichzeitig
erfullt sein. Liegt der Tatbestand (b) nicht vor, so gibt es ofifenbar eine

Punktfolge {qk} c 9lx und eine Teilfolge {nk} derart, daB

qk e% Hmqk q €% lim Ank{qk) a c9l2 (1)
h—>oo h—>oo

Wir haben zu zeigen, daB dann der Tatbestand (a) vorliegt.
2. Zunâchst wâhlen wir eine Punktfolge {r^}, welche auf 9lx ûberall

dicht liegt. Dann zeigen wir :

(I) Fur jeden festen Index ; ist die Punktfolge {4njfe(r,.)} metrisch
beschrânkt auf 9t2-
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In der Tat : Es ist

Aus dem Schwarzschen Lemma (Satz 7b, § 5) und aus der Dreiecks-
ungleichung folgt aber :

< Pnjr,, qk] < /^[r,, q] + /*Wl[g, qk] (3)

Aus (2) und (3) ergibt sich nun :

Wegen (1) ist aber offenbar die rechte Seite der Ungleichung (4) fiir jedes
feste j beschrânkt. q. e. d.

3. Aus (I) und Satz 4, § 5 folgert man nun in bekannter Weise mit
Hilfe des Cantorschen Diagonalverfahrens :

(II) Es gibt eine Teilfolge {nkl} der Folge {nk} derart, daB die Folge
iai(p)} {Ankl(p)} in jedem Punkte rj konvergiert.

Wir zeigen jetzt :

(III) Fur jede konvergente Punktfolge {pt} auf 5RX ist die Punktfolge
iai(Pi)} au^ 9?2 konvergent.

Beweis. Sei {p,} eine konvergente Punktfolge auf 9îx und

lim fpl p e SRi (5)

Wegen Satz 5, § 5 haben wir nur zu zeigen : Zu jedem e > 0 gibt es eine

ganzeZahl N(e) derart, daB /%8[ai(Pi)> am(Pm)]<e fur aile lim>N(e).
Da die Punktfolge {r,} auf 9^ uberall dicht ist, gibt es einen Index j0
derart, daB

2/iWl[p,r,o]<6/4 (6)

Aus (5) und (II) fplgt ferner : Es gibt eine ganze Zahl N(e) derart, daB

^[Pi, ?]<«/*. A«Ri[aI(rio),am(rio)]<6/4 furaUe l,m>N(e) (7)

Wegen der Dreiecksungleichung gilt :

(o)
' «()] + C^) ()]

Aus dem Schwarzschen Lemma (Satz 7b, § 5) und aus der Dreiecksungleichung

folgt aber :
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(9)
< A^OV Pm] < ^[f^, 2?] + /f^CP, P«] •

Aus (8) und (9) ergibt sich jetzt :

A*Wl[»i(Pi), om(pj] < ^[p,, p] + ^bm, p]

Aus (6), (7) und (10) folgt endlich : ^[^(pj), am(pm)]<e fur aile
l,m>N(e). q. e. d.

4. Aus (III) und Satz 4, § 7 folgt nun : Die Folge K(p)} {Ankl(p)}
konvergiert auf 9tx stetig gegen eine analytische Abbildung A (p) von
9îi in 9t2. Folglich ist der Tatbestand (a) erfiillt. Damit ist unser Satz
bewiesen.

Satz 2. Es sei

1. r eine Riemannsche Flâche von hyperbolisehem Typus und g ein
Gebiet auf r mit kompakter abgeschlossener Huile ^,

2. 5R eine beliebige Riemannsche Flâche und © ein Gebiet von
hyperbolisehem Typus auf 51 mit kompakter abgeschlossener Huile ©,

3. {An(p)} eine Folge von analytischen Abbildungen der Flâche x in
das Gebiet © c 91.

Dann gibt es eine Teilfolge der Folge {An(p)}> welche in g stetig
konvergiert gegen eine analytische Abbildung A (p) von g in 91.

Beweis. 1. Da r und © von hyperbolisehem Typus sind, so liegt nach
Satz 1 genau einer der beiden folgenden Tatbestânde vor :

(I) Es gibt eine Teilfolge der Folge {An(p)}, welche auf r stetig
konvergiert gegen eine analytische Abbildung von t in ©.

(II) Fur jede konvergente Punktfolge {pk} auf t und fur jede
Teilfolge {nk} der Folge {n} ist die Punktfolge {Anjc(pk)} in © divergent.

Liegt der Tatbestand (I) vor, so haben wir offenbar nichts mehr zu
beweisen. Es sei also der Tatbestand (II) erfiillt. Wir wâhlen drei von-
einander verschiedene feste Punkte

(1)
und zeigen

(III) Es gibt einen Index n0 derart, daB fur aile n>n0 und aile
P€Q gilt: An{p)i {a,b,c}.
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Beweis. Nehmen wir an, es sei (III) falsch. Dann gibt es offenbar eine

TeiKolge {nk} von {n} und eine Punktfolge {pk} c g derart, daB

Ant(pje{a,b,c} (2)

Da aber nach Voraussetzung g kompakt ist, so gibt es eine Teilfolge
iPki} von {Pk} c ô, welche gegen einen Punkt p e g c r konvergiert.
Die zugehôrige Punktfolge {A^^p^)} hat dann wegen (1) und (2)
mindestens einen Hâufungspunkt in ©. Dies ist aber ein Widerspruch
zu (II). q. e. d.

2. g ist als Teilgebiet der hyperbolischen Flâche r nach Satz 8, § 3

eine Mâche von hyperbolischem Typus. Ebenso ist 91* 91 — {a, 6, c}
nach Satz 9, § 3 eine Flàche von hyperbolischem Typus. Wegen (III) gilt
daher :

(IV) Die Folge {An(p)}9 n>nQ, ist eine Folge von analytischen Ab-
bildungen der hyperbolischen Flâche g in die hyperbolische Flâche
91* 91-{a, 6, c}.

Wir zeigen ferner :

(V) Konvergiert die Punktfolge {pn} c g gegen einen Punkt pe g,
so besitzt die Punktfolge {An (pn)}, n > n0, mindestens einen Hâufungspunkt

auf 91* 91 — {a, 6, c}.

In der Tat : Es ist An (pn) € © c © c 91. Da nach Voraussetzung ©
kompakt ist, so folgt daraus, daB die Punktfolge {An(pn)}, n>n0,
mindestens einen Hâufungspunkt he(5 besitzt. Wegen (II) und (1)
kann aber h mit keinem der drei Punkte a, b, c zusammenfallen. Folglich
ist h c9î* 91 - {a, b, c}. q. e. d.

Aus (IV) und (V) folgt nun nach Satz 1 : Es gibt eine Teilfolge der
Folge {An(p)}, welche in g stetig konvergiert gegen eine analytische
Abbildung A(p) von g in die Flâche 91* 91 — {a, b, c}. Damit ist
Satz 2 offenbar vollstândig bewiesen.

Satz 3. Es sei 91 eine Riemannsche Flâche und © ein Gebiet von
hyperbolischem Typus auf 91 mit kompakter abgeschlossener Htille ©.
{An(p)} sei eine Folge von analytischen Abbildungen einer Riemann-
schen Flâche x von hyperbolischem Typus in das Gebiet © c 9t. Dann
gibt es eine Teilfolge {AnJt(p)} der Folge {An(p)}9 welche auf r stetig
konvergiert gegen eine analytische Abbildung A (p) von r in 91.
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Beweis. Es gibt eine unendliche Folge {g^} von Gebieten g^ c t mit
kompakter abgeschlossener Huile g, derart, daB

y g, t (i)

Nach Satz 2 gilt dann fur jeden festen Index j : Aus jeder Teilfolge der
Folge {An(p)} laBt sich eine solche Teilfolge auswàhlen, welche in g^

stetig konvergiert gegen eine analytische Abbildung von g^ in 91. Daraus
schlieBt man in bekannter Weise mit Hilfe des Cantorschen Diagonal-
verfahrens : Es gibt eine Teilfolge {Ank(p)} von {An(p)}} welche in
jedem Gebiet g, stetig konvergiert gegen eine analytische Abbildung von
g, in 9Î. Daraus und aus (1) folgt dann : Die Teilfolge {Ank(p)} konvergiert

auf r stetig gegen eine analytische Abbildung A(p) von t in 91.

q. e. d.

SchlieBlich kônnen wir noch die Voraussetzung fallen lassen, daB r von
hyperbolischem Typ sei :

Satz 4, Es sei 91 eine Riemannsche Flâche und © ein Gebiet von
hyperbolischem Typus auf 91 mit kompakter abgeschlossener Huile ©.
{An(p)} sei eine Folge von analytischen Abbildungen einer Riemann-
schen Flâche r in das Gebiet © c 91. Dann gibt es eine Teilfolge {Ank (p)}
von {An(p)}, welche auf t stetig konvergiert gegen eine analytische
Abbildung A (p) von t in 9Î.

Beweis. Es gibt offenbar eine unendliche Folge {%$} von hyperboli-
schen Gebieten r, c r derart, daB

fr, r. (2)

Nach Satz 3 gilt dann fur jeden festen Index j : Aus jeder Teilfolge der
Folge {An(p)} lâBt sich eine solche Teilfolge auswâhlen, welche auf t^
stetig konvergiert gegen eine analytische Abbildung von tj in 9î. Daraus
schlieBt man wieder mit Hilfe des Diagonalverfahrens : Es gibt eine
Teilfolge {Anjc(p)} von {An(p)}, welche in jedem Gebiet r^ stetig konvergiert

gegen eine analytische Abbildung von r^ in 91. Hieraus und aus (2)
folgt nun: Die Teilfolge {AnJt(p)} konvergiert auf r stetig gegen eine
analytische Abbildung A(p) von tin 91. q. e. d.

§ 9. Beweis von Satz À

Satz A wird offenbar bewiesen sein, wenn wir die beiden folgenden
Sâtze beweisen kônnen.
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Satz A'. Es sei © ein Gebiet von hyperbolischem Typus auf einer
Riemannschen Flàche 9?. Dann gilt : Ist die Wegklasse W von © auf
einen isolierten Randpunkt a e 9t von © reduzibel, so ist W parabolisch.

Satz A". Es sei © ein Gebiet von hyperbolischem Typus auf einer

Riemannschen Flâche 9î ; die abgeschlossene Huile © c 91 von © eei

kompakt. Dann gilt : Ist die Wegklasse W von © parabolisch, so ist sie

auf einen isolierten Randpunkt von © reduzibel.

Beweis von A'. 1. Weil a € 91 ein isolierter Randpunkt von © ist, gibt
es eine solche Umgebung VLa c 9t von a, daB Ua — a c ©. Ferner gibt
es eine analytische Abbildung p A (z), welche den Einheitskreis
| z | < 1 topologisch auf eine Umgebung 93a c Ua von a so abbildet, daB

A(0) a ist43). Weil die Wegklasse W von © auf den isolierten Randpunkt

a reduzibel ist, so enthâlt W einen solchen Weg p(t), daB p(t)
e 93O — a fur 0 < t < 1. Der Weg z(t) A~1(p(t)) ist dann offenbar
ein geschlossener Weg in der punktierten Kreisscheibe 1: 0 < | z | < 1

und es gilt :

(I) A (z) ist eine analytische Abbildung der punktierten Kreisscheibe
1: 0 < | z | < 1 in das Gebiet ©, welche den geschlossenen Weg z (t) in l
auf den Weg p(t) eW abbildet.

2. Die Halbebene fi wird offenbar vermôge der Projektion z nx(Ç)
e*= zur universellen Ûberlagerungsflâche (fî,:^) von ï. Die Funda-

mentalgruppe Jn7Tl ist die von der Decktransformation S0(Ç) f + 2n

erzeugte zyklische Gruppe. Ist nun

Se07Tl[z(t)] (1)

so ist daher 8(Ç) C + 2tt n, (n ganz), und folglich

Jf[flf] O (2)

3. Da das Gebiet © von hyperbolischem Typus ist, wird die
Halbebene fi vermôge einer geeigneten Projektion p 7t2(0 zur universellen
Ûberlagerungsflâche (fi,7r2) von ©• Die analytische Abbildung .4(z)
von î in © induziert nun eine analytische Abbildung a(Ç) von fi in sich.
Sei a e $)A der zugehôrige Homomorphismus von Jf7ri in JTWg. Dann folgt
aus (I) und (1) nach Satz 6, § 3 :

(3)

(4)

48 Dies folgt sofort aus der Existenz ortsuniformisierender Parameter zum Punkte
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Wir zeigen nun :

M[T] O (5)

In der Tat : Aus (3) folgern wir mit Hilfe des Schwarzschen Lemmas
(Satz 6b, § 5) :

M[T] inf ^[f, T(0] < inif,[a(C), T(a(O)]
Ufi t€fî

inf/^(C), «(#(£))] < inf p[C, 5(0] M [S]

Daraus und aus (2) folgt aber (5). q. e. d.
Da nach Voraussetzung W nicht die Nullklasse von © ist, so folgt jetzt

aus (4) und (5), daB W eine parabolische Wegklasse ist. q. e. d.

Beweis von An. Da © von hyperbolischem Typus ist, wird die Halb-
ebene fi vermôge einer geeigneten Projektion p 77(0 zur universellen
Ûberlagerungsflâche (fi, 77) von ©. Weil die Wegklasse W von © para-
bolisch ist, kann die Projektion 77 noch so gewâhlt werden, daB ein
Elément S e 0n(W) die Gestalt 8(Ç) Ç±2n erhàlt44). Dann folgt leicht :

(I) .4(z)=77(—i log z) ist eine (eindeutige anatytisehe Abbil-
dung der punktierten Kreisscheibe î : 0 < | z \ < 1 in das Gebiet © c 5R.

Der fur 0 < q < 1 definierte Weg

±27Tit) 0<t<l (1)

ist dann ein geschlossener Weg in © und es ist offenbar

Pe(t)^n1[S]=W (2)

2. Da nach Voraussetzung © hyperbolisch und © c 91 kompakt ist,
so folgt aus (I) nach Satz 2, § 6 : Es gibt einen solchen Punkt a c9l,
daB gilt :

(II) Die Abbildung

A*{z) A{z) fur 0<|z|<l, 4*(0) o (3)

ist eine analytische Abbildung der vollen Kreisscheibe 51 : | z \ < 1 in
dieFlâche9t.

Wir zeigen nun :

**) Dies folgt sofort aus Satz 1, Satz 4, § 3; Satz 2, § 1 und aus der Tatsache, daû es
zu jeder parabolischen Bewegung P eine solche Bewegung G von L gibt, daÛ OPO'1^)

f ±2n.
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(III) Der Punkt a e 91 ist isolierter Randpunkt von ©.

Beweis. Da die Abbildung A* offensiehtlieh nicht konstant ist, so

folgt aus (II) : Die Bildmenge A*(R) c 9t enthâlt eine voile Umgebung
93O c 9î von a. Wegen (I) und (3) ist dann

93a - a c A*(R) - a c 4*(ï) A(î) c ©

Folglich ist entweder a ein isolierter Randpunkt von © oder a € ©. Wir
zeigen, daB das letztere nicht zutreffen kann. In der Tat : Wâre a e ©,
so wàre nach (I), (II) A* eine analytische Abbildung der vollen Kreis-
scheibe | z \ < 1 in das Gebiet © und daher wâre fur 0 < g < 1 der Weg
pe(t) A(q e±2nit) A*(q e±27rit) offenbar nullhomotop in ©. Wegen
(2) mûBte dann W die Nullklasse von © sein, entgegen unserer Voraus-
setzung q. e. d.

3. Aus (1), (I), (II), (III) folgt jetzt : Zu jeder Umgebung tfo c 91 von
a gibt es ein solches q, (0<q g(VLa)<l), daB pQ(t) eUa — a fur
0 < t < 1. Daraus und aus (2) folgt aber, daB die (von der Nullklasse
verschiedene) Wegklasse W von © auf den isolierten Randpunkt a von
© reduzibel ist. Damit ist Satz A/; bewiesen.

§ 10. Beweis von Satz B

Auf Grand von Satz 2a, § 4 ûberlegt man sich sofort, daB der Satz B
bewiesen sein wird, wenn es gelingt, den folgenden Satz zu beweisen :

B;. Es sei © ein Gebiet von hyperbolischem Typus auf einer

Riemannschen Flâche 91 ; die abgesehlossene Huile © c 91 von © sei

kompakt und der Rand von © normal. (£,%) sei universelle Ûber-
lagerungsflache von ©. Dann gilt :

Ist {Sn}, n 1, 2,..., eine unendliche Folge von Elementen der

Fundamentalgruppe FVl und ist 0<M[8n]<m<oo fur aile n, so gibt
es immer eine unendliche Teilfolge {Snk} von {8n}, deren Elemente
aile ein und derselben Klasse konjugierter Elemente von Fnt angehôren.

Beweis. 1. Nach Voraussetzung sind die Decktransformationen 8n
hyperbolische Bewegungen von fi. Daher gibt es zu jeder Bewegung 8n
eine solche Bewegung Un von fi, daB die Bewegung

Vn=Un8.U? (1)
die Gestalt

40



Fn(£) An.C, An>0 An^l (2)

erhâlt. Aus (1), (2) folgt dann nach Satz 3 und Satz 4c, § 2 :

\logln\ =M[Sn] (3)

Daher wird der Parallelstreifen ^3n : | %(z) \ <n\2M[8n] durch
£ i e*logXn analytisch und topologisch auf die Halbebene fi abgebildet.
Folglich ist

eine analytische Abbildung des Parallelstreifens <$„ in das Gebiet © c 91.

Weil nach Voraussetzung ftir aile n M[Sn]<m<oo ist, so enthalten aile
Parallelstreifen tyn: | 3(z) | <jr/2if [8n] den Parallelstreifen ^3 :

| 3(z) | <nj2m. Daher gilt :

(I) {An(z)}} n 1, 2,..., ist eine unendliche Folge von analyti-
schen Abbildungen des Parallelstreifens ty : | ^(z) | <^/2m in das
Gebiet ©c 91.

2. Wir untersuchen nun den Weg An(t), (0 < t < 1), in ©. Setzen
wir

Cn(t)= U-\ietl0^) 0<f <1 (5)

so ist offenbar Cn (t) ein Weg in der Halbebene fi und es gilt wegen (4) :

An{t) =%(?„(<))• (6)
Aus (5) ergibt sich :

U0) U-^i) (7)

Aus(5), (2)und(7)folgt : Cn(l)=^1(Ant)=C7-1FB(i)=C7-1Fnf7B(î7-1(i))
U?VnUn(Cn(0)); daher ist wegen (1) f.(l) -8n(fn(0)). Daraus

und aus (6) folgt offenbar*5)

4n(0) 4n(l) fur aile n (8)
und

An(t) €0-l[Sn] dasheiBt 8n e0VliAn(t)] fur aUe n. (9)

3. Da nach Voraussetzung © hyperbolisch und © c 91 kompakt ist,
so folgt aus (I) nach Satz 4, § 8 : Es gibt eine Teilfolge {Anje(z)} der
Folge {An{z)} derart, daB gilt :

tt) Vergleiche § 3, Nr. 4.
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(II) Die Folge {AnJc(z)}, k 1,2,..., von analytischen Abbildun-
gen des Parallelstreifens S$ in das Gebiet (5 c 91 konvergiert in *J3 stetig
gegen eine analytische Abbildung A(z) von S$ in die Riemannsche
Flâche 9t.

Wir zeigen nun :

(III) A(z) ist nicht konstant.

Beweis. Wâre nâmlich A (z) konstant, das heiBt

A(z)=a€$i fur aile z e ^ (10)

so wâre nach (II) gewiB a e © und es miiBte somit einer der drei folgen-
den Pâlie zutrefifen :

a) a € ©,
f}) a ist isolierter Randpunkt von ©,
y) a ist nicht-isolierter Randpunkt von ©.
Die Behauptung (III) wird daher bewiesen sein, wenn wir zeigen

kônnen, daB jede der drei Annahmen oc), /?), y) zu einem Widerspruch
fûhrt.

ad oc) : Es sei 93O c © eine einfach zusammenhângende Umgebung
von a e ©. Dann folgt aus (II) und (10) nach Satz 2, § 7 : Es gibt einen
solchen Index k0, daB Ank (t) e 33O c © fur 0 < t < 1 und aile k > k0.
Daraus folgt wegen des einfachen Zusammenhanges von 33a, daB die
geschlossenen Wege Anjc(t) fur k>k0 nullhomotop in © sind. Daraus
und aus (9) folgt, daB Snk fur k>k0 die identische Decktransformation
ist. Dies widerspricht aber unserer Voraussetzung. q. e. d.

ad /?) : Da a isolierter Randpunkt von © ist, gibt es eine solche einfach
zusammenhângende Umgebung VLa c 9î von a, daB Ua — a c ©. Dann
folgt aus (II) und (10) nach Satz 2, § 7 : Es gibt einen solchen Index k0,
daB AnJc(t) eUa — a c © fur 0 < t < 1 und aile k>k0. Wegen des

einfachen Zusammenhanges von lt0 folgt hieraus, daB die geschlossenen
Wege Ank(t) fur k>k0 entweder nullhomotop in © oder auf den
isolierten Randpunkt a von © reduzibel sind. Wegen (9) und Satz A', § 9

ist dann M[SnJc] 0 fur aile k>k0. Dies widerspricht aber wieder
unserer Voraussetzung. q. e. d.

ad y) : Ist a nicht-isolierter Randpunkt von ©, so ist a nach Voraussetzung

normaler Randpunkt. Es gibt daher eine Umgebung ïla c 91 von
a derart, daB aile geschlossenen Wege, welche im Durchschnitt 9lo ^ ©
liegen, in © nullhomotop sind. Aus (II) und (10) folgt nun wieder nach
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Satz 2, § 7 : Es gibt einen solchen Index k0, daB AnJc (t) e 3la ^ © fur
0 < £ < 1 und aile k>kQ. Daher sind die geschlossenen Wege Ânk(t)
fur k>k0 nullhomotop in ©. Daraus und aus (9) folgt, daB 8nk fur
k>k0 die identische Decktransformation ist. Das widerspricht aber
unserer Voraussetzung. q. e. d.

4. Aus (II) und (III) folgt jetzt nach Satz 5, § 7 : A (z) ist eine analy-
tische Abbildung des Parallelstreifens ty in das Gebiet © ; es ist also ins-
besondere A(t) e© fur 0 <t < 1. Aus (8) und A(t) lim Anjg(t)
folgt noch : A (0) A (1). Wir haben somit : *->0°

(IV) A(t), (0 < t < 1), ist ein geschlossener Weg in ©.
Aus (II) und (IV) ergibt sich nun : Die Folge {Anjc (t)} von geschlossenen

Wegen in © konvergiert im Intervall 0 < t < 1 stetig gegen den
geschlossenen Weg A(t) in ©. Daher gibt es nach Satz 3, § 7 einen
solchen Index k0, daB fur aile k>k0 die Wege Ank(t) und A(t) in ©
homotop sind. Folglich ist 0ni[Anh(t)] G^Aty)] fur k>ko und
daher wegen (9): 8njc €<Pni[A(t)] fur aile k>k0. Damit ist aber unser
Satz B' bewiesen.

§ 11. Beweis von Satz C

Fur eine Riemannsche Flache 9î von endlichem Zusammenhange gilt
bekanntlich der folgende Einbettungssatz 46) : Es gibt

1. eine geschlossene Riemannsche Flache g?

2. ein Gebiet © auf 3f >
welches von hôchstens endlich vielen geschlossenen

analytischen Jordankurven und hôchstens endlich vielen
isolierten Punkten berandet wird,

3. eine analytische Abbildung G von 9t in g, welche 91 topologisch
auf © c 3r abbildet.

Wegen Satz 3, § 4 wird daher unser Satz C bewiesen sein, wenn wir
zeigen kônnen, daB das Gebiet © c 5 eine Riemannsche Flache mit
diskretem Modulspektrum ist.

Nach Voraussetzung von Satz C ist 9î eine Flache von hyperbolischem
Typus. Wegen der Invarianz des Typus gegenûber analytischen und
topologischen Abbildungen gilt daher :

(I) Das Gebiet © c 3? ist von hyperbolischem Typus. Weil die Flache
3 geschlossen ist, so gilt offenbar :

46) [81 Pag. 139—141.

43



(II) Die abgeschlossene Huile ffi c 3f von © ist kompakt. Aus der
Tatsache, daB das Gebiet © auf der geschlossenen Flâehe 3f von hôch-
stens endlich vielen geschlossenen analytisehen Jordankurven und hôch-
stens endlich vielen isolierten Punkten berandet wird, folgt leicht :

(III) Der Rand von © ist normal.

Aus (I), (II) und (III) folgt nun nach Satz B, daB © eine Riemannsche
Flache mit diskretem Modulspektrum ist. Damit ist Satz C bewiesen.

§ 12, Vier Lemmata

Lemma I. Es sei 91 eine Riemannsche Flâche von hyperbolischem
Typus, (fi, n) universelle Ùberlagerungsflâche von 91 und F^ die Funda-
mentalgruppe von (fi, n), Dann gilt :

a) Ist A ein analytischer Automorphismus von 91, so ist jede durch A
induzierte analytische Abbildung a von fi in sich eine Bewegung von fi
und der zu a gehôrige Endomorphismus a € &A ist ein Automorphismus
von IV

b) Es sei A eine analytische Abbildung von 91 in sich. Ist dann die
durch A induzierte Abbildung a von fi in sich eine Bewegung von fi und
ist ûberdies a F7ta-X F^, so ist A ein analytischer Automorphismus
von 91.

Beweis von a: 1. Weil A ein analytischer Automorphismus von 91 ist,
so wird die Halbebene fi offenbar auch vermôge der Projektion %(£)
A(n{Çj) zur universellen Ûberlagerungsflâche von 9t. Nach Satz le, § 3

gibt es daher eine analytische und topologische Abbildung G von fi auf
sich selbst derart, daB n^t) =;7r(Gf-1(C)), das heiBt

(1)

Nach Satz 2, § 2 ist aber G und daher auch G*1 eine Bewegung von fi.
Die Gleichung (1) besagt nun offenbar, daB die Bewegung G~x eine durch
A (beziiglich der Projektion n) induzierte Abbildung von fi in sich ist.
Nach Satz 5 c, § 3 lâBt sich dann jede durch A (beziiglich der Projektion

n) induzierte Abbildung a in der Gestalt a TG~X darstellen, wo-
bei T eine Decktransformation von (fi, n), also ebenfalls eine Bewegung
von fi ist. Daraus folgt nun :

(I) Jede durch A induzierte analytische Abbildung von fi in sich ist
eine Bewegung von fi.
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2. Es sei nun a eine durch A induzierte Abbildung von fi in sich. Dann
gilt:

(2)

Nach Satz 6', § 3 ist Sa(a(Ç)) a(8(Ç)), 8a a (S) c/^, S e F».
Daraus und aus (I) folgt

(II) Es ist ol(8) ^aSa,-1 €Fn ftir allé 8 eFw.

Wir beweisen nun

(III) Zu jedem T e JTW gibt es genau ein solches 8 eFn, daB
a-1 T.

Dazu mussen wir offenbar nur zeigen, daB fur jedes T eF^ die Be-

wegung 8 a~~xTa eine Decktransformation von (fl,7r) ist. Nun ist
aber a8 Ta und daher n(a(8(Ç))) n(Ta(Ç)) n(a(Ç)). Daraus
folgt nach (2) : A{n(8(Ç))) A(n(Ç)). Da aber A ein Automorphismus
von 5R ist, so folgt hieraus : ti(8(Ç)) n(Ç). Also ist in der Tat 8 €Fn,
q. e. d.

Aus (I), (II) und (III) ergibt sich nun die Behauptung a.

Beweis von b : Wir zeigen zuerst :

(I) Zu jedem px e 9t gibt es ein solches p2 e 91, daB A (p2) px.
In der Tat : Es gibt ein Ci € fi derart, daB

*(W=Pi • (1)

Da a nach Voraussetzung eine Bewegung von fi ist, gibt es ein solches

C2efi, daB
(C) Ci • (2)

Es sei nun p2 rc(Ca) ^5R- Dann folgt aus (1) und (2) :

A(p2) A(n{Ç2)) ^(a(Ca)) rc(Ci) Pi • q- e. d.

Nun zeigen wir :

(II) Aus A{px) A{p2) folgt pi pa.

Beweis. Es gibt zwei Punkte fx, C2 € fi derart, daB

(3)

Dann ist 4(Pl) w(a(Ci)), A{p2) w(a(Ca)). Ist nun 4(pj =-4(p,),
so ist daher ^(a(fx)) n{a(^2)). Folglich gibt es ein Elément 8 €Frr
derart, daB

^(C2) 8(a(C1)) (4)
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Da aber nach Voraussetzung a Fn arx Fn ist, so gibt es ein solches
Elément T eF^, daB Sa aï7 ist. Daraus und aus (4) folgt dann:
a(Ç2) a( jT(Ci)). Weil aber a eine Bewegung von fi ist, so folgt hieraus :

f2 ^(d). Daher ist tz(Ç2) ^(£i) und somit wegen (3) px p2.
q. e. d.

Aus (I) und (II) folgt nun, daB die analytische Abbildung A von 91

in sich ein Automorphismus von $R ist. q. e. d.

Lemma II, Es sei F eine nichtabelsche eigentlich diskontinuierliche
Bewegungsgruppe von fi und H eF ein festes hyperbolisches oder
parabolisches Elément, a sei dieMenge aller Bewegungena von fi, welche
folgende Bedingungen erfûllen : alla,'1 — H, a Fa"1 c F. Dann gilt :

a) Fur aile a ea ist sogar aFa~x F.

b) û ist eine zyklische Gruppe von unendlicher Ordnung.

Beweis. 1. Da das feste Elément H eF nach Voraussetzung hyper-
bolisch resp. parabolisch ist, so darf ohne Beschrànkung der Allgemein-
heit angenommen werden, H habe die Gestalt

resp. die Gestalt

Wir zeigen nun : Im Falle (lh) gilt

(IJ Es gibt ein Elément U eF

TT l^l ^2 1 11(7 1 1 % reell,

derart, daB (u2, uz) ^(0,0).
Im Falle (lp) hingegen gilt :

(Ip) Es gibt ein Elément U eF

derart, daB (u3, uA — ux) =^(0,0).

47) Hat H nâmlich zunâchst nicht dièse Gestalt, so gibt es doch eine solche Bewegung F
von £, dafî H* VB.V~X die Gestalt (1^) respektiv (1^) erhâlt. Statt der Gruppe T und
der Menge o betrachte man dann die transformierte Gruppe F* YTV~X und die trans-
formierte Menge a* V a F"1.
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In der Tat : Andernfalls hâtten ja aile Elemente 8 e F im Falle (lh)
die Gestalt 8(Ç) Aa- f und im Falle (lp) die Gestalt £(£) £ + *,.
Dann wàre aber I1 offensichtlich eine abelsche Gruppe — entgegen unse-
rer Voraussetzung. q. e. d.

2. Nach Voraussetzung ist a die Menge aller Bewegungen a von £,
welche die folgenden beiden Bedingungen erfûllen :

H (2)

a Ta-1 c r (3)

Aus dieser Définition folgt sofort :

(II) Ist a e a, j,k ganz und j > 0, so ist a* Z?fc e a.
Aus (1J resp. (lp) und (2) folgt nach Satz 6 resp. 6;, § 2 :

Jedes Elément a e a hat die Gestalt

resp. (IIIp) : Jedes Elément a € a hat die Gestalt

a(C) C + «« » ^« ree11-

3. Es sei nun a € a und Z [a, H] die von a und H erzeugte Be-

wegungsgruppe von fi. Wegen (lh), (HIh) resp. (lp), (UIj,) gilt dann:

(IV^) Jedes Elément c eZ [a,H] hat die Gestalt
c(C) Ac- C, Ac>0 resp.

(IV,,) Jedes Elément c eZ [a, H] hat die Gestalt
c(C) C + »c> *c reell.

Wir beweisen nun :

(V) Die Gruppe Z ist eigentlich diskontinuierlich.

Beweis. Aus (IVft) resp. (IV,,) folgt leicht : Ist Z nicht eigentlich
diskontinuierlich, so gibt es zu jeder ganzen Zahl n > 1 eine Bewegung cn

derart, daB

w(C) CnC, |gACn|<l/7i fur ^>1
resp.

cn ^Z cw(f) C + «Cn 0<| HCn | < 1/n fur n > 1. (4J

Da die Gruppe Z [a, H] wegen (IVJ resp. (IVJ offenbar abelsch ist,
gibt es zu jedem n > 1 zwei ganze Zahlen jn, kn derart, da8 cn a?nHhn.
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Wir setzen jetzt
dn c*ngn'« a1 **!.Hkn8gnfn €Z (5)

Nach (II) ist dann offenbar

dn € a fur aile n > 1, (6)

Aus (4ft) resp. (4,,) und (5) folgt ferner

<UC) Vf > 0<|logAdJ |logAcJ<l/^ ffira!len>l, (lh)

resp.

dn(O Ç + Xan, 0<\xdn\ \xen\<lln fur aile n > 1. (7,)

Wir betrachten jetzt die Folge

Tn^dnUd~1 ^>1, (8)

wobei UeF die in (IA) resp. (1^,) eingefiihrte Bewegung bedeutet.
Wegen (3) und (6) gilt dann

Tn c r fur aUe n > 1 (9)

Aus (IA) resp. (1^), (lh) resp. (7^,) und (8) folgt ferner

0<| log ldn | < Ijn fur aile n > 1

resp.
u2 + {ué —¦ %) ^n ~

(0, 0) u1uà — u2Mz l *'

0 < I *dn I < 1/W f

Die Aussagen (9) und (10J resp. (IOj,) widersprechen aber offensicht-
lich unserer Voraussetzung, daB die Bewegungsgruppe F eigentlich dis-
kontinuierlich sei. Folglich muB (V) richtig sein. q. e. d.

4. Aus (IVJ resp. (IV^,) und (V) folgt nun nach Satz 8 resp. 8;, § 2,

daB Z [a, H] eine zyklische Gruppe ist. Sei c0 eine Erzeugende von
Z. Dann gibt es solche ganze Zahlen j, h, daB

a cj, # c*. (11)
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Da H nicht die Identitât ist, so ist gewiB

| k | > 1 (12)

Aus (11) folgt jetzt : a1*» c'1*1 cki'8ffnk W"gnk. Folglich ist
a1*1 eF und daher

\k\\k\ _ r
Andererseits folgt aus (3) und (12) sofort : a)k^ JV~J*' c a Fa'1. Daraus
und aus (13) ergibt sich : F c a Fa*1. Hieraus und aus (3) folgt endlich
a Fa~x F. Damit ist die Behauptung a) von Lemma II bewiesen.

5. Aus der eben bewiesenen Behauptung a) folgt sofort, daB die
Menge a eine Gruppe ist. Wir zeigen nun :

(VI) Die Bewegungsgruppe a ist eigentlich diskontinuierlich.

Beweis. Aus (IIIJ resp. (III^) folgt leicht : Ist die Gruppe a nicht
eigentlich diskontinuierlich, so gibt es zu jeder ganzen Zahl n > 1 ein
Elément an derart, daB

aneo, 0n(Ç) Aan-£, 0 < | log Aan | < l/n (14ft)

respektive

an € a an(f) C + *an > <>< | xan | < \\n (14,)

Wir betrachten nun die Folge

Sn an Va,-1 ra > 1 (15)

wobei U wieder die in (Ih) resp. (Ip) eingefuhrte Bewegung bedeutet. Aus
an € a, U e F folgt dann nach (3) :

SneF fur aile n > 1 (16)

Aus (IJ resp. (Ip), (léh) resp. (14P) und (15) ergibt sich aber :

0<| log kan | < \\n fur aile n > 1

respektive

(uz, w4 — %) ^(0,0), % t^4 — u2 %

Ha | < lju fur aile 7i > 1

4 Commenter!! Mathematici Helvetici



Die Aussagen (16) und (17J resp. (17,,) widersprechen aber wieder unserer
Voraussetzung, da8 die Bewegungsgruppe F eigentlich diskontinuierlich
sei. Folglich muB (VI) richtig sein. q. e. d.

6. Aus (IIIJ resp. (III^) und (VI) folgt jetzt nach Satz 8 resp. 8', § 2,
daB die Gruppe a zyklisch ist. Weil aber offenbar H e a und weil lH ^ 1

resp. xH ^ 0 ist, so ist die Ordnung der zyklischen Gruppe a unendlich.
Damit ist Lemma II vollstândig bewiesen.

Lemma III. Es sei 91 eine Riemannsche Flache von hyperbolischem
Typus ; (fi, n) sei universelle Ûberlagerungsflâche von 91 und rn Funda-
mentalgruppe von (£,,n). Es sei A eine analytische Abbildung von 91

in sich, a eine durch A induzierte analytische Abbildung von fi in sich
und ex e VèA der zugehôrige Endomorphismus von rw. Dann gilt :

a) Es ist Jf[«(i8f)] <M[8] fur aile 8 çiV
b) Gibt es eine solche Decktransformation T e/^., daB M[oc(T)]
M[T]>0, so ist a eine Bewegung von fi.

c) Ist A ein analytischer Automorphismus von 91, so ist M [a(S)]
M[8] fur aile Se^.
Beweis. 1. Nach Satz 6', § 3 gilt

a(8(Q) Sa(a(Ç)) 8a a(8) €rv fur aile 8 eT^ C^fi. (1)

2. Beweis von a). Aus dem Schwarzschen Lemma (Satz 6b, § 5) folgt

ptf,8{Ç)]>p[a{t),a(8(t))]. (2)

Wegen (1) ist aber

Ferner gilt offenbar :

MiSJ M[oc(S)) (4)

Aus (2), (3) und (4) ergibt sich nun /*[£, 8{Ç)]> M[ol{8)] fur aile
C €Û. Daraus folgt aber M[8] inf ^[f, S(Ç)] > M[<*(8)]. q. e. d.

3. Beweis von b). Sei fur ein gewisses T €Fn

M[ol(T)] M[T]>0 (5)
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Dann ist T gewiB eine hyperbolische Bewegung von fi. Es sei nun
£0 efi ein Punkt des Orthogonaikreises durch die beiden Fixpunkte
von T. Dann gilt nach Satz 4b, § 2 :

(6)

Wegen (1) ist

/i[a(C0), Ta{a(t0))] Ta oc(T) (7)

Ferner gilt

>inf/i[f, Ta(f)] - Jf [Ta] Jf [«(T)] (8)

Aus (7) und (8) ergibt sich

p[a{Co),a(T{Co))]>M[ot(T)] (9)

Aus (5), (6) und (9) folgt jetzt

fi[a(U a(T(CQ))] >^0, T(Ç0)]>0 (10)

Andererseits ist naeh dem Schwarzsehen Lemma (Satz 6b, § 5)

/i[a(Co),a(r(fo))]</i[Co,r(Co)] (H)

Aus (10) und (11) folgt nun: ju[a(C0), a{T(Ç0))] /i[C0, T(C0)]>0.
Daraus folgt aber nach Satz 6 c, § 5 : a ist eine Bewegung von fi. q. e. d.

4. Beweis von c). Ist A ein analytischer Automorphismus von 5R, so
ist a nach Lemma la eine Bewegung von fi. Dann folgt aber aus (1) :

a(8) a S a-1 fur aile S €Tn. Daraus folgt nach Satz 3, § 2 : M[<x{8)]
M[S] fur aile SeT^. q. e. d.

Damit ist Lemma III vollstàndig bewiesen.

Lemma IV. 5R sei eine Riemannsche Flâche mit diskretem Modul-
spektrum; (fi,7r) sei universelle Ùberlagerungsflàche von 5R und Fn
Fundamentalgruppe von (fi,jr). Es sei A eine analytische Abbildung
von 5R in sich, a eine durch A induzierte analytische Abbildung von fi
in sich und oc e (£A der zugehôrige Endomorphismus von Fn. Dann gilt :

Gibt es ein Elément T e^ derart, daB M[<*{T)] M[T]>0, so
ist A ein analytischer Automorphismus von 5R.
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Beweis. 1. Sei

T eF^ M[T]>0 (1)

und JfaT[«(ï7)] if [î7]. Dann folgt aus Lemma Illb :

(I) Die durch A induzierte Abbildung a von fi in sich ist eine Bewe-

gung von fi.
Nach Satz 6', § 3 gilt :

a{8(C)) Sa(a(C)) Sa *(8) eFw fur aile S €Fn

Hieraus und aus (I) folgt nun

oc(S) a S a-1 e rn fur aUe S e Tw (2)

Daraus schlieBt man sofort :

e»n rw a~n c r,, fur aile n > 1 (3)

a? rw a-^ c a rn a-1 fur aile ?' > 1 (4)

2. Wir unterscheiden nun zwei Fâlle :

1. Fall : rn sei abélsch. Da 91 nach Voraussetzung hyperbolisch ist,
so ist in diesem Falle Fn sogar zyklisch48). Sei So eine Erzeugende von
Fn. Dann gibt es eine ganze Zahl r derart, daB T SI. Hieraus folgt
nach Satz 5, § 2 : M [T] | t | -M[SQ]. Daraus und aus (1) ergibt sich

M[S0]>0 (5)

Da So Erzeugende der zyklischen Gruppe Fn ist, gibt es wegen (2) eine
solche ganze Zahl m, daB

aSoa-i S% (6)

Nach Satz 3 und Satz 5, § 2 folgt hieraus M[S0] | m | • Jf [flf0]. Also
ist wegen (5) | m \ 1. Daraus und aus (6) folgt aber

aF^a-^F^ (7)

Aus (I) und (7) schlieBen wir nun mit Hilfe von Lemma Ib, daB A in
der Tat ein analytischer Automorphismus von 9Î ist. q. e. d.

2. Fall. Fn sei nicht ahelsch. Wir betrachten die Menge

m={8\8€Fv 0<M[S]<2M[T]} (8)

«•) Vergleiche | 3, Nr. 6, V.
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Wegen (1) und (3) ist

an y a-n € p^ f^j. aue n>\, (9)

Nach Satz 3, § 2 gilt auBerdem

M[anTa~n] M [T]>0 fur aile w>l. (10)

Aus (8), (9) und (10) folgt jetzt

an Ta~n €<jffl f(jr aJle ^ > i (il)
Da 5R nach Voraussetzung eine Plâche mit diskretem Modulspektrum ist,
zerfâllt die Menge 9ïl nach Satz 2 a, § 4 nur in endlich viele Klassen kon-
jugierter Elemente von rn. Von den unendlich vielen Elementen (11)
mussen daher gewiB mindestens zwei in der gleichen Klasse liegen. Es
gibt folglich zwei ganze Zahlen

j > 1 * > 1 (12)
und ein Elément

UeT,, (13)
derart, daB

ai+k Tar{*+k) TJ~X ak Ta~k U (14)
Wir setzen nun

H ak Tark (15)

Wegen (9), (10) und (12) gilt dann:

(II) H ist ein hyperbolisches Elément von Fn.
Wir setzen ferner

d=Uai. (16)

Wegen (I) und (13) gilt dann

(III) d ist eine Bewegung von fi.
Aus (14), (15) und (16) ergibt sich

dHd-* H (17)

Aus (16) folgt wegen (3) und (12) : dr^d*1 U atrvar* U-1 c U rn U-1,
also wegen (13)

Da die eigentlich diskontinuierliche Bewegungsgruppe Fn nach Voraussetzung

nicht abelsch ist, so folgt jetzt aus (II), (III), (17) und (18)
nach Lemma II : dr^d'1 /^ Daher ist wegen (16) Ua^T^a-W-1
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Fw, dasheiBt aïF^arî U^F^U, alsowegen(13) :

Hieraus und aus (4) und (12) ergibt sich fffca P^a*1. Daraus und aus
(3) schlieBen wir endlich

arna-i ra. (19)

Aus (I) und (19) folgt nun nach Lemma Ib, daB A in der Tat ein analyti-
scher Automorphismus von 9t ist. Damit ist Lemma IV vollstàndig
bewiesen.

§ 13. Beweis von Satz I
1. Da die Fundamentalgruppe von 91 nach Voraussetzung nicht

abelsch ist, so ist 9t eine Flàche von hyperbolischem Typus49). Sei

(fi, n) universelle Ûberlagerungsflâche von 9Î und Fn die Fundamentalgruppe

von (fi, n). Dann gilt :

(I) Fn ist eine nichtabelsche eigentlich diskontinuierliche Bewegungs-
gruppe von fi.

Wir wâhlen nun ein festes Elément

(1)

Da nach Voraussetzung W nicht die Nullklasse von 9t ist, gilt :

(II) H eFw ist ein hyperbolisches oder parabolisches Elément.
sei a die Menge aller Bewegungen a von fi, welche die folgenden

zwei Bedingungen erfxillen :

aHa-1 =H (2)

aF^a^ Fn. (3)

Dann folgt aus (I) und (II) nach Lemma II, § 12 :

(III) a ist eine zyklisehe Gruppe von unendlicher Ordnung.

2. Es sei jetzt a e a. Ûberlagern die Punkte Ci, C2 € fi beide den-
selben Punkt p c9î, so gibt es ein S eF^ derart, daB f2 aS(Ci).

Wegen (3) gibt es nun ein solches T €Fn, daB aS Ta. Dann ist
aber n(a(Çt)) ^(a(^(d))) 7t(Ta(Ç1)) w(a(d)), dasheiBt n(a(Q)
hat fur aile f cfi mit dem gleichen Spurpunkt p 7t(Ç) den gleichen
Wert. Daher gilt :

(IV) Ist a ca, so ist

a*(p)=w(a(f)) C^fi a(Ç) p eM

*8) Vergleiche § 3, Nr. 6, IV.
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eine eindeutige analytische Abbildung von 91 in sich. Wir zeigen nun :

(V) Ist aca, soist a*€9B.

Beweis. Aus der Définition (IV) von a* folgt, daB a als eine durch
a* induzierte Abbildung von fi in sich aufgefaBt werden kann. Sei nun
ol € (£a* der dann zu a gehôrige Endomorphismus von Fv. Nach Satz 6; a,
§ 3 gilt : ol (S) a S a-1 fur aile S eFn. Hieraus und aus (2) ergibt
sich (x(H) H. Daraus und aus (1) folgt aber nach Satz 6' d, § 3, daB
die Abbildung a* von 9t in sich die Wegklasse W festlâBt. Da die durch
a* induzierte Abbildung a eine Bewegung von fi ist, so ist wegen (3) und
Lemma Ib a* auBerdem ein analytischer Automorphismus von 9t. Folg-
lich ist in der Tat a* eSB. q. e. d.

Nun zeigen wir :

(VI) Zu jedem Automorphismus B e 2B gibt es eine Bewegung
a cet derart, daB a* B.

Beweis. Es sei B e2B, b eine durch B induzierte Abbildung von fi
in sich und f} € f&B der zu b gehôrige Endomorphismus von Fn. Nach
Lemma la ist 6 eine Bewegung von fi. Daher folgt aus Satz 6; a, § 3 :

P(S) bS b-1 fur aile S e Fn (4)

Nach Lemma la ist ferner /? €&B ein Automorphismus von Fn\ folg-
lich ist wegen (4)

brntr* rn. (5)

Da B €ÎB die Wegklasse W festlâBt, so folgt aus (1) nach Satz 6' d, § 3 :

/S(H) €0n(W). Daher gibt es wegen (1) ein

(6)

derart, dafi P(H) T~lHT, also wegen (4)

bHb~1= T-*HT (7)
Dann ist offenbar

a Tb (8)

eine Bewegung von fi und es folgt aus (7) und (8) :

H (9)

55



Ans (5) und (8) folgt ferner a J^a"1 Tb rjr1^1 T rnT~\ also

wegen (6) :

arna-* rn (10)

Aus (9) und (10) folgt jetzt
aea (11)

Ist C €£, p n(Ç), so ist daher nach (8) und (IV) :

also wegen (6) : a*(p) jr(&(t)). Da aber 6 durch B induziert wird, so
ist 7t(b(0) S(w(C)) 5(p). Folglieh ist

(12)

Die Aussagen (11) und (12) bestàtigen nun die Behauptung (VI). Wir
zeigen noch

(VII) Ist ax ea, a2 ca, so ist (#ia2)* a*a* -

Beweis. Es ist axa2 e a. Ist nun f eQ, p rc(f), so folgt nach (IV) :

«1*«**(P)- q.e.d.

Aus (V), (VI) und (VII) folgt jetzt :

(VIII) Die durch (IV) definierte Zuordnung

a->a*e2B, a cû

ist ein Homomorphismus von a a^/ SB.

3. Es sei nun f c a der Kern dièses Homomorphismus. Wir zeigen, da8

H et (13)

In der Tat : Offenbar ist H ea. Weil aber H eine Decktransformation
von (Q, n) ist, so folgt nach (IV), daB H* die identische Abbildung von
9î auf sich ist. Daher ist H e î. q. e. d.

Weil nun nach (III) a eine zyklische Gruppe unendlicher Ordnung ist
und weil die Untergruppe î c a wegen (II) und (13) nicht aus der
Identitât allein besteht, so ist die Faktorgruppe ct/l eine zyklische
Gruppe von endlicher Ordnung. Aus (VIII) folgt aber nach einem be-
kannten Homomorphiesatze, daB die Faktorgruppe a/ ï isomorph ist zur
Gruppe 2B. Daher ist auch 2B eine zyklische Gruppe von endlicher
Ordnung. Damit ist Satz I bewiesen.

56



§ 14. Beweis von Satz II
Da die Fundamentalgruppe von 91 nichtabelsch ist, so ist 9t von

hyperbolischem Typus50). Sei (Q,n) universelle Ûberlagerungsflâche
von 9t und Fn die Fundamentalgruppe von (fi, ri). Dann gilt :

(I) Fn ist eine nichtabelsche eigentlich diskontinuierliche Bewe-

gungsgruppe von fi.
Es sei

He0n[p(t)] (1)

Dann ist nach Voraussetzung :

M[H]>0 (2)

Sei nun a eine durch A induzierte analytische Abbildung von fi in sich
und oc e f&A der zu a gehôrige Endomorphismus von Fn. Da nach
Voraussetzung A(p(t)) ~p(t) ist, so folgt aus (1) nach Satz 6' d, § 3:
oc (H) €&n[p(t)]. Wegen (1) gibt es daher ein solches

T*Fn, (3)
dafi

a(H) T-^HT (4)

Hieraus folgt nach Satz 3, § 2 : M[oc(H)] M [H]. Daraus und aus (2)

folgt aber nach Lemma III b :

(II) Die durch A induzierte Abbildung a ist eine Bewegung von fi.
Daher folgt jetzt aus Satz 6' a, § 3 :

oc(8) a S a-1 e Fn fur aile S e Fn (5)

Es ist also insbesondere

aFna-^Fn (6)
und wegen (4) ist

aHa-1^ T-1 HT (7)
Setzen wir nun

d Ta (8)
so folgt aus (3) und (II) :

(III) d ist eine Bewegung von fi.
Aus (7) und (8) folgt:

dHd-^H (9)

¦°) Vergleiche § 3, Nr. 6, IV.
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Aus (6) und (8) ergibt sich drnd^ Ta^a^T"1 c T^T"1, also

wegen (3) :

Aus (I), (III), (2), (9) und (10) foigt jetzt nach Lemma Ha drj-1 Tn.
Wegen (8) ist daher TaTna-xT-x Fn9 das heiBt arna~x T~xrnT,
also wegen (3)

arKa-i rn. (11)

Aus (II) und (11) folgt jetzt nach Lemma Ib, daB A in der Tat ein ana-
lytischer Automorphismus von 91 ist. Weil aber die Fundamentalgruppe
von 91 nichtabelsch ist und weil der Automorphismus A die durch p(t)
reprâsentierte (von der Nullklasse verschiedene) Wegklasse festlâBt, so
ist der Automorphismus A nach Satz I sogar periodisch. Damit ist
Satz II bewiesen.

§ 15. Beweis von Satz III
1. Wir zeigen zunàchst

(I) Der Weg p(t) ist nicht parabolisch.
Wir erbringen den Beweis indirekt, indem wir die Annahme, p(t) sei

ein parabolischer Weg, ad absurdum fiihren. Sei (fi, n^) universelle
Ûberlagerungsflâche von 91. Ist nun p(t) ein parabolischer Weg, so
kann offenbar die Projektion nx so gewâhlt werden, daB ein Elément

Pe0ni[p(t)] (1)
die Gestalt

Ç±2n (2)

erhàlt51). Nach Voraussetzung ist A(p(t)) ~ p~x{t). Daraus und aus (1)
folgert man leicht52) : Es gibt eine solche durch A induzierte analytische
Abbildung a von fi in sich, daB fiir den zu a gehôrigen Endomorphismus
<x€®A gilt : a(P) P"1. Daraus und aus Satz & a, § 3 folgt : a(P(Ç))

P~1(a(C)), also wegen (2) :

a{Ç + 2n) =a(C) - 2tz (3)

Aus (3) schlieBt man nun sofort

51) Dies folgt sofort ans Satz 1, Satz 4, § 3; Satz 2, § 1 und aus der Tatsache, dafi es

zu jeder parabolischen Bewegung S eine solche Bewegung G von L gibt, dafî die Bewegung
P GSQ-1 die Gestalt P(£) C ± 2rc erhâlt.

62) Vergleiche dazu § 3, Nr. 4, V und Satz 5, Satz 6', § 3.

58



(a) <p(z) eia( ilogz) ist eine (eindeutige!) analytische Abbildung der
punktierten Kreisscheibe ï : 0 < | z | < 1 in sich. Aus (3) und (a) folgt
ferner

(b) Der Weg z(t) (p(%e2irit), 0 < t < 1, ist ein geschlossener
Weg in ï : 0 < | z \ < 1 mit der Umlaufszahl — 1 um den Punkt z 0.

Andererseits folgert man aus (a) mit Hilfe des klassischen Satzes von
Casorati-WeierstraB :

(c) Es gibt eine solche komplexe Zahl z0, daB die Abbildung

<p*(z) (p(z) fur

eine analytische Abbildung der vollen Kreisscheibe | z \ < 1 in sich ist.
Die Aussagen (b) und (c) stehen nun aber offensichtlich zueinander

im Widerspruch. Folglich kann der Weg p(t) nicht parabolisch sein.

q. e. d.

2. Da der Weg p(t) nach Voraussetzung nicht nullhomotop auf 91

ist, so folgt aus (I), daB p(t) ein hyperbolischer Weg ist. Dann kann
man aber die Projektion nx so wàhlen, daB ein Elément

H e&ni[p(t)] (4)
die Gestalt

JÏ(f) A.f, A>0 A^l (5)

erhalt. Offenbar ist
M[H]>0 (6)

Nach Voraussetzung ist A(p(t)) ^p^it). Daraus und aus (4) schlieBt
man wieder leicht : Es gibt eine solche durch A induzierte analytische
Abbildung a von fi in sich, daB fur den zu a gehôrigen Endomorphismus
<x€&A gilt;

H-*. (7)

Daraus folgt nach Satz 5, § 2: M [<x(H)] M [H-1] M [H], also

wegen (6) : M [oc (H) ] M [H] > 0. Daraus folgt aber nach Lemma IIIb

(II) Die durch A induzierte Abbildung a von fi in sich ist eine Be-

wegung von fi.
Daraus und aus Satz 6' a, § 3, folgt nun :

a{S) a8 a-1 e T^ fur aile S € J^ (8)

Es ist also insbesondere

arnia-icrni (9)
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und daher

a*rnia-*carnia-i (10)

Aus (7) und (8) ergibt sich ferner : a H a"1 H~*. Daraus und aus (5)

folgt aber nach Satz 7, § 2 :

a(C) -|, c>0 (11)

Daher ist a2(Ç) £ und folglich a2 Fni a~2 Fni. Hieraus und aus
(10) folgt aber : Fni c a Fni a"1. Daraus und aus (9) ergibt sich :

arnia-i rni. (12)

Aus (II) und (12) folgt nun nach Lemma Ib :

(III) A ist ein analytischer Automorphismus von 91.

Da nach (11) a2(Ç) £ ist und weil a eine durch A induzierte Abbil-
dung ist, so gilt fur aile fcfi: ^(f) Tt^a2^)) ^i(«(«(C)))
A(n1(a(C))) A(A{n1(0)) ^(^(f)). Daraus folgt aber :

(IV) A besitzt die Période 2.

Wir zeigen noch :

(V) Der Punkt p0 jrx(i j/c) €91 ist Fixpunkt von A.
In der Tat : Aus (11) folgt a(i]/c) i|/c. Daher ist A(p0)

^(^(i |/c)) ^x(a(i j/c)) %(i |/c) p0. q. e. d.
Aus (III), (IV) und (V) ergibt sich nun aber unser Satz III.

§ 16. Beweis von Satz IV

1. Sei (2,n) universelle Ûberlagerungsflâche von 91 und Fn die

Fundamentalgruppe von (£,,n). Die eigentlich diskontinuierliche Be-

wegungsgruppe Fn enthâlt keine elliptischen Bewegungen und ist nach
Voraussetzung nichtabelsch. Daher gibt es nach Satz 9, § 2 mindestens
ein Elément V eFn derart, daB M[F]>0. Nun betrachten wir die
Menge

93 {8 | S c/;, 0<M[S]<2M[F]} (1)

Dann ist ofifenbar
F € 93 (2)

Weil 91 eine Flâche mit diskretem Modulspektrum ist, go zerfâllt 93 nach
Satz 2a, § 4 in hôchstens endlich viele Klassen konjugierter Elemente.
Da 93 wegen (2) gewiB nicht leer ist, so ist die Anzahl n dieser Klassen

60



> 1. Wir denken uns nun dièse n > 1 Klassen in einer beliebigen
(aber festen) Reihenfolge numeriert : $tl9 512, • • •> ^n- Dann ist

® u Ri n>l, ^n^ 0 fur i^L (3)

Zu jedem S c 93 gibt es nun einen eindeutig bestimmten Index / j [$],
1 <j[8]<n, derart, daB

StSïnS] (4)

2. Es sei 30?n {1,2,...,71} die Menge aller ganzen Zahlen von 1

bis n. Wir wollen nun jedem analytischen Automorphismus A e 91 eine
Abbildung aA von 9Jlw in sich zuordnen : Sei i e 3Rn, 8i e Rif A e %,
ex €©^. Nach Lemma IIIc ist if [«(S,)] if [/SJ. Folglich ist «(£*)
6 93 und daher j [a (5,)] €ÏRW. Offenbar ist ^'[a^)] unabhângig von
der speziellen Wahl des Reprâsentanten Si e 51, und unabhângig von
der Wahl des Reprâsentanten a e &A. Jetzt definieren wir :

M*) il"(8i)] itWtn ^ € 51, OC €%A (5)

Damit haben wir nun in der Tat jedem A e 31 in eindeutiger Weise eine
Abbildung aA von 3Rn in sich zugeordnet. Aus (4) und (5) folgt noch

aA(j[S]) j[oc(8)] fur aUe aS € 93 oc€<&A (6)

Wir zeigen jetzt :

(I) Ist A e%, so ist aA eine Permutation von 9Jïn.

Beweis. Wir mussen oiBfenbar nur noch zeigen, daB aus aA (i) cr^ (ifc)

stets i k folgt. Sei also i, k €9Jln5 $* € 5tt, /S^ € 5lfc und <sA(i)

oA(k)t Dann ist nach (5) j\jx{Si)'] 7#[a(ASfc)] ; das heiBt die Elemente
a($t) und oc(8k) sind konjugiert. Es gibt also ein T €Fn derart, daB

a(8t) T-**(8t)T (7)

Da aber A ein Automorphismus der Flàche 9Î ist, so ist oc e fèA nach
Lemma la ein Automorphismus von Fn. Es gibt daher ein solches
S €Tn, daB <x(S) T ist. Dann ist wegen (7) :

«(S<) [«(iSf)]-1-^»)^^) *(8-*Bh8) (8)

Weil aber a ein Automorphismus von Fn ist, so folgt aus (8) : 8i=8-18k8 ;

daher ist in der Tat i i. q. e. d.

Nun zeigen wir :
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(II) Es ist aAB oA*aB fur aile A, B e 91.

Beweis. Sei i €50ln, &{€&<, «e©^, /S €©#. Dann ist nach (5)
orB(i) ?[/?(#,)]. Daraus und aus (6) folgt :

^KW) CAtilPWl) ;[«(/8(fi*))] y [«m» (9)

Andererseits ist nach Satz 7, § 3 a/? €<£^B ; daher ist nach (5) : ^^(i)
JlotfiiSi)]. Daraus und aus (9) folgt aber Behauptung (II). Aus (I)

und (II) ergibt sich jetzt :

(III) Die durch (5) definierte Zuordnung

aA A €91

ist ein Homomorphismus von 31 auf eine Untergruppe S der symmetri-
schen Permutationsgruppe Sw von

3. Wir betrachten jetzt die Menge

l} (10)

Wegen (III) ist St* offenbar eine Untergruppe von ît. Wir zeigen :

(IV) Jeder Automorphismus A e9I* lâBt die von der Nullklasse
verschiedene Wegklasse ^>~1(5l1) fest.

Beweis. DaB die Wegklasse ^~1(5Î1) nicht die Nullklasse von 9î ist,
folgt sofort aus (1) und (3). — Es sei nun p(t) ein Représentant der

Wegklasse Q^iSti). Es sei ferner ae(èA und 8t e Rx &n[p(t)].
Dann ist nach Satz 6' d, § 3 :

oc(S1)€0ll[A(p(t))] (11)

Da nach Voraussetzung or^(l) 1 ist, so ist nach (5) jlociS^] 1,
das heiBt a^) e $tx. Daraus und aus (11) folgt aber &n[A(p(t))] — Silf
das heiBt A(p(t)) e0~1(R1). A lâBt also in der Tat die Wegklasse

q.e. d.

Weil die Fundamentalgruppe von 91 nach Voraussetzung nichtabelsch
ist, so folgt jetzt aus (IV) und Satz I :

(V) 31* ist eine Grappe von endlicher Ordnung.

4. Es sei nun î c 3t der Kern des Homomorphismus (III). Aus der
Définition (10) von 91* folgt sofort : ïc9l*. Hieraus und aus (V) schlieBen

wir:
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(VI) ï ist eine Grappe von endlicher Ordnung.
Aus (III) folgt nach einem bekannten Homomorphiesatze, daB die

Faktorgruppe 2I/f isomorph ist zur Gruppe Sc6n. S ist aber gewiB
eine Gruppe von endlicher Ordnung. Daher ist auch die Ordnung der
Faktorgruppe 21/1 endlidi. *Es gilt also

(VII) î ist eine Untergruppe von endlichem Index in 21.

Aus (VI) und (VII) folgt nun sofort : 21 ist eine Gruppe von endlicher
Ordnung. Damit ist unser Satz IV bewiesen.

§17. Beweis von Satz V

Auf Grund von Satz 6' d und Satz 7, § 3 uberlegt man sich leicht, da8
Satz V bewiesen sein wird, wenn wir den folgenden Satz beweisen kônnen :

Satz V. Es sei *R eme Riemannsche Flache mit diskretem Modul-
spektrum ; (fi, n) sei universelle Ûberlagerungsflâche von 9t und Fn die
Fundamentalgruppe von (2,tz). Fn enthalte keine parabolischen Deck-
transformationen. Dann gibt es auf Fn eine ganzzahlige Klassenfunktion
n(8), (1 < n(8)<oo fur aile 8 eFn), derart, daB gilt : Ist die analyti-
sche Abbildung A von 5R in sich kein Automorphismus von 5R und ist
(X€<èA, soist ocn(S)(8) I fur aile SeF».

Beweis. Fn bestehe nicht aus der Identitat / allein. (Sonst ware offen-
bar nichts zu beweisen') Weil 9Î eine Flache mit diskretem Modul-
spektrum ist und weil Fn keine parabolischen Decktransformationen
enthâlt, so folgt aus Satz 2 a, § 4 leicht : Die (abzahlbar vielen) Klassen Si

konjugierter Elemente von Fn konnen so numeriert werden, daB gilt.

rw ET ft, £0 {/} Rt - R} 0 fur i^j (1)
7=0

0 Jf[i^0]<Jf[ft1] M[R9] < M[R3+1] fur j > 1

Dann gibt es zu jedem Elément S eFn einen eindeutig bestimmten
Index j j(S) > 0 derart, daB 8 e Si^S), es ist insbesondere

j(S) 0 dann und nur dann, wenn 8 1. (2)

Jetzt definieren wir

n (S) Max [1, j (S)] fur aile S e Fn (3)

n(8) ist offensichtlich eine Klassenfunktion auf Fn und es ist 1 < n(8)
< oo fur aile S € Fn
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Es sei nun A eine analytische Abbildung von 91 in sich, aber kein
Automorphismus von 9Î. Dann folgt aus Lemma III a und Lemma IV :

M[oc(S)]<M[8] fur 8eFn, M[S]>0 a€&A. (4)

Aus (1) und (4) folgt jetzt :

Ist j(8)>0, so ist j(oc(8)) < j(8) - 1. (5)

Aus (2), (3) und (5) schlieBen wir nun : j(ocn(S)(8)) 0, also wegen (2) :

cxn(S)(8) I. Damit ist Satz V bewiesen.

§ 18. Beweis von Satz VI

I. Fur den Beweis von Satz VI benôtigen wir einige Hilfsbetrach-
tungen. Wir beweisen zunâchst

Satz 1. Es sei ^g eine geschlossene Riemannsehe Flâche vom Ge-
schlechte g > 2. Dann gilt : Jede nichtkonstante analytisehe Abbildung

von ^g in sich ist ein Automorphismus von $gm).

Beweis. 1, ^g, (g > 2), ist eine Flâche von hyperbolischem Typus.
Sei (fi, n) universelle Ûberlagerungsflache von $g und Fn Fundamental-
gruppe von (fî,jr). $g ist eine Flâche mit diskretem Modulspektrum
und Fn enthâlt keine parabolischen Elémente54). Daher gibt es nach
Satz V, § 17 auf Fn eine Klassenfunktion n{8) derart, daB gilt :

(a) Ist die analytische Abbildung A von $g in sich kein Automorphismus

von 5i, umi ist a e(èA, so ist an(S)(8) I flir aile S €Fn.

Fn besitzt als Fundamentalgruppe einer geschlossenen Flâche ein
endliches Erzeugendensystem {8l9 82,..., Sr}. Wir setzen nun

N MaxCn^), n(8%),.. .,n(8r)] (1)

2. Es sei nun die analytische Abbildung A von %g in sich kein
Automorphismus von Qf<r Wir haben zu zeigen, daB A konstant ist.

Sei a e(£A. Dann folgt aus (a) und (1) :

ofiSJ^I fiir t l,2,...,r (2)

63) Dieser Satz darf als bekannt gelten; er lâfît sich nâmlich unschwer aus der Hurwitz-
schen Théorie der Ûberlagerungsflachen einer geschlossenen Flâche folgern (vergleiche [6],
speziell Formel (2), pag. 376). Wir môchten aber zeigen, daÛ sich dieser in den folgenden
Untersuchungen benôtigte Hilfssatz auch sehr leicht aus unseren bisherigen Resultaten
ergibt.

64) Siehe Satz A^ und Satz Bj>.
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Da aber {81, S2 Sr} ein Erzeugendensystem von Fn ist, so folgt
aus (2) sogar

ocN(S) / fur aile S e Fn (3)

Es sei jetzt a eine durch AN induzierte analytische Abbildung von fi in
sieh ; dann gilt

x{a(Ç)) A» (n(Q) (4)

Weil nach Satz 7, § 3 <xN €&an, so folgt aus (3) nach Satz 6' a, § 3 :

a(S(C)) a(f) fur aile S €Fn. Daher ist

eine auf der geschlossenen Flâche ^g ûberall eindeutige und regulâre
analytische Funktion. f(p) muB somit konstant sein. Wegen (4) und (5)
muB daher auch die Abbildung A konstant sein. q. e. d.

II.
Définition 1. Eine Riemannsche Flâche 5R heiBe ,,punktierte ge-

schlossene Flâche vom Geschlechte g", wenn es eine solche geschlossene
Riemannsche Flâche 3fff vom Gesehlechte g und einen solchen Punkt
p0 e ^g gibt, daB 91 analytisch und topologisch auf %g — p0 abbildbar
ist.

Satz 2. Es sei 5R eine Riemannsche Flâche von hyperbolischem
Typus und es gebe auf 5R einen parabolischen Kommutatorweg p(t).
Dann ist 91 eine punktierte geschlossene Flâche vom Geschlecht g > 1.

Beweis. Aus der Existenz eines parabolischen Weges p(t) auf der
hyperbolischen Flâche 91 folgt bekanntlich55) :

(a) Es gibt eine Riemannsche Flâche g einen Punkt pQ e 3
eine analytische Abbildung ip von 91 in $, welche 91 topologisch auf
g* g - pQ abbildet.

(b) Der Weg p*(t) ip(p{t)) auf der Flâche g* 2f — p0 ist auf
den isolierten Randpunkt p0 e 5 von 5* 3r —- Po reduzibel.

Weil nach Voraussetzung p(t) ein Kommutatorweg auf der Flâche
91 ist und weil y> eine topologische Abbildung von 9t auf 3f* ist, so gilt
offenbar56) :

(c) Der Weg p*(t) y>(p(t)) ist ein Kommutatorweg auf der
Flâche g*.

M) Siehe zum Beispiel [10], pag. 418—420 und [8] pag. 139—140.
M) Vergleiche hierzu § 3, Nr. 4, VII und Satz 6, § 3.
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Aus (b) und (c) folgert man aber leicht mit Hilfe von elementaren
Tatsachen der Topologie :

(d) g ist eine geschlossene Flâche.

Nach Voraussetzung ist 9î eine Flâche von hyperbolischem Typus.
Wegen (a) ist daher auch Ç* 5 ~~ Po eîne Flâche von hyperbolischem
Typus. Daraus und aus (d) folgt aber :

(e) Das Geschlecht von 2fist > 1.

Aus (a), (d) und (e) folgt nun, daB 9t in der Tat eine punktierte
geschlossene Flâche vom Geschlechte g > 1 im Sinne der Définition 1

ist. q. e. d.

Satz 3. Es sei SR eine punktierte geschlossene Flâche vom Geschlecht

g > 1 und A eine nichtkonstante analytische Abbildung von 51 in sich.
Dann ist A sogar ein Automorphismus von 91.

Beweis. 1. Nach Voraussetzung gibt es eine geschlossene Riemann-
sche Flâche $a vom Geschlechte g > 1, einen Punkt p0 e 2^ und
eine analytische Abbildung \p von 91 in $g, welche 91 topologisch auf
5? — Po abbildet. Dann gilt :

(a) A1 ipA y)-1 ist eine analytische Abbildung von %g — p0 in
sich.

Da §ff eine geschlossene Flâche vom Geschlechte g > 1 ist, so ist
5g ~~ Po ein Gebiet von hyperbolischem Typus auf der geschlossenen
Flâche 3f(7 • Daher folgt aus (a) nach Satz 2, § 6 sofort : Es gibt einen
Punkt p* e gg derart, daB gilt :

(b) Die Abbildung :

A*(p) Ax(p) im p€%g-p0 A*(p0) p* €gf
ist eine analytische Abbildung von Qfa in sich.

Da nach Voraussetzung die Abbildung A nicht konstant ist, so ist
offenbar A* eine nichtkonstante analytische Abbildung von ^g in sich.
Daher ist A*($g) eine (nicht leere) offene Punktmenge auf $g. Weil
aber ^g eine geschlossene Flâche ist, so ist die Punktmenge A*(%g) c 5g
zugleich abgeschlossen. Da aber $g zusammenhângend ist, so muB daher

^*(<5a) 8f. (1)

sein. Aus (a), (b) und (1) folgt jetzt :

(c) Es ist A*(p) pQ p* dann und nur dann, wenn p~ p0.



2. Wir zeigen jetzt :

(d) J.* ist ein Automorphismus von ^g.

Beweis fur g > 2. A* ist eine nichtkonstante analytische Abbildung
der geschlossenen Flâche ^gi (g > 2), in sieh. Also ist A* nach Satz 1

in der Tat ein Automorphismus von ^g. q. e. d.

Beweis fur g 1. Die komplexe Ebene E : | C | <°° kann vermôge
einer geeigneten Projektion p jr(£) zur universellen Ûberlagerungs-
flâche (E,7t) von fÇx gemacht werden. Sei JTn die Fundamentalgruppe
von (E, ri). Dann hat bekanntlich jede Decktransformation S c Fn die
Gestalt

S(Ç) Ç + (os (2)

und Q {(os | S € Fn) ist ein zweigliedriger Modul mit einer Basis
((*>!, co2), deren Elemente linear unabhàngig sind iiber dem Kôrper der
reellen Zahlen. Es sei nun a* eine durch A* induzierte analytische
Abbildung der Ebene E : | f | <oo in sich und a* e (£^* der zu a* gehôrige
Endomorphismus von Fn. Dann gilt nach Satz 6; a, § 3 : a*(8(0)
27(a*(C))J T a*(S), also wegen (2) :

a*(C + cos) a*(f) + coa*(5) fur aUe « cT,
Dieser Funktionalgleichung entnehmen wir sofort, da6 die Ableitung

-jjra*(Ç) eine in der Ebene | f | <oo regular-analytische doppeltperiodi-

sche Funktion ist und daher konstant sein mu6. Folglich ist

a*(f) cC + d • (3)

Es sei nun f0 eE, tz(Ç0) Po- Dann folgt aus (c) sofort : Es ist a*(£)
a*(f0) mod. Q dann und nur dann, wenn C Co naod. Q. Daraus

und aus (3) ergibt sich : Es ist ex 0 mod. Q dann und nur dann,
wenn x 0mod.Q. Hieraus und aus (3) folgt nun fur beliebige
d, f2 eE : Es ist &*(d) a*(C2) mod. i3 dann und nur dann, wenn
Ci C2 mod. iO. Dies bedeutet aber : Es ist -4*(px) A*(p2) dann
und nur dann, wenn px p2. Daraus und aus (1) folgt nun, daB A* in
der Tat ein Automorphismus von gi ist. q. e. d.

3. Aus (b), (c) und (d) schliefien wir jetzt, daB A1 ein Automorphismus
von 5ff ~" Po is^ Daher ist A tp"~1A1'ip ein Automorphismus von 9t.
Damit ist Satz 3 bewiesen.

III. Nach diesen vorbereitenden Betrachtungen wenden wir uns
nun zum Beweise von Satz VI. Es ist klar, daB ein Automorphismus
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einer Riemannschen Flâehe 91 jeden nicht nullhomotopen geschlossenen
Weg von 91 auf einen ebensolchen Weg abbildet. Satz VI wird daher
bewiesen sein, wenn wir den folgenden Satz beweisen kônnen :

Satz VI'. Es sei 91 eine Riemannsche Flâche mit diskretem Modul-
spektrum. (&,n) sei universelle Ûberlagerungsflâche von 91 und Fn
die Fundamentalgruppe von (£,,a). Fn sei nichtabelsch. Dann gilt :

Besteht die Endomorphismenklasse f£A einer analytischen Abbildung A
von 91 in sich aus Isomorphismen von Fn in sich, so ist A ein analytiseher
Automorphismus von 91.

Beweis. Es sei JP* die Kommutatorgruppe von Fn. Da Fn nach Vor-
aussetzung nichtabelsch ist, so ist F* — I nicht leer. Wir unterscheiden
nun zwei Fâlle :

1. Fait F* enthâlt parabolische Elemente.

Dann ist 91 nach Satz 2 eine punktierte geschlossene Flâche vom Ge-
schlechte g > 1. Da <£A nach Voraussetzung aus Isomorphismen von
Fn in sich besteht, so kann die analytische Abbildung A von 91 in sich
gewiB nicht konstant sein. Folglich ist A nach Satz 3 ein Automorphismus

von 91. q. e. d.

2. Fall. F* enthâlt keine parabolischen Elemente.

Die nichtleere Menge F* — / enthâlt dann lauter hyperbolische
Elemente. Weil 91 eine Flâche mit diskretem Modulspektrum ist, so gibt es
daher nach Satz 2b, § 4 ein Elément

S0€F*-I (1)
derart, daB

M[S] > M[80] > 0 fûr aUe S eF* -I (2)

Sei nun a c f&A. Da a nach Voraussetzung ein Isomorphismus von Fn
in sich ist und weil SQ ^ I ist, so ist auch

oc(S0)^I. (3)

Nun ist aber bekanntMch die Kommutatoruntergruppe F* eine voll-
invariante Untergruppe von Fn. Daher folgt aus (1):

*(80)eF*. (4)

Aus (3) und (4) ergibt sich jetzt oc(8o) eF* — I. Daher ist nach (2) :

M[ol(S0)]>M[80]>0 (5)
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Andererseits gilt aber nach Lemma IIIa:
M[*(80)] < M[8J (6)

Aus (5) und (6) folgt nun

(7)

Weil 5R eine Flâche mit diskretem Modulspektrum ist, so folgt jetzt aus
(7) nach Lemma IV, dafi A in der Tat ein analytischer Automorphismus
von 91 ist. Damit ist Satz VF vollstândig bewiesen.

§ 19. Beweis von Satz VII

I. Fur den Beweis von Satz VII benôtigen wir einige Begriffe und
Hilfssâtze aus Gruppentheorie und Topologie :

Définition 1. Es sei F eine beliebige Grappe und F* ihre Kommu-
tatoruntergruppe. Dann verstehen wir unter dem Range Rg(F) den
in bekannter Weise definierten Rang der abelsohen Faktorgruppe F/F*.

Définition 2. Der Rang der Fundamentalgruppe einer Riemannschen
Flâche heiBe die Bettische Zahl der Flâche.

Satz l57). Die Fundamentalgruppe einer offenen Riemannschen
Flâche ist stets eine freie Grappe.

Satz 2m). Jede Untergruppe einer freien Grappe ist selbst eine freie
Grappe.

Satz 369). Es seien i\ und F2 freie Gruppen und es sei Sg(rt) < oo.
Es gebe einen Homomorphismus a von Fx auf F2. Dann gilt :

a) Bg(r2) < Bgirj.
b) Besteht der Kern von oc nicht aus der Identitât von Ft allein, so ist

sogar Bg^KBg^).
II. Nach diesen Vorbereitungen kommen wir nun zum

Beweis von Satz VII. Wir unterscheiden zwei Fâlle :

1. Fall. 91 sei eine geschlossene Flâche.

Da nach Voraussetzung der Typus von 91 hyperbolisch ist, so ist 91

in diesem Falle eine geschlossene Flâche vom Geschlechte gr>2. Ist

57) Siehe zum Beispiel [9], pag. 354—358.
M) [15] pag. 161—183.
59) [H] § 5, pag. 27$—277.
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nun die analytische Abbildung A von 9t in sich kein Automorphismus
von 91, so ist daher A nach Satz 1, § 18 eine konstante Abbildung. Folg-
lich ist Ab trivialerweise analytisch nullhomotop. q. e. d.

2. Fall. 91 sei eine offene Flâche.

1. Sei (fi,^) universelle Ûberlagerungsflâche von 9î. Wir bezeichnen
die Fundamentalgruppe von (£,,tz) mit FQ. Dann ist nach Voraus-
setzung 1 < 6 Rg(F0)< oo. Weil 91 offen ist, so gilt daher nach
Satz 1 :

(a) FQ ist eine freie Grappe vom endlichen Range b > 1. Da 9t eine
hyperbolische Flàche endlichen Zusammenhanges ist, so gilt nach Satz C :

(b) 91 ist eine Flâche mit diskretem Modulspektrum.

2. Es sei jetzt a e f£A. Definieren wir

r.^a^ro) i=l,2,..., (1)
so gilt :

(c) Die Abbildung a ist ein Homomorphismus der Grappe

Ft auf die Grappe Ft+1, i 0, 1, 2,...
Ferner gilt offenbar :

rt+1cTt fur i 0,1,2,... (2)

Da die Ft Untergruppen der freien Gruppe Fo sind, so gilt nach Satz 2 :

(d) Die r{, (i 0, 1, 2,...), sind freie Gruppen.

Nach Définition (1) ist <x% ein Homomorphismus von Fo auf Ft ; daher
folgt aus (a) und (d) nach Satz 3 a :

Xg(rt)<b<oo fur i 0,1,2,... (3)

Hieraus und aus (c), (d) folgt wiederum nach Satz 3a :

0<Rg(FM)<Rg(Ft) fur t 0,1,2,... (4)

Wir zeigen nun :

(e) Ist Rg(rt)>l, so besteht der Kern KtcFt des Homomorphismus

a von Ft auf Ft+l nicht aus der Identitât allein.

Beweis. Wegen Rg{Ft) > 1 ist Ft — I nicht leer. Ferner sind nach

Voraussetzung aile Elemente von r4 — / hyperbolische Decktrans-
formationen. Daraus und aus (b) folgt nach Satz 2b, § 4 : Es gibt ein
Elément

70



/ (5)
derart, dafi

M[S] > M[St] > 0 fur aile 8 € Tt - / (6)

Da aber die analytische Abbildung A von 91 in sich kein Automorphismus
von 91 ist und weil M[8t]>0 ist, so folgt aus (b) nach Lemma Illa
undLemmalV:

M[oc{8t)]<M[8t] {7)

Andererseits ist wegen (c) und (5) où(St) eFt+1, also wegen (2) :

*(St)€rt. (8)

Aus (6), (7) und (8) schlieBen wir aber :

oc(St) / (9)

Aus (5) und (9) folgt nun unsere Behauptung (e). q. e. d.
Aus (c), (d), (3) und ^e) folgt jetzt nach Satz 3b :

(f) Ist Rg(rt)>l, soist Rg{rt+1)<Rg(rt).
Aus (a), (4) und (f) schliefien wir nun : Rg(Fh) 0. Daraus und aus

(d) folgt aber, da8 Fb {/} sein muB. Wegen (1) gilt daher :

<xb (S) / fur aile 8 e To (10)

3. Es sei jetzt a eine durch Ab induzierte analytische Abbildung von
2 in sich ; dann gilt :

n{a(Ç)) A*(7i(Ç)) (11)

Da nach Satz 7, § 3 a6 e (£Ab, so folgt jetzt aus (10) nach Satz 6' a, § 3 :

a(S(C)) a(C) fur aile 8 €ro (12)
Es sei nun

Co*£, rc(eo) Z>o€9l > (13)

Da die Halbebene fi ein konvexes Gebiet ist, so ist offenbar (1 — t) a(Ç)

+ t Co eine (stetige) Abbildung von fi x t in fi60). Daraus und aus (12)
folgt :

(g) A{p,t)=n((l-t)a{Ç) + tC0), C*fî, p rc(C)€9l

ist eine eindeutige und stetige Abbildung von 91X t in 91. Ferner gilt
offenbar:

(h) Fur jedes feste t et ist A(p,t) eine analytische Abbildung von
91 in sich.

•°) t bedeute das Intervall 0 < t < 1.
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Wir zeigen noch :

(i) Es ist A(p, 0) Ab(p), A(p, 1) pQ fur aile p

In der Tat folgt aus (g) und (11): A(py 0) n(a(0) Ab(7i(Ç))
Ab(p); A(p,l)=7i(Ç0), also wegen (13) : A(p,l) p0. q. e. d.

Aus (g), (h) und (i) folgt nun, daB die Abbildung Ab von 9t in sich

analytisch nullhomotop ist61). Damit ist Satz VII vollstândig bewiesen.

LITERATURVERZEICHNIS

[1] C. Carathéodory, Funktionentheorie (Birkhâuser, Basel 1950).
[2] H. Carton, L'itération des transformations intérieures d'un domaine

borné, Math. Z., Bd. 35 (1932).
[3] Maurice H.Heins, On the itération of functions which are analytic and

single valued in a given multiply-connected région, Amer. J. Math., t. 63

(1941).
[4] Michel Hervé, Quelques propriétés des transformations intérieures d'un

domaine borné, Ann. Sci. École Norm. Sup., t. 68 (1951).
[5] Heinz Huber, Ûber analytische Abbildungen von Ringgebieten in Ring-

gebiete, Compos. Math., vol. 9 (195JI).

[6] A. Hurwitz, Mathematische Werke. Band I: Funktionentheorie (Birkhâuser,
Basel 1932).

[7] F. Koebe, Abhandlungen zur Théorie der konformen Abbildung IV., Acta
Math., Band 41 (1918).

[8] P. Koebe, Allgemeine Théorie der Riemannschen Mannigfaltigkeiten,
Acta Math., Band 50 (1927).

[9] P. Koebe, Riemannsche Mannigfaltigkeiten und nichteuklidische Raum-
formen. Zweite Mitteilung. Sitzungsber. PreuB. Akad. 1928, XXIII.

[10] P. Koebe, Riemannsche Mannigfaltigkeiten und nichteuklidische Raum-
formen. Vierte Mitteilung. Sitzungsber. PreuB. Akad. 1929, XXIII.

[11] W. Magnus, Beziehungen zwischen Gruppen und Idealen in einem spe-
ziellen Ring, Math. Ann., Band 111 (1935).

[12] J. Nieisen, Untersuchungenzur Topologie der geschlossenenzweiseitig«n
Flâchen, Acta Math., Band 50 (1927).

[13] G, Pick, Ûber eine Eigenschaft der konformen Abbildung kreisfôrmiger
Bereiche, Math. Ann., Band 77 (1916).

[14] H. Poincarè, Sur un théorème de M. Fuchs, Acta Math., Bd. 7 (1885).
[15] O. Schreier, Die Untergruppen der freien Gruppen, Abhandlungen aus dem

math. Seminar Hamburg 5.

[16] H. A. Schwarz, GesammeltemathematischeAbhandlungen.Bd.il (Springer,
Berlin 1890).

[17] H. Weyl, Die Idée der Riemannschen Fl&che (Teubner, Leipzig 1913).

(Eingegangen den 22. August 1952.)

w) Es ist noch bemerkenswert, daB bei der Déformation (g) der Punkt A (p, t) fur jedes
feste p € 9t eine analytische Bahnkurve auf 91 beschreibt.
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Uber die untere Grenze der Ordnimg
n-stufig îiîchtkomniutativer Gruppen

Von I. Szélpal, Szeged (Ungarn)

In einer Arbeit *) hat L. Rédei die Stufenzahl n 2* 0) der Nieht-
kommutativitât fur endliche Gruppen folgendermaBen definiert : Durch
die Stufenzahl n 0 sind die kommutativen Gruppen charakterisiert,
und fur eine beliebige Grappe 0 soll n um 1 grôBer sein als das Maximum
der Stufenzahlen der echten Untergruppen von 0. Bezûglich dieser
Stufenzahl will ich jetzt folgenden Satz beweisen :

-1) L. Rédei, Das ,,schiefe Produkt" in der Gruppentheorie, Comment. Math. Helv. 20
(1947), 226—264.
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