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Uber analytische Abbildungen
Riemannscher Flichen in sich

Von Heinz HuBER, Ziirich

§ 1. Einleitung und Ubersicht*

Ein Kreisring & : 0<r<|z|<R in der komplexen z-Ebene hat fol-
gende bemerkenswerte Eigenschaft!): Unter allen analytischen Abbil-
dungen von K in sich sind die Automorphismen2) von R die einzigen,
welche jede nicht nullhomotope geschlossene Kurve in & auf eine eben-
solche Kurve abbilden.

Indem wir nach analogen Erscheinungen bei komplizierteren Riemann-
schen Flichen suchten, wurden wir auf eine ausgedehnte, einfach zu
definierende Klasse von Flichen gefiihrt : auf die Riemannschen Flichen
mit diskretem Modulspektrum. Es sei schon hier bemerkt, dafl diese
Klasse insbesondere (abgesehen von einigen trivialen Ausnahmefillen)
alle Riemannschen Flichen endlichen Zusammenhanges enthilt.

In dieser Arbeit soll nun gezeigt werden : Innerhalb der Menge aller
analytischen Abbildungen in sich einer Riemannschen Fliche mit dis-
kretem Modulspektrum sind die Automorphismen auf dhnliche Weise
wie beim Kreisring stark ausgezeichnet. Die zu diesem Zwecke ent-
wickelten Methoden liefern aber auflerdem eine ganze Reihe weiterer
Ergebnisse iiber Riemannsche Flichen und deren Abbildungen in sich.

Nach dieser allgemeinen Orientierung geben wir nun eine eingehende
Ubersicht iiber die wichtigsten Begriffe und Sitze dieser Arbeit.

1. Wegklassen

Unter einem Weg p(t) auf der Riemannschen Fliche R verstehen
wir eine stetige Abbildung p = p(t) des Intervalles 0 <¢ <1 in die
Fliche R. Den zu einem Weg p(t) inversen Weg p~1(¢) erkliren wir

*) Vergleiche das Inhaltsverzeichnis am Ende der Arbeit.
1) Vergleiche [5]. Die obige Behauptung ist dort in Satz II, pag. 163, enthalten.
2) Unter einem Automorphismus einer Riemannschen Fliche R verstehen wir eine

umkehrbar eindeutige und analytische Abbildung von R auf sich selbst. Fiir die genaue
Definition dieser Begriffe vergleiche man § 3, Nr. 1.



durch die Festsetzung: p~1(¢) = p(1 —t). Der Weg p(t) heilit ge-
schlossen, falls p(0) = p(1).

Zwei geschlossene Wege p,(t), p,(t) auf R heilen homotop (in
Zeichen: p,(t) ~ p,(t)), wenn sie auf R stetig ineinander deformiert
werden konnen, das heillt wenn es eine solche stetige Abbildung
p=P(,7) des Quadrates 0 <t <1, 0<tv <1 in die Fliche R
gibt, dal P (¢, 0) = p,(t), P(t, 1) = p,(¢) fir 0 <t <1 und P(0, 7)
= P(1,7) fir 0 <7 <1. Insbesondere heifit ein geschlossener Weg
Po(t) nullhomotop auf R, wenn er homotop zu einem ,,punktformigen”
Weg p,(t) =q e R ist.

Die Homotopierelation ist eine Aquivalenzrelation in der Menge aller
geschlossenen Wege auf R und bewirkt daher eine Klasseneinteilung
dieser Menge in Wegklassen W. Die Klasse der nullhomotopen Wege
nennen wir die Nullklasse von R.

2. Gebrete auf Riemannschen Flichen

Es sei ® ein Gebiet 3) auf einer Riemannschen Fliache R. Dann definie-
ren wir :
I. Ein Punkt a € R heil3t isolierter Randpunkt von ® ¢ R, wenn

a¢ ® und wenn es eine solche Umgebung B, R von a gibt, daBl
B, —ac®.

II. Ein Randpunkt @ € R von ® heile normaler Randpunkt, wenn
es eine solche Umgebung M, c R von a gibt, dal jeder geschlossene
Weg p(t), welcher im Durchschnitt RN, ~ ® liegt, in ® nullhomotop ist.

III. Wir nennen ® ein Gebiet mit normalem Rand, falls jeder nicht-
isolierte Randpunkt von ® normal ist.

IV. Eine Wegklasse W von ® heifle ,,auf den isolierten Randpunkt
a € R von ® reduzibel®, wenn sie folgende Bedingungen erfiillt :

a) W ist nicht die Nullklasse von (.

b) Zu jeder Umgebung B, ¢ R von a gibt es einen solchen Weg p(¢)
in der Klasse W, daB p(t) € B, —a fir 0 <t < 1.

3. Der Modul einer Wegklasse

Es sei R eine Riemannsche Fliche von hyperbolischem Typus. Dann
148t sich ihre universelle Uberlagerungsfliche konform auf die Poincaré-
sche Halbebene abbilden. Dadurch wird der Fliche R in bekannter Weise
eine hyperbolische Metrik aufgepriigt4). Wir bezeichnen die hyperboli-

3) ® ist dann selbst eine Riemannsche Fliche.
4) Vergleiche § 5.



sche Linge eines Weges p(t) auf R mit ug[p(t)]. Wir ordnen nun jeder
Wegklasse W von R eine nicht negative Zahl, den Modul M [W], zu,
indem wir definieren %) :

M[W]= inf py[p@®)] .
p(t)eWw
Ist M[W]>0, so nennen wir W eine hyperbolische Wegklasse und
jeden ihrer Reprisentanten einen hyperbolischen Weg. Ist dagegen
M[W] =0 und ist W nicht die Nullklasse, so heile W eine parabolische
Wegklasse und jeder ihrer Reprisentanten ein parabolischer Weg.

In der Funktionentheorie treten vielfach Riemannsche Flichen ® auf,
welche Teilgebiete einer fest gegebenen Riemannschen Fliche R sind
(zum Beispiel Gebiete der komplexen Ebene usw.). Es erscheint dann
wiinschenswert, die metrischen Eigenschaften der Wegklassen von ® in
Zusammenhang zu bringen mit (topologischen) Relativeigenschaften von
® beziiglich der einbettenden Fliche R. Wir beweisen hieriiber das
folgende Kriterium :

Satz A. Es sei ® ein Gebiet von hyperbolischem Typus auf einer

Riemannschen Fliche R ; die abgeschlossene Hiille ® R von ® sei
kompakt. Dann gilt : Eine Wegklasse W von ® ist dann und nur dann

parabolisch, wenn sie auf einen isolierten Randpunkt a € R von ® redu-
zibel ist.

Einfache Beispiele zeigen, dal in Satz A auf die Kompaktheit von G
nicht verzichtet werden kann.

Da jedes Gebiet auf einer geschlossenen Fliche § eine kompakte ab-
geschlossene Hiille besitzt, so folgt aus Satz A sofort

Satz A,. Ist ® ein Gebiet von hyperbolischem Typus auf einer ge-
schlossenen Riemannschen Fliche §, so gilt : Eine Wegklasse W von &
ist dann und nur dann parabolisch, wenn sie auf einen isolierten Rand-
punkt von ® reduzibel ist.

Jede geschlossene Fliche §, vom Geschlechte g > 2 ist ein Gebiet
von hyperbolischem Typus ohne Randpunkte auf sich selbst. Daher

folgt aus Satz A, sofort der auch auf andere Weise beweisbare und wohl-
bekannte ¢)

5) In § 4 wird zwar aus beweistechnischen Griinden eine etwas anders lautende Defini-
tion gegeben; man erkennt indessen unmittelbar die Aquivalenz beider Definitionen.
8) Siehe zum Beispiel [12], pag. 208.



Satz A;,. Auf einer geschlossenen Riemannschen Fliche §, vom
Geschlechte g > 2 ist jeder geschlossene, nicht nullhomotope Weg
hyperbolisch.

Fiir den Spezialfall von Satz A, dal ® ein beschrinktes Gebiet der
komplexen z-Ebene ist, gibt es einen Beweis von Carathéodory 7). Die
Carathéodorysche Beweismethode ist aber auf unseren allgemeinen Fall
nicht iibertragbar, da sie wesentlich die Giiltigkeit des Jordanschen
Kurvensatzes in der z2-Ebene voraussetzt. Die Hauptstiitze unseres Be-
weises von Satz A bildet die folgende Verallgemeinerung des GroBen
Picardschen Satzes :

Satz 2, § 6. Es sei R eine Riemannsche Fliche und ® ein Gebiet
von hyperbolischem Typus auf R mit kompakter abgeschlossener Hiille.
Dann gilt : Jede analytische Abbildung A der punktierten Kreisscheibe f :
0<]z|<1 in das Gebiet ® ¢ R kann zu einer analytischen Abbildung
der vollen Kreisscheibe |z|<1 in die Flache R fortgesetzt werden.

Nimmt man speziell als Fliche R die Riemannsche Kugel und als
Gebiet von hyperbolischem Typus auf R die Kugel minus drei Punkte,
so erhilt man den GroBen Picardschen Satz, welcher besagt, daB der
Punkt z = 0 keine wesentliche Singularitdt sein kann fiir eine in f:
0<|z|<1 (eindeutige und) meromorphe Funktion, welche daselbst
drei Werte auslidfit. Unsere Verallgemeinerung des Picardschen Satzes
besteht also darin, daf wir die in f meromorphe und daselbst drei Werte
auslassende Funktion, welche ja als analytische Abbildung von f in die
dreifach punktierte Kugel gedeutet werden kann, ersetzen durch eine
analytische Abbildung von f in ein hyperbolisches Gebiet mit kompakter
abgeschlossener Hiille auf einer beliebigen Riemannschen Flidche R. Fiir
den Beweis dieses verallgemeinerten Satzes benutzen wir auBler den in
der ganzen Arbeit verwendeten Grundlagen der Uniformisierungs-
theorie 8) als spezifisch funktionentheoretische Hilfsmittel nur das
Schwarzsche Lemma und den elementaren Satz von Casorati-Weier-
straB, welcher besagt, dafl eine fiir 0<|z|<1 eindeutige und be-
schrinkte regulir-analytische Funktion zu einer in der ganzen Kreis-
scheibe |z|<1 reguliren Funktion fortgesetzt werden kann. Wir er-
halten so eine Beweisanordnung, welche, weil von verschiedenen Zu-
filligkeiten befreit, sogar eher durchsichtiger ist als die iiblichen Beweise
des klassischen Picardschen Satzes.

7) [1], Bd. 2, Nr. 335.
8) das ist im wesentlichen der Riemannsche Abbildungssatz und die darauf griindende
Typenklassifikation der Riemannschen Flachen.
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4. Riemannsche Flichen mit diskretem Modulspektrum

Eine hyperbolische Riemannsche Flidche heile Fliche mit diskretem
Modulspektrum, wenn es auf ihr fiir jede Zahl m >0 hochstens endlich
viele Wegklassen W mit

O<M[W]l<m (1)

gibt. — Man beachte wohl, da in dieser Definition dank der linken
Hilfte der Ungleichung (1) keine Forderung iiber die Anzahl der allfdllig
vorhandenen parabolischen Wegklassen enthalten ist.

Die Eigenschaft einer Fliche, diskretes Modulspektrum zu besitzen,
ist eine innere Eigenschaft dieser Fliche und invariant gegeniiber ein-
eindeutigen analytischen Abbildungen.

Es sei nun R eine beliebige Riemannsche Fliche und & ein hyperboli-
sches Teilgebiet von R. Dann liegt die folgende Fragestellung nahe :
Gibt es (topologische) Relativeigenschaften von ® beziiglich der ein-
bettenden Fliche R, deren Erfiilltsein garantiert, dafl & eine Fliche mit
diskretem Modulspektrum ist? Wir beweisen hieriiber den folgenden

Satz B. Es sei ® ein Gebiet von hyperbolischem Typus auf einer

Riemannschen Fliche R. Die abgeschlossene Hiille ® ¢ R von & sei
kompakt und der Rand von & sei normal. Dann ist ® eine Riemannsche
Fldche mit diskretem Modulspektrum.

Satz B zeigt zugleich, dafl die Klasse der Riemannschen Flichen mit
diskretem Modulspektrum sehr umfangreich ist. Dafl es aber auch wirk-
lich Flichen mit nichtdiskretem Modulspektrum gibt, wird sehr leicht
aus den Sédtzen von Nr. 5 hervorgehen ?). Es sei hier noch darauf hinge-
wiesen, dafl mit den in Satz B auftretenden Riemannschen Flichen ®
die Gesamtheit aller Flichen mit diskretem Modulspektrum nicht er-
schopft ist. Wir hoffen bei spiterer Gelegenheit auf diese Frage zuriick-
kommen zu kénnen.

Da die abgeschlossene Hiille eines Teilgebietes einer geschlossenen
Flidche von selbst kompakt ist, so folgt aus Satz B sofort der

Satz B,. Jedes hyperbolische Gebiet mit normalem Rand auf einer
geschlossenen Riemannschen Fliche ist eine Fliche mit diskretem Modul-
spektrum.

Jede geschlossene Riemannsche Fliche §, vom Geschlechte g > 2

%) Diese Tatsache folgt zum Beispiel leicht aus Satz IV. Man vergleiche aber auch das
Beispiel zu Satz V.



ist ein hyperbolisches Gebiet auf sich selbst, dessen Rand trivialerweise
normal ist. Daher folgt aus Satz B, unmittelbar

Satz B,,. Jede geschlossene Riemannsche Fliche §, vom Geschlechte
g > 2 ist eine Fliche mit diskretem Modulspektrum.

Dieser Satz B;, stimmt inhaltlich iiberein mit einem Ergebnis, das
J. Nielsen %) auf ganz andere Weise erhalten hat.

Mit Hilfe eines bekannten, von Koebe!l) herriihrenden Einbettungs-
satzes fiir Riemannsche Flichen endlichen Zusammenhanges werden wir
aus Satz B, miihelos noch den folgenden Satz gewinnen :

Satz C. Jede hyperbolische Riemannsche Fliche mit endlicher Betti-
scher Zahl ist eine Fldche mit diskretem Modulspektrum.

Beim Beweise des grundlegenden Satzes B stiitzen wir uns in erster
Linie auf die folgende Verallgemeinerung eines bekannten Montelschen
Satzes :

Satz 4, § 8. Es sei ® ein hyperbolisches Gebiet mit kompakter ab-
geschlossener Hiille auf einer Riemannschen Fliache R. {4,(p)} sei eine
Folge von analytischen Abbildungen einer Riemannschen Fliche r in das
Gebiet ® ¢ R. Dann gibt es eine Teilfolge {4, (p)} von {4,(p)},
welche auf v stetig konvergiert!?) gegen eine analytische Abbildung
A(p) von tin die Fliche R.

Nimmt man speziell als Fliche R die Riemannsche Kugel und als
hyperbolisches Gebiet auf R die Kugel minus drei Punkte, so erhilt
man offenbar den bekannten Montelschen Satz, welcher besagt, dafl jede
Folge von auf r meromorphen Funktionen normal ist, wenn alle Funk-
tionen der Folge drei feste Werte a, b, ¢ nicht annehmen. Fiir den Beweis
unserer Verallgemeinerung des Montelschen Satzes benotigen wir an
spezifisch funktionentheoretischen Hilfsmitteln aufler den Grundlagen
der Uniformisierungstheorie nur das Schwarzsche Lemma.

5. Analytische Abbildungen Riemannscher Flichen in sich

I. Die von uns angewandte Methode zur Untersuchung analytischer
Abbildungen einer hyperbolischen Fliche R in sich besitzt eine funk-
tionentheoretische und eine gruppentheoretische Komponente ; sie kann

10) [12] pag. 209.

11) [8] § 37, pag. 139—141.

12) Uber den von Carathéodory stammenden Begriff der stetigen Konvergenz vergleiche
man § 7.
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etwa folgendermaflen kurz angedeutet werden : Bekanntlich besteht eine
umkehrbar eindeutige Zuordnung zwischen den Wegklassen auf R und
den Klassen konjugierter Elemente der Fundamentalgruppe I" von R13).
Wir erkliren nun auf der Gruppe I eine Klassenfunktion M [S], indem
wir jedem Element S eI' als Funktionswert den Modul der zur Klasse
von S gehorigen Wegklasse zuordnen 1*). — Jede (analytische) Abbildung
von R in sich induziert in bekannter Weise einen Endomorphismus der
Fundamentalgruppe I''®). Indem wir nun das Verhalten der Klassen-
funktion M [S] gegeniiber diesen Endomorphismen untersuchen, wer-
den wir zu unseren Sitzen iiber analytische Abbildungen Riemannscher
Flichen in sich gefiihrt. Der wesentliche Kern unserer Methode ist in den
vier Lemmata von § 12 enthalten ; sie bilden die Quelle, aus der alle
unsere folgenden Sitze fliefen.

II. Zunichst beweisen wir einige Sétze, welche noch ohne die Voraus-
setzung auskommen, dafl die Riemannsche Fliche ‘R diskretes Modul-
spektrum besitze (Sdtze I bis III).

Satz I. Es sei R eine Riemannsche Fliche mit nichtabelscher Funda-
mentalgruppe. Dann ist die Gruppe B aller analytischen Automorphis-
men von ‘R, welche eine von der Nullklasse verschiedene Wegklasse W
festlassen, eine zyklische Gruppe von endlicher Ordnung.

Die Voraussetzung, dafl die Fundamentalgruppe von R nicht abelsch
sei, ist dabei wesentlich ; man sieht dies etwa am Beispiel eines Kreis-
ringes, welcher ja sogar eine kontinuierliche Gruppe von Automorphis-
men besitzt, welche eine von der Nullklasse verschiedene Wegklasse fest-
lassen.

Wir beweisen ferner:

Satz II. Es sei R eine Riemannsche Fliche mit nichtabelscher Fun-
damentalgruppe!®) und 4 eine analytische Abbildung von R in sich.
Dann gilt : Gibt es auf R einen hyperbolischen Weg p(t) derart, da3
A(p@)) ~ p(t), soist A ein periodischer Automorphismus von R.

Man iiberlegt sich sehr leicht an einfachen Beispielen, daB die Voraus-
setzung, der Weg p(f) sei hyperbolisch, wesentlich ist fiir die Giiltigkeit
von Satz II. — Da jedes beschrinkte Gebiet der komplexen z-Ebene von
hyperbolischem Typus ist, so folgt aus Satz A und Satz II sofort

13) Siehe § 3, Nr. 4.

14) Siche § 4.

15) Richtiger: Eine Klasse éhnlicher Endomorphismen. Siehe § 3, Nr. 5.

18) Eine solche Fliche ist stets von hyperbolischem Typus; vergleiche § 3, Nr. 6, IV.
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Satz II'. Die Zusammenhangszahl!?) des beschrinkten Gebietes
der z-Ebene sei grofler als 2. Es sei 4 eine analytische Abbildung von &
in sich und es gebe in ® einen weder nullhomotopen noch auf einen iso-
lierten Randpunkt reduzibeln Weg p(t) derart, daB A(p(t)) ~ p(?).
Dann ist 4 ein periodischer Automorphismus von %.

Dieser Spezialfall unseres Satzes IT wurde von H. Cartan!®) mit Hilfe
seiner Theorie der Iteration analytischer Abbildungen beschrinkter Ge-
biete bewiesen. Cartan zeigte allerdings nur, daBl 4 ein Automorphismus
von ® ist, nicht aber die Periodizitit von A. — Durch Kombination von
Satz II mit den Sdtzen 4 und A4, wiirden sich noch weitere (und allge-
meinere) Sdtze vom Typus II' ergeben ; wir wollen sie aber hier nicht
explizite anfiihren.

Als Gegenstiick zu Satz 1I beweisen wir den folgenden

Satz III. Es sei R eine hyperbolische Riemannsche Fliche und 4
eine analytische Abbildung von R in sich. Gibt es auf R einen nicht null-
homotopen geschlossenen Weg p(t) derart, daB A(p(t)) ~ p~1(t), so
gilt

1. A ist ein Automorphismus von R.

2. A besitzt die Periode 2.

3. A besitzt mindestens einen Fixpunkt auf R.

Es ist bemerkenswert, dafl hier im Gegensatz zu Satz II keine Voraus-
setzung iiber die metrische Natur des Weges p(f) gemacht werden muf ;
in der Tat zeigt sich beim Beweise, dafl ein Weg p(t) von selbst hyper-
bolisch ist, wenn er die Voraussetzungen von Satz III erfiillt. Dal die
Behauptung 3 nicht verschirft werden kann, lehrt das folgende Beispiel :
Es sei R die in den Punkten z = 4 1 punktierte Kreisscheibe |z|<?2.
Dann ist A4 (2) = —z eine analytische Abbildung von R in sich. Wihlen
wir nun als nichtnullhomotopen Weg p(t) in R eine Lemniskate, welche
die beiden Punkte z = 41 umschlingt, so ist offenbar A (p(¢)) ~ p~1(¢).
Und in der Tat ist A ein Automorphismus von R mit der Periode 2,
welcher den einzigen Fixpunkt z = 0 besitzt.

III. Die nun folgenden Sdtze IV bis VI handeln von Flichen mit dis-
kretem Modulspektrum. Wir beweisen zunéchst den allgemeinen

Satz IV. Es sei R eine Riemannsche Fldche mit diskretem Modul-
spektrum und nichtabelscher Fundamentalgruppe. Dann hat die Gruppe
A aller analytischen Automorphismen von R eine endliche Ordnung.

17) Zusammenhangszahl = Bettische Zahl + 1.
18) [2] pag. 771.



In diesem Satz ist nun eine ganze Reihe von bemerkenswerten Spezial-
fillen enthalten :

1. Da eine Riemannsche Fliche mit nichtabelscher Fundamental-
gruppe stets von hyperbolischem Typus ist, so folgt aus Satz B und
Satz IV scfort

Satz IV,. Es sei ® ein Gebiet mit nichtabelscher Fundamental-
gruppe auf einer Riemannschen Fliche R. Die abgeschlossene Hiille von
® sei kompakt und der Rand von & normal. Dann hat die Gruppe aller
analytischen Automorphismen von & eine endliche Ordnung.

Da die abgeschlossene Hiille eines Teilgebietes einer geschlossenen
Flidche von selbst kompakt ist, so enthélt Satz IV, den

Satz IV,. Jedes Gebiet mit normalem Rand und nichtabelscher
Fundamentalgruppe auf einer geschlossenen Riemannschen Fliche be-
sitzt nur endlich viele analytische Automorphismen.

Da offenbar jedes endlichfach zusammenhingende Gebiet auf der
Riemannschen Kugel, dessen Zusammenhangszahl grofler als zwei ist,
einen normalen Rand und eine nichtabelsche Fundamentalgruppe be-
sitzt, so enthilt Satz IV, insbesondere den wohlbekannten?!?)

Satz IV,.. Jedes endlichfach zusammenhingende Gebiet auf der
Riemannschen Kugel, dessen Zusammenhangszahl grofer als zwei ist,
besitzt nur endlich viele analytische Automorphismen.

Weil jede geschlossene Riemannsche Fliche vom Geschlechte g > 2
ein Gebiet auf sich selbst ist, dessen Fundamentalgruppe nichtabelsch
und dessen Rand trivialerweise normal ist, so enthilt Satz IV, ferner den

Satz IV,,.. Jede geschlossene Riemannsche Fliche vom Geschlechte
g > 2 besitzt nur endlich viele analytische Automorphismen.

Damit haben wir einen neuen Beweis dieses bekannten, zuerst von
H. A. Schwarz aufgestellten Satzes??).

2. Aus Satz IV und Satz C folgt endlich
Satz IV,;. Jede Riemannsche Fliche mit nichtabelscher Fundamen-

talgruppe und endlicher Bettischer Zahl besitzt nur endlich viele analyti-
sche Automorphismen.

19) Siehe zum Beispiel [7], § 5, pag. 323—326.
%) [16] pag. 285—291. Vergleiche auch [6] pag. 241—259 und [14], pag. 16—19.



Dieser Spezialfall von Satz IV darf seit den Arbeiten von Koebe als
bekannt gelten, da er durch das Verfahren der ,,Verdoppelung“ einer
endlichfach zusammenhéngenden Fliche?') und Anwendung des Schwarz-
schen Spiegelungsprinzipes auf Satz IV,, zuriickgefiihrt werden kann.
Immerhin sind bei der exakten Durchfithrung dieses Beweises einige un-
angenehme Fallunterscheidungen und zusétzliche Betrachtungen nicht
zu vermeiden ; sie rithren vom moglichen Auftreten parabolischer Enden
der Fliche her — ein Umstand, der sich bei unserer Beweismethode
nicht bemerkbar macht.

Der folgende Satz zeigt nun deutlich die starke Auszeichnung der
Automorphismen innerhalb der Menge aller analytischen Abbildungen
in sich einer Riemannschen Fliche mit diskretem Modulspektrum.

Satz V. Es sei R eine Riemannsche Fliche mit diskretem Modul-
spektrum, welche keine parabolischen Wegklassen enthilt. Dann gibt
es zu jedem geschlossenen Weg p(t) auf R eine nur von der Homotopie-
klasse dieses Weges abhingige ganze Zahl n» > 1 derart, daf gilt : Fir
jede analytische Abbildung A von R in sich, welche kein Automorphis-
mus von R ist, ist der Weg A*(p(t)) nullhomotop auf R.

Aus Satz A, Satz B und Satz V ergibt sich sofort

Satz V,. Essei ® ein hyperbolisches Gebiet auf einer Riemannschen
Flidche R. Die abgeschlossene Hiille von ® sei kompakt und jeder Rand-
punkt von ® sei normal. Dann gibt es zu jedem geschlossenen Weg p(?)
in ® eine nur von der Homotopieklasse dieses Weges abhéngige ganze
Zahl n > 1 derart, daB gilt : Fiir jede analytische Abbildung 4 von G
in sich, welche kein Automorphismus von G ist, ist der Weg A"(p(¢))
nullhomotop in ®.

Dieser Satz enthélt reichlich den folgenden Spezialfall :

Satz V,,. Essei ® ein nicht einfach zusammenhéngendes, beschréink-
tes Gebiet der komplexen z-Ebene. Der Rand von ® sei normal und ent-
halte keine isolierten Punkte. Dann gilt : Fiihrt die analytische Abbil-
dung 4 von G in sich keine von der Nullklasse verschiedene Wegklasse
von & in die Nullklasse iiber, so ist A ein Automorphismus von &.

In der Tat : Ein beschrinktes Gebiet der komplexen z-Ebene ist ein
Gebiet von hyperbolischem Typus mit kompakter abgeschlossener Hiille.
Da der Rand von ® normal ist und keine isolierten Punkte enthélt, so ist

21) (8], § 37, pag. 139—141.
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offenbar jeder Randpunkt von & normal. Es sind also alle Voraussetzun-
gen von Satz V, erfiillt. Da ® auBlerdem nicht einfach zusammenhingend
ist, so gibt es in ® eine von der Nullklasse verschiedene Wegklasse W.
Nach Voraussetzung sind dann die Wegklassen A*(W), k=1, 2,...,
alle von der Nullklasse verschieden. Folglich muBl 4 nach Satz V, ein
Automorphismus von ® sein, q. e. d. Dieser Satz V,, wurde von H. Car-
tan?) behauptet, ohne dafl er dabei unsere einschrinkende Voraus-
setzung machte, dafl der Rand von ® normal sein soll. Dafl ohne diese
Voraussetzung Satz V,, aber unrichtig ist, erkennt man sehr leicht an
folgendem Beispiel : Aus der punktierten Kreisscheibe f: 0<|z]|<1
entferne man die unendlich vielen ,,Kreisbogenschlitze*

S,: |z|l=2", J|argz|<=m/2, n=1,2,3,....

Die iibrigbleibende Punktmenge & = { —nQIGn ist nun wohl ein nicht

einfach zusammenhingendes, beschrinktes Gebiet ohne isolierte Rand-
punkte, aber der Randpunkt z = 0ist offenbar nicht normal. 4 (z) = 2/2
ist eine analytische Abbildung von ® in sich, welche gewill keine von der
Nullklasse verschiedene Wegklasse von & in die Nullklasse iiberfiihrt.
Offensichtlich ist aber A(z) trotzdem kein Automorphismus von (23).
Einfache Beispiele zeigen, da@ fiir die Richtigkeit von Satz V die Nicht-
existenz parabolischer Wegklassen auf R wesentlich ist. Verzichtet man
auf diese Voraussetzung, so lifit sich immerhin noch der folgende allge-
meine Satz beweisen :

Satz VI. Es sei R eine Riemannsche Fliache mit diskretem Modul-
spektrum und nichtabelscher Fundamentalgruppe. Dann gilt: Unter
allen analytischen Abbildungen von R in sich sind die Automorphismen
von R die einzigen, welche jeden nicht null-homotopen geschlossenen
Weg von R auf einen ebensolchen Weg abbilden.

Durch Kombination von Satz VI mit den Sétzen aus Nr. 4 erhélt man
wieder eine ganze Reihe von spezielleren Resultaten. Wir beschrinken
uns darauf, ein einziges explizite anzufithren: Aus Satz VI und Satz C
ergibt sich der besonders bemerkenswerte

Satz VI,. Die Automorphismen einer Riemannschen Fliche R mit
endlicher Bettischer Zahl und nichtabelscher Fundamentalgruppe sind

22) [2] pag. T72.
23) Daraus und aus Satz V ergibt sich noch, daB das Gebiet & eine Riemannsche Fliche
mit nicht diskretem Modulspektrum ist.
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die einzigen analytischen Abbildungen von R in sich, welche jeden nicht

nullhomotopen geschlossenen Weg von R auf einen ebensolchen Weg
abbilden.

IV. Nimmt man wiederum die Voraussetzung hinzu, daB R keine
parabolischen Wegklassen enthalte, so 1it sich fiir endlichfach zu-
sammenhingende Fliachen ein bedeutend priagnanteres Resultat ge-
winnen. Um dieses aber formulieren zu konnen, bendtigen wir noch
einen neuen Begriff :

Eine analytische Abbildung A4 (p) einer Riemannschen Fliche R in
sich heifle analytisch nullhomotop, wenn es eine solche stetige Abbil-
dung A(p,t) des topologischen Produktes R x12t) in R gibt, daB gilt :

1. A(p,0)=A(p), A(p,1)=p,eR firalle peR.

2. Fiir jedes feste t et ist A(p,t) eine analytische Abbildung von R
in sich.

Mit Hilfe des eben eingefiihrten Begriffes 148t sich nun der angekiin-
digte Satz folgendermaflen aussprechen :

Satz VII. Essei R eine hyperbolische Riemannsche Fliche ohne para-
bolische Wegklassen mit der endlichen Bettischen Zahl b > 1. Dann
gilt : Ist die analytische Abbildung 4 von R in sich kein Automorphismus
von R, so ist die b-fach iterierte Abbildung 4% analytisch nullhomotop23).

Dieser Satz enthilt u. a. folgenden Spezialfall :

Satz VII,., Essei ® ein (r > 2)-fach zusammenhingendes Gebiet der
Riemannschen Kugel ohne isolierte Randpunkte. Dann gilt : Ist die ana-
lytische Abbildung 4 von ® in sich kein Automorphismus von ®, so ist
die iterierte Abbildung 47— analytisch nullhomotop?28).

In der Tat: Ein (» > 2)-fach zusammenhingendes Gebiet der Rie-
mannschen Kugel ohne isolierte Randpunkte ist eine hyperbolische
Riemannsche Fliche mit der Bettischen Zahl 6 =% — 1 > 1; auf ihr
gibt es nach Satz A, keine parabolischen Wegklassen.

DaBl in Satz VII, der Exponent n — 1 durch keine kleinere Zahl
ersetzt werden kann, zeigt uns das folgende Beispiel : Aus der Kreis-
scheibe R : |z | <1 entferne man die n — 1 , Kreisbogenschlitze*

24) t bedeute das Intervall 0 <¢ <1,

25) Fiir geschlossene Flichen & , vom Geschlechte g > 2 gilt sogar: Ist die analytische
Abbildung A einer &, in sich kein Automorphismus, so ist A konstant. (Siehe Satz 1, § 18
und die zugehorige FuBnote %3,)

%) Fiir den Spezialfall n = 2 vergleiche [5], pag. 163, Satz II.
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Se: |z|l=2"%, |argz|<=n/2, k=1l,...,.n—1. n>2
n—1

Die iibrigbleibende Punktmenge & = & —kg16 . ist ein (n > 2)-fach
zusammenhingendes Gebiet ohne isolierte Randpunkte. 4 (z) = 2/2 ist
nun eine analytische Abbildung von ® in sich, aber offenbar kein Auto-
morphismus von ®. Und in der Tat ist hier die (» — 1)-fach iterierte
Abbildung A"-1(z) analytisch nullhomotop, wihrend die Iterierten
Ak(2) fir k<n — 1 nicht analytisch nullhomotop sind. Satz VII, stellt
eine betriachtliche Verschirfung von Resultaten von Maurice Heins und
Michel Hervé dar. Heins?’) gewann nidmlich mit ganz andern Methoden
das folgende, in unserem Satze reichlich enthaltene Ergebnis : Unter den
Voraussetzungen von Satz VII, gibt es zu jeder analytischen Abbildung
A von ® in sich, welche kein Automorphismus von ® ist, eine ganze Zahl
g=g9(4,®) > 1 derart, daB} die g-fach iterierte Abbildung A4’ jeden
geschlossenen Weg in & auf einen nullhomotopen Weg abbildet. Hervé
zeigte dann in einer kiirzlich erschienenen Arbeit?®), da8 es bei gegebenem
Gebiete ® eine von 4 unabhingige solche Zahl ¢ = g(®) gibt, ohne
daB er allerdings die Art der Abhéngigkeit dieser Zahl g vom Gebiete &
abklirte. Es sei noch bemerkt, dafl mit Hilfe unseres Satzes VII, aus den
von Hervé nur fiir nullhomotope Abbildungen entwickelten Abschétzun-
gen der Starrheitskonstanten von & sofort Abschitzungen dieser Kon-
stanten fiir beliebige Abbildungen gewonnen werden konnen.

§ 2. Nichteuklidische Bewegungen

I. In dieser Arbeit bezeichnen wir mit £ stets die komplexe Halb-
ebene S(£)>0, ¢ =&+ in. Durch die Metrik ds? = 771? 2 + dn?)

wird in  eine nichteuklidische Geometrie erklirt. (Poincarésches Modell
der Lobatschewskyschen Ebene.) Ihre Geoditischen sind die zur reellen
Achse 7 = 0 orthogonalen (euklidischen) Kreise und Geraden (im fol-
genden kurz Orthogonalkreise genannt). Die Linge eines (stetig differen-
zierbaren) Weges ((¢) €8, (0 <t < 1), bezeichnen wir mit u[l()];
es ist

gl dt . (1)

ull@)] = SCO)

%7) [3] Theorem 3.2, pag. 479.
28) (4] pag. 151.
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Die Distanz zweier Punkte (,, {, e bezeichnen wir mit ul[¢;, ,];

o8 1ot 1+ 7 (¢, 5o 6 —¢
’ = lo L LS ’ s - —-:-l 2 .
p &1, Lol 8T =26, 8y 7(81, Cy) A (2)
Definition 1. Unter einer (nichteuklidischen) Bewegung von £ ver-
stehen wir eine lineare Abbildung L ({)= (Zg __::Z , ad —bc %0 der
Halbebene & auf sich selbst.

Bekanntlich koénnen die Koeffizienten @, b, ¢, d einer Bewegung

L(¢)= _Z_L—Cg_—:}—tzbl_ stets so normiert werden, dafl die a, b, ¢, d reell sind
und daBB ad — bc = 1. Statt L({) = :gig schreiben wir dann auch
etwa kurz L = (Z 2) . In dieser symbolischen Schreibweise soll aber

die rechte Seite stets eine reelle unimodulare Matrix bedeuten. Zwei reelle
) ) ab a' b’
unimodulare Matrizen (c d) 5 (c ' !

] 4
dieselbe Bewegung L({)= zg _—::(bi == Zlgi 2/ » wenn ((: 2)23{:(3’/ g:) :

liefern offenbar dann und nur dann

Jeder Bewegung L = (a b ist demnach in eindeutiger Weise die Spur

cd

c(lL)=|a+d 3

zugeordnet. (Ly=la+d] )

II. Die Bewegungen von £ lassen sich bekanntlich in eindeutiger
Weise in vier Klassen einteilen :

1. Die Identitit; I(0) =C.

2. Elliptische Bewegungen. Eine Bewegung L heifit elliptisch, falls
o(L)<2. Jede elliptische Bewegung besitzt in der {-Ebene genau zwei
Fixpunkte, und diese liegen symmetrisch zur reellen Achse.

3. Parabolische Bewegungen. Eine Bewegung L heifit parabolisch, falls
(L) =2 und L # I. Eine parabolische Bewegung besitzt in der ab-
geschlossenen {-Ebene einen einzigen Fixpunkt, und dieser ist Randpunkt
von £. Zu jeder parabolischen Bewegung L von £ und zu jeder reellen
Zahl h £ 0 gibt es solche Bewegungen U von , dafl die Bewegung
L* = ULU! die Gestalt L*({) = ¢ + h erhilt.

4. Hyperbolische Bewegungen. Eine Bewegung heiBlt hyperbolisch,
falls o(L)>2. Eine hyperbolische Bewegung besitzt in der abge-
schlossenen (-Ebene genau zwei Fixpunkte, und diese sind Randpunkte
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von L. Zu jeder hyperbolischen Bewegung L von & gibt es solche Bewe-
gungen V von , daBl die Bewegung L* = VLV-! die Gestalt L*({)
= A-, A>0, A1 erhilt®). Dabei ist die Zahl |log 4| >0 durch L
eindeutig bestimmt.

Sind § und 7' irgend zwei Bewegungen von &, so gehoren die Bewegun-
gen 8 und T8T- stets zur selben Klasse.

ITI. Bekanntlich gilt :

Satz 1. Ist L eine Bewegung von Q, so ist u[L(Z(¢)) = u[C(@)] fir
jeden Weg ((t) €L und w[L (L), L(L)] = ully, &,] fir alle £, £, L.

Satz 2. Jede analytische ?®) und topologische Abbildung von £ auf
sich selbst ist eine Bewegung von .

Definition 2. Ist L eine Bewegung von &, so heifle die Zahl M[L]

= inf u[{, L({)] der Modul von L.
tel

Satz 3. Sind L und 7 Bewegungen von 8 ,soist M [TLT-'] = M[L].

Beweis. Nach Satz 1 ist w[l, TLT-(C)] = p[T-1(2), L(T1(2))].
Beachtet man aulerdem, daBl der Punkt 7-1({) gleichzeitig mit ¢ alle

Punkte von £ durchlduft, so folgt: M[TLT-']=inf u[{, TLT-1({)]
tel

= inf u[71(0), L(TO)] = inf ulZ, L] = M L] g.e.d.

Mit Hilfe von (2) beweist man unschwer
Satz 4. a) Es ist M[L]= 0 dann und nur dann, wenn L keine
hyperbolische Bewegung ist.

b) Ist L eine hyperbolische Bewegung, so ist M[L] = u[, L({)]
dann und nur dann, wenn ¢ € ein Punkt des Orthogonalkreises durch
die beiden Fixpunkte von L ist.

c) Hat die (hyperbolische) Bewegung L die Gestalt L({) = A-(,
A>0, A#1, soist M[L]=|log4]|.

Man zeigt ferner leicht

Satz 5. Ist L eine Bewegung von £ und 7= eine ganze Zahl, so ist
M[L"] = |n|-M[L].

) In unserer symbolischen Schreibweise wird L* = (V}“ OV—) .
80) Vergleiche § 3, Nr. 1. o L¥A
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IV. Man beweist sehr leicht die folgenden Hilfssiitze :

Satz 6. Die Bewegung H habe die Gestalt H({) = A5-, 45>0,
Ay # 1. Dann hat jede Bewegung S von £, fiir welche SHS-! = H ist,
die Gestalt S() = 44-¢, 14>0.

Satz 6’. Die Bewegung P habe die Gestalt P({) = ¢ + hp, hp # 0
reell. Dann hat jede Bewegung S von &, fiir welche SPS-1= P gilt,
die Gestalt S({) = { + hg, hgreell.

Satz 7. Die Bewegung H habe die Gestalt H({) = 41-¢, 41>0,
A # 1. Dann hat jede Bewegung 8 von g, fiir welche SHS-! = H-!

gilt, die Gestalt S(¢) = —-351 , €g>0.
V.
Definition 3. Eine Bewegungsgruppe I' von £ heiBle eigentlich dis-

kontinuierlich, falls die Punktmenge M, = U S(¢) fir kein { € einen
Héaufungspunkt in € besitzt.

Man zeigt leicht :

Satz 8. Es sei I' eine eigentlich diskontinuierliche Bewegungsgruppe
von &, deren Elemente alle die Gestalt S({) = 44-{, A¢>0, haben.
Dann ist I' zyklisch von der Ordnung 1 oder oo.

Satz 8'. Es sei I" eine eigentlich diskontinuierliche Bewegungsgruppe
von g, deren Elemente alle die Gestalt S({) = { + hg, hg reell, haben.
Dann ist I' zyklisch von der Ordnung 1 oder oo.

Satz 9. Die eigentlich diskontinuierliche Bewegungsgruppe I" von £
enthalte weder elliptische noch hyperbolische Elemente. Dann ist I’
zyklisch.

Bewets. I' bestehe nicht aus der Identitdt allein. (Sonst wire nichts
zu beweisen!) Dann enthilt I" gewil eine parabolische Bewegung P.
Wir diirfen annehmen, P habe die Gestalt 3)

Pl)=C+hp, bhp#0, reell (1)
Wir zeigen nun :
Jedes Element S ¢ I" hat die Gestalt S({) = { + hg, hgreell. (2)

$1) Hat P zuniichst nicht diese Gestalt, so gibt es doch eine solche Bewegung V von L,
daB P* = VPV-1 die Gestalt (1) erhiilt (vergleiche II). Statt der Gruppe I" betrachte
man dann die transformierte Gruppe I'* = VI'V-1, welche ebenfalls eigentlich diskonti-
nuierlich ist und weder elliptische noch hyperbolische Bewegungen enthiilt.
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Inder Tat: Sei S €I' und
ab
S = (c d) . (3)

Da 8§ nach Voraussetzung Weder elliptisch noch hyperbolisch ist, so ist
o(S)=|a+d|=2. (4)

Aus (1) und (3) folgt sofort
c(SP") = |hpen+a+d| . (5)

Nach Voraussetzung ist fiir jedes ganze n SP" ¢ I' weder elliptisch noch
hyperbolisch, das heilt o(SP") = 2. Folglich ist wegen (5) fir alle
ganzen n |hpcn +a + d| = 2. Dies ist aber wegen hp %0 und
wegen (4) nur moglich, wenn .
c=20. (6)

Wegen ad — bc = 1 folgt hieraus ad = 1. Daraus und aus (4) ergibt
sich '
a=d= +1. (7)

Aus (3), (6), (7) folgt jetzt, daBl S wirklich die Gestalt (2) besitzt. q.e. d.
Aus (2) und Satz 8’ folgt nun aber, daf3 die eigentlich diskontinuier-
liche Gruppe I" zyklisch ist. Damit ist Satz 9 bewiesen.

§ 3. Allgemeines iiber Riemannsche Fliichen und analytische Abbildungen

1. Analytische Abbildungen Riemannscher Flichen

I. Unter einer Riemannschen Fliche R verstehen wir im folgenden
stets eine zweidimensionale Mannigfaltigkeit, welcher durch ein System

ortsuniformisierender Parameter eine analytische Struktur aufgepragt
ist 32),

II. Esseien R,, R, zwei Riemannsche Flichen und A4 (p) eine stetige
Abbildung von R, in R,. p, sei ein Punkt von R,, z = t(p) sei eine zu
Do gehorige Ortsuniformisierende und w = 7(q) eine zu ¢, = A (p,) €R,
gehorige Ortsuniformisierende3’). Dann ist w = a(z) = v(4 (¢71(2)))
eine in einer gewissen Umgebung von z = 0 eindeutige komplexe Funk-

82) Vergleiche [17], pag. 36. b

8) 2 =t(p) respektive w = 7(q) bildet eine gewisse Umgebung von p, € R, respektive
go € R, auf eine gewisse Umgebung des Nullpunktes der komplexen z- respektive w-Ebene
topologisch ab.
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tion. Falls nun diese Funktion a@(z) in einer Umgebung von z =0
regulir analytisch ist, so heilt die Abbildung A4 (p) analytisch im
Punkte p,. — Eine stetige Abbildung 4 (p) von R, in R, heillt analy-
tisch, wenn sie in jedem Punkte p ¢ R, analytisch ist.

II1. Ist A eine analytische Abbildung von R, in R,, B eine analytische
Abbildung von R, in R;, so ist BA(p) = B(A(p)) eine analytische Ab-
bildung von R, in R,.

IV. Eine analytische und topologische Abbildung einer Riemannschen
Fldache R auf sich selbst nennen wir einen analytischen Automorphismus
von R.

2. Universelle Uberlagerungsflichen

I. Unter einer universellen Uberlagerungsfliche einer Riemannschen
Flache R verstehen wir ein Paar (R’, n) bestehend aus einer einfach zu-
sammenhingenden ) Riemannschen Fliche R’ und einer analytischen
Abbildung = von R’ auf R, welche folgende Bedingung erfiillt : Ist
® ¢ R ein beliebiges einfach zusammenhingendes Teilgebiet von R, so
bildet = jede Komponente der offenen Menge #—1(®) ¢ R’ topologisch
auf ® ab. Die Abbildung = nennen wir Projektion, und wir sagen, der
Punkt p eR’' iiberlagere den Punkt n(p) e R. Statt von der univer-
sellen Uberlagerungsfliche (R’,7) von R zu sprechen, werden wir auch
etwa sagen : Die Fliche R’ wird vermoge der Projektion n zur univer-
sellen Uberlagerungsfliche von R. — Es gilt

Satz 1. a) Zu jeder Riemannschen Fliche R gibt es eine universelle
Uberlagerungsfliche (R’, 7).

b) Ist (R’',n) universelle Uberlagerungsfliche von R, G eine analy-
tische und topologische Abbildung von R’ auf eine Riemannsche Fliche
R” und definiert man

m((p) == (G (p) , peR’,
so ist auch (R”,n;) universelle Uberlagerungsfliche von R.

¢) Sind (R',m), (R",m,) irgend zwei universelle Uberlagerungs-
flichen von R, so gibt es eine analytische und topologische Abbildung
G von R’ auf R’ derart, dafi

7ty (p) = =y (G—1(p)) firalle peR" .

3) R’ heiBt einfach zusammenhiéngend, wenn jeder geschlossene Weg auf R’ null-
homotop ist.
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3. Decktransformationen. Fundamentalgruppe

Sei R eine Riemannsche Fliche und (R, #) universelle Uberlagerungs-
fliche von R. Eine topologische Abbildung 8 von R’ auf sich selbst heilit
Decktransformation von (R',x), falls =(S(p)) = =(p) fiir alle p eR'.
Jede Decktransformation von (R’,n) ist offenbar ein analytischer
Automorphismus von R'. Es gilt der

Satz 2. Ist peR', ¢ eR und =(p) ==(q), so gibt es genau eine
Decktransformation von (R’, z), welche den Punkt p in den Punkt ¢
iiberfiihrt.

Die Gesamtheit aller Decktransformationen einer universellen Uber-
lagerungsfliche (R’,z) von R ist offensichtlich eine Gruppe ; sie heille
die Fundamentalgruppe Iy ., von (R',n). Wie aus dem untenstehen-
den Satz 4 hervorgehen wird, sind die Fundamentalgruppen zweier uni-
verseller Uberlagerungsflichen derselben Fliche R stets isomorph. So-
fern wir nur die gruppentheoretische Struktur im Auge haben, konnen
wir daher kurz von der Fundamentalgruppe I" der Riemannschen Fliche
‘R sprechen.

Die Fundamentalgruppe I, ., enthilt stets hochstens abzihlbar
viele Elemente und ist eigentlich diskontinuierlich auf R’, das heifit die
Punktmenge

m, =Sel"g, ’")S (p)

hat fiir kein p € R’ einen Haufungspunkt auf R’.

4. Die Zuordnung D ., der Wegklassen von R zu den Klassen kon-
jugierter Klemente der Fundamentalgruppe Iig: .

I. Wir definieren nun eine Abbildung @, (W) der Wegklassen W
von R auf die Klassen R konjugierter Elemente der Fundamental-
gruppe I, ,,: Sei W eine Wegklasse von R und der geschlossene Weg
p(t) ein Repriasentant von W. Wir wihlen einen solchen Punkt ¢, ¢ R’,
daBl 7z (q,) = p(0) = p(1). Dann gibt es genau einen Weg ¢(¢) auf R’
derart, dal ¢(0) =gq, und =(q(t)) = p() fir 0 <t <1. Dann ist
offenbar 7(g(0)) = =(q(1)). Nach Satz 2 gibt es daher genau eine Deck-
transformation S € I'g, ,, derart, daB ¢(1) = 8(g(0)). Nun definieren
wir

(D(m,,,,)(W) = Rs >

dabei bedeute R diejenige Klasse konjugierter Elemente von Iy .,
welche durch das Element S reprisentiert wird. Die so definierte Klasse
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Dy, (W) konjugierter Elemente ist unabhingig von der Wahl des
Reprisentanten p(f) von W und unabhingig von der Wahl des den
Punkt p(0) iberlagernden Punktes ¢, e R'. Es gilt ferner

Satz 8. Die Abbildung @ (W) ist eine wumkehrbar eindeutige
Abbildung der Gesamtheit aller Wegklassen von R auf die Gesamtheit

aller Klassen konjugierter Elemente von I'g/ .

Die inverse Abbildung @ ., welche die Klassen & konjugierter
Elemente auf die Wegklassen W abbildet, kann nun offenbar folgender-
maflen beschrieben werden: Sei S € I\, ,, ein beliebiger Reprisentant
der Klasse K. Sei ferner ¢, ein beliebiger Punkt auf R’ und ¢(¢) ein Weg
auf R’, welcher g, mit S(g,) verbindet. Dann ist p(¢) = n(q(¢)) ein ge-
schlossener Weg auf R, welcher gerade die Wegklasse @’ ., (&) repri-
sentiert.

II. Ist W, insbesondere die Nullklasse von R, so besteht die Klasse
@ (W,) offenbar nur aus der Identitdt I eIy

ITI. Ist W eine Wegklasse und p(f) ein Reprédsentant von W, so be-
zeichnen wir die Bildklasse @ (W) auch mit @[p(t)]. Auf Grund dieser
Verabredung gilt dann : Es ist @[p,(t)] = @[p,(t)] dann und nur dann,
wenn die geschlossenen Wege p,(!) und p,(t) auf R homotop sind.

» m)°

IV. Ist & eine Klasse konjugierter Elemente und § ein Repridsentant
von R, so bezeichnen wir die Wegklasse @-1(R]) auch mit @-1[S].
Auf Grund dieser Konvention gilt dann : Es ist @-1[§,] = &1[S,] dann
und nur dann, wenn die Elemente §,,8, € I'g, , konjugiert sind.

W)
V. Ist p(t) ein geschlossener Weg auf R und S e D[p(f)], so ist
8=t e@[p~(H)].
VI. Man beweist leicht

Satz 4. Es seien (R',n;) und (R",w,) universelle Uberlagerungs-
flichen der Riemannschen Fliche R und es sei ¢ die nach Satz 1lc exi-
stierende analytische und topologische Abbildung von R’ auf R’ fir
welche gilt : ,(p) = =, (G~1(p)) fiir alle p € R". Dann ist die Zuordnung

S8 —->@8Gt, Selg

» 1)

ein Isomorphismus der Fundamentalgruppe I ., auf die Fundamen-
talgrappe I'gw .., und es gilt

Dot o (81 =BG . [68G-1] firalle S el

7"1) *
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VII. Ein nicht nullhomotoper geschlossener Weg p(t) auf R heifle
Kommutatorweg, falls @, ., [p(f)] in der Kommutatoruntergruppe
von Iy, .y enthalten ist. Aus Satz 4 folgt sofort, dall diese Definition

unabhiingig ist von der speziellen Wahl der universellen Uberlagerungs-
fliche (R’,n) von R.

5. Induzierte Abbildungen und zugehorige Homomorphismen der Funda-
mentalgruppen

I. Es sei A eine analytische Abbildung der Riemannschen Fliche R,
in die Riemannsche Fliche R,. (R{,n;) bzw. (R;,n,) sei universelle
Uberlagerungsfliche von R, bzw. R,.

Definition 1. Eine analytische Abbildung a von R, in R, heiB3t indu-
ziert durch die Abbildung 4, wenn

my(a(p)) = A(my(p)) firalle pe®R; .
Es gilt der

Satz 5. a) Sei p, e Ry, ¢, € R und 7,(qo) = A (7 (po)). Dann gibt
es genau eine durch A induzierte Abbildung @ von R; in R,, welche p,
in g, tberfiihrt.

b) Ist @ eine durch A induzierte Abbildung von R; in R, und ist
T € I'n4, my), so ist auch 7T'a eine durch A induzierte Abbildung.

c) Sind @' und &” zwei durch dieselbe Abbildung A induzierte Ab-
bildungen von R; in R,, so gibt es genau eine Decktransformation
T € I(n4, =,) derart, dal a” = Ta'.

II. Sei a eine durch A induzierte Abbildung von R; in R, und
S e Iw{, =y. Dann ist offenbar a(S(p)) ebenfalls eine durch 4 induzierte
Abbildung ; daher gibt es nach Satz 5c¢ zu jedem 8 e I(®{, ) eine ein-
deutig bestimmte Decktransformation 7' = «(S) € I(®4, =) derart, daB
a(8(p)) = T(a(p)) fir alle p eR,. Es gilt

Satz 6. a) Ist a irgendeine durch A induzierte Abbildung von R, in
R,, so gibt es zu jeder Decktransformation S e I'(%{, ) eine eindeutig
bestimmte Decktransformation 7' = «(S) € I\, »,) derart, daB a(S(p))
= T(a(p)) fir alle p eR,.

b) Die dadurch erklirte eindeutige Abbildung o von I'®{, =) in
I'»4, ny) ist ein Homomorphismus.

¢) Sind @ und @’ zwei durch dieselbe Abbildung A4 induzierte Abbil-
dungen, so sind die gemifB a) zu a respektive a’ gehdrigen Homomorphis-
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men o respektive o’ dhnlich, das heiBt es gibt eine solche Decktransfor-
mation R € I'(»§, n,), daB o' (8) = R-a(S) - B! fiir alle S e I'(n{, m). Zu
jeder analytischen Abbildung 4 von R, in R, gehort somit eine Klasse
$ 4 dhnlicher Homomorphismen von I'(%i, =;) in I'(w§, my).

d) Ist p(t) ein geschlossener Weg auf R, und ¢(t) = A(p(t)) sein
Bildweg auf R,, so gilt: Ist S e D, ny[p(t)] und o €$H,, so ist
a(S) € Pxi, =) [ (2)].

IIT. Es sei R eine Riemannsche Fliche, (R',7z) universelle Uber-
lagerungsfliche von R und A eine analytische Abbildung von R in sich.
Dann folgt aus Satz 6 sofort der

Satz 6'. a) Ist a irgendeine durch 4 induzierte analytische Abbildung
von R’ in sich, so gibt es zu jeder Decktransformation S eIy, ., eine
eindeutig bestimmte Decktransformation 7 = «(S) €y derart,

daB a(S(p)) = T(a(p)) fiir alle p eR'.

b). Die dadurch erklirte eindeutige Abbildung o von I'y/ ., in sich ist
ein Endomorphismus von I'g, .

c) Sind @ und a’' zwei durch dieselbe Abbildung 4 induzierte Abbil-
dungen, so sind die gemif a) zu a respektive a’ gehorigen Endomorphis-
men o respektive o' dhnlich, das heiBt es gibt eine solche Decktransfor-
mation R el ), dal o (8) = B . «(8) - R firalle S e [(g/, . Zu
jeder analytischen Abbildung 4 von R in sich gehort somit eine Klasse
€4 dhnlicher Endomorphismen von Iy ..

» )

d) Ist p(t) ein geschlossener Weg auf R und ¢(¢) = A(p(t)) sein
Bildweg auf R, so gilt: Ist S €Dy, [P(Ft)] und o« eC,, so0 ist

a(S) € Pp:, g ()].
Man beweist ferner sehr leicht den

Satz 7. Esseien A und B zwei analytische Abbildungen von ‘R in sich
undessei a €€ ,, BeCp. Dannist af €, p.

6. Die Typenklassifikation der Riemannschen Flichen

I. Jede einfach zusammenhingende Riemannsche Fliche 148t sich be-
kanntlich analytisch und topologisch abbilden, entweder

(a) auf die Riemannsche Kugel &, oder
(b) auf die komplexe Ebene €: |z|<<co, oder
(c) auf die Halbebene £: J({)>0.
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Keine dieser drei Normalflichen kann analytisch und topologisch auf
eine der beiden andern abgebildet werden. Dieser Sachverhalt gibt An-
1a8 zu folgender Klassifikation der einfachzusammenhingenden Flichen :
Eine einfachzusammenhéngende Riemannsche Fliche heile von ellipti-
schem, parabolischem oder hyperbolischem Typus, je nachdem ob
Fall (a), Fall (b) oder Fall (c) eintritt.

II. Wegen Satz 1c gilt offenbar : Sind (R, #,), (R’, #,) zwei univer-
selle Uberlagerungsflichen derselben Riemannschen Fliche R, so haben
die einfachzusammenhingenden Flichen R’ und R” den gleichen Typus.
Daher wird folgende Definition sinnvoll :

Definition 2. Ist R eine beliebige Riemannsche Fliche und (R’'=)
irgendeine universelle Uberlagerungsfliche von R, so verstehen wir unter
dem Typus von R den Typus der einfachzusammenhingenden Fliche R'.

Durch diese Definition wird die Gesamtheit aller Riemannschen
Flachen in eindeutiger Weise in drei Klassen eingeteilt. — Aus dem
bisher Gesagten und aus Satz 1 folgt nun :

(a) Ist R von elliptischem Typus, so wird die Riemannsche Kugel &
vermoge einer geeigneten Projektion zur universellen Uberlagerungs-
fliche (&,n) von R.

(b) Ist R von parabolischem Typus, so wird die komplexe Ebene
E: |z|<oo vermoge einer geeigneten Projektion p = m(z) zur uni-
versellen Uberlagerungsfliche (€, 7) von R.

(¢) Ist R von hyperbolischem Typus, so wird die Halbebene £:
J(£)>0 vermoge einer geeigneten Projektion p = zx({) zur univer-
sellen Uberlagerungsfliche (8,7) von R.

III. Bekanntlich gilt 3%):

. a) Eine Riemannsche Fliche von elliptischem Typus lifit sich stets
analytisch und topologisch auf die Riemannsche Kugel abbilden ; ihre
Fundamentalgruppe ist daher von der Ordnung 1.

b) Eine Fliche von parabolischem Typus ist entweder eine geschlossene
Flache vom Geschlechte 1 oder sie 1i8t sich analytisch und topologisch
auf die ein- oder zweifach punktierte Riemannsche Kugel abbilden ; ihre
Fundamentalgruppe ist daher gewifl abelsch.

IV. Aus IIT folgt nun offenbar : Eine Riemannsche Fliche mit nicht-
abelscher Fundamentalgruppe ist stets von hyperbolischem Typus.

85) Vergleiche [17], pag. 150—152.
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V. In einigen unserer Sitze werden die hyperbolischen Flichen mit
abelscher Fundamentalgruppe eine Ausnahmerolle spielen, indem diese
Sétze fiir solche Flichen entweder falsch oder inhaltslos werden. Wie
man sich leicht iiberlegt, gilt : Eine hyperbolische Riemannsche Fliche
mit abelscher Fundamentalgruppe 148t sich stets analytisch und topolo-
gisch abbilden, entweder

(a) auf den Einheitskreis |z | <1, oder
(b) auf den punktierten Einheitskreis 0<<|z|<1, oder
(c) auf einen Kreisring 0<r<|z|<1.

In allen diesen Fillen ist die Fundamentalgruppe sogar zyklisch von
der Ordnung 1 (Fall (a)) oder co (Fille (b), (c)).

VI. Mit Hilfe des elementaren Liouvilleschen Satzes beweist man
leicht den

Satz 8. Ist R eine Riemannsche Fliche von hyperbolischem Typus,
so ist auch jedes Teilgebiet & ¢ R eine Fldche von hyperbolischem
Typus.

Daraus und aus der Aufzédhlung der nichthyperbolischen Flidchen
(vgl. III) ergibt sich leicht der

Satz 9. Ist R eine Riemannsche Fliche von beliebigem Typus und
sind @, b, ¢ drei voneinander verschiedene Punkte von R, so ist
R* =R — {&,b,c} eine Riemannsche Fliche von hyperbolischem
Typus.

§ 4. Die Moduln der Wegklassen einer hyperbolischen Riemannschen
Fliiche. Flichen mit diskretem Modulspektrum

I. Es sei R eine Riemannsche Fliche von hyperbolischem Typus;
(8, 7) sei universelle Uberlagerungsfliche von R. Jede Decktransfor-
mation § von (8,n) ist ein analytischer Automorphismus von g, also
nach Satz 2, § 2 eine nichteuklidische Bewegung von £. Ist § von der
Identitét verschieden, so begitzt S offenbar keinen Fixpunkt in &, das
hei3t S ist entweder eine hyperbolische oder eine parabolische Bewegung
von £. Die Fundamentalgruppe I',%) der universellen Uberlagerungs-
fliche (8,7) von R ist also eine (eigentlich diskontinuierliche) Bewe-
gungsgruppe von £, welche keine elliptischen Elemente enthilt.

36) Wir schreiben von nun an stets I'y statt I'(g, ) und @ statt Dg, ).
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II. Durch die Definition 2, § 2 wird jedem Element S der Fundamental-
gruppe I, von (8,n) die nichtnegative Zahl M [S] zugeordnet. Wegen
Satz 3, § 2ist M[S] eine Klassenfunktion auf I', . Daher wird durch die

Definition 1. M[W]= M[S], &S e®, (W)

jeder Wegklasse W von R in eindeutiger Weise eine nicht negative Zahl
M [W] zugeordnet, die wir den Modul der Wegklasse W nennen. Der so
definierte Modul der Wegklasse W ist unabhéingig von der speziellen
Wahl der Projektion n, vermoge welcher £ zur universellen Uberlage-
rungsfliche von R wird. Dies folgt sofort aus Satz 4, § 3, Satz 2 und
Satz 3, § 2.

III. Ist M[W]>0, so nennen wir W eine hyperbolische Wegklasse
und jeden ihrer Reprisentanten einen hyperbolischen Weg. @,(W) be-
steht dann aus hyperbolischen Bewegungen von £ %7).

IV. Ist M[W]= 0 und W nicht die Nullklasse, so nennen wir W
eine parabolische Wegklasse und jeden ihrer Reprisentanten einen para-

bolischen Weg. @, (W) besteht dann aus parabolischen Bewegungen
von 8.

V. Man beweist sehr leicht, dafl der Modul einer Wegklasse W von R
invariant ist gegeniiber analytischen und topologischen Abbildungen
von R, das heillt es gilt

Satz 1. Ist ¢ eine analytische und topologische Abbildung der hyper-
bolischen Riemannschen Fliche R auf die Riemannsche Fliche R*, so
gilt fiir alle Wegklassen W von R: M[W] = M[G(W)].

VI.

Definitron 2. Eine Riemannsche Fliache R von hyperbolischem Typus
heille Fliche mit diskretem Modulspektrum, wenn es zu jeder Zahl

m>0 auf R hochstens endlich viele Wegklassen W mit O<M[W]<m
gibt.

Aus dieser Definition folgt sofort :

Satz 2. Es sei R eine hyperbolische Riemannsche Fliche und (8, n)
universelle Uberlagerungsfliche von R. Dann gilt :

a) R besitzt dann und nur dann diskretes Modulspektrum, wenn fiir
jedes m >0 die Menge

37) Vergleiche Satz 4, § 2.
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m, = {8|8 el,, O0<M[8]<m)

in hochstens endlich viele Klassen konjugierter Elemente zerfillt.

b) Besitzt die Fliche R diskretes Modulspektrum und ist I'* eine nicht-
leere, nur hyperbolische Elemente enthaltende Teilmenge von I’,, so
gibt es ein Element S, e I™* derart, dal M[S] > M [S,]>0 fiir alle
S el™.

Aus Satz 1 folgt schliefllich noch der

Satz 3. Die Riemannsche Fliche R sei analytisch und topologisch
abgebildet auf eine Riemannsche Fliche R* mit diskretem Modulspek-
trum. Dann ist auch R eine Fliche mit diskretem Modulspektrum.

§ 6. Die hyperbolische Metrik und das Schwarzsche Lemma

I. Es sei R eine Riemannsche Fliche von hyperbolischem Typus und
(2,n) universelle Uberlagerungsfliche von . Wir fiihren nun auf R
ein Lingenmal} ug ein :

Definition 1. Sei p(t) ein (stetig differenzierbarer) Weg auf R und
£(t) e ein Uberlagerungsweg von p(f), das heiBt =(((t)) = p(?).
Dann definieren wir ug[p(t)] = u[(t)]. Dabei bezeichnet u[{(f)] die
hyperbolische Linge des Weges ((f) in der Halbebene £ 38). Die so defi-
nierte ug-Linge des Weges p(t) auf R ist unabhiingig von der speziellen
Wahl des Uberlagerungsweges ((f) von p(t), denn zwei verschiedene
Uberlagerungswege von p(t) gehen durch eine Decktransformation von
(8, n), also durch eine Bewegung von £ auseinander hervor und haben
daher nach Satz 1, § 2 dieselbe hyperbolische Linge. ug[p(f)] ist aber
auch unabhingig von der speziellen Wahl der Projektion =, vermoge
welcher £ zur universellen Uberlagerungsfliche von R wird. Dies folgt
aus Satz 1lc, § 3, Satz 1 und Satz 2, § 2.

II. Man beweist auf Grund der Definition 1 sehr leicht den

Satz 1. Es sei T die punktierte Kreisscheibe 0<|z|<1 und p,(t)
=06 0<t<1 (0<p<l). Dann ist

pa[Do(t)] = 27flog (1/g) .

ITT. Mit Hilfe des LingenmaBles ux[p(f)] definieren wir nun die
Distanz ug[p,, p,] zweier Punkte p,, p, € R.

838) Vergleiche § 2, I.
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Definition 2. Essei W(p,, p,) die Menge aller (stetig differenzierbaren
Wege) p(t) auf R, fiir welche p(0) = p,, p(1l) = p, ist. Dann setzen

wir ug(p;, Pl = inf pelp()].
p(t)eEW (p1,D2)

Wie man leicht sieht, gilt
Satz 2. Ist {,, %, €8, n({) = py, 7w(L,) = p,, so ist

Uy [P1, P2l = Inf ully, S(L,)]

Sel',

und es gibt (wegen der eigentlichen Diskontinuitdt von I',) stets ein
solches Element S* eI, dall uglp:, p.] = p[&y, S*(¢,)]. Mit Hilfe
von Satz 2 iiberzeugt man sich leicht, daBl ug[p,, p,] alle Axiome er-
fiillt, die man iiblicherweise von einer Distanzfunktion fordert. (Insbe-
sondere auch die Dreiecksungleichung!) Aus Satz 2 und aus der eigent-
lichen Diskontinuitét von I, folgt ferner :

Satz 3. Die durch die Distanzfunktion ug[p,, p,] auf R induzierte
Topologie ist d&quivalent mit derjenigen Topologie, welche der Riemann-
schen Fliache a priori zukommt.

IV.

Definition 3. Eine Punktmenge IR ¢ R heille metrisch beschrinkt,
wenn es einen Punkt p, € R und eine positive Zahl m <co derart gibt,
daBl ug[p, po]l<m fir alle p e M.

Man iiberlegt sich leicht, dafl jede hyperbolische Riemannsche Fliche
‘R beziiglich der Metrik ug vollstindig ist, das heillt es gilt

Satz 4. Jede metrisch beschrinkte unendliche Punktfolge {p,} e¢R
besitzt mindestens einen Haufungspunkt auf R.

Aus Satz 3 und Satz 4 folgt sofort

Satz 6. Eine unendliche Punktfolge {p,} ¢ R konvergiert dann und
nur dann gegen einen Punkt » eR, wenn es zu jedem &¢>0 einen
Index N (¢) so gibt, daBl ug[p,, p.]<e fiir alle n, m> N (e).

V. Das Schwarzsche Lemma kann in der invarianten Fassung von
Pick #) folgendermaflen ausgesprochen werden :

Satz 6. Es sei a(l) eine analytische Abbildung der Halbebene £ in
sich. Dann gilt :

) Vergleiche [13], pag. 1—6.
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a) Ist ((t) ein (stetig differenzierbarer) Weg in  und ist (*(¢) =
a(C(t)) sein Bildweg, so ist u[l*(5)] < u[C()].

b) Fiir je zwei Punkte {,, ¢, € ist ula({), a(l,)] < ully, Ll

c) Gibt es zwei Punkte (,,(, €@ derart, daBl ula(l,), a(f,)] =
ully, £,]1>0, so ist a(l) eine Bewegung von L.

VI. Es seien R, und R, hyperbolische Riemannsche Flichen ; (8, x,)
respektive (2,7, sei universelle Uberlagerungsfliche von R, respektive
R,. Essei A(p) eine analytische Abbildung von R, in R, und a () eine
durch 4 induzierte analytische Abbildung von & in sich (vgl. Definition 1,
§ 3, Nr. 5!). Wendet man nun auf «({) den Satz 6a an und beachtet
man die Definitionen 1 und 2, so folgt sofort :

Satz 7. Es sei A(p) eine analytische Abbildung der hyperbolischen
Flache R, in die hyperbolische Fliche R,. Dann gilt :

a)Ist p(t) ein (stetig differenzierbarer) Weg auf R, und ¢ (t) = A(p(?))
sein Bildweg auf R,, so ist

py, (8] < pg, [P(@)] .

b) Fiir zwei beliebige Punkte p,, p, e R, gilt stets

pa, [A (1), A(D2)] < pgy, (P15 P2] -

§ 6. Verallgemeinerung des GroSen Picardschen Satzes

Satz 1. Es sei A(z) eine analytische Abbildung der punktierten
Kreisscheibe f: 0<|z|<1 in eine Riemannsche Fliche ‘R von hyper-
bolischem Typus. Dann liegt genau einer der beiden folgenden Tat-
bestéinde vor :

(a) Es gibt einen Punkt a; e R derart, daBl die Abbildung
A*(z) = A(z) fir 0<|z|<1, A*(0) = a,

eine analytische Abbildung der vollen Kreisscheibe |z|<1 in die
Flache ‘R ist.

(b) Fiir jede unendliche Punktfolge

{2.}: 0<]|z,|<1, limz, =0
n—o0

ist die Punktfolge {4(z,)} auf R divergent 4?).

40) Eine Punktfolge {pn} C R heiBt divergent auf R, wenn sie auf R keinen Haufungs-
punkt besitzt.
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Beweis. 1. Offenbar konnen nicht beide Tatbestinde zugleich erfiillt
sein. Liegt der Tatbestand (b) nicht vor, so gibt es offenbar eine Punkt-
folge

{z,3: 0<]z,|<1, limz, =0 (1)
n—>oo

derart, daB die Punktfolge {4 (z,)} gegen einen Punkt a, e R konver-
giert :
lim 4 (z,) =a, € R . (2)

n—>oo

Wir haben zu zeigen, daBl dann der Tatbestand (a) vorliegt.

2. Wir zeigen zunéchst :

(I) Fiir jedes feste o, (0<p<1), ist der geschlossene Weg A (p €*™),
0 <t <1, nullhomotop auf R.

Beweis. Wir betrachten die geschlossenen Wege
q,(t) = Az, &™) , 0<t<l, n=1,213,... (3)

auf R. Dann gilt offenbar fiir jedes » > 1

7.(0) = A(2,) (4)
0.(t) ~A(ee™) ,  (0<e<l). (5)

Ferner gilt
lim e [¢,(6)] = © . (6)

In der Tat : Aus (3), Satz 1 und Satz 7a, § 5 folgt

P [3,(0)] < gy (2, €] = 2aflog (1] 2, |) .

Hieraus und aus (1) folgt aber die Behauptung (6). q.e. d.

Es sei nun B, ¢ R eine einfachzusammenhingende Umgebung des
Punktes a, e R. Dann folgt offenbar aus (2), (4) und (6) : Es gibt einen
Index n, derart, dal der geschlossene Weg ¢, (t) in der einfachzu-
sammenhéngenden Umgebung B, liegt. Dieser Weg ¢, (¢) ist daher
nullhomotop auf R. Wegen (5) ist darum auch der Weg A (p €2™**) null-
homotop auf R. q.e. d.

3. Die Halbebene £ wird offenbar vermoge der Projektion
2z =m,(f) = €% (7)
zur universellen Uberlagerungsfliche (8,7;) von f: 0<|z|<1. Da R
von hyperbolischem Typus ist, so wird der Einheitskreis €: |w]|<1
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vermoge einer geeigneten Projektion p = 7,(w) zur universellen Uber-
lagerungsfliche (€, x,) von R. Die analytische Abbildung 4 von fin R
induziert dann eine analytische Abbildung w = a({) von  in €. Sei
« €%, der zugehsrige Homomorphismus der Fundamentalgruppe I'g , ,
in die Fundamentalgruppe I, ,.,- I(g, n, ist offenbar die von der Deck-
transformation

T)=1¢(+4 2n (8)

erzeugte zyklische Gruppe und es ist 7T € D, [0 €™**]. Daher ist nach
Satz 6d, § 3 «(T) €D, ,,)[A(e ¢™*)]. Daraus und aus (I) folgt aber,
daB «(T) die Identitit ist. Folglich gilt nach Satz 6a, § 3: a(7T(¢))
= a({), also wegen (8) a({ + 2xn) = a({). Daher ist

a(2) = a(— 1 log 2) (9)

eine (eindeutige !) analytische Abbildung von f: 0<|2|<1 in den Ein-
heitskreis €: | w|<1. Daraus schlieBen wir mit Hilfe des elementaren
Satzes von Casorati-Weierstral : Es gibt einen Punkt w, e € derart,
daB die Abbildung

a*(z) = a(z) fir 0<|z|<l, a*(0)=w, (10)

eine analytische Abbildung der vollen Kreisscheibe |z |<1 in die Kreis-
scheibe € ist. Setzen wir jetzt

A*(2) = my(a*(2)) , (11)

so gilt daher :

(IT) A*(z) ist eine analytische Abbildung der vollen Kreisscheibe
| 2] <1 in die Riemannsche Fliche R.

Wegen (11), (10), (9) und (7) gilt aber fir 0<|z|<1:
A*(2) = my(a*(2)) = my(a(— t1log 2)) = A(m,(— i log 2)) = A(2) . (12)
Aus (IT) und (12) folgt nun offenbar, daB3 der Tatbestand (a) erfiillt ist.
Damit ist unser Satz 1 bewiesen.

Satz 2. Es sei R eine Riemannsche Fliche und ® ein Gebiet von

hyperbolischem Typus auf R mit kompakter abgeschlossener Hiille G.
Dann gilt: Ist A eine analytische Abbildung der punktierten Kreis-
scheibe f: 0<|z|<1 in das Gebiet ® ¢ R, so gibt es einen Punkt
a, € R derart, daB die Abbildung

A*(z) = A(2) fir 0<|z|<l, A*(0)=a,
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eine analytische Abbildung der vollen Kreisscheibe |[z|<1 in die
Fliche R ist.

Beweis. Da ® von hyperbolischem Typus ist, so liegt nach Satz 1
genau einer der beiden folgenden Tatbestinde vor:

(I) Es gibt einen Punkt a, € ® derart, dafl die Abbildung
A*(z) = A(z) fir 0<|z|<1, A*(0) = a,

eine analytische Abbildung der vollen Kreisscheibe |z|<1 in das
Gebiet ® ist.

(IT) Fiir jede Punktfolge
{z.}: 0<|z2, <1, limz, =0

n—>oo
ist die Punktfolge {4(z,)} in ® divergent.
Liegt der Tatbestand (I) vor, so haben wir offenbar nichts mehr zu
beweisen. Es sei also der Tatbestand (II) erfiillt. Wir wihlen drei von-
einander verschiedene Punkte

a,b,ce® . (1)

Dann folgert man leicht aus (II) : Es gibt eine punktierte Kreisscheibe ¥ :
0<|z|<r<]1 derart, dafl filralle z ef A(z) #a,b,c ist; es gilt also

(IIT) A(z) ist eine analytische Abbildung der punktierten Kreisscheibe
F: 0<|2z|<r<1l in die Riemannsche Fliche R' = R — {a, b, ¢}.

Wir zeigen ferner :

(IV) Ist 0<]|z,|<r und limz, =0, so besitzt die Punktfolge

n—>oo

{4 (2,)} mindestens einen Hidufungspunkt auf R' = R — {a, b, c}.
In der Tat: Es ist A(z,) €e® ¢ ® ¢ R fiir alle » > 1. Da aber nach
Voraussetzung ® kompakt ist, so folgt daraus, daB die unendliche Punkt-

folge {A(z,)} mindestens einen Hiufungspunkt % e G besitzt. Wegen
(II) und (1) kann aber % mit keinem der drei Punkte a, b, ¢ zusammen-
fallen. Daher ist A eR' = R — {a,b,c}. Nach Satz 9, § 3 ist R =
R — {a,b,c} eine Riemannsche Fliche von hyperbolischem Typus.
Daher folgt jetzt aus (IIT), (IV) nach Satz 1 : Es gibt einen Punkt a,eR’
derart, da8l die Abbildung

A*(z) = A(z) fir 0<|z|<r, A*(0) = a,

eine analytische Abbildung der vollen Kreisscheibe |z |<r in die Fliche

R =R — {a,b, c} ist. — Damit ist aber offenbar unser Satz 2 voll-
stindig bewiesen.
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§ 7. Hilfssiitze iiber stetige Konvergenz von Abbildungsfolgen

In diesem Abschnitt werden einige leicht zu beweisende Hilfssitze
iiber stetige Konvergenz zusammengestellt.

I. Wir erinnern zunéchst an den von Carathéodory4!) eingefiihrten
Begriff der stetigen Konvergenz: Es seien R, und R, etwa regulire
Hausdorffsche Rdume, in denen das zweite Abzahlbarkeitsaxiom erfiillt
ist ). Eine Folge {4,(p)} von Abbildungen von R, in R, heillt stetig
konvergent in ‘R, , falls fiir jede in R, konvergente Punktfolge {p,} die
Punktfolge {4,(p,)} in R, konvergiert. Aus dieser Definition folgt
sofort : Ist die Folge {4, (p)} stetig konvergent, so existiert inshbesondere

lim A4, (p) = A(p) e R, firalle peR,

7 —> 00

und es gilt fiir jede gegen p € R, konvergente Punktfolge {p,} ¢ R,

lim 4, (p,) = A(p) .

n—>o0
Wir sagen dann auch : Die Folge {4,(p)} konvergiert in R, stetig gegen
die Abbildung A4(p) von R, in R,. — Man iiberlegt sich sofort, daBl
auch jede Teilfolge {4, (p)} von {4,(p)} in R, stetig gegen A (p)
konvergiert. SchlieBlich beweist man leicht den

Satz 1. Die Folge {A4,(p)} von Abbildungen von R, in R, konver-
giere in R, stetig gegen die Abbildung A (p) von R, in R,. Dann gibt es
zu jeder Umgebung B, <R, des Punktes g = A(p) ¢ R, eine solche
Umgebung B, ¢ R, des Punktes p € R, und einen solchen Index n,,
daB A4,(B,) ¢ B, fir alle n>n,.

II. Mit Hilfe des in I Gesagten beweist man leicht

Satz 2. Die Folge {p,(t)} von geschlossenen Wegen auf einer Rie-
mannschen Fliche R konvergiere im Intervall 0 <t <1 stetig gegen
den Punkt p(f) = p, e R. Dann gibt es zu jeder Umgebung B, ¢ R
von p, einen solchen Index k,, daBl p,(¢}) ¢B, fir 0 <¢{ <1 und
alle k>k,.

Satz 3. Die Folge {p,(t)} von geschlossenen Wegen auf einer Rie-
mannschen Fliche & konvergiere im Intervall 0 <¢ <1 stetig gegen

4) Vergleiche [1], Band 1.
42) Riemannsche Flichen und auch das Intervall 0 < ¢ < 1 der reellen Zahlgeraden
sind offenbar solche Réume.
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den geschlossenen Weg p(t) auf . Dann gibt es einen solchen Index %,,
daB fiir alle £ >k, die Wege p,(t) und p(f) auf ® homotop sind.

ITI. Mit Hilfe von Satz 1 folgert man aus klassischen Tatsachen der
Funktionentheorie leicht die beiden folgenden Sitze :

Satz 4. Essei {4,(p)} eine Folge von analytischen Abbildungen der
Riemannschen Fliche R, in die Riemannsche Fliche R,. Dann gilt : Ist
die Folge {4,(p)} auf R, stetig konvergent, so konvergiert sie stetig
gegen eine analytische Abbildung A (p) von R, in R,.

Satz 5. Es seien R,, R, Riemannsche Flichen und ® ein Gebiet auf
R,. {4,(p)} sei eine Folge von analytischen Abbildungen von R, in das
Gebiet ® ¢ R,, welche auf R, stetig gegen eine analytische Abbildung
A (p) von R, in R, konvergiert. Dann gilt : Ist A (p) nicht konstant, so
ist 4 (p) sogar eine Abbildung von R, in ®.

§ 8. Verallgemeinerung des Montelschen Satzes iiber Folgen meromorpher
Funktionen mit drei Ausnahmewerten

Satz 1. Es seien R, und R, Riemannsche Flichen von hyperbolischem
Typus und {4, (p)} eine Folge von analytischen Abbildungen von R,
in R,. Dann liegt genau einer der beiden folgenden Tatbestéinde vor :

(a) Es gibt eine Teilfolge der Folge {4,(p)}, welche auf R, stetig
konvergiert gegen eine analytische Abbildung 4 (p) von R, in R,.

(b) Fiir jede konvergente Punktfolge {p,} auf R, und fiir jede Teil-
folge {n,} der Folge {n} der natiirlichen Zahlen ist die Punktfolge
{4,,(py)} auf R, divergent.

Beweis. 1. Offensichtlich kénnen nicht beide Tatbestéinde gleichzeitig
erfiillt sein. Liegt der Tatbestand (b) nicht vor, so gibt es offenbar eine
Punktfolge {g,} ¢ R, und eine Teilfolge {n,} derart, daBl

9r €Ry limg, =qe%R, , limAnk(qk) =aeR, . (1)

k—>o0 k—>o00

Wir haben zu zeigen, daBl dann der Tatbestand (a) vorliegt.

2. Zunidchst wihlen wir eine Punktfolge {r;}, welche auf R, iiberall
dicht liegt. Dann zeigen wir :

(I) Fiir jeden festen Index j ist die Punktfolge {4, (r;)} metrisch
beschrinkt auf R,.
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In der Tat : Es ist
,“mz[Ank (rj)’ a] S :umg[Ank (T,-), Ank (Qk)] + :u‘.’Rg[Ank (Qk), a’] . (2)

Aus dem Schwarzschen Lemma (Satz 7b, § 5) und aus der Dreiecks-
ungleichung folgt aber :

luSR,[Ank(r!): Ank(Qk)] _<._ Mé}h[ri’ qk] S ;uSRl[TJ': QJ + /qul[q’ Qk] . (3)
Aus (2) und (3) ergibt sich nun :

IuERg[Ank(rd)s a‘] ._<_ IuiRl[lr:i’ QJ + /’LiRl[qk’ Q] + auﬂig[Ank(Qk)’ a] . (4)

Wegen (1) ist aber offenbar die rechte Seite der Ungleichung (4) fiir jedes
feste j beschrinkt. q.e. d.

3. Aus (I) und Satz 4, § 5 folgert man nun in bekannter Weise mit
Hilfe des Cantorschen Diagonalverfahrens :

(II) Es gibt eine Teilfolge {n,} der Folge {n,} derart, dal die Folge
{a,(p)} = {4a1,(p)} in jedem Punkte r; konvergiert.
Wir zeigen jetzt :

(IIT) Fiir jede konvergente Punktfolge {p,} auf R, ist die Punktfolge
{a,(p,)} auf R, konvergent.

Beweis. Sei {p,} eine konvergente Punktfolge auf R, und

limp,=pe®R, . (5)

l—>o
Wegen Satz 5, § 5 haben wir nur zu zeigen : Zu jedem &>0 gibt es eine
ganze Zahl N () derart, daB ug [a,(p)), @, (p,)]<e fiir alle I, m > N (e).
Da die Punktfolge {r,} auf R, iiberall dicht ist, gibt es einen Index j,
derart, daf3

2up,[p, ;1 <el4 . (6)
Aus (5) und (II) folgt ferner : Es gibt eine ganze Zahl N (¢) derart, dafl
p,[Pr, P1<e[4, pg,[ai(ry), ay,(r;,)]<e/4 firalle I,m>N(). (7)

Wegen der Dreiecksungleichung gilt :

:uiRg[a’l (pl) s Oy (pm)] < ﬂmz[“’z (pl)’ al(rje)]

8
+ #mg[“z (7‘50) ’ am(ra'o)] + :uERg[a’m (7‘50) s By, (pm)] . ( )

Aus dem Schwarzschen Lemma (Satz 7b, § 5) und aus der Dreiecksun-
gleichung folgt aber :
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s, (a1 (Dy), a ()] < pg, 75,1 < v, [P0 Pl + pgle, 7],
Hm,[am(rjo), Ay (Pm)] < ,uml[rjo s Pm] < Mml[rioa p] + l‘m,[?’a Pm] -
Aus (8) und (9) ergibt sich jetzt :

(9)

B, [0 (D1) s @ (D) ] < i, (P15 P] + s, [Pms P + 2p9,[D, 74,]
+ p,[@1(75,), @ (75)] (10)

Aus (6), (7) und (10) folgt endlich: ugy [a,(p)), a,(pn)]<e fir alle
[, m>N(e). q.e.d.

4. Aus (III) und Satz 4, § 7 folgt nun : Die Folge {a,(p)} = {4, (p)}
konvergiert auf R, stetig gegen eine analytische Abbildung A (p) von
R, in R,. Folglich ist der Tatbestand (a) erfiillt. Damit ist unser Satz
bewiesen.

Satz 2. Es sei

1. r eine Riemannsche Flache von hyperbolischem Typus und g ein
Gebiet auf r mit kompakter abgeschlossener Hiille g,

2. R eine beliebige Riemannsche Fliche und ® ein Gebiet von hyper-
bolischem Typus auf R mit kompakter abgeschlossener Hiille @,
3. {4,(p)} eine Folge von analytischen Abbildungen der Fliche r in

das Gebiet & ¢ R.

Dann gibt es eine Teilfolge der Folge {4,(p)}, welche in g stetig kon-
vergiert gegen eine analytische Abbildung A4 (p) von g in R.

Beweis. 1. Da r und ® von hyperbolischem Typus sind, so liegt nach
Satz 1 genau einer der beiden folgenden Tatbestéinde vor :

(I) Es gibt eine Teilfolge der Folge {4,(p)}, welche auf r stetig
konvergiert gegen eine analytische Abbildung von r in .

(II) Fiir jede konvergente Punktfolge {p,} auf t und fiir jede Teil-
folge {n,} der Folge {n} ist die Punktfolge {4, (p;)} in & divergent.

Liegt der Tatbestand (I) vor, so haben wir offenbar nichts mehr zu
beweisen. Es sei also der Tatbestand (II) erfiillt. Wir wihlen drei von-
einander verschiedene feste Punkte

a,b,ce® (1)
und zeigen

(IIT) Es gibt einen Index n, derart, daB fiir alle »>mn, und alle
peg gilt: 4,(p) ¢ {a,b,c}.
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Beweis. Nehmen wir an, es sei (IIT) falsch. Dann gibt es offenbar eine
Teilfolge {n,} von {n} und eine Punktfolge {p;}c g derart, daB

Ank(pk) e{a, b3c} . (2)

Da aber nach Voraussetzung g kompakt ist, so gibt es eine Teilfolge
{pri} von {p,}cg, welche gegen einen Punkt p egcr konvergiert.
Die zugehotrige Punktfolge {4,;(p,)} bat dann wegen (1) und (2)
mindestens einen Hiufungspunkt in . Dies ist aber ein Widerspruch
zu (II). q.e.d.

2. g ist als Teilgebiet der hyperbolischen Fliche r nach Satz 8, § 3
eine Fliche von hyperbolischem Typus. Ebenso ist R* = R — {a, b, ¢}
nach Satz 9, § 3 eine Fliche von hyperbolischem Typus. Wegen (III) gilt
daher :

(IV) Die Folge {4, (p)}, n>mn,, ist eine Folge von analytischen Ab-
bildungen der hyperbolischen Fliche g in die hyperbolische Fliche
R*¥* =R —{a, b, c}.

Wir zeigen ferner :

(V) Konvergiert die Punktfolge {p,} ¢ g gegen einen Punkt peg,
so besitzt die Punktfolge {4,(p,)}, »>n,, mindestens einen Haufungs-
punkt auf R* =R — {a, b, c}.

In der Tat: Es ist 4,(p,) e® ¢ ® ¢ R. Da nach Voraussetzung [}
kompakt ist, so folgt daraus, daBl die Punktfolge {4, (p,)}, »>n,,

mindestens einen Haufungspunkt h ¢ ® besitzt. Wegen (II) und (1)
kann aber & mit keinem der drei Punkte @, b, ¢ zusammenfallen. Folglich
ist heR*=NR— {a,b,c}. q.e.d.

Aus (IV) und (V) folgt nun nach Satz 1: Es gibt eine Teilfolge der
Folge {4,(p)}, welche in g stetig konvergiert gegen eine analytische
Abbildung A (p) von g in die Fliche R* = R — {a, b, c}. Damit ist
Satz 2 offenbar vollstdndig bewiesen.

Satz 3. Es sei R eine Riemannsche Fliche und ® ein Gebiet von
hyperbolischem Typus auf R mit kompakter abgeschlossener Hiille 6.
{A,(p)} sei eine Folge von analytischen Abbildungen einer Riemann-
schen Fliche t von hyperbolischem Typus in das Gebiet ® ¢ R. Dann
gibt es eine Teilfolge {4,,(p)} der Folge {4,(p)}, welche auf r stetig
konvergiert gegen eine analytische Abbildung A4 (p) von r in R.
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Beweis. Es gibt eine unendliche Folge {g,} von Gebieten g, ¢ r mit
kompakter abgeschlossener Hiille g, derart, daB

g]g,———r. (1)

Nach Satz 2 gilt dann fiir jeden festen Index j: Aus jeder Teilfolge der
Folge {A4,(p)} 14Bt sich eine solche Teilfolge auswihlen, welche in g, -
stetig konvergiert gegen eine analytische Abbildung von g, in R. Daraus
schlieft man in bekannter Weise mit Hilfe des Cantorschen Diagonal-
verfahrens : Es gibt eine Teilfolge {4,,(p)} von {4,(p)}, welche in
jedem Gebiet g, stetig konvergiert gegen eine analytische Abbildung von
g; in R. Daraus und aus (1) folgt dann : Die Teilfolge {4, .(p)} konver-
giert auf r stetig gegen eine analytische Abbildung A(p) von r in R.
q.e. d.

SchlieBlich konnen wir noch die Voraussetzung fallen lassen, dal ¥ von
hyperbolischem Typ sei :

Satz 4. Es seli R eine Riemannsche Fliche und ® ein Gebiet von

hyperbolischem Typus auf R mit kompakter abgeschlossener Hiille .
{A,.(p)} sei eine Folge von analytischen Abbildungen einer Riemann-
schen Fliche r in das Gebiet ® ¢ R. Dann gibt es eine Teilfolge {4, (p)}
von {A4,(p)}, welche auf t stetig konvergiert gegen eine analytische
Abbildung A4 (p) von ¢ in R.

Beweis. Es gibt offenbar eine unendliche Folge {r,} von hyperboli-
schen Gebieten r; ctr derart, dafl

,Ur5=r. (2)

Nach Satz 3 gilt dann fiir jeden festen Index j: Aus jeder Teilfolge der
Folge {A4,(p)} liBt sich eine solche Teilfolge auswihlen, welche auf t,
stetig konvergiert gegen eine analytische Abbildung von ¢; in R . Daraus
schliet man wieder mit Hilfe des Diagonalverfahrens : Es gibt eine Teil-
folge {4,,(p)} von {4,(p)}, welche in jedem Gebiet r, stetig konver-
giert gegen eine analytische Abbildung von r,; in . Hieraus und aus (2)
folgt nun: Die Teilfolge {4, (p)} konvergiert auf v stetig gegen eine
analytische Abbildung A (p) von tin R. q.e.d.

§ 9. Beweis von Satz A

Satz A wird offenbar bewiesen sein, wenn wir die beiden folgenden
Sitze beweisen konnen.
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Satz A’. Es sei ® ein Gebiet von hyperbolischem Typus auf einer
Riemannschen Fliche R. Dann gilt: Ist die Wegklasse W von & auf
einen isolierten Randpunkt a € R von ® reduzibel, so ist W parabolisch.

Satz A”. Es sei ® ein Gebiet von hyperbolischem Typus auf einer

_ Riemannschen Flidche R ; die abgeschlossene Hiille & ¢ R von G cei
kompakt. Dann gilt : Ist die Wegklasse W von & parabolisch, so ist sie
auf einen isolierten Randpunkt von (& reduzibel.

Beweis von A'. 1. Weil a € R ein isolierter Randpunkt von ® ist, gibt
es eine solche Umgebung U, ¢ R von a, dafl U, — a ¢ . Ferner gibt
es eine analytische Abbildung p = A(z), welche den KEinheitskreis
| 2| <1 topologisch auf eine Umgebung B, ¢ U, von a so abbildet, dal
A (0) = a ist*?). Weil die Wegklasse W von ® auf den isolierten Rand-
punkt a reduzibel ist, so enthilt W einen solchen Weg p(t), dal p(?)
€eB, —a fir 0 <t <1. Der Weg 2(t) = A-1(p(t)) ist dann offenbar
ein geschlossener Weg in der punktierten Kreisscheibe f: 0<|z|<1
und es gilt :

(I) A (z) ist eine analytische Abbildung der punktierten Kreisscheibe
f: 0<]z|<1 indas Gebiet G, welche den geschlossenen Weg 2(t) in
auf den Weg p(t) e W abbildet.

2. Die Halbebene £ wird offenbar vermoge der Projektion z = z,({)
= ¢¥> zur universellen Uberlagerungsfliche (£,;) von f. Die Funda-
mentalgruppe I, -ist die von der Decktransformation §,(8) = ¢ + 2x
erzeugte zyklische Gruppe. Ist nun

Se?,[2(8)], (1)
so ist daher S({) = { + 2@ n, (n ganz), und folglich
M[8]=0 . (2)

3. Da das Gebiet ® von hyperbolischem Typus ist, wird die Halb-
ebene £ vermoge einer geeigneten Projektion p = m,({) zur universellen
Uberlagerungsfliche (2,7,) von ®. Die analytische Abbildung A (2)
von fin & induziert nun eine analytische Abbildung @ ({) von & in sich.
Sei o €$, der zugehorige Homomorphismus von I', in I', . Dann folgt
aus (I) und (1) nach Satz 6, § 3:

a(8(0) = T (a(?)) (3)
T = a(S) €D, [p()] = P, (W) . (4)

43) Dies folgt sofort aus der Existenz ortsuniformisierender Parameter zum Punkte

aeR.
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Wir zeigen nun :
M[T]=0. (5)

In der Tat: Aus (3) folgern wir mit Hilfe des Schwarzschen Lemmas
(Satz 6b, § 5):

MT] = inf u[Z, T(0)] < inf u[a(0), T(a(0)]

= Inf u[a(£), a(S(2))] < inf u(2, 8(0)] = M[S] .
Se €

Daraus und aus (2) folgt aber (5). q.e.d.
Da nach Voraussetzung W nicht die Nullklasse von ® ist, so folgt jetzt
aus (4) und (5), daBB W eine parabolische Wegklasse ist. q. e. d.

Beweis von A”. Da ® von hyperbolischem Typus ist, wird die Halb-
ebene £ vermoge einer geeigneten Projektion p = IT({) zur universellen
Uberlagerungsfliche (€, I7) von . Weil die Wegklasse W von & para-
bolisch ist, kann die Projektion /7 noch so gewihlt werden, da ein Ele-
ment S € P (W) die Gestalt S() = {4 2x erhalt #). Dann folgt leicht :

(I) A(z) =1II(—vlogz) ist eine (eindeutige!) analytische Abbil-
dung der punktierten Kreisscheibe f: 0<|z|<1 in das Gebiet & ¢ R.
Der fiir 0<g<1 definierte Weg

Polt) = A(ee*™™) , 0<t<1 (1)
ist dann ein geschlossener Weg in & und es ist offenbar
P() € P [S]1=W . (2)

2. Da nach Voraussetzung ® hyperbolisch und G R kompakt ist,
so folgt aus (I) nach Satz 2, § 6: Es gibt einen solchen Punkt a R,
daf gilt :

(II) Die Abbildung
A*(z) = A(r) fir 0<|z|<1, A*(0) = a (3)

ist eine analytische Abbildung der vollen Kreisscheibe R : |z]|<1 in
die Fliche R.

Wir zeigen nun :

44) Dies folgt sofort aus Satz 1, Satz 4, § 3; Satz 2, § 1 und aus der Tatsache, daB es
zu jeder parabolischen Bewegung P eine solche Bewegung G von L gibt, da8 GPG-}({)
= { & 2=.
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(IIT) Der Punkt a € R ist isolierter Randpunkt von 6.

Bewets. Da die Abbildung A* offensichtlich nicht konstant ist, so
folgt aus (II) : Die Bildmenge A*(R) ¢ R enthilt eine volle Umgebung
B, ¢ R von a. Wegen (I) und (3) ist dann

B, —acA*(K]) —acA*F)=A4AF 6 .

Folglich ist entweder a ein isolierter Randpunkt von ® oder a € . Wir
zeigen, dal das letztere nicht zutreffen kann. In der Tat : Wire a € ®,
so wire nach (I), (II) 4* eine analytische Abbildung der vollen Kreis-
scheibe |z | <1 in das Gebiet ® und daher wire fir 0 <p<1 der Weg
Polt) = A (g e**™*) = A*(p e**™*) offenbar nullhomotop in &. Wegen
(2) miiBte dann W die Nullklasse von & sein, entgegen unserer Voraus-
setzung! q.e.d.

3. Aus (1), (I), (IT), (III) folgt jetzt : Zu jeder Umgebung U, ¢ R von
a gibt es ein solches g, (0<p = p(U,)<1), daB p,(¢) e, —a fir
0 <t < 1. Daraus und aus (2) folgt aber, daB die (von der Nullklasse
verschiedene) Wegklasse W von ® auf den isolierten Randpunkt @ von
® reduzibel ist. Damit ist Satz A” bewiesen.

§ 10. Beweis von Satz B

Auf Grund von Satz 2a, § 4 iiberlegt man sich sofort, daBl der Satz B
bewiesen sein wird, wenn es gelingt, den folgenden Satz zu beweisen :

Satz B'. Es sei ® ein Gebiet von hyperbolischem Typus auf einer

Riemannschen Fliche R ; die abgeschlossene Hiille G cR von G sei
kompakt und der Rand von ® normal. ({,7,) sei universelle Uber-
lagerungsfliche von ¢&. Dann gilt :

Ist {S,}, n=1,2,..., eine unendliche Folge von Elementen der
Fundamentalgruppe I', und ist 0 <M [8,]<m <oo fiir alle n, so gibt
es immer eine unendliche Teilfolge {S,,} von {§,}, deren Elemente
alle ein und derselben Klasse konjugierter Elemente von I', angehoren.

Beweis. 1. Nach Voraussetzung sind die Decktransformationen S,
hyperbolische Bewegungen von £. Daher gibt es zu jeder Bewegung S,
eine solche Bewegung U, von £, daf3 die Bewegung

Vn= UnSn U;I (1)
die Gestalt
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Vn(C)—'T—‘}.nC s An>0 ’ A’n#l (2)
erhdlt. Aus (1), (2) folgt dann nach Satz 3 und Satz 4c, § 2:
|log 4, | = M[S,] . (3)

Daher wird der Parallelstreifen P,: | J(2)|<n/2M[S,] durch
¢ = i e*1°8*n gnalytisch und topologisch auf die Halbebene £ abgebildet.
Folglich ist

Ay (2) = 7y (U6 €282 (4)

eine analytische Abbildung des Parallelstreifens 3, in das Gebiet G ¢ R.
Weil nach Voraussetzung fiir alle n M [S,]<m <oco ist, so enthalten alle

Parallelstreifen B,: | J(2) | <#/2M[8,] den Parallelstreifen %
| 3(2) | <n/2m. Daher gilt :

I) {4.()}, n=1,2,..., ist eine unendliche Folge von analyti-
schen Abbildungen des Parallelstreifens PB: | J(2) | <w/2m in das Ge-
biet & ¢ R.

2. Wir untersuchen nun den Weg A4,(t), (0 <t <1), in ®. Setzen
wir

Calt) = UM et ), 0<t<1, (5)
so ist offenbar (,(t) ein Weg in der Halbebene € und es gilt wegen (4) :

A, () =7 (2, () - (6)
Aus (5) ergibt sich :

£.(0) = U (d) . (7)

Aus (5), (2) und (7)folgt : £, (1)= U;I (Au2)= U;;l V. ()= U;IVn Un(U;l (7'))
= UV, U,(L,(0)); daher ist wegen (1) ¢,(1) = 8,(£,(0)). Daraus
und aus (6) folgt offenbar 4%)

A,(0) = A4,(1) firallen (8)
und

A,(t) eD;1[S,], dasheift S,e®, [4,(t)] fiir allen. (9)

3. Da nach Voraussetzung & hyperbolisch und G R kompakt ist,
so folgt aus (I) nach Satz 4, § 8: Es gibt eine Teilfolge {4,,(z)} der
Folge {4,(z)} derart, daB gilt:

45) Vergleiche § 3, Nr. 4.
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(II) Die Folge {4,,(z)}, k= 1,2,..., von analytischen Abbildun-
gen des Parallelstreifens B in das Gebiet & ¢ R konvergiert in P stetig
gegen eine analytische Abbildung A(z) von 9§ in die Riemannsche
Fliche R.

Wir zeigen nun :

(III) A(2) ist nicht konstant.
Beweis. Wiare namlich A (z) konstant, das heif3t
AR)=aeR firalle zeP, (10)

so wire nach (II) gewill a € ® und es miifite somit einer der drei folgen-
den Fille zutreffen :

x) ae®,
B) a ist isolierter Randpunkt von ®,
y) @ ist nicht-isolierter Randpunkt von &.

Die Behauptung (III) wird daher bewiesen sein, wenn wir zeigen
konnen, daBl jede der drei Annahmen «), f), ) zu einem Widerspruch
fiihrt.

ad o): Es sei B, ® eine einfach zusammenhingende Umgebung
von a € ®. Dann folgt aus (II) und (10) nach Satz 2, § 7: Es gibt einen
solchen Index k,, dal A4, (¢) e B, ® fir 0 <t <1 und alle k>k,.
Daraus folgt wegen des einfachen Zusammenhanges von B,, daBl die
geschlossenen Wege A, (1) fiir k>k, nullhomotop in ® sind. Daraus
und aus (9) folgt, daB S, fir £>k, die identische Decktransformation
ist. Dies widerspricht aber unserer Voraussetzung. q.e.d.

ad B): Da a isolierter Randpunkt von ® ist, gibt es eine solche einfach
zusammenhédngende Umgebung U, ¢ R von a, dal U, —a ¢ . Dann
folgt aus (II) und (10) nach Satz 2, § 7: Es gibt einen solchen Index k,,
daB 4, (/) e, —ac® fir 0 <t <1 und alle k>k,. Wegen des
einfachen Zusammenhanges von [, folgt hieraus, dal} die geschlossenen
Wege A, (1) fir k>k, entweder nullhomotop in ® oder auf den
isolierten Randpunkt a von ® reduzibel sind. Wegen (9) und Satz A’, § 9
ist dann M[S,, ]= 0 fiir alle k>k,. Dies widerspricht aber wieder
unserer Voraussetzung. q.e.d.

ad ) : Ist a nicht-isolierter Randpunkt von , so ist @ nach Voraus-
setzung normaler Randpunkt. Es gibt daher eine Umgebung N, ¢ R von
a derart, daB alle geschlossenen Wege, welche im Durchschnitt R, ~ G
liegen, in ® nullhomotop sind. Aus (II) und (10) folgt nun wieder nach
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Satz 2, § 7: Es gibt einen solchen Index k,, daB 4, (t) eN,~ G fiir
0 <¢{<1 und alle k>k,. Daher sind die geschlossenen Wege A,, (f)
fir k>k, nullhomotop in &. Daraus und aus (9) folgt, dal 8, fiir
k>k, die identische Decktransformation ist. Das widerspricht aber
unserer Voraussetzung. q.e.d.

4. Aus (IT) und (III) folgt jetzt nach Satz 5, § 7: A (z) ist eine analy-
tische Abbildung des Parallelstreifens 8 in das Gebiet ® ; es ist also ins-
besondere A(f) e® fir 0 <t <1. Aus (8) und A(¢) = lim 4,,(¢)
folgt noch: A4(0) = A(1). Wir haben somit : k—>co

(IV) A(t), (0 <t <1), ist ein geschlossener Weg in &.

Aus (II) und (IV) ergibt sich nun : Die Folge {4,,(f)} von geschlosse-
nen Wegen in G konvergiert im Intervall 0 <#¢ <1 stetig gegen den
geschlossenen Weg A (t) in . Daher gibt es nach Satz 3, § 7 einen
solchen Index k,, daB fiir alle k>k, die Wege A4, (t) und A(t) in G
homotop sind. Folglich ist @, [4,, ()] = D, [4 ()] fir k>k, und da-
her wegen (9): S,, €®, [A(t)] fiir alle k>k,. Damit ist aber unser
Satz B’ bewiesen.

§ 11. Beweis von Satz C

Fiir eine Riemannsche Fliche R von endlichem Zusammenhange gilt
bekanntlich der folgende Einbettungssatz 4¢): Es gibt

1. eine geschlossene Riemannsche Fliche §,

2. ein Gebiet ® auf §, welches von hochstens endlich vielen geschlos-
senen analytischen Jordankurven und hochstens endlich vielen
isolierten Punkten berandet wird,

3. eine analytische Abbildung G' von R in §, welche R topologisch
auf & ¢ § abbildet.

Wegen Satz 3, § 4 wird daher unser Satz C bewiesen sein, wenn wir
zeigen konnen, daBl das Gebiet ® ¢ § eine Riemannsche Fliche mit
diskretem Modulspektrum ist.

Nach Voraussetzung von Satz C ist R eine Fliche von hyperbolischem
Typus. Wegen der Invarianz des Typus gegeniiber analytischen und
topologischen Abbildungen gilt daher :

(I) Das Gebiet ® ¢ & ist von hyperbolischem Typus. Weil die Fliche
& geschlossen ist, so gilt offenbar :

) 18], pag. 139—141.
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(II) Die abgeschlossene Hiille & ¢ § von ® ist kompakt. Aus der
Tatsache, dafl das Gebiet ® auf der geschlossenen Fliche & von hoch-
stens endlich vielen geschlossenen analytischen Jordankurven und hoch-
stens endlich vielen isolierten Punkten berandet wird, folgt leicht :

(ITI) Der Rand von & ist normal.

Aus (I), (IT) und (IIT) folgt nun nach Satz B, daB3 ® eine Riemannsche
Fliche mit diskretem Modulspektrum ist. Damit ist Satz C bewiesen.

§ 12. Vier Lemmata

Lemma I. Es sei R eine Riemannsche Fliche von hyperbolischem
Typus, (L,n) universelle Uberlagerungsfliche von R und I, die Funda-
mentalgruppe von (8,xz). Dann gilt :

a) Ist 4 ein analytischer Automorphismus von R, so ist jede durch 4
induzierte analytische Abbildung @ von £ in sich eine Bewegung von £
und der zu a gehorige Endomorphismus « € €, ist ein Automorphismus
von I’,,.

b) Es sei A eine analytische Abbildung von R in sich. Ist dann die
durch A induzierte Abbildung @ von L in sich eine Bewegung von £ und
ist iiberdies a I'a=! = I',, so ist A ein analytischer Automorphismus
von R.

Beweis von a: 1. Weil A ein analytischer Automorphismus von R ist,
so wird die Halbebene { offenbar auch vermoge der Projektion =z, ({) =
A(n (L)) zur universellen Uberlagerungsfliche von R. Nach Satz lc, § 3
gibt es daher eine analytische und topologische Abbildung G' von & auf
sich selbst derart, daB =, ({) ==(G—*({)), das heifit

A(a(0) == (6(2) - (1)

Nach Satz 2, § 2 ist aber G und daher auch G—! eine Bewegung von {.
Die Gleichung (1) besagt nun offenbar, dafl die Bewegung G eine durch
A (beziiglich der Projektion =) induzierte Abbildung von g in sich ist.
Nach Satz 5c¢, § 3 148t sich dann jede durch A (beziiglich der Projek-
tion z) induzierte Abbildung a in der Gestalt ¢ = 7G~! darstellen, wo-
bei 7' eine Decktransformation von (&, x), also ebenfalls eine Bewegung
von g ist. Daraus folgt nun :

(I) Jede durch A4 induzierte analytische Abbildung von g in sich ist
eine Bewegung von £.
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2. Es sei nun a eine durch 4 induzierte Abbildung von £ in sich. Dann
gilt :
a(a(2)) = A(@(2) - (2)

Nach Satz 6/, § 3 ist S,(a(f)) =a(8(2)), Sy=a(S)el,, Sel,.
Daraus und aus (I) folgt

(II) Esist «(S) =aSa'el, firalle Sel,.
Wir beweisen nun

(III) Zu jedem 7T eI, gibt es genau ein solches S el’,, daB
aSat=T.

Dazu miissen wir offenbar nur zeigen, dafl fiir jedes 7 eI, die Be-
wegung S = a1Ta eine Decktransformation von (8,z) ist. Nun ist
aber a8 = T'a und daher #(a(S({)))=n(Ta(l))=n(a(l)). Daraus
folgt nach (2): A(x(S(¢))) = A(n(¢)). Da aber 4 ein Automorphismus
von R ist, so folgt hieraus : #(8(£)) = #({). Alsoist in der Tat S eI,.
q.e.d.

Aus (I), (II) und (III) ergibt sich nun die Behauptung a.

Beweis von b: Wir zeigen zuerst :

(I) Zu jedem p, eR gibt es ein solches p, e R, daBl A (p,) = p,.
In der Tat : Es gibt ein {; ¢ derart, daB

7(8y) =Py - (1)
Da a nach Voraussetzung eine Bewegung von £ ist, gibt es ein solches
Z 9 € 2, da:B

a(Cy) = &y (2)

Es sei nun p, = n({,) e R. Dann folgt aus (1) und (2):
A (p,) = A(“(Ca)) = ”(a(cz)) =n(ly) = P, - q.e. d.

Nun zeigen wir :
(II) Aus A(p,) = A(p,) folgt p, = p,.
Beweis. Es gibt zwei Punkte ¢, , e derart, daBl
Py =7(Ly) P2 = 7(Ly) . (3)

Dann ist 4(p,) = n(a(y)), 4(®,) ==n(a(ly)). Ist nun A4 (p,) = A(p,),
so ist daher m(a(l,)) = =(a(,)). Folglich gibt es ein Element S eI,
derart, daB

a(l,) = S(“@l)) . (4)
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Da aber nach Voraussetzung a I’ a—! = I, ist, so gibt es ein solches
Element 7T eI’,, dal Sa = aT ist. Daraus und aus (4) folgt dann:
a(¢;) = a(T'(&,)). Weil aber a eine Bewegung von £ ist, so folgt hieraus :
{o = T'({,). Daher ist =({,) == ({,) und somit wegen (3) p, = p,.
q.e.d.

Aus (I) und (II) folgt nun, dafl die analytische Abbildung 4 von R

. in sich ein Automorphismus von R ist. q.e.d.

Lemma II. Es sei I' eine nichtabelsche eigentlich diskontinuierliche
Bewegungsgruppe von € und H eI’ ein festes hyperbolisches oder
parabolisches Element. a sei die Menge aller Bewegungen a von £, welche
folgende Bedingungen erfiillen: aHa'= H, al'a~!c¢I. Dann gilt:

a) Fir alle a ea ist sogar al'a=! = I.

b) a ist eine zyklische Gruppe von unendlicher Ordnung.

Beweis. 1. Da das feste Element H € I' nach Voraussetzung hyper-
bolisch resp. parabolisch ist, so darf ohne Beschrinkung der Allgemein-
heit angenommen werden, H habe die Gestalt

H(C)__—AH'C s AH>O 3 AH#I s (lh)
resp. die Gestalt
H(i)=C+ »g , xg #= 0 reell¥) . (1,)

Wir zeigen nun : Im Falle (1,) gilt
(I,) Es gibt ein Element U eI’ ,

u, u
U= (ul uz) . ug reell,  w,uy —upuy =1,
3 4

derart, daBl (u,, u;) # (0, 0).
Im Falle (1,) hingegen gilt :

(I,) Es gibt ein Element U eI,

Uy U
U={"* "), wu;reell, wuu — ugu;=1,
Uz Uy

derart, daBl (u,, u, — u,) # (0, 0).

47) Hat H niamlich zunéchst nicht diese Gestalt, so gibt es doch eine solche Bewegung V
von £, daB H* = VHV-! die Gestalt (1,) respektiv (1 p) erhélt. Statt der Gruppe I' und
der Menge a betrachte man dann die transformierte Gruppe I'* = VI'V-! und die trans-
formierte Menge a* = Va V-1l
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In der Tat : Andernfalls héitten ja alle Elemente S eI im Falle (1,)
die Gestalt S({) = 4,-{ wund im Falle (1,) die Gestalt S({) = { + x,.
Dann wire aber I” offensichtlich eine abelsche Gruppe — entgegen unse-
rer Voraussetzung. q.e. d.

2. Nach Voraussetzung ist a die Menge aller Bewegungen a von £,
welche die folgenden beiden Bedingungen erfiillen :

aHa'l=H , (2)

al'a! ¢ I . (3)

Aus dieser Definition folgt sofort :

(II) Ist @ea, j,k ganz und § > 0, so ist &’ H* ea.
Aus (1,) resp. (1,) und (2) folgt nach Satz 6 resp. 6, § 2:

(ITT,) Jedes Element @ ea hat die Gestalt
a(l) =2,-C, 2,>0 .
resp. (III,): Jedes Element a ea hat die Gestalt

a(l)=¢+ %, , %, reell.

3. Esseinun @ ea und Z = [a, H] die von a und H erzeugte Be-
wegungsgruppe von . Wegen (1,), (III,) resp. (1,), (IIL,) gilt dann:

(IV,) Jedes Element ¢ €Z = [a, H] hat die Gestalt
c(§) = 4,-¢, A,>0 resp.

(IV,) Jedes Element ¢ €Z = [a, H] hat die Gestalt
c() = ¢+ »,, %, reell.
Wir beweisen nun :

(V) Die Gruppe Z ist eigentlich diskontinuierlich.

Beweis. Aus (IV,) resp. (IV,) folgt leicht : Ist Z nicht eigentlich dis-

kontinuierlich, so gibt es zu jeder ganzen Zahl n > 1 eine Bewegung c,,
derart, daB

Cn€Z , ¢ (L) =12, , 0<|log A, |<ln fir n>1 (4,)
resp.
ch€Z , c,(O)=CH42n,, 0<|x,|<ln fir n>1. (4,

Da die Gruppe Z = [a, H] wegen (IV,) resp. (IV,) offenbar abelsch ist,
gibt es zu jedem n > 1 zwei ganze Zahlen j,, k, derart, daB ¢, = a’» H*»,
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Wir setzen jetzt
d“ — C:fm in — glinl, fkn-2enin o7 (5)

Nach (II) ist dann offenbar

d,ea firalle =n>1, (6)
Aus (4;) resp. (4,) und (5) folgt ferner
du() = 24,-C , 0<|log 4 |=|log 4, |<l/m firalle n >1, (7,)
resp.
2, (0) = &+ %, 0<| g, |=|%,]|<1/n firalle n > 1. (7,)
Wir betrachten jetzt die Folge

T.=d,Ud;*, n>1, (8)

wobei U eI’ die in (I,) resp. (I,) eingefiihrte Bewegung bedeutet.
Wegen (3) und (6) gilt dann

T,eI' firalle =n>1. (9)

Aus (I,) resp. (I,), (7;) resp. (7,) und (8) folgt ferner

T, = (ul uz'l"") , o (wg,ug) £ (0,0) , wu u—uUyus =1,

Us[Rg,, Uy (10,)
0<|log 4;, |<1l/n fiiralle n>1
resp.
T o— (ul + ugng, U+ (U — Uy) Hg, — Us "3,,)
" U Uy — Ug g,
(10,)
(ws, g — uy) #(0,0) ,  w u —uyuy =1

0<| o2, |<l/n firalle n>1.

Die Aussagen (9) und (10,) resp. (10,) widersprechen aber offensicht-
lich unserer Voraussetzung, daB3 die Bewegungsgruppe [’ eigentlich dis-
kontinuierlich sei. Folglich mu3 (V) richtig sein. g.e.d.

4. Aus (IV,) resp. (IV,) und (V) folgt nun nach Satz 8 resp. 8, § 2,
daBl Z = [a, H] eine zyklische Gruppe ist. Sei ¢, eine Erzeugende von
Z. Dann gibt es solche ganze Zahlen j, k, dal3

a=c¢ , H=cd. (11)
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Da H nicht die Identitédt ist, so ist gewil3
k| >1. (12)

Aus (11) folgt jetzt: al*l = ¢JI¥l = cki-omk — fi-somk  Folglich ist
a*' ¢ I' und daher
a¥ g " =1 . (13)

Andererseits folgt aus (3) und (12) sofort : a'*! I'a='*! ¢ @ I'a—1. Daraus
und aus (13) ergibt sich: I'c a I'a~!. Hieraus und aus (3) folgt endlich
a I'a=* = I'. Damit ist die Behauptung a) von Lemma II bewiesen.

5. Aus der eben bewiesenen Behauptung a) folgt sofort, dal die
Menge a eine Gruppe ist. Wir zeigen nun:

(VI) Die Bewegungsgruppe a ist eigentlich diskontinuierlich.
Beweis. Aus (II1,) resp. (IIL,) folgt leicht : Ist die Gruppe a nicht

eigentlich diskontinuierlich, so gibt es zu jeder ganzen Zahl n > 1 ein
Element a, derart, daB

a, €a, a,(§) = 44, C , 0<|log 4,, | <l/n (14,)
respektive
a,€a, a,(§) =+ x,, , 0<| %, |<1/n . (14,)

Wir betrachten nun die Folge
8, =ea,Ua", n>1, (15)

wobei U wieder die in (I,) resp. (I,) eingefiihrte Bewegung bedeutet. Aus
a,ea, U el folgt dann nach (3):

S,el’ firalle =»n>1. (16)

Aus (I,) resp. (I,), (14,) resp. (14,) und (15) ergibt sich aber :

u U .Aa
S, = (u:/l u: ”) , o (g, u3) #£(0,0) , wuyuy—uuz=1, (17,)
an

0<|logi,,|<l/n firalle =n>1.

respektive
2
g = (" + Ug Ky, Ut (Ug — Uy) %y, — Uy K,
" Usg Ug — Ug %g,,
(us, ug — uy) 7~ (0, 0) , Uy Uy — Uy Uy =1

(17,)
0<| 2, |<l/n firalle =»>1.
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Die Aussagen (16) und (17,) resp. (17,) widersprechen aber wieder unserer
Voraussetzung, dal die Bewegungsgruppe I’ eigentlich diskontinuierlich
sei. Folglich muB8 (VI) richtig sein. q.e.d.

6. Aus (IIT,) resp. (II1,) und (VI) folgt jetzt nach Satz 8 resp. 8', § 2,
daB die Gruppe a zyklisch ist. Weil aber offenbar H ea und weil A5 £ 1
resp. xg #* 0 ist, so ist die Ordnung der zyklischen Gruppe a unendlich.
Damit ist Lemma II vollstindig bewiesen.

Lemma III. Es sei R eine Riemannsche Fliche von hyperbolischem
Typus; ({,x) sei universelle Uberlagerungsfliche von R und I Funda-
mentalgruppe von (8,n). Es sei A eine analytische Abbildung von R
in sich, @ eine durch A induzierte analytische Abbildung von g in sich
und « €€, der zugehorige Endomorphismus von I',. Dann gilt :

a) Es ist M[a(S)] < M[S] fiir alle Sel,.

b) Gibt es eine solche Decktransformation 7' eI, dal M[a(T)]
= M[T]>0, so ist a eine Bewegung von £.

c) Ist 4 ein analytischer Automorphismus von R, so ist M [«(S)]
= M[S] firalle Sel,.

Beweis. 1. Nach Satz 6, § 3 gilt
a(S(¢)) = 8,(a()), S,=a(S)el, firalle Sel,, (eQ. (1)

2. Beweis von a). Aus dem Schwarzschen Lemma (Satz 6b, § 5) folgt

ui¢, 8(0)1 = ula(l), a(S(2))] - (2)
Wegen (1) ist aber
pla(e), a(8(2))] = nla(2), 8u(a(0)] - (3)

Ferner gilt offenbar :
ula(), Su(a(0))] ZginifM[C, 8e(0)] = M[S,] = M[«(8)] . (4)
Aus (2), (3) und (4) ergibt sich nun u[{, S({)] = M [«(S)] fir alle
¢ €. Daraus folgt aber M[S]=infu[l,S(0)] > M[«(S)]. q.e.d.
teg

3. Beweis von b). Sei fiir ein gewisses 7T eI,

M[a(T)] = M[T]>0 . (5)
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Dann ist 7' gewil eine hyperbolische Bewegung von . Es sei nun
(o € ein Punkt des Orthogonalkreises durch die beiden Fixpunkte
von 7'. Dann gilt nach Satz 4b, § 2:

18, T(Lo)] = M[T] . (6)
Wegen (1) ist

pla(lo), a(T(Lo))] = n[a(lo), Te(a(l))] » To=o(T) . (T7)
Ferner gilt

w[a(lo), To(a(lo))] = H”[C’ To(0)] = M[T,] = M{a(T)] . (8)
Aus (7) und (8) ergibt sich
ula(Co), a(T(Lo))] = M[(T)] (9)

- Aus (5), (6) und (9) folgt jetzt

pla(Co), a(T(Lo))] = nlle, T(L)]1>0 . (10)

Andererseits ist nach dem Schwarzschen Lemma (Satz 6b, § 5)

#la (o), a(T(C0)] < ullo, T(Z0)] - (11)

Aus (10) und (11) folgt nun: wu[a(sy), a(T(Z))] = wles T (£o)1>0.
Daraus folgt aber nach Satz 6¢, § 5: @ ist eine Bewegung von £. q. e. d.

4. Beweis von c¢). Ist A ein analytischer Automorphismus von R, so
ist @ nach Lemma Ia eine Bewegung von £. Dann folgt aber aus (1):
x(S) = aSa fir alle 8 €I",. Daraus folgt nach Satz 3, § 2: M [a(S)]
= M[S] fir alle Sel,. q.e.d.

Damit ist Lemma IIT vollstdndig bewiesen.

Lemma IV. R sei eine Riemannsche Fliche mit diskretem Modul-
spektrum; (8,n) sei universelle Uberlagerungsfliche von R und I,
Fundamentalgruppe von (8,x). Es sei 4 eine analytische Abbildung
von R in sich, a eine durch 4 induzierte analytische Abbildung von £
in sich und « € €, der zugehorige Endomorphismus von I,. Dann gilt :

Gibt es ein Element 7T eI, derart, dal M[a(T)] = M[T]>0, so
ist 4 ein analytischer Automorphismus von R.
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Bewets. 1. Sei
Tel',, M[T]>0 (1)

und M[a(7)] = M[T]. Dann folgt aus Lemma IIIb:

(I) Die durch 4 induzierte Abbildung a@ von g in sich ist eine Bewe-
gung von .
Nach Satz 6/, § 3 gilt:

a(S8(0)=8,(a(t)), Sy=aS)el, firalle Sel, .
Hieraus und aus (I) folgt nun
a(S)=aSa1el, firale Sel,. (2)
Daraus schlieBt maﬁ sofort; :
a*I' a™" I, firalle n>1. (3)
aI' a7cal,at firalle j>1. (4)

2. Wir unterscheiden nun zwei Fille :

1. Fall: I', sev abelsch. Da R nach Voraussetzung hyperbolisch ist,
so ist in diesem Falle I', sogar zyklisch #8). Sei S, eine Erzeugende von
I’ . Dann gibt es eine ganze Zahl r derart, dafl 7' = S;. Hieraus folgt
nach Satz 5, § 2: M[T]=|7|-M[S,]. Daraus und aus (1) ergibt sich

M[8,]>0 . (5)

Da 8, Erzeugende der zyklischen Gruppe I, ist, gibt es wegen (2) eine
solche ganze Zahl m, daBl

aSyat=_8y . (6)
Nach Satz 3 und Satz 5, § 2 folgt hieraus M[S,] = |m |- M [S,]. Also
ist wegen (5) |m | = 1. Daraus und aus (6) folgt aber

al at=1,. (7)

Aus (I) und (7) schlieBen wir nun mit Hilfe von Lemma Ib, daBl 4 in
der Tat ein analytischer Automorphismus von R ist. q.e. d.

2. Fall. I, sei micht abelsch. Wir betrachten die Menge
M={S|Sel,, O<M[S]<2M[T]} . (8)

48) Vergleiche § 3, Nr. 6, V.
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Wegen (1) und (3) ist
a*Ta"el, firalle =n>1. (9)
Nach Satz 3, § 2 gilt auBBerdem

M{a"Ta"]=M([T]>0 firalle =n=>1. (10)
Aus (8), (9) und (10) folgt jetzt
a*Ta"™ e firalle =»n>1. (11)

Da R nach Voraussetzung eine Fliche mit diskretem Modulspektrum ist,
zerfillt die Menge I nach Satz 2a, § 4 nur in endlich viele Klassen kon-
jugierter Elemente von I',. Von den unendlich vielen Elementen (11)
miissen daher gewil mindestens zwei in der gleichen Klasse liegen. Es
gibt folglich zwei ganze Zahlen

i1, k>1 (12)
und ein Element
Uel, (13)
derart, daf3
al+tk Ta~i+k) — U-1 gk Tq % U . (14)
Wir setzen nun
H=a*"Ta* . (15)

Wegen (9), (10) und (12) gilt dann:

(IT) H ist ein hyperbolisches Element von I, .
Wir setzen ferner

d=Uda . (16)
Wegen (I) und (13) gilt dann
(IIT) d ist eine Bewegung von L.
Aus (14), (15) und (16) ergibt sich
dHd*=H . (17)

Aus (16) folgt wegen (3) und (12): dI',d*=Ua'I,a U U T, U,
also wegen (13)
ar.d-*cr, . (18)

Da die eigentlich diskontinuierliche Bewegungsgruppe I', nach Voraus-
setzung nicht abelsch ist, so folgt jetzt aus (II), (III), (17) und (18)
nach Lemma II: dI',d-! = I',. Daher ist wegen (16) Ua’I,a~7U-
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=T,, dasheillt o'l a7 = U-'I' U, alsowegen (13): a'l,a¥ =1T,.
Hieraus und aus (4) und (12) ergibt sich I', ca I' a~!. Daraus und aus
(3) schlieen wir endlich

ala1=T_. (19)

Aus (I) und (19) folgt nun nach Lemma Ib, daBl 4 in der Tat ein analyti-
scher Automorphismus von R ist. Damit ist Lemma IV vollstindig
bewiesen.

§ 13. Beweis von Satz I

1. Da die Fundamentalgruppe von R nach Voraussetzung nicht
abelsch ist, so ist R eine Flidche von hyperbolischem Typus*®). Sei
(8,n) universelle Uberlagerungsfliche von R und I'_ die Fundamental-
gruppe von (&,z). Dann gilt:

(I) I, ist eine nichtabelsche eigentlich diskontinuierliche Bewegungs-

gruppe von £.
Wir wiahlen nun ein festes Element

Hed (W) . (1)

Da nach Voraussetzung W nicht die Nullklasse von R ist, gilt :

(II) H eI, ist ein hyperbolisches oder parabolisches Element.
Nun sei a die Menge aller Bewegungen a von &, welche die folgenden

zwei Bedingungen erfiillen :
aHa' =H , (2)

al' al=1,_. (3)

Dann folgt aus (I) und (II) nach Lemma IT, § 12:
(III) aq ist eine zyklische Gruppe von unendlicher Ordnung.

2. Es sei jetzt @ ea. Uberlagern die Punkte ¢;, £, €2 beide den-
selben Punkt p eR, so gibt es ein S el', derart, dal [, = S({,).
Wegen (3) gibt es nun ein solches 7T eI',, daBl aS = Ta. Dann ist

aber n(a(Cy)) = n(a(8(8y)) =n(Ta(l))=n(a(l,)), dasheibt x(a(l))
hat fiir alle ¢ ¢ mit dem gleichen Spurpunkt p = = (l) den gleichen
Wert. Daher gilt :

(IV) Ist a ea, soist
o*(p) =n(a(l)), Cel, a(l)=peR

49) Vergleiche § 3, Nr. 6, IV.
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eine eindeutige analytische Abbildung von R in sich. Wir zeigen nun :

(V) Ist aea, soist a* eiB.

Beweis. Aus der Definition (IV) von a* folgt, daBl @ als eine durch
a* induzierte Abbildung von & in sich aufgefalt werden kann. Sei nun
« € &« der dann zu a gehorige Endomorphismus von I”,. Nach Satz 6’ a,
§ 3 gilt: a(S) =aSa? fir alle 8 eI’ . Hieraus und aus (2) ergibt
sich a(H) = H. Daraus und aus (1) folgt aber nach Satz 6’ d, § 3, daB
die Abbildung a* von R in sich die Wegklasse W festlifit. Da die durch
a* induzierte Abbildung a eine Bewegung von g ist, so ist wegen (3) und
Lemma Ib a* auBerdem ein analytischer Automorphismus von R. Folg-
lich ist in der Tat a* eW. q.e.d.

Nun zeigen wir :

(VI) Zu jedem Automorphismus B eI gibt es eine Bewegung
a ea derart, dal a* = B.

Beweis. Es sei B €13, b eine durch B induzierte Abbildung von £
in sich und f € €5 der zu b gehorige Endomorphismus von I',. Nach
Lemma Ia ist b eine Bewegung von 8. Daher folgt aus Satz 6’ a, § 3:

B(S)=>b8b firalle 8Sel, . (4)

Nach Lemma Ia ist ferner f € €5 ein Automorphismus von I ; folg-
lich ist wegen (4)
bl b1=T, . (5)

T

Da B 1B die Wegklasse W festliit, so folgt aus (1) nach Satz 6’ d, §3:
B(H) €D, (W). Daher gibt es wegen (1) ein

Tel, (6)
derart, dafl B(H) = T-*HT, also wegen (4)
bHb=T-HT . (7)
Dann ist offenbar
a=1T> (8)
eine Bewegung von £ und es folgt aus (7) und (8):

aHa'=H . (9)
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Aus (5) und (8) folgt ferner a I',a* = Tb I',b-1T-1 = T I' T, also
wegen (6) :
al,a?=T,

. (10)
Aus (9) und (10) folgt jetzt

aea . (11)

Ist (e, p==(), so ist daher nach (8) und (IV):

a*(p) = n(a(0)) = =(T'b(¢)) ,

also wegen (6) : a*(p) = #(b(£)). Da aber b durch B induziert wird, so
ist 7(b(%)) = B(n(L)) = B(p). Folglich ist

a*(p) = B(p) . (12)

Die Aussagen (11) und (12) bestédtigen nun die Behauptung (VI). Wir
zeigen noch

(VII) Ist a, ea, a,ea, so ist (a,a,)* =a;a).

Beweis. Esist a,a, ea. Istnun { €8, p = n({), sofolgt nach (IV):

(@,a5)* (p) = 7‘(“1“2(0) = 7‘(“1(“2(5))) e a'1* (”(“2(5)))= a:(a’; (”(t))) =
a;a; (p). q.e.d.

Aus (V), (VI) und (VII) folgt jetzt :
(VIII) Die durch (IV) definierte Zuordnung

a—>a*ell, aea

ist ein Homomorphismus von a auf .

3. Esseinun f ¢ a der Kern dieses Homomorphismus. Wir zeigen, da3
Het. (13)

In der Tat: Offenbar ist H ea. Weil aber H eine Decktransformation
von (8,n) ist, so folgt nach (IV), daBl H* die identische Abbildung von
R auf sich ist. Daher ist H ¢f. q.e.d.

Weil nun nach (IIT) a eine zyklische Gruppe unendlicher Ordnung ist
und weil die Untergruppe fca wegen (II) und (13) nicht aus der
Identitét allein besteht, so ist die Faktorgruppe a/f eine zyklische
Gruppe von endlicher Ordnung. Aus (VIII) folgt aber nach einem be-
kannten Homomorphiesatze, daB die Faktorgruppe a/ f isomorph ist zur
Gruppe 8. Daher ist auch 9B eine zyklische Gruppe von endlicher Ord-
nung. Damit ist Satz I bewiesen.
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§ 14. Beweis von Satz II

Da die Fundamentalgruppe von R nichtabelsch ist, so ist R von
hyperbolischem Typus®). Sei (€,n) universelle Uberlagerungsfliche
von R und I', die Fundamentalgruppe von (&,x). Dann gilt:

(I) I', ist eine nichtabelsche eigentlich diskontinuierliche Bewe-
gungsgruppe von .
Es sei

He®,[p()] . (1)
Dann ist nach Voraussetzung :
M[H]>0 . (2)

Sei nun @ eine durch 4 induzierte analytische Abbildung von £ in sich
und o € €, der zu a gehorige Endomorphismus von I',. Da nach Vor-
aussetzung A(p(¢)) ~ p(t) ist, so folgt aus (1) nach Satz 6’ d, § 3:
a(H) eD, [p(t)]. Wegen (1) gibt es daher ein solches

Tel, , (3)
daB

«(H) = THT . (4)
Hieraus folgt nach Satz 3, § 2: M [«(H)] = M[H]. Daraus und aus (2)
folgt aber nach Lemma IIIb:

(ITI) Die durch A induzierte Abbildung a ist eine Bewegung von .
Daher folgt jetzt aus Satz 6’ a, § 3:

x(S)=aSa'el', firale Sel),. (8)
Es ist also insbesondere
al’ atcl, (6)
und wegen (4) ist
oHa'l=T1HT . (7)
Setzen wir nun
d=Ta |, (8)

so folgt aus (3) und (II):
(ITI) d ist eine Bewegung von £.
Aus (7) und (8) folgt:
dHd'=H . (9)

80) Vergleiche § 3, Nr. 6, IV.

57



Aus (6) und (8) ergibt sich dI',d*= Tal,a*T*cTI,T-1, also
wegen (3):
ar,d*cr, . (10)
Aus (I), (III), (2), (9) und (10) folgt jetzt nach Lemma I1a dI',d-*=T,.
Wegen (8) ist daher Tal,a'T-1=1T,, dasheiit al o= TIT,
also wegen (3)
al a1=T

o

(11)

Aus (IT) und (11) folgt jetzt nach Lemma Ib, dal 4 in der Tat ein ana-
lytischer Automorphismus von R ist. Weil aber die Fundamentalgruppe
von ‘R nichtabelsch ist und weil der Automorphismus 4 die durch p(¢)
reprisentierte (von der Nullklasse verschiedene) Wegklasse festlifit, so
ist der Automorphismus 4 nach Satz I sogar periodisch. Damit ist
Satz IT bewiesen.

§ 15. Beweis von Satz III

1. Wir zeigen zunichst

(I) Der Weg p(t) ist nicht parabolisch.

Wir erbringen den Beweis indirekt, indem wir die Annahme, p(f) sei
ein parabolischer Weg, ad absurdum fihren. Sei (8,7,) universelle
Uberlagerungsfliche von R. Ist nun p(f) ein parabolischer Weg, so
kann offenbar die Projektion 7, so gewdhlt werden, dall ein Element

Pe®, [p(t)] (L)
die Gestalt

Pl)=¢42n (2)

erhilt 51). Nach Voraussetzung ist A(p(¢)) ~ p~1(¢). Daraus und aus (1)
folgert man leicht 52) : Es gibt eine solche durch A4 induzierte analytische
Abbildung @ von £ in sich, daB fiir den zu a gehérigen Endomorphismus
aeCy gilt: a(P)= P-1 Daraus und aus Satz 6’ a, § 3 folgt: a(P(¢))
= P-Y(a({)), also wegen (2):

a(l + 27) = a(l) — 2n . (3)
Aus (3) schlie3t man nun sofort

51) Dies folgt sofort aus Satz 1, Satz 4, § 3; Satz 2, § 1 und aus der Tatsache, daB es
zu jeder parabolischen Bewegung S eine solche Bewegung G von L gibt, da die Bewegung
P = GSQ@! die Gestalt P({) = { 4 2n erhilt.

52) Vergleiche dazu § 3, Nr. 4, V und Satz 5, Satz ¢/, § 3.
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(a) @(2) = €*("*1€2 jgt eine (eindeutige!) analytische Abbildung der
punktierten Kreisscheibe f: 0<|z|<1 in sich. Aus (3) und (a) folgt
ferner

(b) Der Weg z(t) = @(}3¢*™), 0 <t <1, ist ein geschlossener
Weginf: 0<|z2|<1 mit der Umlaufszahl — 1 um den Punkt z = 0.

Andererseits folgert man aus (a) mit Hilfe des klassischen Satzes von
Casorati-Weierstral :

(c) Es gibt eine solche komplexe Zahl z,, dal3 die Abbildung
¢*(e) = p(r) fir 0<|z|[<1l, @*(0) =2,

eine analytische Abbildung der vollen Kreisscheibe |z |<1 in sich ist.

Die Aussagen (b) und (c) stehen nun aber offensichtlich zueinander
im Widerspruch. Folglich kann der Weg p(f) nicht parabolisch sein.
q.e.d.

2. Da der Weg p(t) nach Voraussetzung nicht nullhomotop auf R
ist, so folgt aus (I), daB p(¢) ein hyperbolischer Weg ist. Dann kann
man aber die Projektion =, so wihlen, daBl ein Element

Hed, [pt)] (4)
die Gestalt
HOH=A¢, 2>0, A#1 (5)
erhiilt. Offenbar ist
M[H]>0 . (6)

Nach Voraussetzung ist A(p(¢)) ~ p~1(t). Daraus und aus (4) schlieBt
man wieder leicht : Es gibt eine solche durch 4 induzierte analytische
Abbildung @ von g in sich, daf} fir den zu a gehorigen Endomorphismus
xe®, gilt:

a(H)=H . (7)

Daraus folgt nach Satz 5, § 2: M[«a(H)] = M[H']= M[H], also
wegen (6): M[a(H)] = M[H]>0. Daraus folgt aber nach Lemma IIIb

(II) Die durch A induzierte Abbildung a von & in sich ist eine Be-
wegung von L.
Daraus und aus Satz 6’ a, § 3, folgt nun:

a(S) =aSatel, firalle Sel, . (8)

Es ist also insbesondere
a P,,l alcl,, (9)
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und daher
a*l', a?cal, a?. (10)

Aus (7) und (8) ergibt sich ferner: a H a—! = H-'. Daraus und aus (5)
folgt aber nach Satz 7, § 2:

a(t) = —

<
C b
Daher ist a?({) = { und folglich a®I, a2 =TI . Hieraus und aus
(10) folgt aber: I'y ca I’y a~'. Daraus und aus (9) ergibt sich:

al, a* =1, . (12)

71

Aus (II) und (12) folgt nun nach Lemma Ib:

(IIT) A4 ist ein analytischer Automorphismus von R.

Da nach (11) a?({) = ¢ ist und weil @ eine durch 4 induzierte Abbil-
dung ist, so gilt fiir alle (ef: x,({) =m(a?(0)) =m(a(a(l)) =
A7, (a(2))) = A(A(7,(2))) = A2%(m,(£)). Daraus folgt aber :

(IV) A besitzt die Periode 2.

Wir zeigen noch :
(V) Der Punkt p,=m,(1})/c) eR ist Fixpunkt von 4.
In der Tat: Aus (11) folgt a(i}/¢) =¢}) c. Daher ist A(p,) =

A (i Ye)) =m(a@yc)) =m(EYe) =p,. q.e.d.
Aus (III), (IV) und (V) ergibt sich nun aber unser Satz III.

¢>0 . (11)

§ 16. Beweis von Satz IV

1. Sei (2,n) universelle Uberlagerungsfliche von R und I', die
Fundamentalgruppe von (8,r). Die eigentlich diskontinuierliche Be-
wegungsgruppe [, enthdlt keine elliptischen Bewegungen und ist nach
Voraussetzung nichtabelsch. Daher gibt es nach Satz 9, § 2 mindestens
ein Element V e¢[I', derart, dal M[V]>0. Nun betrachten wir die
Menge

B={S|S8el,,0<M[S]<2M[V]} . (1)

Dann ist offenbar

VeB. (2)

Weil R eine Fliche mit diskretem Modulspektrum ist, so zerfillt 8B nach
Satz 2a, § 4 in hochstens endlich viele Klassen konjugierter Elemente.
Da B wegen (2) gewill nicht leer ist, so ist die Anzahl n dieser Klassen
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> 1. Wir denken uns nun diese » > 1 Klassen in einer beliebigen

(aber festen) Reihenfolge numeriert : K;, K,,..., &,. Dann ist
%zglﬁi, n>1, K;~K,=0 fir 2#£Ek. (3)

Zu jedem S € B gibt es nun einen eindeutig bestimmten Index j = §[8],
1 <j[8] <n, derart, daBi
S € R, s ¢ (4)

2. Essei M, = {1,2,...,n} die Menge aller ganzen Zahlen von 1
bis n. Wir wollen nun jedem analytischen Automorphismus 4 € eine
Abbildung o, von MM, in sich zuordnen: Sei 7 eM,, S, e K,, 4 ¥,
« €€,. Nach Lemma ITIc ist M[a(S;)] = M[S,]. Folglich ist «(S,)
€ B und daher j[«(S,)] eIM,. Offenbar ist j[«x(S;)] unabhingig von
der speziellen Wahl des Reprisentanten S, € &; und unabhingig von
der Wahl des Représentanten o € €,. Jetzt definieren wir :

GA(?:) zy‘[a(sz)] ’ iemtn ’ Si ERi ) (64 €$A_ . (5)

Damit haben wir nun in der Tat jedem A ¢ in eindeutiger Weise eine
Abbildung ¢, von M, in sich zugeordnet. Aus (4) und (5) folgt noch

o,4([8]) = j[x(S)] firalle SeB, aeC, . (6)
Wir zeigen jetzt :
(I) Ist A€W, soist o, eine Permutation von IN,.

Bewets. Wir miissen offenbar nur noch zeigen, dal aus o4 (1) = o4 (k)
stets ¢ =k folgt. Sei also 7,k eM,, S;eKR;, S, e K, und o, (¢) =
o4(k). Dann ist nach (5) j[«(S,)] = j[x(S;)]; das heilt die Elemente
«(S;) und «(S,) sind konjugiert. Es gibt also ein 7T €I, derart, daB

a(8;) = Ta(Sy) T . | (7)

Da aber 4 ein Automorphismus der Fliche R ist, so ist « € €, nach
Lemma Ia ein Automorphismus von I',. Es gibt daher ein solches
Sel , daB «(S) = T ist. Dann ist wegen (7):

o (8;) = [a(8)] - a(84) - a(8) = a(S718,8) . (8)

Weil aber « ein Automorphismus von I', ist, so folgt aus (8) : 8;=8-18,8;
daher ist in der Tat + =k. q.e.d.

Nun zeigen wir :
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(II) Esist oy =040 firalle 4, Be.
Bewets. Sei t eIk, S;eR;, «eC€,, peCyz. Dann ist nach (5)
og(t) = j[B(8,)]. Daraus und aus (6) folgt :
04(05())) = 04(j[B(8)]) = j[«(B(S))] = j[«p(S))] . (9)

Andererseits ist nach Satz 7, § 3 af €€ p; daher ist nach (5): 045(2)
= j[«B(8S,;)]. Daraus und aus (9) folgt aber Behauptung (II). Aus (I)
und (II) ergibt sich jetzt :

(III) Die durch (5) definierte Zuordnung
Aoy, AeN

ist ein Homomorphismus von 9 auf eine Untergruppe & der symmetri-
schen Permutationsgruppe &, von IRk,.

3. Wir betrachten jetzt die Menge
W= {4|AeW,0,(1) =1} . (10)

Wegen (III) ist A* offenbar eine Untergruppe von A. Wir zeigen :

(IV) Jeder Automorphismus 4 eW* ldBt die von der Nullklasse
verschiedene Wegklasse @;!'({,) fest.

Beweis. DaB die Wegklasse @_;'(8,;) nicht die Nullklasse von R ist,
folgt sofort aus (1) und (3). — Es sei nun p(¢) ein Reprisentant der
Wegklasse @;1(R,). Es sei ferner a €€, und S, € & = D,[p(l)].
Dann ist nach Satz 6’ d, § 3:

a(8y) e P [A(p(1))] - (11)

Da nach Voraussetzung o, (1) = 1 ist, so ist nach (5) j[a(S8,)] =1,
das heiBt «(S;) € &,. Daraus und aus (11) folgt aber @,[A(p(t))] = K,
das heilt A(p(t)) e P;*(K,). A liBt also in der Tat die Wegklasse
D;1(KR,) fest. q.e.d.

Weil die Fundamentalgruppe von R nach Voraussetzung nichtabelsch
ist, so folgt jetzt aus (IV) und Satz I:

(V) U* ist eine Gruppe von endlicher Ordnung.

4. Es sei nun f¢W der Kern des Homomorphismus (III). Aus der
Definition (10) von 2* folgt sofort : § ¢ A*. Hieraus und aus (V) schlieBen
wir :

62



(VI) £t ist eine Gruppe von endlicher Ordnung.

Aus (III) folgt nach einem bekannten Homomorphiesatze, daBl die
Faktorgruppe W/t isomorph ist zur Gruppe S ¢ S,. S ist aber gewill
eine Gruppe von endlicher Ordnung. Daher ist auch die Ordnung der
Faktorgruppe A/t endlich.“Es gilt also :

(VII) f ist eine Untergruppe von endlichem Index in 9.
Aus (VI) und (VII) folgt nun sofort : A ist eine Gruppe von endlicher
Ordnung. Damit ist unser Satz IV bewiesen.

§ 17. Beweis von Satz V

Auf Grund von Satz 6’ d und Satz 7, § 3 iiberlegt man sich leicht, da
Satz V bewiesen sein wird, wenn wir den folgenden Satz beweisen konnen :

Satz V. Es sei R eine Riemannsche Fliche mit diskretem Modul-
spektrum ; (2, 7) sei universelle Uberlagerungsfliche von R und I', die
Fundamentalgruppe von (&, x). I', enthalte keine parabolischen Deck-
transformationen. Dann gibt es auf I', eine ganzzahlige Klassenfunktion
n(S), (1 <n(S)<oco fiir alle S el,), derart, daBl gilt : Ist die analyti-
sche Abbildung 4 von R in sich kein Automorphismus von R und ist
xeC,, soist «"(8) =1 firalle Sel,.

Beweis. I', bestehe nicht aus der Identitét I allein. (Sonst wire offen-
bar nichts zu beweisen!) Weil R eine Fliche mit diskretem Modul-
spektrum ist und weil I', keine parabolischen Decktransformationen
enthilt, so folgt aus Satz 2a, § 4 leicht : Die (abzdhlbar vielen) Klassen &
konjugierter Elemente von I', konnen so numeriert werden, dafl gilt :

LL=US, SKu={}, Ki~RK=0 firitj, (1
0= M[KJI<M[K,] , M(R;] < M[R;,] fir j=>1.

Dann gibt es zu jedem Element S eI', einen eindeutig bestimmten
Index j = j(8) > 0 derart, daB § € K;; es ist inshesondere

7(8) = 0 dann und nur dann, wenn § =1 . (2)
Jetzt definieren wir
n(S) = Max [1,4§(S)] firalle Sel, . (3)

n(S) ist offensichtlich eine Klassenfunktion auf I, und es ist 1 < n(S)
<oo fiiralle Sel’, .
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Es sei nun A eine analytische Abbildung von R in sich, aber kein
Automorphismus von R. Dann folgt aus Lemma IITa und Lemma IV :

M[a(S)]<M[S] fir Sel,, M[S]>0, aeC,. (4)
Aus (1) und (4) folgt jetzt :
Ist  j(S)>0, soist j(a(S)) <j(8)—1. (5)

Aus (2), (3) und (5) schlieBen wir nun : j(a**®)(S)) = 0, also wegen (2):
o*® (8) = I. Damit ist Satz V' bewiesen.

§ 18. Beweis von Satz VI

I. Fiir den Beweis von Satz VI benotigen wir einige Hilfsbetrach-
tungen. Wir beweisen zunichst

Satz 1. Es sei §, eine geschlossene Riemannsche Fliche vom Ge-
schlechte g > 2. Dann gilt: Jede nichtkonstante analytische Abbil-
dung von §, in sich ist ein Automorphismus von §, ).

Bewers. 1. §,, (9 > 2), ist eine Fliche von hyperbolischem Typus.
Sei (Q,7z) universelle Uberlagerungsﬂéiche von &, und I, Fundamental-
gruppe von (8,xn). &, ist eine Fliche mit diskretem Modulspektrum
und I, enthdlt keine parabolischen Elemente ). Daher gibt es nach
Satz V', § 17 auf I'_ eine Klassenfunktion % (8) derart, daB gilt :

(a) Ist die analytische Abbildung 4 von §, in sich kein Automorphis-
mus von §, und ist « €€ , soist a"®(8) =17 fiir alle S eI,.

I', besitzt als Fundamentalgruppe einer geschlossenen Fliche ein
endliches Erzeugendensystem {8,,8,,...,S,}. Wir setzen nun

N = Max[n(8,), n(8,), ..., n(8,)] . (1)

2. Es sei nun die analytische Abbildung 4 von &, in sich kein Auto-
morphismus von &,. Wir haben zu zeigen, da A konstant ist.
Sei o« €E,. Dann folgt aus (a) und (1):

oNS)=1 fir i=1,2,...,r. (2)

53) Dieser Satz darf als bekannt gelten; er 148t sich némlich unschwer aus der Hurwitz-
schen Theorie der Uberlagerungsflichen einer geschlossenen Fliache folgern (vergleiche [6],
speziell Formel (2), pag. 376). Wir méchten aber zeigen, da8 sich dieser in den folgenden
Untersuchungen bendtigte Hilfssatz auch sehr leicht aus unseren bisherigen Resultaten
ergibt.,

54) Siehe Satz Ay’ und Satz By .
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Da aber {8,,8,....,8,} ein Erzeugendensystem von I, ist, so folgt
aus (2) sogar
oNS)=1T1 firalle Sel,. (3)

Es sei jetzt a eine durch AY induzierte analytische Abbildung von g in
sich ; dann gilt
n(a(2)) =AY (=(0)) . (4)

Weil nach Satz 7, § 3 oY €€,n», so folgt aus (3) nach Satz 6’ a, §3:
a(S(¢)) = a(¢) fir alle S eI',. Daher ist

fp)=a(l), p=nl)ed, (5)

eine auf der geschlossenen Fliche §, iiberall eindeutige und regulire
analytische Funktion. f(p) mul somit konstant sein. Wegen (4) und (5)
muf} daher auch die Abbildung A konstant sein. q.e.d.

II1.

Definition 1. Eine Riemannsche Fliche R heifle ,,punktierte ge-
schlossene Fliche vom Geschlechte ¢, wenn es eine solche geschlossene
Riemannsche Fliche §, vom Geschlechte g und einen solchen Punkt
Do € §, gibt, daBl R analytisch und topologisch auf &, — p, abbildbar
ist.

Satz 2. Es sei R eine Riemannsche Fliche von hyperbolischem
Typus und es gebe auf R einen parabolischen Kommutatorweg p(?).
Dann ist R eine punktierte geschlossene Fliche vom Geschlecht g > 1.

Bewets. Aus der Existenz eines parabolischen Weges p(t) auf der
hyperbolischen Fliche R folgt bekanntlich %) :

(a) Es gibt eine Riemannsche Fliche §, einen Punkt p, e und
eine analytische Abbildung  von R in &, welche R topologisch auf
F* =8 — p, abbildet.

(b) Der Weg p*(t) = y(p(¢)) auf der Fliche F* = § — p, ist auf
den isolierten Randpunkt p, e& von F* = F — p, reduzibel.

Weil nach Voraussetzung p(¢f) ein Kommutatorweg auf der Fliche
R ist und weil p eine topologische Abbildung von R auf F* ist, so gilt
offenbar %6) :

(c) Der Weg p*(t) =y(p(t)) ist ein Kommutatorweg auf der
Fldche &*.

85) Siehe zum Beispiel [10], pag. 418—420 und [8] pag. 139—140.
86) Vergleiche hierzu § 3, Nr. 4, VII und Satz 6, § 3.
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Aus (b) und (c) folgert man aber leicht mit Hilfe von elementaren
Tatsachen der Topologie :

(d) & ist eine geschlossene Fliche.

Nach Voraussetzung ist R eine Fldche von hyperbolischem Typus.
Wegen (a) ist daher auch * = § — p, eine Fliche von hyperbolischem
Typus. Daraus und aus (d) folgt aber :

(e) Das Geschlecht von & ist > 1.

Aus (a), (d) und (e) folgt nun, daBl R in der Tat eine punktierte ge-
schlossene Fliche vom Geschlechte g > 1 im Sinne der Definition 1
ist. q.e.d.

Satz 3. Es sei R eine punktierte geschlossene Fliche vom Geschlecht
g > 1 und A eine nichtkonstante analytische Abbildung von R in sich.
Dann ist 4 sogar ein Automorphismus von R.

Beweis. 1. Nach Voraussetzung gibt es eine geschlossene Riemann-
sche Fliche §, vom Geschlechte g > 1, einen Punkt p, e, und
eine analytische Abbildung v von R in §,, welche R topologisch auf
&, — Do abbildet. Dann gilt :

(a) 4, =9 Ay ist eine analytische Abbildung von @, — p, in
sich.

Da §&, eine geschlossene Fliche vom Geschlechte g > 1 ist, so ist
&, — Po ein Gebiet von hyperbolischem Typus auf der geschlossenen
Fliche §,. Daher folgt aus (a) nach Satz 2, § 6 sofort: Es gibt einen
Punkt p; €&, derart, daB gilt

(b) Die Abbildung :
A*(p) = A,(p) fir peF, —po, A*(p) =20, €5,

ist eine analytische Abbildung von §, in sich.

Da nach Voraussetzung die Abbildung 4 nicht konstant ist, so ist
offenbar 4* eine nichtkonstante analytische Abbildung von {, in sich.
Daher ist A*({, eine (nicht leere) offene Punktmenge auf §,. Weil
aber , eine geschlossene Fliche ist, so ist die Punktmenge A*(§,) ¢ &,
zugleich abgeschlossen. Da aber §, zusammenhingend ist, so muf3 daher

A*@) =, (1)
sein. Aus (a), (b) und (1) folgt jetzt :

(c) Bs ist A*(p) = p, = p; dann und nur dann, wenn p = p,.
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2. Wir zeigen jetzt :

(d) A* ist ein Automorphismus von §{,.

Beweis fiir g > 2. A* ist eine nichtkonstante analytische Abbildung
der geschlossenen Fliche §&,, (g > 2), in sich. Also ist A* nach Satz 1
in der Tat ein Automorphismus von §,. gq.e.d.

Beweis fiir g = 1. Die komplexe Ebene £ : | { | <oco kann vermége
einer geeigneten Projektion p = m({) zur universellen Uberlagerungs-
fliche (E,n) von &, gemacht werden. Sei I, die Fundamentalgruppe
von (&,z). Dann hat bekanntlich jede Decktransformation S eI, die

Gestalt
8(0) = { + wg (2)

und Q = {wg| S el',} ist ein zweigliedriger Modul mit einer Basis
(w;, w,), deren Elemente linear unabhingig sind iiber dem Koérper der
reellen Zahlen. Es sei nun a* eine durch 4* induzierte analytische Ab-
bildung der Ebene £ : | { | <co insich und o* € €« der zu a* gehorige
Endomorphismus von I',. Dann gilt nach Satz 6’ a, § 3: a*(S({)) =
T(a*(C)), T = o*(S), also wegen (2):

a*({ + wg) = a*({) + wux(sy firalle Sel, .

Dieser Funktionalgleichung entnehmen wir sofort, daBl die Ableitung

gfa*(&‘) eine in der Ebene | { | <co regulidr-analytische doppeltperiodi-

sche Funktion ist und daher konstant sein muf. Folglich ist

a*({)=cl+d. (3)

Es sei nun ¢, e £, n({,) = p,- Dann folgt aus (c) sofort : Es ist a*()
= a*({,) mod. 2 dann und nur dann, wenn { = {, mod. 2. Daraus
und aus (3) ergibt sich: Es ist c¢x = 0 mod. 2 dann und nur dann,
wenn z = Omod. 2. Hieraus und aus (3) folgt nun fiir beliebige
(1, Lo eE: Es ist a*({,) =a*({,) mod. 2 dann und nur dann, wenn
{, = {;mod. 2. Dies bedeutet aber: Es ist A4*(p,) = A*(p,) dann

und nur dann, wenn p, = p,. Daraus und aus (1) folgt nun, daBl A* in
der Tat ein Automorphismus von &, ist. q.e.d.

3. Aus (b), (c) und (d) schlieBen wir jetzt, dal 4, ein Automorphismus

von &, — P, ist. Daher ist 4 = y'4,y ein Automorphismus von R.
Damit ist Satz 3 bewiesen.

III. Nach diesen vorbereitenden Betrachtungen wenden wir uns
nun zum Beweise von Satz VI. Es ist klar, dal ein Automorphismus
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einer Riemannschen Fliche R jeden nicht nullhomotopen geschlossenen
Weg von R auf einen ebensolchen Weg abbildet. Satz VI wird daher
bewiesen sein, wenn wir den folgenden Satz beweisen konnen :

Satz VI'. Es sei R eine Riemannsche Fliche mit diskretem Modul-
spektrum. (8,7) sei universelle Uberlagerungsfliche von R und I,
die Fundamentalgruppe von (8,s). I', sei nichtabelsch. Dann gilt:
Besteht die Endomorphismenklasse , einer analytischen Abbildung 4
von R in sich aus Isomorphismen von I, in sich, so ist 4 ein analytischer

Automorphismus von R.

Beweis. Es sei I'* die Kommutatorgruppe von I',. Da I, nach Vor-
aussetzung nichtabelsch ist, so ist I'* — I nicht leer. Wir unterscheiden
nun zwei Fille :

1. Fall. I'* enthidlt parabolische Elemente.

Dann ist R nach Satz 2 eine punktierte geschlossene Fliche vom Ge-
schlechte g > 1. Da €, nach Voraussetzung aus Isomorphismen von
I, in sich besteht, so kann die analytische Abbildung 4 von R in sich
gewill nicht konstant sein. Folglich ist A nach Satz 3 ein Automorphis-
mus von R. q.e.d.

2. Fall. I'* enthilt keine parabolischen Elemente.

Die nichtleere Menge I'™* — I enthilt dann lauter hyperbolische Ele-
mente. Weil R eine Fliche mit diskretem Modulspektrum ist, so gibt es
daher nach Satz 2b, § 4 ein Element

So EF* — I (1)
derart, da3
M[S] > M[8,]>0 firalle Sel*—1. (2)

Sei nun « € €,. Da « nach Voraussetzung ein Isomorphismus von I,
in sich ist und weil S, £ I ist, so ist auch

a(Sy) ~= I . (3)

Nun ist aber bekanntlich die Kommutatoruntergruppe I'™* eine voll-
invariante Untergruppe von I',. Daher folgt aus (1):

a(S,) eI™ . (4)
Aus (3) und (4) ergibt sich jetzt «(S,) e ™ — I. Daher ist nach (2):
M[a(80)] = M[S,]1>0 . (5)
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Andererseits gilt aber nach Lemma IIla:
Mo (So)] < M[S,] - (6)
Aus (5) und (6) folgt nun
M[(80)] = M[S,]>0 . (7)

Weil R eine Fliche mit diskretem Modulspektrum ist, so folgt jetzt aus
(7) nach Lemma IV, dal 4 in der Tat ein analytischer Automorphismus
von ‘R ist. Damit ist Satz VI' vollstindig bewiesen.

§ 19. Beweis von Satz VII

I. Fir den Beweis von Satz VII benotigen wir einige Begriffe und
Hilfssdatze aus Gruppentheorie und Topologie :

Definition 1. Es sei I' eine beliebige Gruppe und I'* ihre Kommu-
tatoruntergruppe. Dann verstehen wir unter dem Range Rg(I') den
in bekannter Weise definierten Rang der abelschen Faktorgruppe I'JI™*.

Definition 2. Der Rang der Fundamentalgruppe einer Riemannschen
Fliche heifle die Bettische Zahl der Fliche. ‘

Satz 15%°). Die Fundamentalgruppe einer offenen Riemannschen
Fliche ist stets eine freie Gruppe.

Satz 2%). Jede Untergruppe einer freien Gruppe ist selbst eine freie
Gruppe.

Satz 3%). Es seien I'; und I', freie Gruppen und es sei Rg(I) < oo.
Es gebe einen Homomorphismus « von I'; auf I',. Dann gilt :

a) Rg(l3) < Rg(I}).

b) Besteht der Kern von « nicht aus der Identitét von I'; allein, so ist
sogar Rg(I',) < Rg(I).

II. Nach diesen Vorbereitungen kommen wir nun zum

Beweis von Satz VII. Wir unterscheiden zwei Fille :
1. Fall. R sei eine geschlossene Fliche.

Da nach Voraussetzung der Typus von ‘R hyperbolisch ist, so ist R
in diesem Falle eine geschlossene Flache vom Geschlechte ¢g>2. Ist

57) Siehe zum Beispiel [9], pag. 354—358.
58) [15] pag. 161—183.
%) [11] § 5, pag. 276—277.
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nun die analytische Abbildung 4 von R in sich kein Automorphismus
von R, so ist daher 4 nach Satz 1, § 18 eine konstante Abbildung. Folg-
lich ist A® trivialerweise analytisch nullhomotop. gq.e. d.

2. Fall. R sei eine offene Fliche.

1. Sei (£,n) universelle Uberlagerungsfliche von R. Wir bezeichnen
die Fundamentalgruppe von (8,x) mit I';. Dann ist nach Voraus-
setzung 1 < b = Rg(I')) < co. Weil R offen ist, so gilt daher nach
Satz 1:

(a) I, ist eine freie Gruppe vom endlichen Range b > 1. Da R eine
hyperbolische Fliche endlichen Zusammenhanges ist, so gilt nach Satz C :

(b) R ist eine Fliche mit diskretem Modulspektrum.
2. Es sei jetzt « e ®,. Definieren wir

Pi= i(FO)7 i=1;2:°'-: (1)
so gilt :

(c¢) Die Abbildung « ist ein Homomorphismus der Gruppe
I'; auf die Gruppe I';,,, 1=20,1,2,...
Ferner gilt offenbar :
I'i,cI'n fur +1=0,1,2,... (2)
Da die I'; Untergruppen der freien Gruppe Iy sind, so gilt nach Satz 2:
(d) Die I';, (¢=0,1,2,...), sind freie Gruppen.

Nach Definition (1) ist o’ ein Homomorphismus von Iy auf I';; daher
folgt aus (a) und (d) nach Satz 3a:

Ryg(I') <b<oo fir ¢=0,1,2,... (3)
Hieraus und aus (c), (d) folgt wiederum nach Satz 3a:
Wir zeigen nun:

(e) Ist Rg(l;)>1, so besteht der Kern K, ¢ I'; des Homomorphis-
mus o von I'; auf I';,, nicht aus der Identitdt allein.

Beweis. Wegen Rg(I';) > 1 ist I'; — I nicht leer. Ferner sind nach
Voraussetzung alle Elemente von I, — I hyperbolische Decktrans-
formationen. Daraus und aus (b) folgt nach Satz 2b, § 4: Es gibt ein
Element
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derart, da
M[S] > M[S8,]>0 firalle Sel,—1. (6)

Da aber die analytische Abbildung 4 von R in sich kein Automorphismus
von R ist und weil M[S,]>0 ist, so folgt aus (b) nach Lemma IIla
und Lemma IV :

M[a(S)I<M[S8,] . (7)
Andererseits ist wegen (c) und (5) «(S8,) e I';,;, also wegen (2):
‘ x(S;) el’; . (8)
Aus (6), (7) und (8) schlieBen wir aber :
x(8;)=1. (9)

Aus (5) und (9) folgt nun unsere Behauptung (e). q.e.d.
Aus (¢), (d), (3) und (e) folgt jetzt nach Satz 3b:

(f) Ist Rg(I) > 1, soist Rg(I';,,)<Rg(Il}).

Aus (a), (4) und (f) schlielen wir nun: Rg([l},) = 0. Daraus und aus
(d) folgt aber, dal I, = {I} sein mufBl. Wegen (1) gilt daher:

() =1 firalle Sel,. (10)

3. Es sei jetzt a eine durch 4% induzierte analytische Abbildung von
L in sich; dann gilt:

n(a(f)) = 4%(=(0)) - (11)
Da nach Satz 7, § 3 o® € €,p, so folgt jetzt aus (10) nach Satz 6’ a, §3:
a(S8(¢))=a(¢) firalle Sel,. (12)

Es sei nun
foel, 7(lo) = Do €R , (13)

Da die Halbebene £ ein konvexes Gebiet ist, so ist offenbar (1 — ¢) a({)
4t {, eine (stetige) Abbildung von £ Xt in £¢°). Daraus und aus (12)

folgt :

8 4@ H=na((l—ta@) +tl), (ef, p=mn(l)eR
ist eine eindeutige und stetige Abbildung von R Xt in R. Ferner gilt
offenbar :

(h) Fir jedes feste ¢ et ist A(p,t) eine analytische Abbildung von
R in sich.

%0) { bedeute das Intervall 0 < ¢ < 1.
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Wir zeigen noch :
(i) Es ist A(p, 0) = A%(p), A(p, 1) = p, fir alle p eR.

In der Tat folgt aus (g) und (11): A(p, 0) = =(a(l)) = A%(=({))
= Ab(p); A(p,1) ==({,), also wegen (13): A(p,1l) =p,. q.e.d.
Aus (g), (h) und (i) folgt nun, daB die Abbildung A% von R in sich
analytisch nullhomotop ist ¢1). Damit ist Satz VII vollstéindig bewiesen.
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61) Es ist noch bemerkenswert, da3 bei der Deformation (g) der Punkt A(p, ¢) fir jedes
feste p € R eine analytische Bahnkurve auf R beschreibt.
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Uber die untere Grenze der Ordnung

n-stufig nichtkommutativer Gruppen
Von I. SziLrAr, Szeged (Ungarn)

In einer Arbeit!) hat L. Réde: die Stufenzahl » (= 0) der Nicht-
kommutativitdt fiir endliche Gruppen folgendermaflen definiert : Durch
die Stufenzahl n» = 0 sind die kommutativen Gruppen charakterisiert,
und fiir eine beliebige Gruppe & soll » um 1 grofer sein als das Maximum
der Stufenzahlen der echten Untergruppen von G. Beziiglich dieser
Stufenzahl will ich jetzt folgenden Satz beweisen :

1) L. Rédet, Das ,,schiefe Produkt‘ in der Gruppentheorie, Comment. Math. Helv. 20
(1947), 225—264.
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