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Uber das

Typenproblem Riemann'scher Flâchen
Von Albert Pflfger in Zurich

Herr H. L. Royden hat kurzlich ein sehr schônes Kriterium fur den
hyperbolisehen Typus einer Riemann'sehen Flache gegeben1). Um es an-
zudeuten, soll die Flache F polygonal zerlegt und der entstehende Zellen-
komplex mit K bezeichnet werden. Dieser bringt allerdings nur den topo-
logischen Charakter der Flache zum Ausdrack und ist daher fur das

Typenproblem als solcher nicht brauchbar. Es lâBt sich aber die konforme
Struktur lokal dadurch berûcksichtigen, daB den Kanten g\ des Kom-
plexes K gewisse positive Zahlen gK als Gewichte zugeordnet werden. Das
Royden'sche Kriterium lautet dann: Gibt es auf K eine l-Form

00

X1 Z xK o\ mit Z gKx2K < oo

i
deren Korand auf einer einzigen 2-Zeïïe den Wert 1 hat und sonst ilberall
verschurindet, so ist die Flache vom hyperbolisehen Typus.

Im AnschluB an diesen Satz wird im folgenden auch fur den parabo-
lischen Typus ein analoges Kriterium gegeben und gleichzeitig die Frage
untersucht, wann das Typenproblem mit Hilfe des Komplexes K und der
Gewichte g gelôst werden kann, die Kriterien also gleichzeitig notwendig
und hinreichend sind.

Die Méthode ist von derjenigen Roydens in einigen Punkten verschie-
den. Sie beruht auf der naheliegenden Idée, den Modul eines beliebigen
Ringgebietes môglichst genau nach oben und unten abzuschâtzen. Auf
Grund einer Zellenzerlegung des Ringgebietes und zulâssiger Kanten-
gewichte werden algebraische Analoga zum konformen Modul definiert,
nâmlieh ein algebraischer Modul und Komodul, die dann eine obère und
untere Schranke fur den Modul des Ringgebietes liefern. Entsprechend
wird fur einen zur Flache F gehôrigen Komplex K in Verbindung mit zu-
lâssigen Gewichten ein Typus und Kotypus definiert2), die dann ihrer-

H. L. Royden, Trans. Amer. Math. Soc. 73 (1952) p. 40—94, insbes. p. 81—92
2) Fiir den Begriff des Typus eines 2-dim. Komplexes mit den Kantengewichten 1 vgl.

auch Ch. Blanc, Comment. Math. Helv. 13 (1940/41), p. 54—67.
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seits notwendige bzw. hinreichende Kriterien fur den konformen Typus
der Mâche ergeben. Es kann also das Typenproblem der Riemann'schen
Flâchen in einem gewissen Sinne algebraisiert werden.

1. Die offene Riemann'sche Flâche F werde durch eine wachsende Folge
kompakter Teilflâchen Fo c F1 c c Fn c ausgeschôpft. Der
Rand Fn von Fn soll aus endlich vielen stûckweise analytischen Jordan-
kurven bestehen und von Fn lauter nicht-kompakte Flâchenstucke ab-
schneiden. Mn bezeichne denModuldes Ringgebietes (Fn ~ Fo ; F0,Fn)
(Fo, Fn). Er ist eine monoton wachsende Gebietsfunktion und es ist der
Grenzwert lim Mn M^ unabhângig von der gewàhlten Ausschôpfung
endlich oder unendlich. Im Falle Mw < oo oo) heiBt F vom hyper-
bolischen (parabolischen) Typus oder man sagt, es sei F positiv-(null-)be-
randetB).

Zur Abschâtzung des Moduls M eines beliebigen Ringgebietes (Fo, F)
nehmen wir irgendeine im Ringgebiet inklusive seinem Rand stetige und
stûckweise stetig differenzierbare Funktion u, die auf Fverschwindet und
auf FQ gleich 1 ist, sowie die in (Fo, F) harmonische Funktion H mit den
gleichen Randwerten wie u. Dann ist

M^^DiH) £D(u), (1, 1)

wenn D(u) das Dirichletintegral von u bezeichnet. (1,1) liefert eine untere
Schâtzung von M.

Wir betrachten nun im Ringgebiet (Fo, F) Difïerentiale co von erster
Ordnung, durch lokale Parameter z x + i y dargestellt in der Form
pdx -\- qdy, ihre konjugierten Difïerentiale co* — qdx + pdy, die
âuBern Produkte c^ X co2 (^i % ~ V% ^i) dxdy und âuBern Ableitun-

gen dco (qx — p dxdy. Es wird (c?^, co2) J m1 X co2* als
(ro,r)

inneres Produkt von co1 und co2 und die positive Quadratwurzel aus
(co, co) als die Norm || co || von œ definiert.

Wir setzen voraus, daB die co in (ro, F) inklusive Rand bis auf isolierte
Punkte stetig und stûckweise stetig differenzierbar sind. Die âuBern Ab-
leitungen dco sollen uberall in (Fo, F), wo sie definiert sind, verschwin-
den und J co ± 1 sein. Insbesondere ist cp M • dH* ein solches

Differential. Unter diesen Voraussetzungen ist

8) R. Nevanlinna, Ann. Acad. Sci. Fennicae Ser. A I Nr. 1 (1941).
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Denn die Gleichung M || q> ||2 folgt unmittelbar aus (1,1) und wegen
der Green'schenFormelist (<p,co-(p)=M(dH, co*-ç>*)=Jf • J H(co*-(p) 0

___ ro+r
unddaher || co ||2 || <p ||2 + || a> — cp ||2. (1, 1) liefert eine obère Schât-

zung des Modnls.

2, Wir wollen nun ein algebraisches Analogon zum Typus einer Rie-
mann'schen Flâche definieren. Es sei K ein zweidimensionaler orientier-
barer und unendlicher Zellenkomplex ; seine Ecken (O-Zellen) a0 bilden
eine unendliche Menge, ebenso die Kanten (1-Zellen) a1, welche beliebig,
aber fest orientiert sein sollen, und die Flàchen (2-Zellen) a2, die kohârent
orientiert seien. Wir betrachten unendliche Linearformen Xp E xK opK

in den Unbestimmten ovK mit reellen Koeffizienten, die wir auch als
2>-dim. Ketten auffassen. Fur zwei p-Formen Xp E xK apK und

oo

Yp EyKavK setzen wir XP(YP) ExKyK immer dann, wenn die
î

Reihe endlich ist oder absolut konvergiert. Dadurch wird Xp zu einer
p-Funktion der ^-Ketten Yp.

Rand und Korand einer Form Xp sollen wie iiblich definiert sein. Der
Rand dXp isb eine (p - 1)-Form mit dXp(ap~1) Xp(ôap~1) p 2,l;
der Korand ôXp ist eine (p+l)-Formmit ôXp(op+1)=Xp(dop+1), p=l, 0.

Fur irgend zwei Formen Xp und Yp+1 p 0, 1, gilt

dYp^(Xp) Yp^{ôXp), ôXp(Yp+1) Xp(dYp+1)

sobald Xp oder Yp+1 nur aus endlich vielen Gliedern besteht.
Es soll nun jeder Kante cr^ ein positives Gewicht gK zugeschrieben sein.

Jeder 1-Form X1 ExKosK sind dadurch zwei andere 1-Formen zu-
geordnet, nâmlich +X1 E gKxKdLK und *X1 Eg~x xK cr*. Wir
nennen *XX die zur Funktion X1 gehôrige Kofunktion ; dann ist X1 die
Kofunktion zu +X1. Wir werden also im folgenden eine 1-Form bald als

Funktion und bald als Kofunktion auffassen und wollen Funktionen mit
X1 und Kofunktionen mit X1 kennzeichnen. Fur zwei Funktionen X1 und
F1 definieren wir als inneres Produkt den Ausdruck

(wenn die Reihe endlich ist oder absolut konvergiert) und entsprechend

fur zwei Kofunktionen X1 und Y1 den Ausdruck
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Die positive Quadratwnrzel aus (Z1,^1) bzw. (X1, X1) ist die Norm
|| X11| von X1 bzw. die Norm || X1 || von X1. Die Gewichte gK spielen
die Rolle einer Metrik, die dem Komplex aufgeprâgt wurde. Wir sprechen
deshalb von dem metrischen Komplex (K, g).

Définition 1. Der metrische Komplex (K,g) ist vom hyperbolischen
Typus, wenn auf K eine Funktion mit endlicher Norm existiert, deren Rand
auf einer Ecke den Wert 1 hat und auf allen andern Ecken verschwindet.

Im andern Folle ist (K, g) vom parabolischen Typus.

Définition 1. Der metrische Komplex (K,g) ist vom hyperbolischen
Kotypus, wenn auf K eine Kofunktion mit endlicher Norm existiert, deren
Korand auf einer Flâche den Wert 1 und auf allen andern Flàchen den
Wert 0 hat. Im andern Falle ist {K, g) vom parabolischen Kotypus.

Bemerkung : Es lassen sich sehr leicht endliche Ketten A1 angeben, deren
Rand (Korand) in einer beliebigen Ecke (Flâche) den Wert 1, in einer
beliebigen andern Ecke (Flâche) den Wert — 1 hat und sonst uberall
verschwindet. Deshalb ist die Existenz einer Funktion (Kofunktion) von
der beschriebenen Art nicht von der Wahl der Ecke (Flâche), worin der
Rand (Korand) den Wert 1 hat, abhângig. Ebenso braucht man von der
Funktion (Kofunktion) neben der Endlichkeit der Norm lediglich voraus-
zusetzen, daB ihr Rand (Korand) auf einer endlichen Menge von Ecken
(Flâchen) einen von 0 verschiedenen Wert hat und sonst uberall
verschwindet.

3. Der konforme Modul eines Ringgebietes besitzt algebraische Analoga,
mit denen sich Typus und Kotypus eines metrischen Komplexes voll-
stândig charakterisieren lassen. Es sei k ein endlicher Teilkomplex von K,
d. h. eine endliche Menge von Flâchen samt ihren Kanten und Ecken.
Die innern Ecken von k sind jene a0, die nur mit Flâchen auf k inzidieren.
Die Randecken und Randkanten von k (kurz die Randelemente von k)
sind jene a0 und cr1 auf k, die auch an Flâchen auBerhalb k grenzen. Es
sollen nun die beiden endlichen Teilkomplexe k0 und k so beschafîen sein,
daB aile Ecken von k0 innere Ecken von k sind (wofiir k0 « k geschrieben

wird), und daB der Komplex der Flâchen (und deren Kanten und Ecken),
die nicht zu k (bzw. k0) gehôren, keine endliche Komponente besitzt.

kl bezeichnet die Kette E avK mit ovK e k0.

Die Flâchen, die zu k aber nicht zu k0 gehôren, erzeugen einen
endlichen Teilkomplex, dessen Randelemente in zwei Klassen geteilt sind,
nàmlich die Randelemente von k0 — ,,innere'' Randelemente genannt —

und jene von k — die ,,âuBern" Randelemente. Wir nennen diesen Teil-
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komplex mit der angegebenen KJassifizierung seiner Randelemente in
,,innere" und ,,âuBere" einen Ring und bezeichnen ihn mit (k0, k). Diesem
Ring auf (K, g) ordnen wir zwei Zahlen zu, einen Modulund einen Komodul.

(3.1) Es sei (X1) die Klasse der Funktionen auf K mit dX1(k°0) 1

und dX1 0 auf den innern Ecken von (k0, k). Wir nennen die GrôBe

/* Min WX11|2 (3.1)

den Modul des Ringes (k0, k).

(3,1) Es sei (X1) die Klasse der Kofunktionen auf if mit ô X1^) 1

und ô X1 0 auf den Flâchen von (k0, k). Die Grôfie

]l Min HZ11|2 (3.T)
d1)

nennen wir den Komodul des Ringes (k0, &). Die Extremalen dieser

Variationsprobleme werden mit h1 bzw. h1 bezeichnet und kônnen folgen-
dermaBen charakterisiert werden :

(3.2) Die O-Form h° nehme in den a0 auf k0 einen konstanten Wert m
an, verschwinde auBerhalb k und in seinen Randecken und genuge in den
innern a0 von (&0, k) der Bedingung d+ôh° O4). Die Konstante m
sei ferner so gewâhlt, daB d+ôh°(k°0) 1 wird5). Dann ist +ôh° h1 die
Extremale des ersten Variationsproblems und somit

||^||2 ^ m. (3.2)

Beweis: Es ist h1 cfX1) und (X1 - h\ h1) "hx{X1 - h1)

(^(X1 - A1) ^(aX1 — 3A1) m [aXx(^) - dh1^] 0

also || X1||2 II A1 II2 + II X1 ~~hl\\2 und somit ||^i||2=:^. Aus

* &(*&) dh1^0) folgt schlieBlich m /i.

(3.2) Die 2-Form h2 nehme auf den a2 in k0 einen konstanten Wert m
an, verschwinde auf den Flâchen auBerhalb k und erfûlle auf den a2

in (jfco, k) die Bedingung <5 *3A2 0. Die Konstante m sei noch so

gewâhlt, daB ô *dh2(k%) 1 ist. Dann ist \ *dh2 die Extremale des

zweiten Variationsproblems und somit

||Â1||2 ^ m. (3.2)

Der Beweis geht analog wie oben.

*) Fiir die Lôsbarkeit dièses Randwertproblems vgl. B. Eckmann, Comment. Math.
Helv. 17 (1944/45), p. 240—255.

*) Dies ist immer môglich, da \\+ôh°\\2 =:ni'd+ôho(k§) fur m?60 nicht versohwindet.
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(3.3) Wir setzen H° h0//a und H1 +ôH°. H° nimmt in den <x°

auf Jc0 den Wert 1 an und verschwindet auBerhalb k und in seinen Rand-
ecken.
Esist \\ H1 \\* p-1.

(3.3) Analoges gilt fur H2 h2/]l.

(3.4) Ist der Ring (k'o, kr) im Ring (ko,k) enthalten, d. h. liegen die
Flâchen von k0 in k'o und die Flâchen von k' in k, so ist /u' ^ ju, und
^' fg~w. Beweis mit Hilfe der Minimaleigenschafb.

Es sei nun {kn}^Q eine Aussehôpfung von K durch endliche Teil-
komplexe von der Art, wie sie zu Beginn von Nr. 3 beschrieben wurden,
mit kQ « kx «... « kn « ^n bzw. ^n seien die Moduln bzw. die Ko-
moduln der Ringe (k0, kn), n 1, 2 Wegen (3.4) ist unabhângig
von der gewâhlten Aussehôpfung lim ^n < oo oder oo bzw. lim Jin < oo

oder oo und es gilt

Satz 1: Der metrische Komplex (K, g) ist dann und nur dann vom
hyperbolischen Typus (Kotypus), wenn lim^n < oo(lim//n < oo) ist.

Beweis : 1. Es sei K vom hyperbolischen Typus, es existiere also eine
Funktion X1 mit || X1 || < oo, dX1^) 1 und

Wir wàhlen a[ in k0. Dann ist wegen (3.1) /un ^ || X11|2, also

lim fin < oo

2. Es sei nun umgekehrt lim jbin — ^<oo. A^ sei die Extremale fur den
Ring (&0, kn) (vgl. 3.2)). Dann gilt || h\ ||2 I p und (^-AJ, *i)=0 fur
m > n, da A^ Konkurrenzfunktion zu A^ ist. Daraus folgt || A^ — A* ||2

II *m II2 — II K II2 und somit lim II hm — K II °- Es existiert also,
w,n->oo

wie leicht gezeigt werden kann, eine Funktion A1 von endlicher Norm,
wogegen die A^ auf jeder Kante konvergieren ; also ist dhx{kl) 1 und
dh1 0 in jeder Ecke auBerhalb k0. GemaB der Bemerkung am SchluB

von Nr. 2 ist also (K, g) vom hyperbolischen Typus. Fur den Kotypus
geht der Beweis analog.

Bemerkung: Bezeichnen wir den Modul von {kv_Xi kv) mit Ay, so gilt
die Ungleichung

K+ *2+ •'• + Aw^/*n, (3.5)

deren funktionentheoretisohes Analogon unter dem Namen Superadditi-
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vitât des Moduls bekannt ist. GemâB (3.1) ist nâmlich die Extremale
A* fur (ko,kn) Konkurrenzfunktion fur die zu (hv_Xikv) gehôrigen
Extremalen, v 1, 2, n. Ist lv die Anzahl der Kanten eines 1-Ko-
zyklus im Ring (&„_!,&„), der die innern Randelemente von den auBern
trennt, und nehmen wir an, daB die Gewichte im metrischen Komplex
(K, g) aile gleich 1 sind, so findet man leicht die Ungleichung Z"1 ^ Av.

In diesem Falle ist also (K,g) sicher vom parabolisehen Typus, wenn
00

El'1 divergiert. Dies ist das algebraische Analogon zum Kriterium von
i
Wittich-Nevanlinna6) fur den parabolisehen Typus einer Riemann'schen
Flâche. Analoges gilt fur den Komodul und den Kotypus.

4. Zwischen den algebraischen Moduln eines Ringes auf {K, g) und dem
konformen Modul des entsprechenden Ringgebietes (Nr. 1) soll nun die
Verbindung hergestellt werden. Wir nennen die Kreisscheibe | z | ^ 1

mit endlich vielen Randpunkten eiv*,k= 1,2, w ein Normalpoly-
gon P. Die eiq>K sind seine Ecken, die Kreisbogen SK= {eiq>, (pK ^<p ^<pK+1},
k 1,2, ,n, ç?w+1 9?j seine Seiten. Wir geben uns auf den 8K ein
réelles Differential

wo bK(<p) in cpK^<p^<pK+1

stetig ist und die Normierungsbedingung J pK 1 erfullt. Durch n

beliebige réelle Zahlen ^, xn und die Festsetzung Ç — xK fiK auf
8K9K 1,2, n wird auf der ganzen Peripherie | z \ 1 mit Aus-
nahme der Eckpunkte ein stetiges Differential | definiert. Es ist

J | xK und f 1 0,

sobald die Summe der xx, xn verschwindet. Daher existiert in P
eine harmonische Funktion u mit du=Ç in den innern Punkten der Seiten
und endlichem Dirichlet-Integral D (u). Es gibt ferner eine nur vom Nor-
malpolygon P und den Differentialen fiK abhàngige Zahl 0(P, {}), so daB

D(u) ^QZx\ (4.1)
i

ist fur jede Wahl der reellen Zahlen xx xn, deren Summe
verschwindet7).

Unter Polygon n auf der Riemann'sehen Flâche F wollen wir das topo-

6) H. Wittich, Math. Z. 45 (1939). R. Nevanlinna, Ann. Acad. Sci. Fennicae. Ser. A I
Nr. 54 (1940).

7) Fur diesen und den nâchsten Abschnitt vgl. auch H. L. Royden loc. citât.
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logische Bild eines Normalpolygons P verstehen, das vermittels einer
Abbildung erhalten wird, die auf P mit eventueller Ausnahme der Ecken
konform ist. Die Bilder der Seiten und Ecken von P heiBen entsprechend
Seiten und Ecken von n. Durch solche Polygone soll mm die Flâche F
polygonal zerlegt sein und der entstehende Zellenkomplex mit K be-
zeichnet werden. Auf jeder Kante g\ wâhlen wir ein réelles Differential
PK, das bei der Verpflanzung auf die Normalpolygone, die den beiden an-
grenze»den g2 entsprechen, von der oben beschriebenen Art sein soll.
Dann gibt es zu jedem g2 ein positives Gewicht G3 (/?) von der folgenden
Art: Ist X1 E xkg\ irgendeine 1-Form auf K und ist ôX1(a2J) 0,
so existiert auf g2, eine harmonische Funktion u3 mit a)1=du] xlc BK

J J J J Kg I Kj
auf den Seiten gxk von g2 und es ist gemaB (4.1)

\\œ,\\* D(u,) ^G3(p) Zxl (4.2)

Sind g2 und g2 die der Seite g\ angrenzenden Flâchen, so nennen wir

9K Gt + G, (4-3)

ein zulâssiges Gewicht fur die Seite g\ und die entsprechende Metrik (g)
eine zulâssige Metrik in bezug auf die Riemann'sche Flache.

Einem Ring (k0, k) auf K entspricht auf der Riemann'schen Flache F
ein Ringgebiet (FQ, F), dessen innere Kontur Fo von den inneren Rand-
elementen des Ringes (k0, k) gebildet wird und entsprechend die âuBere

Kontur F durch die âuBeren Randelemente von (k0, k). Es gilt
Satz 2. Zwischen dent Modul ju und dem Komodul \i eines Ringes

(kOi k) auf dem metrischen Komplex (K, g) und dem Modul M des entspre-
chenden Ringgebietes (Fo, F) besteht die Ungleichung

fj,^M<Ji,. (4.4)

Beweis: 1. Es sei h1 die dem Ring (k0, k) entsprechende extremale

Kofunktion im Variationsproblem (3.1). ô h1 verschwindet auf jedem
g] in (kQ, k) und daher existiert auf diesen g) je ein harmonisches Differential

o)j dur Wegen der Randbedingungen ist col co} xK flK lângs
der Kante g\ wenn co% und œ3- zu den mit gxk inzidenten Flachen gehôren.
Die coj schlieBen sich also zu einem einzigen Differential co zusammen, das

iiberall im Ringgebiet (Fo, F) mit eventueller Ausnahme der Ecken stetig
und stuckweise stetig differenzierbar ist. Wegen J co xK ist J œ 1

und abgesehen von den Ecken und Kanten ist iiberall im Ringgebiet

dœ 0. GemàB (l.T) ist daher M ^ || co ||2. Berûcksichtigen wir nun

23 Commentarii Mathematici Helvetici



fur jedes d^ in (kQ, Je) die Ungleichung (4.2), so folgt wegen (4.3)

0) iKj) ' (K)

wo j und k die Indices der Flâchen und Kanten auf (ko, k) durchlaufen,
Ki dagegen die Indices der Kanten auf o^. Daraus ergibt sich M ^~/û.

2. Es sei jetzt H° die in (3.3) definierte O-Form in bezug auf den Ring
(^, k) und H1 +ôH°. Wegen ô *HX 0 auf allen a2 des Ringes ge-
hôrt zu dieser Funktion *2ï1 ZyKaiK in jedem solchen rf eiiîe har-
monische Funktion uf, die am Rande noch stetig ist. Lângs der Kante a^,
an welche die Flâche <f\ und o| angrenzen, ist du{ dui yKpK. Die

ui sind bis auf eine additive Konstante eindeutig bestimmt. Wegen
J dui a;^ langs jeder Randkante von o^ kônnen dièse additiven Kon-

stanten so bestimmt werden, daB ui in den Ecken auf <?• mit H° iiberein-
stimmt. Daher schlieBen sich die uj zu einer einzigen in (Fo, F) inklusive
Rand stetigen und stuckweise stetig differenzierbaren Funktion u zu-
sammen, die auf Fo den Wert 1 annimmt und auf F verschwindet. Es ist
also wegen (1.1) D(u) ^ Jf"1. Analog wie oben zeigt man, daB D(u)

l^2 _ y jjx ||2 __ — un(j (ja^j. ^ ^ Jf ist.

6. Nachdem nun die Hauptungleichung (4.4) bewiesen ist, schôpfen
wir den metrischen Komplex (K, g) wie in Nr. 3 durch eine wachsende

Folge von Teilkomplexen kn aus und in Verbindung mit Nr. 1 und Satz 1

folgt aus (4.4)

Satz 3 (Hauptsatz) : Es sei die Riemann'sche Floche F durch Polygone n
polygonal zerlegt und der entstehende Zellenkomplex mit K bezeichnet. Auf
den Kanten von K sei gemaft Nr. 4 ein Differential /S und eine zulassige
Metrik (g) gewahlt. Ist dann der metrische Komplex (K, g) vom parabolischen

Typus, so ist auch die Riemann'sche Flâche F vom parabolischen
Typus. Ist dagegen (K, g) vom hyperbolischen Kotypus, so ist F vom
hyperbolischen Typus*).

Es lassen sich leicht metrische Komplexe angeben, wo limian < <x>,

aber lim Jin oo ist. In einem solchen Fall kann das Typenproblem fur
8) Dièses Kriterium fur den hyperbolisehen Fall ist identisch mit dem in der Einleitung

erwâhnten Résultat von Royden, wenngleich zu sagen ist, dafî er sein Kriterium auch fur
Zerlegungen in gewisse nichtkompakte Poygone bewiesen hat. Es ist leicht die vorliegende
Méthode auch auf diesen Fall auszudehnen, wenn es sich um den hyperbolischen Typus
handelt, dagegen besteht im Falle des parabolischen Typus eine grundsâtzliche Schwierig-
keit, da von einer ,,uneigentlichen" Ecke, die einem logarithmischen Windungspunkt ent-
spricht, unendlieh viele Kanten ausgehen und so der Rand von X1 dort nicht defîniert wâre.
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die Mâche F mit Hilfe von (K, g) nicht gelôst werden und wir bezeiehnen
die vorgenommene Polyederzerlegung von F und Wahl des Differentials fi
als ,,ungeeignet". Dagegen nennen wir eine Polyederzerlegung und eine
Wahl von /? ,,geeigneti(, wenn Typus und Kotypus eines zugehôrigen me-
trischen Komplexes tibereinstimmen.

Die Frage, wann Typus und Kotypus eines metrischen Komplexes
tibereinstimmen, soll hier nicht direkt untersucht werden, sondern eine
mehr funktionentheoretische Bedingung hiefur gegeben werden. Wir be-

trachten zum gegebenen Zellenkomplex K einen dualen Komplex JST,

bezeichnen die betrefïenden Flâchen, Kanten und Ecken mit o|, or*

und a°9, die den o^, o\ und o^ aus K eindeutig entsprechen. Die

zulassigen Gewichte in K in bezug auf die Riemann'sche Flâche F
bezeichnen wir mit gK. Sind X1 und X1 entsprechende 1-Linearformen in
KxrndK, d. h. ist Zx(4) X1^) fur aile *, so ist

ô X1^) dX^o") und dX1{a\) ô ^
Besteht nun zwischen den zulassigen Gewichten in K und K die Bezie-

hung g'1 =~gK, so ist der Typus (Kotypus) von (K, g) gleich dem

Kotypus (Typus) von (K ,~g). Satz 3 kann aber auf beide Zerlegungen K und

K angewendet werden und daher gilt

Satz 4: Ist K eine polygonale Zerlegung von F mit den zulassigen Ge-

wichten gK und existiert eine duale Zerlegung K mit g'1 als zulassigen
Gewichten, so stimmen Typus und Kotypus von (K, g) mit dem Typus von F
ûberein. F ist also dann und nur dann vom parabolischen (hyperbolischen)

Typus, wenn (K, g) vom parabolischen (hyperbolischen) Typus ist.

Ein wichtiger Spezialfall liegt vor, wenn aile Gewichte gK einander

gleich gewâhlt werden kônnen. Wir sprechen dann von einer ,,regularenct

Polyederzerlegung. Es ist offenbar fur den Typus und Kotypus von
(K, g) gleichgultig, welcher Wert diesem Gewicht gegeben wird. Dièses

soll deshalb gleich 1 gewâhlt und der zugehôrige metrische Komplex mit
(K, 1) bezeichnet werden.

Denken wir uns z. B. die Riemann'sche Flâche gegeben als Ûberlage-

rungsflâche der komplexen Ebene mit lauter algebraischen Windungs-

punkten, die ûber endlich vielen Grundpunkten gelegen sind. Wird die

Ebene lângs einer stûckweise analytischen Kurve durch dièse Grund-

punkte zerschnitten, so entsteht in bekannterweise eine polygonale
Zerlegung der Riemann'schen Flâche. Dies ist eine regulâre Zerlegung und es

ist Satz 3 mit (K, 1) anwendbar. Sind uberdies die Verzweigungsord-
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nungen aile unterhalb einer festen Schranke, so existiert eine duale Zer-
legung, die auch regulàr ist. Der Typus der Flâche stimmt in diesem Falle
mit dem Typus von (K, 1) uberein.

6, Geben wir nun in der Ebene ein Ringgebiet, das aus lauter kon-
gruenten Polygonen zusammengesetzt ist. Die Kanten haben aile das-
selbe Gewicht g. Der algebraische Modul und Komodul des betreffenden
Ringes in bezug auf das Gewicht 1 sei mit ju,1 und 7*1 bezeichnet. Dann
gilt fur den Modul des gegebenen Ringgebietes die Ungleichung

^^M<gjtl. (6.1)

Abgesehen von der GrôBe g kônnen also mit rein algebraischen Methoden
fur den Modul M obère und untere Schranken gefunden werden.

Mit (6.1) soll nun eine notwendige und hinreichende Bedingung an-
gegeben werden, damit eine beschrânkte und abgeschlossene Punkt-
menge E in der Ebene von logarithmischer Kapazitât 0 sei. Zu diesem
Zweck wâhlen wir ein Quadrat Q, in dessen Innerem E enthalten ist und
bezeichnen das ÀuBere von Q mit Q1. Q wird in 4n kongruente Quadrate qn

eingeteilt. Dièse bilden zusammen mit Qx eine Zellenzerlegung der kom-
plexen Ebene. k0 bezeichnet den von Qx erzeugten Teilkomplex, Qx und
jene qn, die mit E punktfremd sind, erzeugen den Teilkomplex kn und ^
sei der Modul des Ringes (&o,&J in bezug auf das Kantengewicht 1.

Dann gilt der Satz: E ist dann nur dann von logarithmischer Kapazitât
null, wenn lim/4 oo ist9). Ist nâmlich der Mn Modul des zu (£q, kn)

gehôrigen Ringgebietes, so ist wegen (6.1) y^n ^g Mn\ aus /4 ~> °°
folgt Mn -> oo (g ist von der GrôBe der Quadrate unabhângig) und E
ist von der Kapazitât 0. Wir betrachten nun die duale Zellenzerlegung
zur gegebenen und den Ring, der von den dualen Quadraten gebildet
wird, die zu den innern Ecken von (k0, kn) gehôren. Der zugehôrige
Komodul ist gleich //,* und demnach gilt fur den Modul M'n des entspre-
ehenden Ringgebietes M'n f£ g /4. Mit M'n strebt also auch fi]

Unendlich, womit der Satz bewiesen ist.

Eingegangen den 15. Juni 1953

9) Betr. hinreichende Kriterien fur Kapazitât 0 (bzw. > 0) vgl. R. Nevanlinna loc. cit.
bzw. H. L. Royden loc. cit.
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