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Uber das

Typenproblem Riemann’scher Flichen

Von ALBERT PFrLUGER in Ziirich

Herr H. L. Royden hat kiirzlich ein sehr schones Kriterium fiir den
hyperbolischen Typus einer Riemann’schen Fliche gegeben!). Um es an-
zudeuten, soll die Fliche F polygonal zerlegt und der entstehende Zellen-
komplex mit K bezeichnet werden. Dieser bringt allerdings nur den topo-
logischen Charakter der Fliche zum Ausdruck und ist daher fiir das
Typenproblem als solcher nicht brauchbar. Es 1a8t sich aber die konforme
Struktur lokal dadurch beriicksichtigen, dal den Kanten o) des Kom-
plexes K gewisse positive Zahlen g, als Gewichte zugeordnet werden. Das
Royden’sche Kriterium lautet dann: Gibt es auf K eine 1-Form

=]
1 1 ¥ 2
Xl =2z,0, mit Xg, %, < oo,
1

deren Korand auf einer einzigen 2-Zelle den Wert 1 hat und sonst iiberall
verschwindet, so ist die Fliche vom hyperbolischen Typus.

Im Anschlu an diesen Satz wird im folgenden auch fiir den parabo-
lischen Typus ein analoges Kriterium gegeben und gleichzeitig die Frage
untersucht, wann das Typenproblem mit Hilfe des Komplexes K und der
Gewichte g gelost werden kann, die Kriterien also gleichzeitig notwendig
und hinreichend sind.

Die Methode ist von derjenigen Roydens in einigen Punkten verschie-
den. Sie beruht auf der naheliegenden Idee, den Modul eines beliebigen
Ringgebietes moglichst genau nach oben und unten abzuschitzen. Auf
Grund einer Zellenzerlegung des Ringgebietes und zuldssiger Kanten-
gewichte werden algebraische Analoga zum konformen Modul definiert,
namlich ein algebraischer Modul und Komodul, die dann eine obere und
untere Schranke fiir den Modul des Ringgebietes liefern. Entsprechend
wird fiir einen zur Fliche F' gehorigen Komplex K in Verbindung mit zu-
lassigen Gewichten ein Typus und Kotypus definiert?), die dann ihrer-

1) H. L. Royden, Trans. Amer. Math. Soc. 73 (1952) p. 40—94, insbes. p. 81—92
2) Fiir den Begriff des Typus eines 2-dim. Komplexes mit den Kantengewichten 1 vgl.
auch Ch. Blanc, Comment. Math. Helv. 13 (1940/41), p. 54—67.
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seits notwendige bzw. hinreichende Kriterien fiir den konformen Typus
der Fliche ergeben. Es kann also das Typenproblem der Riemann’schen
Flidchen in einem gewissen Sinne algebraisiert werden.

1. Die offene Riemann’sche Fliche F werde durch eine wachsende Folge
kompakter Teilflichen Fy ¢ F, ¢ ... ¢ F, ¢ ... ausgeschopft. Der
Rand I', von F,, soll aus endlich vielen stiickweise analytischen Jordan-
kurven bestehen und von F, lauter nicht-kompakte Flichenstiicke ab-

schneiden. M, bezeichne den Modul des Ringgebietes (F, — 1?—’0; r,r,) =
(s, I',). Er ist eine monoton wachsende Gebietsfunktion und es ist der
Grenzwert lim M, = M unabhingig von der gewihlten Ausschopfung
endlich oder unendlich. Im Falle M _ < oo (= o) heit F vom hyper-
bolischen (parabolischen) Typus oder man sagt, es sei F positiv-(null-)be-
randet?).

Zur Abschitzung des Moduls M eines beliebigen Ringgebietes (I}, I")
nehmen wir irgendeine im Ringgebiet inklusive seinem Rand stetige und
stiickweise stetig differenzierbare Funktion », die auf I" verschwindet und
auf I gleich 1 ist, sowie die in (I}, I') harmonische Funktion H mit den
gleichen Randwerten wie ». Dann ist

M-t = D(H) = D(u), (1, 1)

wenn D (u) das Dirichletintegral von « bezeichnet. (1, 1) liefert eine untere
Schéitzung von M.

Wir betrachten nun im Ringgebiet (I}, I') Differentiale w von erster
Ordnung, durch lokale Parameter z = x + vy dargestellt in der Form
pdx + qdy, ihre konjugierten Differentiale w* = — qdx + pdy, die
duBern Produkte w; X w, = (p; @2 — P2 ¢;) dzdy und dullern Ableitun-
gen do = (¢, — p,) dedy. Es wird (o, w,) = (pr) w; X w,* als
inneres Produkt von o, und w, und die positive Quadratwurzel aus
(w, ) als die Norm || w || von w definiert.

Wir setzen voraus, da8 die w in (I, I') inklusive Rand bis auf isolierte
Punkte stetig und stiickweise stetig differenzierbar sind. Die duBlern Ab-
leitungen dw sollen iiberall in (I, I'), wo sie definiert sind, verschwin-
den und f w = -+ 1 sein. Insbesondere ist ¢ = M -dH* ein solches

leferentla.l Unter diesen Voraussetzungen ist

M=|gl=]|w]?. (1, 1)

8) R. Nevanlinna, Ann. Acad. Sci. Fennicae Ser. A I Nr. 1 (1941).
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Denn die Gleichung M = || ¢ ||2 folgt unmittelbar aus (1,1) und wegen

der Green’schen Formelist (p,w—¢)=M (dH , o*- (p*)zM}f IH (w—@)=0
ot

und daher || o ||2=||@||2+ || @ — @ ||2. (1, 1) liefert eine obere Schiit-
zung des Moduls.

2. Wir wollen nun ein algebraisches Analogon zum Typus einer Rie-
mann’schen Fliche definieren. Es sei K ein zweidimensionaler orientier-
barer und unendlicher Zellenkomplex ; seine Ecken (0-Zellen) ¢° bilden
eine unendliche Menge, ebenso die Kanten (1-Zellen) o', welche beliebig,
aber fest orientiert sein sollen, und die Flichen (2-Zellen) 62, die kohédrent
orientiert seien. Wir betrachten unendliche Linearformen X? = Xz, of
in den Unbestimmten of mit reellen Koeffizienten, die wir auch als
p-dim. Ketten auffassen. Fiir zwei p-Formen X? =Xz, 067 und

Y? =Xy, o setzen wir X?(Y?)=22z,y, immer dann, wenn die
1

Reihe endlich ist oder absolut konvergiert. Dadurch wird X? zu einer
p-Funktion der p-Ketten Y».

Rand und Korand einer Form X? sollen wie iiblich definiert sein. Der
Rand d0X? ist eine (p — 1)-Form mit 0X?(0?-1) = XP(do? ) p = 2,1;
der Korand é X? ist eine (p+1)-Form mit § X? (¢?+1)=XP? (9o?*), p=1, 0.

Fiir irgend zwei Formen X? und Y?+1p = 0,1, gilt

oYP+1(XP) = YP+1(§ XP), & XP(YP+l) = XP(3YP+l),

sobald X? oder Y?*+! nur aus endlich vielen Gliedern besteht.

Es soll nun jeder Kante . ein positives Gewicht g, zugeschrieben sein.
Jeder 1-Form X! = XYz, o, sind dadurch zwei andere 1-Formen zu-
geordnet, nimlich +X!'=Xg, 2z, 0. und *X'=Xg 'z, o.. Wir
nennen *X! die zur Funktion X* gehorige Kofunktion; dann ist X! die
Kofunktion zu *X'. Wir werden also im folgenden eine 1-Form bald als
Funktion und bald als Kofunktion auffassen und wollen Funktionen mit

X1 und Kofunktionen mit X? kennzeichnen. Fiir zwei Funktionen X! und
Y1 definieren wir als inneres Produkt den Ausdruck

(Xla Yl) = Xl(*Yl) = Egl—c_l T Y
1

(wenn die Reihe endlich ist oder absolut konvergiert) und entsprechend
fir zwei Kofunktionen X! und Y?! den Ausdruck

(X1, YY) = +XY(YY) = Zg, 2 Yy -
1
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Die positive Quadratwurzel aus (X!, X!) bzw. (fl, )El) ist die Norm
|| X*|| von X! bzw. die Norm || X!|| von X!. Die Gewichte g, Spielen

die Rolle einer Metrik, die dem Komplex aufgepriigt wurde. Wir sprechen
deshalb von dem metrischen Komplex (K, g).

Definition 1. Der metrische Komplex (K, g) ist vom hyperbolischen
Typus, wenn auf K eine Funktion mit endlicher Norm existiert, deren Rand
auf einer Ecke den Wert 1 hat und auf allen andern Ecken verschwindet.

Im andern Falle ist (K, g) vom parabolischen Typus.

Definition 1. Der metrische Komplex (K ,g) ist vom hyperbolischen
Kotypus, wenn auf K eine Kofunktion mit endlicher Norm existiert, deren
Korand auf einer Fliche den Wert 1 und auf allen andern Flichen den
Wert O hat. Im andern Falle ist (K, g) vom parabolischen Kotypus.

Bemerkung : Es lassen sich sehr leicht endliche Ketten 4! angeben, deren
Rand (Korand) in einer beliebigen Ecke (Fliche) den Wert 1, in einer
beliebigen andern Ecke (Fliche) den Wert — 1 hat und sonst iiberall
verschwindet. Deshalb ist die Existenz einer Funktion (Kofunktion) von
der beschriebenen Art nicht von der Wahl der Ecke (Flidche), worin der
Rand (Korand) den Wert 1 hat, abhéingig. Ebenso braucht man von der
Funktion (Kofunktion) neben der Endlichkeit der Norm lediglich voraus-
zusetzen, daf ihr Rand (Korand) auf einer endlichen Menge von Ecken
(Flichen) einen von 0 verschiedenen Wert hat und sonst iiberall ver-
schwindet.

3. Der konforme Modul eines Ringgebietes besitzt algebraische Analoga,
mit denen sich Typus und Kotypus eines metrischen Komplexes voll-
stindig charakterisieren lassen. Es sei k ein endlicher Teilkomplex von K,
d. h. eine endliche Menge von Flichen samt ihren Kanten und Ecken.
Die innern Ecken von k sind jene ¢°, die nur mit Flichen auf k inzidieren.
Die Randecken und Randkanten von k (kurz die Randelemente von k)
sind jene ¢° und ¢! auf k, die auch an Flichen auBlerhalb k grenzen. Es
sollen nun die beiden endlichen Teilkomplexe k, und k so beschaffen sein,
daB alle Ecken von k, innere Ecken von k sind (wofiir %, «k geschrieben
wird), und daB der Komplex der Flichen (und deren Kanten und Ecken),
die nicht zu k (bzw. k,) gehoren, keine endliche Komponente besitzt.
k? bezeichnet die Kette X o% mit of e k.

Die Flichen, die zu %k aber nicht zu k, gehoren, erzeugen einen end-
lichen Teilkomplex, dessen Randelemente in zwei Klassen geteilt sind,
nidmlich die Randelemente von k, — ,,innere’* Randelemente genannt —
und jene von k — die ,,iuBern Randelemente. Wir nennen diesen Teil-
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komplex mit der angegebenen Klassifizierung seiner Randelemente in
,,innere‘‘ und ,,4uflere‘‘ einen Ring und bezeichnen ihn mit (k,, k). Diesem
Ring auf (K, g) ordnen wir zwei Zahlen zu, einen Modul und einen Komodul.

(3.1) Es sei (X1!) die Klasse der Funktionen auf K mit 9X(k)) = 1
und 0X! = 0 auf den innern Ecken von (k,, k). Wir nennen die Grole

pu = Min || X* |2 (3.1)
x
den Modul des Ringes (k,, k).

(3.1) Es sei (X?) die Klasse der Kofunktionen auf K mit 6 X The) =1
und 6 X! = 0 auf den Fldchen von (k,, k). Die Grofle
# = Min || X1 || | (8.1)
@y
nennen wir den Komodul des Ringes (k,, k). Die Extremalen dieser
Variationsprobleme werden mit A bzw. k! bezeichnet und kénnen folgen-
dermaflen charakterisiert werden:

(3.2) Die 0-Form A° nehme in den ¢° auf %k, einen konstanten Wert m
an, verschwinde auflerhalb t und in seinen Randecken und geniige in den
innern ¢° von (k,, k) der Bedingung 0+6A° = 0*). Die Konstante m
sei ferner so gewéhlt, dal 9+6R0(k)) = 1 wird®). Dannist +6A° = h! die
Extremale des ersten Variationsproblems und somit

A2 =p=m. (3.2)
Beweis: KEs ist A'e(X') und (X! — Al Al) = *RL(X! — R) =
dh0 (X1 — hl) = hO(0X! — k) = m [0 X (K)) — Oh'(K))] = O,
also || X||2=||A'||2+ || X* —A!||> und somit || A'||2= u. Aus
|| At [|2 = h'(*h') = Oh'(hO) folgt schlieBlich m = pu.
(3._5) Die 2-Form k2 nehme auf den o2 in k, einen konstanten Wert m
an, verschwinde auf den Flichen auBerhalb %k und erfiille auf den o2
in (ky, k) die Bedingung 4 *0h? = 0. Die Konstante m sei noch so ge-

wiihlt, daB 6 *oh2(k?) = 1 ist. Dann ist h, = *0h? die Extremale des
zweiten Variationsproblems und somit

IBp=p=m. (3.2)

Der Beweis geht analog wie oben.

%) Fir die Losbarkeit dieses Randwertproblems vgl. B. Eckmann, Comment, Math.
Helv. 17 (1944/45), p. 240—255.
5) Dies ist immer moglich, da || T0h%||2 = m .0+ 6h% (k3) fiir m 2 0 nicht verschwindet.
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(3.3) Wir setzen H® = h%/u und H! = +§ H°. HO nimmt in den ¢°
auf k, den Wert 1 an und verschwindet auBerhalb % und in seinen Rand-
ecken.

Es ist || H [|2 = pt.

(3.3) Analoges gilt fiir H? — /.

(3.4) Ist der Ring (k,, k') im Ring (k,, k) enthalten, d. h. liegen die
Flichen von k, in k, und die Flichen von &' in %, so ist x4’ < u und
u' < u. Beweis mit Hilfe der Minimaleigenschaft.

Es sei nun {k,};_, eine Ausschopfung von K durch endliche Teil-
komplexe von der Art, wie sie zu Beginn von Nr. 3 beschrieben wurden,
mit ky«ky«...«k,«... . u, bzw. u, seien die Moduln bzw. die Ko-
moduln der Ringe (&, %,),n =1,2.... . Wegen (3.4) ist unabhiingig
von der gewdhlten Ausschopfung lim u, < oo oder = oo bzw. lim u, < oo
oder = oo und es gilt

Satz 1: Der metrische Komplex (K,g) ist dann und nur dann vom
hyperbolischen Typus (Kotypus), wenn lim u, << oco(lim p, < oo) ist.

Beweis: 1. Es sei K vom hyperbolischen Typus, es existiere also eine
Funktion X! mit || X!|| < oo, 0X'(c?) = 1 und

0X(dd) =0,k=2,3, ... .
Wir withlen of in k,. Dann ist wegen (3.1) u, < || X*||?, also
Iim p, << .

2. Es sei nun umgekehrt lim y, =p < co. A}, sei die Extremale fiir den
Ring (k,, k,) (vgl. 3.2)). Dann gilt || &L ||2 + x und (AL, —RL, AL)=0 fiir

n'’n
m >n, da k), Konkurrenzfunktion zu &}, ist. Daraus folgt || AL, — &L ||2
= || AL ||2—|| A% || und somit lim || A;, — k}. || = 0. Es existiert also,
m,n->w

wie leicht gezeigt werden kann, eine Funktion A! von endlicher Norm,
wogegen die k! auf jeder Kante konvergieren ; also ist ¢h'(kJ) = 1 und
ok! = 0 in jeder Ecke auBlerhalb k,. Geméfl der Bemerkung am Schluf}
von Nr. 2 ist also (K, g) vom hyperbolischen Typus. Fiir den Kotypus
geht der Beweis analog.

Bemerkung : Bezeichnen wir den Modul von (k,_;, k,) mit 4,, so gilt
die Ungleichung

2’1+}'2+"+An§/"n9 (3.5)

deren funktionentheoretisches Analogon unter dem Namen Superadditi-

361



vitit des Moduls bekannt ist. Gemd (3.1) ist ndmlich die Extremale
h, fir (k,, k,) Konkurrenzfunktion fiir die zu (k,,, k,) gehorigen
Extremalen, v = 1,2, ... n. Ist [/, die Anzahl der Kanten eines 1-Ko-
zyklus im Ring (k,_;, k,), der die innern Randelemente von den éuflern
trennt, und nehmen wir an, dafl die Gewichte im metrischen Komplex
(K, g) alle gleich 1 sind, so findet man leicht die Ungleichung ;' < 1,.
In diesem Falle ist also (K, g) sicher vom parabolischen Typus, wenn

(=]

2 I;' divergiert. Dies ist das algebraische Analogon zum Kriterium von
1
Wittich-Nevanlinnaf) fiir den parabolischen Typus einer Riemann’schen

Flache. Analoges gilt fiir den Komodul und den Kotypus.

4. Zwischen den algebraischen Moduln eines Ringes auf (K, g) und dem
konformen Modul des entsprechenden Ringgebietes (Nr. 1) soll nun die
Verbindung hergestellt werden. Wir nennen die Kreisscheibe |z| <1

mit endlich vielen Randpunkten e« k= 1,2, ... n ein Normalpoly-
gon P. Die ¢**« sind seine Ecken, die Kreisbogen §,= {¢'?,¢, <90 <¢,..},
k=1,2,...,n,¢,, = ¢ seine Seiten. Wir geben uns auf den S, ein

reelles Differential

B ="b(p)dp, Wo b.(p) In ¢, = ¢ = Qe
stetig ist und die Normierungsbedingung f B.=1 erfillt. Durch »
SK

beliebige reelle Zahlen =z, ..., x, und die Festsetzung & = z, 8, auf
S,,“=1,2,...n wird auf der ganzen Peripherie |z| =1 mit Aus-
nahme der Eckpunkte ein stetiges Differential & definiert. Es ist

f &=z, und " £E=0,

S, lz]=1
sobald die Summe der =z, ..., 2, verschwindet. Daher existiert in P
eine harmonische Funktion # mit du=¢ in den innern Punkten der Seiten
und endlichem Dirichlet-Integral D (u). Es gibt ferner eine nur vom Nor-
malpolygon P und den Differentialen 8, abhingige Zahl G (P, B), so dal3

Du) <G 322 (4.1)
1

ist fiir jede Wahl der reellen Zahlen =z, ... 2,, deren Summe ver-
schwindet?).
Unter Polygon & auf der Riemann’schen Fliche F wollen wir das topo-

%) 'H. Wittich, Math. Z. 45 (1939). R. Nevanlinna, Ann. Acad. Sci. Fennicae. Ser. A I
Nr. 54 (1940).
) Fiir diesen und den néchsten Abschnitt vgl, auch H. L. Royden loc. citat.

352



logische Bild eines Normalpolygons P verstehen, das vermittels einer
Abbildung erhalten wird, die auf P mit eventueller Ausnahme der Ecken
konform ist. Die Bilder der Seiten und Ecken von P heien entsprechend
Seiten und Ecken von m. Durch solche Polygone soll nun die Fliche F
polygonal zerlegt sein und der entstehende Zellenkomplex mit K be-
zeichnet werden. Auf jeder Kante o. wihlen wir ein reelles Differential
B, das bei der Verpflanzung auf die Normalpolygone, die den beiden an-
grenzepden o? entsprechen, von der oben beschriebenen Art sein soll.
Dann gibt es zu jedem o7 ein positives Gewicht G;(8) von der folgenden
Art: Ist X' = X x, g, irgendeine 1-Form auf K undist § X'(d%) =0,
so existiert auf o2 eine harmonische Funktion u; mit w,=du,;= Z s ﬂ,‘j
auf den Seiten 0,1%, von ¢ und es ist gemif (4.1)

|| ;|12 = D(u,) §G5(ﬂ)(2x,2<j . (4.2)
Kj)
Sind ¢} und o7 die der Seite o. angrenzenden Flichen, so nennen wir

9.=0G; + G, (4.3)

ein zulissiges Gewicht fiir die Seite o und die entsprechende Metrik (g)
eine zuldssige Metrik in bezug auf die Riemann’sche Flache.

Einem Ring (k,, k) auf K entspricht auf der Riemann’schen Flidche ¥
ein Ringgebiet (I, I'), dessen innere Kontur I, von den inneren Rand-
elementen des Ringes (k,, k) gebildet wird und entsprechend die dullere
Kontur I' durch die dulleren Randelemente von (&, k). Es gilt

Satz 2. Zwischen dem Modul u und dem Komodul u eines Ringes
(ky, k) auf dem metrischen Komplex (K, g) und dem Modul M des entspre-
chenden Ringgebietes (I, I') besteht die Ungleichung

nEM<u. (4.4)

Beweis: 1. Es sei k' die dem Ring (k,, k) entsprechende extremale

Kofunktion im Variationsproblem (3 .‘1). 8 B! verschwindet auf jedem
o> in (ky, k) und daher existiert auf diesen o7 je ein harmonisches Differen-
tial w; = du,. Wegen der Randbedingungen ist o; = w; = x, 8, lings
der Kante o1, wenn w; und w; zu den mit o, inzidenten Flichen gehoren.
Die o, schlieBen sich also zu einem einzigen Differential w zusammen, das
iiberall im Ringgebiet (I, I") mit eventueller Ausnahme der Ecken stetig
und stiickweise stetig differenzierbar ist. Wegen j'lw =z, ist J w=1

Ok

und abgesehen von den Ecken und Kanten ist iiberall im Ringgebiet
dw = 0. GemiB (1.1) ist daher M < || w||2. Beriicksichtigen wir nun
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fiir jedes o} in (&, k) die Ungleichung (4.2), so folgt wegen (4. 3)

loll* =20, (2 ) <Xy, = = || B2 =g
B ) (%)
wo j und « die Indices der Flichen und Kanten auf (k,, k) durchlaufen,
x; dagegen die Indices der Kanten auf ¢7. Daraus ergibt sich M < pu.

2. Es sei jetzt H° die in (3.3) definierte 0-Form in bezug auf den Ring
(ky, k) und H! = +6H°. Wegen J *H! = 0 auf allen o? des Ringes ge-
hort zu dieser Funktion *H!= Xy, ¢. in jedem solchen o eine har-
monische Funktion %,, die am Rande noch stetig ist. Lings der Kante o},
an welche die Fliche ¢; und ¢} angrenzen, ist du; = du; = y, f,. Die
u; sind bis auf eine additive Konstante eindeutig bestimmt. Wegen
j‘ldu, = x, lings jeder Randkante von o} konnen diese additiven Kon-
T
stanten so bestimmt werden, daf u, in den Ecken auf ¢} mit H° iiberein-
stimmt. Daher schlielen sich die u, zu einer einzigen in ([}, I") inklusive
Rand stetigen und stiickweise stetig differenzierbaren Funktion u zu-
sammen, die auf /j, den Wert 1 annimmt und auf I" verschwindet. Es ist

also wegen (1.1) D(u) = M-!. Analog wie oben zeigt man, dafl D (u)
<Xg. 4t = || H? 2715 und daher u <M ist.
(x)

b. Nachdem nun die Hauptungleichung (4.4) bewiesen ist, schopfen
wir den metrischen Komplex (K, g) wie in Nr. 3 durch eine wachsende
Folge von Teilkomplexen k, aus und in Verbindung mit Nr. 1 und Satz 1
folgt aus (4.4)

Satz 3 (Hauptsatz) : Es sei dve Riemann’sche Fliche F' durch Polygone 7
polygonal zerlegt und der entstehende Zellenkomplex mit K bezeichnet. Auf
den Kanten von K ser gemdfy Nr. 4 ein Differential § und eine zuldssige
Metrik (g) gewdhlt. 1st dann der metrische Komplex (K, g) vom paraboli-
schen Typus, so ist auch die Riemann’sche Fliche F vom parabolischen
Typus. Ist dagegen (K , g) vom hyperbolischen Kotypus, so ist F' vom hyper-
bolischen Typuss).

Es lassen sich leicht metrische Komplexe angeben, wo lim u, < oo,
aber lim u, = oo ist. In einem solchen Fall kann das Typenproblem fiir

8) Dieses Kriterium fiir den hyperbolischen Fall ist identisch mit dem in der Einleitung
erwiahnten Resultat von Royden, wenngleich zu sagen ist, daB er sein Kriterium auch fiir
Zerlegungen in gewisse nichtkompakte Poygone bewiesen hat. Es ist leicht die vorliegende
Methode auch auf diesen Fall auszudehnen, wenn es sich um den hyperbolischen Typus
handélt, dagegen besteht im Falle des parabolischen Typus eine grundsatzliche Schwierig-
keit, da von einer ,,uneigentlichen‘‘ Ecke, die einem logarithmischen Windungspunkt ent-
spricht, unendlich viele Kanten ausgehen und so der Rand von X! dort nicht definiert wére.
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die Fldche F mit Hilfe von (K, g) nicht gelost werden und wir bezeichnen
die vorgenommene Polyederzerlegung von F und Wahl des Differentials g
als ,,ungeeignet‘‘. Dagegen nennen wir eine Polyederzerlegung und eine
Wahl von g ,,geeignet”, wenn Typus und Kotypus eines zugehorigen me-
trischen Komplexes iibereinstimmen.

Die Frage, wann Typus und Kotypus eines metrischen Komplexes
iibereinstimmen, soll hier nicht direkt untersucht werden, sondern eine
mehr funktionentheoretische Bedingung hiefiir gegeben werden. Wir be-

trachten zum gegebenen Zellenkomplex K einen dualen Komplex K,
bezeichnen die betreffenden Flichen, Kanten und Ecken mit ;ﬁ ) ;,t
und ;‘}, die den oy,0, und ¢} aus K eindeutig entsprechen. Die
zuldissigen Gewichte in K in bezug auf die Riemann’sche Fliche F
bezeichnen wir mit g,. Sind X! und Xt entsprechende 1-Linearformen in
Kund K, d. h. ist X1(o%) = X1(o%) fiir alle «, so ist

6 X1(c%) = aX'(e?) und 8X*(d}) = 6 X1(3).

Besteht nun zwischen den zulédssigen Gewichten in K und K die Bezie-
hung g:'=yg,, so ist der Typus (Kotypus) von (K, g) gleich dem Ko-

typus (Typus) von (I—{ ,g). Satz 3 kann aber auf beide Zerlegungen K und
K angewendet werden und daher gilt

Satz 4: Ist K eine polygonale Zerlegung von F mit den zuldssigen Ge-

wichten g, und existiert eine duale Zerlegung K mit g;* als zulissigen Ge-
wichten, so stimmen Typus und Kotypus von (K, g) mit dem Typus von F
itberein. F ist also dann und nur dann vom parabolischen (hyperbolischen)
Typus, wenn (K, g) vom parabolischen (hyperbolischen) Typus ist.

Ein wichtiger Spezialfall liegt vor, wenn alle Gewichte g, einander
gleich gewihlt werden kénnen. Wir sprechen dann von einer ,,requlédren
Polyederzerlegung. Es ist offenbar fiir den Typus und Kotypus von
(K, g) gleichgiiltig, welcher Wert diesem Gewicht gegeben wird. Dieses
soll deshalb gleich 1 gewihlt und der zugehorige metrische Komplex mit
(K, 1) bezeichnet werden.

Denken wir uns z. B. die Riemann’sche Fliche gegeben als Uberlage-
rungsfliche der komplexen Ebene mit lauter algebraischen Windungs-
punkten, die iiber endlich vielen Grundpunkten gelegen sind. Wird die
Ebene lings einer stiickweise analytischen Kurve durch diese Grund-
punkte zerschnitten, so entsteht in bekannterweise eine polygonale Zer-
legung der Riemann’schen Fliche. Dies ist eine reguldre Zerlegung und es
ist Satz 3 mit (K, 1) anwendbar. Sind iiberdies die Verzweigungsord-
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nungen alle unterhalb einer festen Schranke, so existiert eine duale Zer-
legung, die auch regulér ist. Der Typus der Fliche stimmt in diesem Falle
mit dem Typus von (K, 1) iiberein.

6. Geben wir nun in der Ebene ein Ringgebiet, das aus lauter kon-
gruenten Polygonen zusammengesetzt ist. Die Kanten haben alle das-
selbe Gewicht g. Der algebraische Modul und Komodul des betreffenden
Ringes in bezug auf das Gewicht 1 sei mit u! und u! bezeichnet. Dann
gilt fiir den Modul des gegebenen Ringgebietes die Ungleichung

1
%§M<gﬁ1. (6.1)
Abgesehen von der Gréfle g konnen also mit rein algebraischen Methoden
fiir den Modul M obere und untere Schranken gefunden werden.

Mit (6.1) soll nun eine notwendige und hinreichende Bedingung an-
gegeben werden, damit eine beschrinkte und abgeschlossene Punkt-
menge F in der Ebene von logarithmischer Kapazitdt 0 sei. Zu diesem
Zweck wihlen wir ein Quadrat @, in dessen Innerem £ enthalten ist und
bezeichnen das AuBere von @ mit @, . @ wird in 4" kongruente Quadrate g,
eingeteilt. Diese bilden zusammen mit ¢, eine Zellenzerlegung der kom-
plexen Ebene. k, bezeichnet den von @, erzeugten Teilkomplex, ¢, und
jene q,,, die mit & punktfremd sind, erzeugen den Teilkomplex k, und u,;
sei der Modul des Ringes (k,, k,) in bezug auf das Kantengewicht 1.
Dann gilt der Satz: E ist dann nur dann von logarithmischer Kapazitit
null, wenn lim u; = oo ist?). Ist ndmlich der M, Modul des zu (&, k,)

n >0

gehorigen Ringgebietes, so ist wegen (6.1) ul <g M,; aus pl —> oo
folgt M, — oo (g ist von der GroBle der Quadrate unabhingig) und £
ist von der Kapazitit 0. Wir betrachten nun die duale Zellenzerlegung
zur gegebenen und den Ring, der von den dualen Quadraten gebildet
wird, die zu den innern Ecken von (4,, k,) gehoren. Der zugehorige Ko-
modul ist gleich #! und demnach gilt fiir den Modul M, des entspre-
chenden Ringgebietes M, < g uk. Mit M, strebt also auch u) gegen
Unendlich, womit der Satz bewiesen ist.

Eingegangen den 15. Juni 1953

9) Betr. hinreichende Kriterien fiir Kapazitat 0 (bzw. > 0) vgl. R. Nevanlinna loc. cit.
bzw. H. L. Royden loc. cit.
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