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The class number
of an imaginary quadratic field
By L. CarriTz

1. Introduction. Let A(D) denote the number of classes of prop-
erly primitive forms aa? + 2bxy + cy? with ¥ —ac = —D, D > 0.
In his paper [3] Hurwitz expressed the residue (mod p) of A (D) in terms
of the coefficients of certain power series ; here p is an odd prime divisor
of D such that D =40 (mod p?). In some cases the residue was ex-
pressed explicitly in terms of Bernoulli numbers.

Let now h(d) denote the class number of the imaginary quadratic
field R(yd) of discriminant d. (We prefer to use the terminology of
quadratic fields rather than quadratic forms in order to stress the analogy
with certain other results on the class number of cyclic fields [1]). Let p
be an odd prime divisor of d and » > 0; then we show that for d < — 4.

h(d)= — 2c<—;—~> Lz (%‘A)B,c(g-) (mod pn+1), (1.1)

where d = (— )" Y2 pq,, ¢ = | ¢ |, (¢o/s) is the Kronecker symbol,
B,(x) is the Bernoulli polynomial of degree k = i(p —1)p"+ 1
and ¢c=1+41p® for »n>1, while ¢ =2 for n = 0. A partic-
ularly simple special case of (1.1) is

h(— 4p) = 3£, (mod p"*1), (1.2)
where p = 1 (mod 4) and E,_, is an Euler number.

2. Kronecker’s symbol. We recall a few properties of Kronecker’s
symbol (see for example [4, p. 51]). If d = 0 or 1 (mod 4) and is not a
square and if m > 0, we define

(5)=1 ()0 wio

(3)={ 1@ 25 moas.

(%) = the Legendre symbol when p > 2, d=£0 (mod p),
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ra) =) ()

It follows from the definition that

(—i'l—)zo for (d,m)>l;( L )z(_@_>(_‘_i_); (2.1)
m . my My my )\ My
also for odd d we have ( d

9-()

where the quantity on the right is a Jacobi symbol. Another useful

property is d d
(E'I):(—@) (m, = my(mod d)). 2.3)
We shall also require
d d
(Id' l..:___m>=(—ﬁ)sgn d (m<|d]). (2.4)
It is sometimes convenient to define <%> =0.

Thus it is clear that if d is the discriminant of a quadratic field then
(—g{) is a character (mod d).

The letter p will denote a positive odd prime. We define

po = (— )P~V p, (2.5)
so that p, =1 (mod 4). If p|d we put
d=1pq@ 9=|%]l- (2.6)

It follows that the Kronecker symbols (p,/m) and (g,/m) are defined ;

moreover (%)___(%) (%) (2.7)

Hereafter d will denote the discriminant of an imaginary quadratic
field. Hence d < 0 and is not divisible by the square of any odd prime.

3. Bernoulli polynomials. We use the notation of Norlund [5, Chapter 2]
for the Bernoulli polynomials. The following formulas will be needed.

Tio o= Bl tm) B o1
B(o+y) = £ () B); (3.2)
B,(1 — ) = (— 1)"B,(®) (3.3)
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In addition we recall a special case of Kummer’s congruence [2, Theorem 5]

Bn+t(a’) Bn(a’)
n -+t

where p¢~l(p — 1) | ¢, n£0 (mod p—1),n > e and the rational number a
is integral (mod p). The following divisibility property will also be used.

B, (a) =0 (mod p") (p"|m,m==0 (modp—1) (3.5)

(mod p°), (3.4)

where again a is integral (mod p).
For some purposes it is convenient to define the Bernoulli function
B, (z):
B,(z) = B, () 0<z<1)

B,(x + 1) = B, ().

Then B, (x) satisfies (3.3) as well as the multiplication formula,
r—1__ S
ZB, (x+%): r-m B (rz); (3.6)
8=0

the polynomial B, (z) also satisfies (3.86).
4. The main result. Let d < — 3. It is familiar that

h(d) :é-im(%), (4.1)

where m runs through a complete residue system (mod d). We assume
p|d and make use of (2.5), (2.6), (2.7). Let ¢ > 1. Then (4.1) be-

comes . pﬁ'l 1 7o %
@) =r=03=1(rq+8)(7'4+3>( Tq—l's) (4.2)
_ 1 5 a0 5 rg+s |
_—(—Jl‘g—_q(s)r——z—l; (Tq+8)< p )
Now it follows from
(%) = a»-V2 (mod p)
that
(‘%) =alP-02"  (mod pntY). (4.3)
Then using (4.3) we have
-1 -1
Tea+9 ()= g+ 9t modpry, (44
r= r=
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where for brevity we put

k=3p—1p"+1. (4.5)
Then using (3.1) we get

p-1 p—1 s\ k¥ B, (20 +i> — B, (i)
k — 4k ) gk q q
750 (rq 4 s) qr=20<r+q> q | . (4.6)

In the next place by (3.2)

8 s s kE—+1 s
Bualp +5) = Bra(5) = e+ 008u(2)+ (T ) B ()
k1 4 1 , s
+ r§3< P )p Bk—r+1(_q“) .
But it is easily verified that

(k ;l_ l)per—r—H <’2‘) =0 (mod p*+!) (r > 3).
Thus (4.6) becomes

e =efon3)s w3

Il

q 8
VB[] (mod prt1),
pq(p> k(q)( prtl)

where we have used (4.3) and (3.5).
Substituting in (4.4) and (4.2) we therefore get

h(d) = —<-9_> ?(—@) Bk(-‘;-) (mod p") .

Finally using (3.4) this becomes

= 1 )% _q_o) _8_> "
hd) = — 1_%pn_1<—5)8§1<813,(q (mod p") .
where [ = }(p — 1) p»* + 1. Replacing n by » + 1 we get
= _of[1\5 (% i) nt1
h(d) = c(p>s§1<s)3k<q (mod pH) (4.7)

where &k is defined by (4.5) and ¢ =1+ 4p* for = >0,c =2
for n = 0.
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In the next place if p = 1 (mod 4), then k is odd so that by (3.3)

B5) -3

Also since p, > 0, ¢, < 0, so that by (2.4)(q _q_f 8)= — (—%"—)
It follows that ( /

) U)m)  e

If p= — 1 (mod 4), then k is even and g > 0, so that

(L) (3). (522)-(2)

and again (4.8) follows. Since for ¢, even the value s=¢,/2 in (4.7)
may be ignored we get

hd) = — 2c(l) s (lQ)Bk(;;-) (mod p™1),  (4.9)

P/1<s<qgi2\ S
where k and ¢ are the same as in (4.7).

b. The case ¢ = 1. While (4.9) does not hold for ¢ = 1, it is easy

to obtain a similar result in that case. We now have d = — p, where
p = 3 (mod 4). Thus (4.1) becomes
1 —p 1 m)
h(— =————Z'm(——-)=———2m(———).
. (—2) 52— e ¥
O e (m\_rot . Bua(®) — B
b s § == k z== k+1 k+1 d pntt ,
Zn(G)=Zm =St e
where k is the same as in (4. 5) ; note that k is even. A little manipulation
leads to h(—p)= — B, (mod p"). (5.1)
In particular for » = 1, (5.1) becomes
h(— p) = — Byyppz 1 (mod p),
which by (3.4) reduces to
h(—p) = — 2Bz (mod p). (5.2)
6. Some special cases. Returning to (4.9) we consider first the
special case d = — 3p,p =1 (mod 4). Thus ¢p= — 3,9 = 3 and
(4.9) reduces to
h(— 3p) = — 2c<—%)Bk<%—) (mod p"tl). (6.1)

Since k is odd it does not seem possible to further simplify the right
member of (6.1). For n = 0, (6.1) becomes

M= 30) = — 4(2) Borun () modp). (8.1
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Next for d = —4p,p=1 (mod 4, go= — 4,9 =4, so that
(4.9) becomes
h(—4p) = — 2¢B(}) (mod prt1). (6.2)
Now we may use the formula [4, p. 29]

1
Bk<—4—>= —k%i (k 0dd) ,

where E, ; is an Euler number. Since
4k = 92k — 2P-DP"+2 = 4 (mod prtl) |

it is easily verified that (6.2) gives

h(—4p) =} E,, (mod prtl); (6.3)
in particular for n = 0, we get
h(—4p) =3 By (mod p) . (6.3)
For example for p = 5, h(— 20) = 2, B, = — 1.
For d = — 5p,p =3 (mod 4), ¢ = q, = 5, we have

h(—5p) = — 2c<%>{ B,c<—-é—->—-Bk(%>} (mod pt1); (6.4)

in particular
5 1 2
w50 = = 4( 2 { B )~ Boan(%)] modp). (.47

For d = — 8p, we haveeither (¢{)p =1 (mod4), ¢ = — 8,9 =8,
or (ii) p =3 (mod 4), ¢, = q¢ = 8. The two possibilities may be com-
bined in the single formula

2 1 1 3

h(— 8p) = — 20@){ B,c<—8—>+(:p——> B,c(%—)} (mod p™+1), (6.5)

which does not seem to reduce further. Using (3.3) we may however
write

h(— 8p) = — 20(—2—){ Bk(—;—> — Bk<—g—\)} (mod p™*tY),  (6.6)

as is easily verified.
We may also mention the case d = — 12p, where p = 3 (mod 4),
q = g, = 12. Thus (4.9) becomes
3 1 5

7. Some additional formulas. Formula (4.7) becomes somewhat
more symmetrical if we introduce the Bernoulli function B, (x)
defined in § 3. For we may now write
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h(d) = —c%)z;(%‘?—)ﬁk(%) (mod pn+1) (7.1)

where s runs through a complete residue system (mod ¢). In the next
place, using (3.6), we have

-1 \ —_
£ By(5)= ¢ Bu(0) = ¢4 Bs. (7.2)
Also
qi-k = g—(»-D2 B9 — (i) (mod p*t1),
p
so that (7.2) becomes

ER2)=((2)- 1.

Combining with (7.1) we get

h(d) -————2c(p>2’— ( )—l—c{l—(—%—)}Bk (mod p™"), (7.3)

where the sum is now restricted to such s that (¢,/s) = 1. If p =
(mod 4), so that k is odd, (7.3) reduces to

h(d) = — 2c(p>23" B (;) (mod pn+1); (7.4)

if (¢/p) = 1 then (7.4) holds for all p. If ¢ is a prime then (7.3) may
also be written in the form

h(d)E——c(p)ZB < )+CB (mod pnt1). (7.5)
The last formula suggests that it may be interesting to consider the sum
g—1__ 82 h
Suh ) = TE(Z) - v, (7.6)
8=0

for arbitrary positive £ and ¢. In particular if ¢ is an odd prime power
then it follows from (7.2) and (7.6) that

s g—1 _ h
Sy ) = Z (4)B(2F) (@0 =1)
and therefore |

84k, q) =(—Z—)Sk<1,q>. (7.7)
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In the next place if ¢ = p",r > 3, then

r—~1_3 p—1_
S (L, p7) = z pZB ( +—mib_)

b=0 a=0

AW e = S Y
=» X B.[— b

P2 "(p'“2)+ B <p’+ p )

b=0 a=0
p+d

pT— 1_
= p{S8,(1, pr2) + pt-» A=k B} | pr—k z ‘s (pb2 )

27+b
7'11

= p{SL(1,p™?) + pr-D =B B} 4 piok % B ( - )
r—2 _ b2
—p o Bk(p’"*”’)
—_ p{Sk(I, pr—Z) _I_ p(r—z) (1—-k) Bk}
+ pl_k{Sk(l, pr—-l) + p(r—l) (1—-k) Bk}
— P M8 (L, p?) 4 pr 1R B},

so that

8:(1,p7) = PESH(L P + pSL(L P — PRSL(L p)
+ pr(l'—k) Bk ( M )

For r» = 2, we find that
Sp(l, p?) = p 58, (L, p) + (p — p* + pP-B) B, . (7.9)
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