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On the Pontryagin product
in spaces of paths
By R. Bort and H. SAMELSON?)

Introduction

For a topological (arcwise connected) space X, let E be the function
space consisting of the paths in X which start at a certain point x, and
let 2 be the subspace of E consisting of the closed paths or loops ; these
spaces have been studied in particular by M. Morse [7] and J.-P. Serre [10] ;
E is a fiber space over X. Now 2 admits a natural multiplication : two
loops in succession make a new loop (actually there is a more general
operation between £ and £2). This multiplication gives rise to a multi-

1) The work reported on hare was done while the first author was under ONR contract
No. Nonr 330(00) and the second author was under contract to the Office of Ordnance
Research.
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. plication of the elements of the homology group of 2; we call this the
Pontryagin-multiplication, since an entirely similar concept for group
spaces was introduced by Pontryagin [8] (cf. also [9]). In part II we
study the relation between Leray’s spectral sequence of E (in Serre’s
formulation [10]) and the Pontryagin product. A closely related situation,
involving compact Lie groups and Leray’s cohomology theory, has been
considered by Leray [5, 6] and A. Borel [1]; our results are analogous
to theirs. In part 1II we determine, as application, the Pontryagin ring
of a space which is union of several spheres with a point in common. —
We have to consider the homology of Cartesian product spaces. This
makes necessary a modification of Serre’s cubic homology theory; we
present this in part I. Generally speaking we follow Serre’s definitions,
notation and conventions, with some minor deviations; we assume
familiarity with his paper.

I. Cubic homology

I.1. We recall briefly some definitions from [10]. Let X be a 0-con-
nected (i. e. arcwise connected) space. A singular n-cube in X is a map % :
I"—> X, where I denotes the unit interval [0,1], and I™ means the
Cartesian product of »n factors I ; 0-cubes are simply points of X. With
areal ¢, 0<¢<1, and an integer 7,1 <17 <n, the operator A}
associates with each singular n-cube a singular (» — 1)-cube by

(A U) (B, ooy Tpy) = (X, ooy g, €, Tyye oy Tpy)

The singular n-cubes are free generators of the (abelian) group @,(X).
The direct sum @ (X) of all @,,n =0, is mapped into itself by the
n

operator d, which on n-cubes is defined as X (— 1) (A3 — 4}) . To define

1

homology groups, one has to introduce thed-stable subgroup D = X' D, (X)
where D, (X) is generated by the n-cubes which are degenerate along
the last coordinate ; the homology of X is that of @/D. We now intro-
duce, for each integer p =1, the subgroup D), generated by those
cubes which are degenerate along any one of their last p coordinates (in
particular PV = D; if p>n, this means that u ¢, is degenerate
along some coordinate) ; with D®) = D® ~ @, we have D® = X D®
Clearly DV c D@ c ..., Weput D = y,D®; clearly D{ = D™ .
We prove

Theorem I.1.A.: (a) For each p, with 1 < p < oo, D® ig a d-stable
subgroup of @; (b) the natural map of the homology group of Q/D®
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into that of Q/D®+1) and of Q/D'), induced by D@ c D@+ < D),
is an isomorphism onto.

Froof : First take p < co. (a) is verified easily from the formula for d :
If u belongs to D™, and is degenerate along the r-th coordinate, then the
terms A% and Alw in du cancel ; all other terms belong to D or even to
D1 For (b), the usual application of the exact sequence of the triple
(Q, D»+1, D) [3, p. 28] shows that we have to prove that the relative
homology group H (D®+V D®) js 0. To do this, we consider the ope-
rator A4, a linear map of @ into itself, raising dimension by 1, defined by
Au(xy,. .., Xpyq) = u(@,..., 2,, ,2,,,) for ue@,,n>0, du(z) =u,
for u €@Q,. We state the following properties of A :

1. A(DPYc D® forall p=1.

2. Defining 7=1—d4 — Ad (1 = identity map), we have
T(D(T"*‘l)) C _D(l’) .

Property 1. is clear ; if # does not depend on z,, 4« does not depend
on z,,,. For 2. a direct computation shows that for u €@,

tu = MNAu + (4, Aduw — 25, Au) + (420 — A u) .

If w belongs to D@+ then all the terms in 7« belong to D or cancel
if weDW. If now x is a cycle of D®¥+1) mod D™, i.e. xeD?D,
dx e D?), then dAdx = x — 1x — Adx with Az eD”tV and 72 and-
Adx e D? i.e. xis ~ 0 in D@¥+Y) mod D, and H(D®+V D®) is 0.
The assertion of I.1.A. for p = oo follows now easily from D™ =
U D® . The identification of the homology groups of the various /D™
is natural, i. e. it commutes with the maps induced by a map of one
space into another. Any one of the @/D" will be called the group C(X)
of chains of X, and its homology group will be called the homology
group H(X) of X ; we shall always use Q/D! . Clearly all the chain
groups are free; an application of a known theorem [3, p. 155] tells us
that I.1.A. actually holds with arbitrary coefficients.

Since X is 0-connected, we can and shall, as in [10], restrict ourselves
to cubes, all of whose vertices lie at a chosen point z,. The resulting
‘homology group is canonically isomorphic with the earlier one.

1.2 Let P be a fiber space over the space B, with projection p, in
the sense of Serre [10]. We recall that p determines a filtration of @ (P):
a cube u in Q (P) is of filtration < r if the cube p ou in @Q(B) depends
only on its first r coordinates; such cubes generate the subgroup
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T* = T"(P). The group of chains C(P) is filtered by the canonical
images A"(P) = T"(P) ++ D'*/D*) of the 7T7(P). This sets up the
spectral sequence of P, consisting of the groups #,, E,, E,,... and the
associated differentials d,, d,,d,,... The terms E,, E,, E,, and the
differentials dy, d, have been determined explicitly by Serre, with the
group Q(P)/DWY as chain group. The results remain exactly the same
for the new definition @Q(P)/D'™ of the chain group; the necessary
changes in the reasoning are the following :
On p. 447 of [10], property 2) becomes

2y If uweD™), then either Bu or Fu e D’; this permits construc-
tion of the map ¢. The construction K of p. 448 of [10] can be made
in such a fashion that condition 3) is replaced by

3’) If either u or v e D', then K (u,v)eD*). The c_onstructibn
S of lemma 5, p. 448 ibid. can be made such that condition 5) becomes

5') If u € D, then Su e D). One has to define K and S in the
degenerate cases such that if « and v, resp. w, do not depend on certain
coordinates, then K (u,v), resp. Sw, do not depend on the corresponding
coordinates. This is possible since the maps g of the sets 4 [10, p. 461, 462]
do not depend on these coordinates and one can extend g to X by first
collapsing A along these coordinates. The operation K defines then a
map y of C(B) ® C(¥F) into E,, which commutes with the appropriate
differentials ; the operation § maps E, into itself and provides a chain
homotopy of y o ¢ with 1. The only change required for the determination
of d, is the substitution of “e D) for “dégénérés” on line 10, p.450in[10].

I.3. We consider the Cartesian product X X Y of two 0-connected
spaces X and Y. With an m-cube u in X and an n-cube v in Y we associate
the (m 4 n)-cube u X v in X x Y, defined by

L.3.1 w4 X 0(®y,. .., Zppyn) = (w(y,. .., Zp), ¥(Tppy1se - 5 T pmyn)) - This
induces a map u of the tensor product @ (X) ® @(Y) into @(X x Y);
we write also # X y for u(z @ y). In the tensor product we consider
the usual differential d =d @ 1 + o ® d, with w(x) = (— 1)z for
z €@, (X); we have then d2 = 0, and y commutes with d. If either
xeD™(X) or yeD)Y), then clearly = x ye D’ (X xY); by
passage to the quotient groups we get therefore [3, p. 159] a map, also
called u, of C(X) ® C(Y) into C(X x Y), which commutes with d,
and induces a map u, of the homology groups.

Theorem I.3. A: The map u: C(X) ® C(Y)—>C(X xY) is a chain
equivalence. We give a proof, following a suggestion of J.-P. Serre : We

323



filter C(X)  C(Y) by the subgroups C? =2C,(X) Q C(Y); this
i<

defines the spectral sequence (E.). We consider 5( X Y as fiber space
over X, with respect to the natural projection; this defines the sub-
groups A? and the spectral sequence (E,), asin 1.2. (The operations K
and S are of course quite elethentary now. We can put K(u,v) =u X v.
An n-cube w of X X Y is a pair (u,, u,) of n-cubes of X, resp. Y ; if u,
depends on its first p coordinates only, we put S?u = (u', »") with
U ( Ty ooy Ty by Yrye v os Yg) = U (X, vy Xy, Y1y v 05 Yy) and
UA(Zyseooy Tpy L— b, Y1se v oy Yp) = Up(t24,. .., 02, Y1, .., y,) ). Clearly u
maps C? into 42, and we get an induced map u,: E, — E, of the spectral
sequences. Now u, is nothing else but the map y of [10, p. 448] and is
therefore a chain equivalence. It follows that all y,, » >1, and u* are
isomorphisms onto [1, p. 122]. But then u is a chain equivalence by
[3, theorem 13.3, p. 154].

In the usual way u induces also a map of H(X) ® H(Y)into H(X xY),
for coefficients in a commutative ring R with unit. If R is a principal
ideal ring, then I.3.A and the algebraic Kiinneth formula imply that
the “Kiinneth formula for singular homology” holds: pu, imbeds
H(X) ® H(Y) isomorphically into H(X X Y) as direct summand, and
the factor group is Tor [H (X), H(Y)] (cf. [3, p. 161]) ; as regards dimen-
sion, we have

H,(X xY)= 2 H,(X) @ H,(Y) ® X Tor[H,(X), H/(Y)].

p+e=n r+s=n—1
For completeness sake we sketch the known algebraic reasoning : Let K

and L be two free chain groups ; denote by Z and B the cycles and bound-
aries of L, and by W a subgroup of L supplementary to Z. From the
homology sequence of the pair (K ® (B 4+ W), K ® B) one finds that
H(K ® (B+ W)) = 0. From the sequence of the pair (K ® (Z + W),
K ® (B + W)) one finds that H(K ® L) is isomorphic with H(K QH(L))
(note Z+ W=L and Z-+ W/B+ W =H(L)). To the latter
group one applies the universal coefficient theorem [3, p. 161].

There are obvious associativity relations in the case of products of
more than two spaces, and other elementary relations. With two maps
f:P—>X,g:Q—Y are associated the maps f x g: P xQ—-X XY,
[®9:C(P) @ C@Q)—>C(X) @C(), fx @ gx:H(P) @ HQ)— H(X)
® H(Y), with the relation uy ofy @ gy = (f X @)y oy . If b and &
are cochains on X and Y, and 4’ and k£’ are their images under the natural
projections of X X Y onto X and Y, then we have the relation

(' vg) (u X v) =h(u)-g(v) .
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II. The Pontryagin produect

II.1. Let X be l-connected, i.e. arcwise connected and simply con-
nected (the latter assumption is made in order to avoid local coefficients
in the spectral sequence) ; choose a point z,; all vertices of all singular
cubes are to be at x,. We consider now the spaces E and 2 of paths
and loops in X, with the compact-open topology, as in [10], with the modi-
fication that we require all paths to end at =z,, i.e. f(1) = z, for the
path f:I— X, and that the projection p:E-—- X is defined as the
starting point of the path, p(f) = f(0); the reason is that we want Q
to operate on the right on E. This operation of 2 on £ is the map y of
E x 2 into E, defined by associating with the pair of paths (z, y),
rxek, ye the path y(x, y), also written z .y, defined by

II.1.1 x-y(t) = z(2¢t), 0st=si

z-y@t)=y2t—1), st=<1.
y is obviously a continuous map ; it is related to the projection p by

I1.1.2 p(x-y) = p(x),
(x-y and x start at the same point).

Vertices of cubes in X are to be at x,, in E (and in Q) at e, defined by
e(t) =x,, 0=t=<1, the constant path. The composition of u:
QE) QL) ~>Q(E x Q) defined in 1.2, with y: Q(F x Q)—Q(E)
determines a map p: Q(F) ® @(2)—>Q(E), which commutes with d,
related chain maps ¢ of the chain groups and the map gy = 4 o uy
of the homology groups. For o(u ® v) resp. o.(z @ w) we write also
u * v, resp. z * w, and call this the Pontryagin multiplication. The map
y has the property that it maps the subset 2 x Q into the subset 2 ; y,
restricted in this fashion, will be denoted by y ; we have a corresponding
o and g, ; but we continue to use the symbols - and * . The point e & E
satisfies e.e =e¢. The map r,: £ — E, defined by r,(x) =x-e, is
homotopic to the identity, with e stationary (cf. [5, p. 475]). This is also
true for r,: Q- 0Q andfor [,: Q- by l,(x) =e.x. The two maps
(x,y,2)—>(x-y)-2, resp. z-(y-2) of Q3> Q are not identical, but
homotopic (cf. I1.5) ; this means that Pontryagin multiplication in H (Q2)
is associative; we speak then of the Pontryagin ring (better-algebra);
the 0-homology class, defined and denoted by e, is unit for this ring.

II.2. The basic fact concerning E is that relative to the map p it is a
fiber space over X, with fiber 2 [10]. We recall that Q(E) is filtered
(cf. I.2), giving rise to a filtration of ‘C(E) and to a spectral sequence ;
we will have to make use of the explicit form of FE,, E,, E,, as deter-
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mined by Serre. Now 1I.1.2 has the obvious consequence that for
ue@, (E), ve@,(2), one has

II.2.1. p(u(zy,. .., p) V(X ppy1s- v o5 Tpyn) = P(u(2y,. .., 2,,)) .

This implies that the filtration of % *v equals that of u. We filter
Q(E) ® Q(2) by the subgroups T7(E) ® @(2) (these are actually sub-
groups since the 7 are direct summands of Q(E)); we have then
o(T"(E)  Q(Q2)) c T"(E). We consider now C(F) ® C(2), which
group we denote by I', with the standard differential d =d, ® 1+
© @ dgy, and filter it by the subgroups A?(I") = A*(E) ® C(2) (they
are well defined since the A?(E) are direct summands of C'(E)). The
map ¢ gives then a map of A?(I') into 4?(X), and induces therefore in
standard algebraic fashion a map g of the spectral sequence of I" into that
of £, i. e. maps g, of £,(I") into E,(E), which commute with the diffe-
rentials d,. Our main task will be to study these maps for r = 0,1, 2
in terms of Serre’s description of E,(X), E,(E), E,(E) .

I1.3. Since A?-1(K)-is a direct summand of A?(¥), we have a
canonical isomorphism of E,(I') and E () ® C(2), with respect to
the differentials d, and dy @ 1 + w ® d; this can be interpreted, via
the map g, : Ey(I") - Ey(K), as an operation of C(2) on E, (). Going
to the homology groups, we have a canonical imbedding of E,(E) Q H(R2)
into E,(I') = H(E,(E) ® C(2)) by the Kiinneth theorem ( E,(#) and
C(82) are free groups), with d, ® 1 4 w ® d going into d, (actually
the term w ® d can be dropped since we are dealing with H(Q)) .
Similarly E,(I") will contain the canonical image of K,(F) ® H(Q),
but will contain additional terms from two sources: from the other
summand of E,, and from the universal coefficient theorem for E,(E)
® H(R2) . If the coefficients are not integers, but taken from an arbitrary
commutative ring, the situation is even more complicated. We therefore
restrict ourselves to considering canonical maps of E,(F) ® H(£2) into
E.(I') and via g,, into E,(X), and interpret this as an operation of
H(Q) on E.(E), as follows:

Let Z be the group of cycles, and B the group of boundaries of C(£) .
The identity map C(E) ® C(2)— I' induces obviously maps #,:
C?’(E) Z—~C?(I'), r=1; one verifies that C?(E) ® B, C?-1 R Z,
B? , ® Z are mapped respectively into C2~}(I") + B?_,(I"), C2zx(I"),
Br_ (I, and that therefore, passing to the quotients, one gets an in-
duced map v,: E,.(E) Q H(Q)— E.(I'); the relation », o (d, ® 1)=d, o,
is clear (for =0 this is modified to »,: C%(E) ® C(2)—C%(I"), inducing
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vo: Eo(B) ® C(Q)— By(T'), with dyovy=10(de @ 1+ 0 ®d)). We

form now g, o », = m,, and have the induced maps

70: By(E) ® C(Q)— Ey(E)
7: E(B) @ HQ)—>E.(E), r=1,

which commute with the d,. If we write z2*v for =, (2 @ v) (r=0),
we can express this by the formula

d,(z*v) =d,z¥v for r=1,zek,(E), veH(2), while
do(c* v) = dgc * v + wc *dv for ceBy(E), veC(2) .

Moreover the operation * commutes with the passage to homology
groups ; if [ ] denotes homology class, then we have [z*v] = [2]*wv,
if zis a cycle of E.(E), r=1, veH(2); for r =0 this becomes
[z*xv] = [2]*[v], if z is a cycle of Ey(E) and veZ. This follows
from the fact that the operation * is derived from the original operation
® in C(H) ® C(2) by passage to quotient groups; in more detail : if
z is a chain in CP?(E), representing z € E,(H), and if » is a cycle of Q,
representing u € H (2), then the chain 2z * u represents z*u in E,.(E).

II1.5. In order to study associativity relations, we consider the two
maps fo’ fl of B x 2 xQ intoE,deﬁnedby fO(QIs % 93) = (QI ' Q2) *qs,
resp. f1(q1, 92, 9s) = ¢1- (93 - ¢3) . Of course the two maps are not equal,
but they are homotopy-associative with stationary projection and even
with (e, e, e,) stationary, i. e. there exists a homotopy g (9,, 0 <t < 1),
such that :

(1) go:fo,g1=f1a
(2) Po9:q1,%,9) = plg) forall q,,¢,q,¢,
(3) g.le,e,e)=¢e¢ forall ¢,

defined as follows: ¢, ¢,, g; are paths in X, i. e. maps of [0,1] into X ;
the homotopy to be constructed is just a shift in parametrization. We put

48 t+1
q‘(t-}—l) for 0<s< q

it 41

<s <

9q1> 925 95) (8) = Qa(45 — ¢ — 1) for —
48 —t— 2 t+ 2
qs('—z‘:’t——)f"r i ==l

With the help of a diagram, consisting of the unit square in a ¢-s-plane
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together with the segments (0,%) — (1,3) and (0,3) — (1, %), one
checks that g has the required properties; continuity is proved as in
[10, p. 475]. For any n-cube w = w(x,,...,%,) in B X Q2 X  we
definean (n+-1)-cube kw by kw(x,,. . ., €, ,)=(—1)"gzp ., (w(xy,. . .,z,)),
Clearly D) goes into D), and we have a map of the chains, which
raises dimension by 1. One verifies that

II.5.1 dk + kd = f, — f,,

so that k£ provides a chain homotopy between the induced chain maps
foand f,. (We note that because of property (2) ksends 47 ® C(Q)® C(RQ)
into 47 ; from this one could prove directly that I1.5.5 holds.)

Clearly the subset 2 x £ X  is carried into 2 by g, ; it follows that
the two maps fo, and f,, of H(Q) @ H(Q)  H(Q2) into H(Q) are
identical (the chain maps are chain homotopic). This means that *-multi-
plication in H (f2) is associative. That the point e acts as unit follows,
as noted in II. 1, from the fact that the two maps of £ into itself, defined
by qg—q-e, resp. e-q, are homotopic to the identity.

We come to the connection of * with the chain equivalence [10, p. 447]

p:J =C(X) ®C(Q)—> Ey(E) .

We recall that J, = O (X) ® C(£2) corresponds to EY(E), and that
yp commutes with o ® dy and d,, which can be expressed by saying
that we take C(X) with dy = 0. For a given p-cube u of X, and cubes
v, w of 2 we form the two cubes K (u,v *w) and K (u,v) * w, both of
which belong to 77, and both of which belong to D if any one of u,
v, w does. We get therefore two induced maps from C(X) ® C(Q) QC(2)
to Ey(E), which we call «;, and «, ; we can write «; = p o (1 ® p) and
kg =0 (p ® 1) (see II.1 for p and II.3 for m,), which shows that «,
and «, are chain maps (for dy= 0). We note that B- K(u,v) *w = u
and F-K(u,v) *w =v*w, sothat x, = p o ¢ o x, . With the operator
k from [10, p. 448] we form now s =k o x,. We have then d,s + sd =
dok ky + k kod = (dok + kdg) ke = (W op — 1) ky = K; — K, so that we
have a chain homotopy between «, and «,. If x is a chain of X, and u,

v are cycles of 2, then « (x @ ® v) and «,(* ® v ® v) are homo-
logous. We can restate this as

I1.5.2 P Q@u)*v~y(x Q@ (u*xv)) in E (H), for
) xeC(X), u, veZ(Q) .

Going to E, and recalling that * commutes with taking homology
classes, we find
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I1.5.3 (r Qu)*v=2z Qux*v) in E,(K), for
xeC(X), u, ve H(Q);
here E,(E) is identified with C(X) ® H(2) by v, thus defining
(* @u)*v =y, (p«(xr @ u)*v). The differential d, of E,, according
to Serre, becomesdy ® 1 on C(X) ® H(2), and E, is the corresponding
homology group. Let  now be a cycle of X and u, v as before. Making
use of the canonical map of H(X) ® H(Q) into H(C(X) ® H(RQ)) = K,
(with [ ] again meaning homology class), we see

I1.5.4 [2]Q@u*v)=[zQ@(u*v)]=[(x Qu)*v]=[z Qu]*v=([2]@u)*v .

Associativity of H () and relation II.5.3 imply the equation

(x @ w)*(v*w)=((z Q@ u)*v)*w in E,(K), with xeC(X), u, v, we H(Q) ;
and the z ® w span E,. Going to homology classes one finds then

I1.5.5 z*x(v*xw)= (z*v)*xw for zeH.(B), r =1, v, we HQ) .

Similarly one proves, starting from E,,

I1.5.6 z*e=2z for zeE,(E),r =1, e the unit of H(Q).

We collect our results in the following theorem, into which we incorporate
a statement about the grading of the various groups, and about coeffi-
cients ; both statements are proved easily by going back to the map
e: I'> C(F), by which all other maps are induced :

Theorem II. 5.A: Let X be a 1-connected space. The mapy : E x Q—E
induces a pairing, written *, of
a) H(Q) and H(2) to H(2); in detail : H,,(2) and H,(2) to H,,,,(2);
b) E,(E) and H(Q) to E.(E), r > 1; EI'Y(E) and H,(2) to EY**"(K);
c) E,(E) and C(R2) to E,(E); E?*(E) and C,(2) to E}**™R)

with the following properties :

1) The pairing is bilinear, and associative, i.e., for zeZ,., r > 1, u,
v, w e H(Q) the relations (x * u)*v=1x* (u *v), (u *v) *w=u * (v *w)
hold ; the point e satisfies e *v =v*e =v for ve H(Q), and x * e =
x for x el (B), r >1;

2) d(x*v) =dx*v for r > 1; dy(x*v) =dyx *v + wx *dv;

3) * commutes with the identification H, , = H(E,);

4) In E, and E, one has, for z e C(X), resp. H(X), u,ve H(Q),
(r Qu)*v=12x ® (u*v), where E, is canonically identified with
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C(X) ® H(Q), and where H(X) ® H(£2) is mapped canonically into
H(X,H(Q)) = E,;

the coefficients for C(2), H(Q), E,, r > 0, are taken from a commuta-
tive ring R with unit ; C'(X) and H (X) can be understood either over the
integers or over R (the tensor products are taken accordingly).

H(Q), with * as multiplication, will be called the Pontryagin-ring
or-algebra H_(£2) of 2; it has e as unit.

Remark: The theorem actually applies to a more general situation,
in a slightly extended form. Let Y be a fiber space over B, with projec-
tion p; suppose a space M operates on Y and on itself, i. e. maps of
Y X M into Y and of M X M into M (written as products) are given,
with the following properties :

1) p(y-m)=p(y) for all yeY, meM;

2) there is an ein Y and an e’ in M, such that e-e’=e and e’-e'=¢e’;

3) the two maps (y,m,,my,)—> (y-m,) -m,, Tesp. y-(m,-m,) of
Y x M x M into Y are homotopic, with (e, e, e') stationary and
with F x M x M staying in ¥, where F is the fiber through e;

4) the map ¢—¢q-e’ of F into itself is homotopic to the identity ;

5) the maps m — m-e’, resp. ¢’ - m of M into itself are homotopic to the
identity ;

6) the two maps (my,m,, my) = (m,-m,) - m,, TESp. My (My-my) of
M x M x M into itself are homotopic, with (e’, ¢’, e’) stationary ;

7) B l-connected, M and the fibers of ¥ 0-connected.

H (M) will then operate on E.(Y) (1 <7 < o0), on H(F) and on
H(Y); it also operates on the subgroups D?, by which H (Y) is filtered.
The associativity relations etc. hold, suitably modified; the operation
on K is obtained from that on H(Y) by going to the factor groups. In
the proof of I1.5.2 e. g. one has to replace C(X) ® C(2) ® C(2) by
C(B) @ C(F) ® C(M). Conditions 2) — 7), in particular 4) — 6), could
of course be modified. -

This situation occurs when a Lie group operates on a space, e. g. for
principal bundles ; this is what has been considered, in cohomology, with
_ Leray’s theory, by Leray [5, 6] and Borel [1].

II.6. We give a brief discussion of cohomology relations ; the contents
of this section can be considered as a translation into singular theory of
results of Leray [6] and Borel [1]. For simplicity we restrict ourselves
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to a field k as coefficients (in the general case one would have to consider
pairing of groups to their tensor product).

For a cochain ¢ in C7(X) and a cube  in @,(X), with r < n, one can
define the ~-product, which we write also as a-u, by the formula

a-u=20g g a(Azu) Azu ,
H

where K runs through the subsets of r elements of {1,2,... n}, H is
the complement of K, and gy x is the familiar sign determined by the
number of inversions (cf. the v-product in [10, p. 441], by which, as
in [2], the ~-product is determined) ; this induces a ~-product between
C"(X) and C,(X) with values in C,_.(X). The v- and ~-product, the
Kronecker index KI (a, x) (defined as a(x) for a e C"(X), z € C,,(X); we
identify C"(X) with the k-linear forms on C,(X)), the index In(x)
(defined as J' k, for x= 2k, u; e Cy(X)) , and the differential d (boundary
or coboundary) satisfy all the usual relations [2, p. 432]; the unit 1 of
C*(X) is the constant function, with value 1 ek .

Let Y be a fiber space over B, with projection p and fiber F'. One veri-
fies that the ~-product pairs 4*?:¢ and A?"? to A? ~?¢-2 Tt follows
easily that, in addition to the v-product in E, (as in [10]), there is an in-
duced ~-product, pairing E,?'? and E?-? to E? ~?*'~4 a KI (between
E77? and E?*?, 0 otherwise), an In (for E°), that all the usual relations
are satisfied (the differential is d, for » < co, 0 for r = o0), and that the
operations are compatible with the identification ¥, ,=H (X,) etc. ; since
we have field coefficients, E,?'? is identified, by way of KI, with the space
Hom (E??) of k-linear forms on E??; all this is a straightforward generali-
zation of the corresponding facts for H(Y) and H*(Y). For E, the
~-product translates into the natural ~-product between C?(B, H?(F))
and C,(B, H, (F)) relative to the ~-product pairing of the coefficients
HY(F)and H,(F), except that a factor (— 1)*“~9 has to be added
(cf. [10, p. 454]) ; corresponding statements hold for E,. Ife. g. the Betti
numbers of F are finite, then the v- and ~-products become the canonical
products in H*(B) ® H*(F) and H(B) ® H(F). Similar statements
hold for KI.

If X and Y are any two spaces, one can define v, ~, KI, In in the chain
complex C(X) ® C(Y) and its cochain complex (using e.g. the fact
that the map u is a chain equivalence (I.3)) ; the relations u*(f vg) =
p*f o pu*g and py (u*f~ z) = f~ pyex hold. There is an imbedding of
C*(X) ® C*(¥) into the cochains of C(X) ® C(Y), sending a ® b
into u* (my @ v 7} b) ; here ny and 7y, are the projections of X x ¥ onto
X and Y. Ife. g. Y has finite Betti numbers, this induces an isomorphism
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of H*(X) @ H*(Y) (skew product) with the cohomology algebra of
C(X) @ C(Y) (cf.[10, p. 458 and 473]), since then, by way of KI,
H*(X) ® H*(Y) is the space of all linear functions on H(X) @ H(Y) .

We turn now to the situation of I1.2, so that ¥ is the space of paths,
ending at z,, in the 1-connected space X, with fiber L. The cochain-
algebra I'* of I'= C(E) ® C(RQ) is filtered in the standard fashion,
I'? = annihilator of I'’?~!; reasoning as above one sees that there are
induced v, ~, KI, In in the spectral sequence. The terms E,(I') can
now be identified with E,.(E) ® H(2) (for r > 1) [in more detail:
E?™ (') = X E?*(E) ® H,(2)], since we have field coefficients ; as always

8+i=n
E?YT") is identified with Hom(E2?(I")) . We assume now that H(Q)
has finite Betti numbers. We can then, as above, identify E; (I') with
E}(E) ® H*(Q), and, inductively, E,(I') with E,(E) ® H*(Q), with
the operations v, ~, KI, In, d, going into the canonical operations for
the tensor products (d, becomes d, ® 1). The map ¢o: I'—> C(E) induces
now maps x,,n, of E.(E) ® H(RQ) into E,(E), resp. of E;(E) into
E(E) @ H*(Q), which satisfy the various compatibility relations; in
particular they commute with the differentials, and satisfy KI (7, a, z) =
KIl(a,n x).
The relation 4. of Th. IT.5.A becomes now

L@z Qa’)=2 Qx'*x2") for =xzeH(X), z',2" e H(Q).

By duality, i. e. by the invariance of the KI just mentioned, one derives
from this that for a e H*(X), b e H*|2) one has =, (@ ® b) = a ® g*(b)
where ¢*(b) is the image of b under the map o* : H*(Q) - H*(2) @ H*(82)
induced by the multiplication 9:02 x Q-2 (II.1); this is the exact
analog of results of Borel [1]. As well known, the element o*(b) has the
forml1 @b+bR®1+2¢; ® cg ; with 0 < dim ¢; < dim b, correspond-
ing to the fact that e is unit for H, (2) [10; p. 476].

The operation of H(Q) on E,(E), by *-multiplication, induces by
duality an operation on E,(E); we establish some relations for this
operation, which are essentially equivalent to some of the relations given
by Leray in [6]. For z e H,(2) and a € E;?'%E) we define an element
a * x € E;?*™(E) by requiring the equation

Kla@*z,y)=Kl(a,y*x) (= KI(ma,y ® x))

to hold for all y € E?'9~"(E). One sees easily that (@ * x) * 2’ =a * (2 * x)
and (d,a) * x = d,(a * x). Similarly we can let H () operate on H*(Q);
relation 4. of Th.II.5.A implies then that in E, and E, we have
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a@b*x)=( Qb)xx, for aeC*(X), resp. H*(X), b e H¥Q),
x eH(Q).

To study relations between v- and ~-product, we note first the following
equations, with a,beE,(E), yeE, (E), xe H(RQ), dima=r, dim
b=s, dm x =¢:

KI((ab)*z,y) = KI(7, (a) -7, (b), y @ ) and
KI((a*2)b,y) = (= 1)" KI(% (@) (b @ 1),y @ )

(for the second equation note: left hand side = KI(a *x, b~ y) =
Kl(@, (brny)*rz) = KI(ma,bry) ®2) =(— 1) KI(x}a, (bR 1)
~ (y ® z)) = right hand side). Secondly, the relation z*e =12 for
2 € E,(E), e the unit of H,(Q), implies by duality that, for a ¢ E, (E),
the element 7, (a) of E;(E) ® H*(2) hasthe form a ® 1 + R,, where
all terms a’ @ a” in R, have dim a” > 0. It follows easily that the ele-
ment 4 (ab), defined as =, (ab) — 7, (a) (b ® 1) — (@ @ 1), (b), equals
R, R, —ab ® 1. Suppose now that x is a primitive or minimal element
of H (L) in the sense of Hopf [4],i.e. b~ z = 0 for 0 < dimb < dim z,
and dim z > 0. It follows that KI(A4(ab), y ® ) =0 for all y. Com-
bined with the above relations for the KI, this is easily seen to imply

@b) * = (— 1)* (@ * 2)b + a(b* ) ;

this can be stated as follows : If x is minimal and dim z is even, then the
operation a—a * x is a derivation, if dim x is odd, it is a “right”
antiderivation (if 2 would operate on E on the left, we would get here
the customary antiderivation).

All the above statements apply of course, suitably interpreted, to the
case discussed in the remark at the end of II.5.

III. Applications

1.If (Y, B, F, p) is a fiber bundle (with bundle Y, base space B, fiber F',
projection p) in the sense of Serre [10], (B always 1-connected), then an
element z of H,(B) (p > 0) is called transgressive, if dyx = ... =
d,_1z = 0. This is to be understood by using the following conventions :
e represents the generator of H, of any space, given by a point; we
identify H (X) and H (F) with their canonical images H(X) ® ¢ and
e  H(F) in E, (this is compatible with the *-operation, as theorem
IT.5. A shows), so that e. g. the z in d,x stand for  ® e. Since dyx = 0,
i. e. #is a cycle of E,, it determines an element of E;, namely its homology
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class, which we denote by x again (with the analogous convention for
any cycle of any E,), etc. The element d,x is then an element of a certain
factor group of H,_,(F).

Let Z, as in 1I, denote the space of paths in the space X, ending at z,,
considered as fiber space over X with fiber Q.

Theorem III. 1. A: Suppose H (X), coefficients in the principal ideal
ring R, is R-free, and all elements of H (X) are transgressive (in £). Then
H () contains a subgroup 7, isomorphic image of H_ (X) (= elements
of H(X) of positive dimension) under a map which lowers dimension
by 1; and the Pontryagin ring H,({2) is the free associative algebra
generated by 7', with e as unit.

Proof: We start from the relation E, = H(X) ® H(£2) (which holds
since H(X) is free). Thm. II.5.A implies then that £, is “totally
transgressive”” in the sense that for any element z of E,, which lies in
E??, all differentials d,z,...,d,_ ;2 vanish (dy(z Q@ v) = dy(x ® e)*v)
=dy(x*v) = (dyx) *v =0, [x*v] = [x]*v =2 *v in E,, etc.). Our
argument will be based on the fact that H(E) and therefore K are
trivial, since K is contractible, and that therefore £, has to be “extin-
guished” by application of the d,. We choose a base 2'= {z,}, ¢ running
through an index set J, of H_ (X), consisting of homogeneous-dimensional
elements ; for each x; we choose an element x; of H (2), such that
d,x;, = x;, with p = d1m z;, and consider the collection M of elements
Xy =X ¥ ko kx,  k=1,4;eJ for j=1,...,k. We claim
that these elements are mdependent and that together Wlth e they form
a basis for H (L) ; this will obviously prove the theorem, with 7' generated
by the z;. We call k the length and dim #z, the height of z; ;, ;.. Suppose
there were linear relations between the elements of M ; consider the
relations in which the maximum length of the elements occurring is as
small as possible, say k. Choose such a relation r = X'c,2, =0, with
zy € M . It can be written as a sum 7' + r” of two parts, where the first
part contains all elements of maximum height, say p. We write each
%, 88 Ty * 2, With z,e M or = e, in the obvious fashion, and form the
elements y, =2, ® 2, of E,, and put y = Xcy, =y’ + y", where
y' and y" correspond to ' and r”. We go now to £, .

There r” has become 0, since the elements z, ® 2, in y” map onto
the z,* 2, in r” under the appropriate differentials d,,q < p; 7' is
then also 0 in E, ., . Similarly ¥’ maps onto r’ by d,,,; we have there-
fore d,.,(y’) = 0. By total transgressivity y’ is not image under any
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d,; it follows that y’ = 0, since otherwise E_ would contain a non-
trivial element. The z,, occurring in y’, are of length < k, and the ele-
ments of length < k& form a free subgroup of H (), by our minimality
assumption. Since H(X) is free, it follows that the elements z, ® z,,
occurring in y’, are independent in F,, and, again by total trans-
gressivity, in K, ,; this contradicts the fact that y' is 0 in £, ,, and
our assertion concerning the independence of the elements of M is proved.

Suppose there were elements in H (£2), which are not linear combi-
nations of elements of M ; let n be the smallest dimension in which this
happens. All elements of E}~?t1¢ for g <m, are then of the form
2z, ®t,, with dimt, =g <mn; the ¢, are therefore generated by M
and e. Considering now the action of d,,d,,...,d,,,;, one sees that
E}?, is a quotient group of H,(f2) by a subgroup which is contained
in the subgroup generated by M (note that d,(x ®¢),dim z = p, is
congruent to x *¢{ modulo the images of d,,...,d, ;). But E%", must
be 0, q. e. d. We have shown that the element x; ; of M and e form a
basis for H (£); the statement about the ring structure is immediate
from the relation x; . *%; ;, = % ipi,.ii-

Since spherical cycles are transgressive [10, p.452] the theorem
IIT.1.A applies when all cycles of X are spherical. We can therefore
state the corollary :

III. 1. B: The Pontryagin ring of the space £ of loops in the space
St St ... 8" (union of k spheres of dimensions n;,>1, all
attached at one point) is the free associative algebra on k generators of
dimensions »; — 1.

For the case of a single sphere this can be read off from Morse’s results
[7]. We describe a somewhat more general case in which theorem I1I.1.A
is applicable. - '

Theorem III. 1. C: Let X be the join of a 0-connected space X with
the 0-sphere S°; then in the spectral sequence of E(X) all elements

of H, ()?T ) are transgressive.
Proof: We consider X as the product X x I with all of X x 0,

N\
resp. X X 1, identified to a point z,, resp. &;. X is clearly 1-connected.
Define

Xo={(x,t): veX, 0<t< L v{a), X = {(z,1): xeX,3<t<1}v {2},
and identify each z ¢ X with (, 3) € X. The inclusion map of the pair

(X, X) into ()? , X1) is homotopic (as map of pairs) to the map f defined

335



by [f(xy) = @y, f(x,t) = (x,2¢) for O0<t< 3}, f(x) =2, for xeX;
f can be considered as a map of (X9, X) into (X, x,). Using the fact that

X%and X! are contractible spaces, and using the excision (X, X1) o (X9 X),
one shows easily that the map f* is an isomorphism of H(X° X) and

H ()’E, x,) . Since X° is contractible, we can, by an application of the
covering homotopy theorem, find a map g: X°— E, suchthat pog = {.
If we let 2 be the fiber of £ over z, (we might choose x, as base point
for E), then g maps the subset X of X° into £, and so defines a map g
of the pair (X° X) into (&, ). It follows now that f, = p, o g4 (as

map of H(X% X) into H (I,C\ , x;) and that p, maps H(E, ) onto

H (X, z,); by the geometric definition of transgression [10, p. 452], this
proves the assertion of the theorem.

IIT1.2. Let (Y, B, F, p) be a fiber space, with ¥ operating on Y as des-
cribed at the end of II.5., and suppose B is a homology-k-sphere. Then
one has the Wang sequence [10, p. 471]:

— H,(F)~> H,(E)~> H,_(F) > H,_,(F)~ - - - .

The map 0 in this sequence is obtained as follows : Let s be a generator
for H,(B); map H, ,(F) into E¥*~* by sending 2 into s ® x = g(x);
then 0 =d, og. Put now d,s = v; then by theorem II.5.1 we have

O(x) =di(s @ ) =di((s Qe) *x) = (dys)*x =v*x. We have:

The map 0: H, ,(F)— H, ,(F) in the Wang (homology-) sequence is
given by 60(x) = v * @, where v is the characteristic element determined
by d,s = v. In case of a principal bundle over an actual sphere S*, the
element v is the (spherical) homology class determined by the charac-
teristic element of the bundle in the sense of Steenrod [11, pp. 97, 180],
with the sign reversed.

Let a be any element of HP(F), with 0<p<k — 1; clearly all
d, a vanish. In E,(= E,) we have a~ seE%~? = 0. It follows that

0=dyans)=(—1"*dans+ands=anv;

in other words, v is a minimal element of H (F).

Added in proof: A recent paper by T. Kudo (Homological structure
of fibre bundles, J. Osaka City Univ. 2 (1952, 101-140) contains a con-
struction similar to that of II.5. As a common generalization one could
consider the situation of the «remark» in II.5, with ¥ and M paired
not to ¥, but to another fiber space Y’ (with base B’, fiber F’, projec-
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tion p’), and the projections commuting with a given map f:B—B,

1. e.

satisfying p’ (y-m) = fop(y); there is then an induced pairing of

F and M to F’. Results and proofs are analogous to the earlier ones;

for instance in E, one has (x ® y) *z = f.()® (y *2), for xeH (B),
yeH((F), zeH (M).
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