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Geodesics, symmetric spaces, and differential
geometry in the large’)
By H. E. Ravcs, Philadelphia

1. Introduction, symmetric manifolds, and main theorem

Modern differential geometry, in particular Riemannian geometry, the
subject of this paper, is a branch of analysis arising from problems of
geometry and clothed in its language. Now it is an inevitable task in
studying any analytical system to view it “in the large,” i.e. in con-
junction with the manifold of all its parameter systems and solutions
with the result that geometrical considerations of another kind, among
them topology, enter the picture. Thus it is my task here to present an
investigation of the effect of certain natural hypotheses about a Rie-
mannian metric on the manifold which bears it — the outstanding question
in differential geometry in the large.

In a manner which I will make precise the essential conclusion will be
that for a significant class of manifolds2) parallelism (the holonomy group)
and curvature determine the topological structure of the manifold and
that they do so via the geodesics since 1) the geodesics determine the
topological structure (and more) and 2) parallelism and curvature deter-
mine the geodesics ; hence the present paper deals, in reality, with the
effect of curvature on geodesics.

To preface the main result and as an essential preliminary let me
relate the results of prior investigations dealing, first, with 2).

Consider for the moment an n-dimensional Riemannian manifold M™
(the notation introduced in this paragraph will, with minor variations,
be standard throughout the paper) with metric tensor g,,, all being of
sufficient differentiability, say, C? at least. A classical method of Bonnet
(see Rauch [2]3), pp. 39-46 and references there for what follows) appli-

1) For a brief summary and discussion of the main results of this paper see Rauch [1].

2) Including the classical spaces of geometry and analysis, i. e., those of constant cur-
vature, hermitian elliptic (complex projective) space, the Grassmann manifolds properly
metrized, and the compact semi-simple Lie groups.

3) Hereinafter referred to as C. D. G.
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cable to surfaces and, with straightforward generalizations, to n-dimen-
sions gives the following information about the effect of the curvature of
g:; on the relative behavior of its ¢nfinitely near geodesics. Let o be a
fixed geodesic issuing from a fixed P € M", and introduce the co-ordi-
nates (of Fermi) which are locally euclidean along o, (24,...,2 Za),

* “n—1r “n

where z, = s is the arc-length along ¢ measured from P, and

2= (2950 00)Rpy)

is the set of cartesian coordinates of a point on the (» — 1)-plane N (r)
orthogonal to o at Q(r),2, =s=7r. Let z=1z(e,s), z, =s be the
co-ordinates of a one-parameter family of geodesics issuing from P and
including o for e = 0 (2(0,s) = 0). Then the “infinitesimal displace-
ment vector”

_02(0,59)
 de
satisfies the Jacobi equations :
o + R.gnng =0 (n not summed) . (1)

The prime denotes differentiation with respect to s; all Greek indices
run from 1 to » — 1; and the repeated index convention for summation
is used unless contrary indication is given. R,g,, in (1) are the compo-
nents of the Riemann-Christoffel tensor of g,, in the coordinates z along o,
i. e., they are functions of s only. If u = (u,,...,%,_;,0) is any unit
vector perpendicular to o at ¢(s) then R,,,gu,ug is the Riemannian cur-
vature of M at the point @ (s) and the 2-section ¢ spanned by » and the
unit tangent vector to o. In particular for a manifold of constant curva-
ture the equations (1) become

po + K ppyy =0 . (2)

Suppose that a vector solution # of (1) vanishes at P and again for the
first time at ¢ (7). Then @ (r) is the first point conjugate to P on . Loosely
speaking, @ (r) is the first point where a geodesic issuing from P and
neighboring ¢ “meets’” o again. The arc of o given by 0 <s <r will be
relatively minimizing ; for s > r it will cease to be so. Also, a sufficiently
small neighborhood of Q(s), s <r, will be simply covered by the geo-
desics issuing from P and close to o.

Looking at (2) one sees that if K > 0 then the first conjugate point is at

7T

VK

Y ==
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and the geodesics curve in on one another ; if, however, K < 0, then
there is no conjugate point ; and the geodesics fan out like the straight
lines in ordinary space. Label the equations obtained from (1) by re-
placing R,,.g by Enanﬁ’ (i)—similarly for 1%',,“,,3, (f). One obtains then
what I call

Bonnet’s Lemma. Assume that
Rnomﬁ Uy Up < Rnanﬁuauﬂ < I_Znanﬁuuuﬁ "
Then the first point conjugate to P on o with respect to (1) (¢f any) lies be-

tween those taken with respect to (1) and (1) respectively, being closer to P
than the former and farther than the latter.

The proof of Bonnet’s Lemma will be given in section 3 along with
related analytical details.

Two obvious corollaries will be the key to the two theorems which
form the sum total of what had been done in this direction before C.D.G.
and the present paper.

Corollary 1. Let K(P,y) be the Riemannian curvature of M™ at the
point P for the 2-section v, and let Q (r), as above, be the first point conjugate
to Ponanyo.

If O<L<K(P,y)<H forall PeM, ally,

then . -
~—-—-—-‘<'I’£—-—'_—..

VH ~ VL
Corollary 2. With the same notation, if for all P and y
K(P,y) <0,

then there is no point conjugate to P on any o issuing from .

Assume now that the M™ in question is complete with respect to its
metric — every bounded sequence of points has a limit point.

Then Corollary 1 has as a consequence the following

Theorem (Bonnet). A complete Riemannian M™ for which
0<K < K(P,y),
for all P € M™ and all y, is compact and is of intrinsic diameter less than or

VK

Similarly Corollary 2 implies the second

equal to
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Theorem (Hadamard, Cartan). The simply connected covering M of
. .
a complete M™ for which K(P,y) <0,

for all P e M™ and all y, is homeomorphic to euclidean space, E™.

The ideas used in the simple proofs of these theorems form an integral
part of the paper, and so they find their place here.

An initial, highly important observation is that the universal covering

Mn of M may automatically be endowed with the same local differential
geometry as M itself (e.g., the Clifford-Klein space-forms and the
sphere) so that in the last analysis all conclusions will apply to the
simply connected M™. That is true of the first theorem.

To dispose of Bonnet’s theorem one must know that every point of a
complete M™ may be joined to a fixed point P by an absolutely mini-
mizing (shortest) geodesic arc. But according to Corollary 1 each such

7
VK’

vely minimizing. Therefore, every point of M" is closer to P than z_

arc must be no longer than otherwise it could not even be relati-

the last part of the theorem. In particular every sequence is bounded
and has, therefore, a limit point. In other words M™ is compact.

Concerning Cartan’s theorem, the proof to follow will contain what
are unnecessary elements for the immediate purpose but important for
later applications. Consider the geodesics ¢ issuing from a fixed point
P ¢ M. The totality of the ¢ make up what I call the space of geodesics,
M7, associated with M™. A point of M} is a point of M™ together with
a ¢ on which it lies and the arc-length s measured along ¢ to the point in
question, i. e., every point ¢ of M" will give rise to a set of points @, € M7,
which cover @, the set being discrete if ¢ is not conjugate to P on any o.
A neighborhood N, of @, e M; will consist of those points in M; which
cover a cell-like neighborhood N of a point @ ¢ M* covered by @,.
Again N, will be a cell if @, is not conjugate to P.

But according to Corollary 2 there are no conjugate points. Therefore,
M7 is a well defined manifold and becomes homeomorphic to E* when
one makes P correspond to the point O and the o to the straight lines
through O in E™.

Now I claim that M covers M™ in the accepted sense, or, in other
words, M7 = Mn (M} is simply connected, being homeomorphic to E*).
Given a curve C in M™ beginning at ¢, I must show that one can develop
C along the curve O, in My, i. e., find a locally homeomorphic image C,
in M7, which begins at any assigned €, covering . The obvious means
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of doing that constitutes what was called the c-process in C.D.G., p. 47,
because of its patent analogy with a standard argument in analytic con-
tinuation of functions of a complex variable. Let ¢ be a parameter on C
such that the points of C may be written Q(¢), ¢ > 0, when Q(0) = Q.
Given @ there will be at least one geodesic arc ¢ joining ¢ to P because
M~ is complete ; therefore, there will be at least one ¢, e M; covering
@. Pick one and the corresponding arc o, joining @ to P. @ not being
conjugate to P on o,, a sufficiently small
sphere S, about @ will correspond to a
similar sphere in Mj, i.e., S, will be
simply covered by geodesic arcs neigh-
boring ¢,. In particular a sufficiently small
arc: @), 0 <t <t, of C will automati-
cally be developed in M, and one obtains
a second arc o, joining @(¢;) to P and
neighboring ¢,. Continue the process (Fi-
gure 1), obtaining o; and Q(;) = @,. In
this manner, one develops C' in M} step
by step. I have only to show that, at least
when C is rectifiable (which is enough) all
of C can be so developed. 1 need the essen-
tial.

Lemma 1. The length of any o, ob-
tained in developing C in M7 by the c-
process 8 less than the sum of the lengths
of the initial o, and the arc: Q(t;), 0<t<t,,
of C already developed.

The proof is an obvious consequence of the relative minimizing pro-
perty of geodesic arcs without conjugate points, namely : the length of
o, will be less than the length of o,_, plus the length of Q(¢,_,)Q(¢,).
Consequently if the @, converged to an interior point ' of C, the arcs g,,
being bounded in length by ¢ and the arc QQ’' of ¢ would converge to a

geodesic arc ¢’ joining ' to P on which @’ could not be conjugate to P.
Then one could start the whole process over again. q.e. d.

One sees then that the really delicate considerations occur in the case
of positive curvature. To gain some insight into this case let us examine
a broad class of special examples which, in fact, will furnish the clues to the
solution of the more gemeral problem. Consider the remarkable class of
Riemannian manifolds called symmetric and discovered by Elie Cartan
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(see Cartan [1], [2], and [3] and references there for what follows). De-
noting them generically by E®, one finds that the symmetric manifolds
are co-set spaces of semi-simple Lie groups G and they fall into two
categories — compact or open according as @ is compact or not. The E»
differ from other homogeneous spaces by their characteristic property of
admitting an involutive transformation or symmetry. As Riemannian
manifolds the E" posses an intrinsic metric which is invariant under @
and in which the symmetry appears as an isometric reflection of the
geodesics through a fixed point. But most important is the fact that the
open E" all have non-positive curvature so that the simply connected
ones are all homeomorphic to " by Cartan’s theorem ; while on the
other hand the compact ones which include the group spaces of the G them-
selves all have non-negative curvature. I confine myself, therefore, to the
constderation of compact, simply connected E"*). The geodesics of the E®
are the orbits of one-parameter subgroups of translations of G.

The vital differential-geometric property of the symmetric E* (which
is, in fact, equivalent to the existence of the symmetry) is Property E :
the Riemannian curvature of any 2-section y at P e E* 1is preserved by
parallel displacement of (P, y). Parallel displacement in E™ is equivalent
to translation by an element of (¢ and an analysis of the translations
together with Property E leads to Property F : the holonomy group H of
E™ coincides with the isotropy group g. H, I recall, is the group of linear
transformations of the tangent space Tp at P € E® onto T, at @ (see
addendum at end of paper) generated by the parallel displacement of a
frame along all curves joining P to ¢ (in particular when P= ). The same
definition holds good for the holonomy group H of an arbitrary Riemannian
Mn with the understanding that since E” is assumed simply connected
one is dealing with the restricted holonomy group, i. e. when P=¢ only
those curves which are shrinkable are admitted. g is the subgroup of &
which leaves a point P fixed, and Property F, strictly speaking, deals not
with g but with the isomorphic group of linear transformations of T,
into itself generated by g which, when E" = (7, is the adjoint group.

Using Properties £ and F one may draw some analytical conclusions
which, in turn, will lead to important statements about the geodesic
structure of a given E*. Returning to the beginning of this section, one
may consider a fixed P ¢ E*, a fixed geodesic o issuing from P, and the
co-ordinates (2, s) in which ¢,; becomes euclidean along ¢. In the co-ordi-

4) It should be stated that every E" is the direct product of irreducible factors, and the
curvature alternative applies to them; however, no assumption of irreducibility is made
in this paper. I do assume that all factors be compact.
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nates (z, s) a necessary and sufficient condition for a vector to be propa-
gated parallely along o is that it have constant components. Hence the
tangent vector to o, (0,0,...,1), and the unit vector,

U= (Uyyeene,Up_y,0),

span a 2-section y which is propagated parallel to itself the length of o.
Accordingly the form R,,,gu,ug, being the curvature at the point (0, s)
in the direction y, has constant coefficients by Property E. Therefore,
after a preliminary orthogonal transformation of the z’'s (the same for
all s), R,,,g being symmetric in « and g, the equations (1) will take the

form ”
77(!1+K1na1=0 al"—:l:"':nl (3)
Nem + Emloy =0 tp=1p 3+ 1,...,n—1

where K, >K,>K,>--->K, > 0 are the distinct characteristic roots
of R,,,pu,ug and the n; are their multiplicities.

Introduce now geodesic polar coordinates (y,s) = (¢¥1,.-.s Yp_1,9)
with P as pole. That means to choose an auxiliary (n — 1)-sphere X
about P, on it coordinates y such that dy,dy, is its line-element ; and
to assign the coordinates (y, s) to a point in E” which lies at the distance s
out from P on the geodesic o whose initial direction at P is specified by
yon 2.

Then the nature of g;; in the coordinate systems (y, s) and (z, s) and
the relationship between the latter enable one to show (C. D. G., p. 45,
last paragraph) that if the line element of any M*, let alone E®, be written

in polar form along o: ds® -+ aug(s) dy,dyg
44 o b

then a5 = 1% 7P = 757} where the #* are n — 1 vector solutions of
(1) such that 5*(0) = 0 and n*(0)-#f(0) = 8,5. In particular for E
if one chooses

77“1=(0, ...,M, ...,0) ,
VK,

the non-zero entry being in the «,-st place, etc. as solutions of (3), then
the line-element of E” in polar form along o falls into blocks :

sin?s V'K,
ds? -+ K:/ Ldyi+t. .. +dyi1)+ ...} 82 (d?/im_,“ +...4+ dyf,,(lly):;

where I have assumed that K,, = 0 — the usual circumstance.
Observe, however, that the characteristic roots and multiplicities are
not necessarily the same for all ¢ issuing from P but only for those which
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are transformable into o by ¢ (=~ H). Indeed H is only transitive on X'in
the E™ of rank A =1 (Cartan [2]) which are only those of constant
curvature (spheres) and the hermitian elliptic (projective) spaces defined
over the complex, quaternion, and Cayley algebras. For rank A>1 Xis
divided into domains of transitivity X, under H, and for each X', the
roots K and multiplicities n, are the same since H conserves curvature
(Property F) while the roots may vary continuously from X to X, (the
multiplicities changing only when some roots become coincident).

In contrast to the manifolds of negative curvature the dominant role
is now played by the locus of first conjugate points, henceforth designated
by C, of P. Indeed, the following observations about C easily deduced
from the preceding will be essential.

(I) On each ¢ issuing from P the first conjugate point p will fall at

7

VK,
i. e., will be determined only by the highest characteristic root of the curva-
ture form — call it K ; hereafter. That follows immediately from (3).

S =—=

(II) (4) shows clearly that each such conjugate point p is the meeting-
place of oo™ geodesics of the same length (actually of closed geodesics
making up the spindle of great circles on an 8" going through the poles P
and p) whose initial tangents cut out on 2" a subsphere, hereafter desig-
nated as X, .p is, of course, conjugate to P on all these geodesics.

(IIT) 1t follows easily from II that C', unlike the conjugate locus in an
arbitrary M", is a smoothly embedded locus in E” and that the points of
C sufficiently close to p together with sufficiently small arcs of the geo-
desics terminating therein form a cell-like neighborhood of p. In other
words, if one forms EJ, as in the proof of Cartan’s theorem, one may com-
plete it to a compact manifold by the addition of C.

(IV) As a consequence of (IIT) one may show that E; covers E", but
as E™ was assumed simply connected so one may conclude that E7 = E».
Therefore, E™ consists of a cell, made up by the geodesic arcs issuing from
P, and a singular locus C which must then contain all the topological
properties of E”. In the case when E" is itself a compact, semi-simple Lie
group space C is the locus of singular elements — those which do not
admit a unique canonical representation.

While (I)-(IV) are the only properties of E™ needed in this paper 1
should like to make two additional observations without proof. Together
with the foregoing they show how clearly and intuitively the topology
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of the E” is laid bare and that new ways of research are opened up by the
present method.

(V) For rank A>1 the smallest K, is zero, and the corresponding
geodesics make up the maximal toroid containing ¢ which fact, in view
of (I) and (IV), shows how irrelevant the toroids are in visualizing the
internal structure of E".

(VI) An explicit analysis of the locus C, particularly of the sub-loci
of those points equivalent to any one p € C under H or some subgroup,
is possible and should disclose the generating homology cycles. In par-
ticular it should account for the known structure of the compact semi-
simple Lie groups (Hopf [1]).

As the simplest examples to illustrate what has preceded let me cite
the sphere, S*, bearing the metric of constant positive curvature K and
the complex projective space P" (2n real dimensions) with the hermitian
elliptic metric (Study [1]). For the former G = 0t(n + 1), the ortho-
gonal group with positive determinant on n 4+ 1 variables; H =g
=0t(n); K,=K; ny=n—1, and P and p are opposite poles
joined by semi-great circles while (VI) holds good. In the latter case
G =U(n + 1), the unitary group on = -+ 1 complex variables;
H—g—Um); K,—K>0, K, :iﬁ
is the origin then p is the point at infinity on the projective line (complex)
joining P to p ; and the geodesics joining them all lie in that line forming
an ordinary S2? of curvature K. (VI) holds, too, the subgroup of U (n)
which transforms the geodesics through the origin of a projective line
among themselves being the ‘“‘circle group” generated by multiplying all
the inhomogeneous coordinates by ¢°.

s =1, n,=2n—1; if P

Such a particular, detailed, and accessible geometrical structure of an
E" would seem to be an intrinsic and characteristic property of the peculiar
integrable nature of E™, that is to say, of the fact that E* admits a set of
infinitesimal displacements (equivalent to a set of partial differential
equations) satisfying Lie’s first theorem (complete integrability of said
equations) with the consequence that the ordinary differential equations
of the geodesics admit those very infinitesimal transformations (thus be-
coming integrable in Lie’s sense). In other words, if the metric coefficients
of E™ were slightly perturbed in such a way that the resulting metric no
longer admitted a group of displacements and its geodesics no longer
satisfied integrable equations then, though the new geodesics differ only
slightly from the old, the particular delicate structure of C is completely
destroyed ; and the new manifold bearing the perturbed metric might
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differ radically in topology from that of E® whose global structure was
completely determined by the local rigid integrability of its metric struc-
ture (E" = E; being, in fact, constructed by integration of the equa-
tions of its geodesics).

But, and this is the main result of the paper, if the holonomy group of
the perturbed metric is no larger than H and if the variation in terms of
curvature is sufficiently constrained, no matter how arbitrary the per-
turbation otherwise, the locus C' may be reconstructed, as it were, and
the sundered ends of the geodesics rejoined to it by means of additional
geodesic arcs — thus reconstituting the geodesic and topological structure
by means of broken geodesics.

Thus one sees that the symmetric manifolds, far from being isolated
phenomena of a special nature, derive their structure from certain
parallelism and curvature properties which when satisfied to a certain
degree of approximation delimit a general class of Riemannian manifolds
with the same structure. And in all probability that is the strongest state-
ment one can make about the effect of general differential-geometric
hypotheses on the topology of a general manifold.

Thus I present finally

Theorem 1. Let E* (n > 2) be an n-dimensional, simply connected,
symmetric Riemannian manifold of positive curvature, with holonomy
group H. Then there exists a constant 0 <<c(E")<<1 of the following nature :
if M*, a complete n-dimensional Riemannian manifold of class C? and
restricted holonomy group H, is such that?)

(a) HS H.

(b) There exists for each Pe M"™ a transformation A, e H of the tan-
gent space 7' at P ¢ M™ onto the tangent space T at a fixed point of
E™ under which

c(E") K(hp y) <K(P,y)<K(hpy) forally
(where y is a 2-section in 7'y, hpy its imagein T', K (P, y) the curvature

of M™ at P in the direction y, K(hpy) the corresponding curvature

of E"); then the universal covering Mr of Mn is homeomorphic to E™.
The main theorem of C. D. G. is the special case of Theorem 1 when
Er = 8» and c¢(8") ~.75. When E?* = P" one can compute by the

5) Hypotheses (a) and (b), the explanatory remarks following Theorem 1, and the
paragraph in section 3 where formula (9) is proved may be replaced by the simpler
formulation in the paragraph on the last page added in proof.
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methods of section 3 ¢(P*) and find that it equals about .95. One sees
then that as the degree of complication increases the numerical value of
c(E™) may cease to be impressive, but the real content of the theorem
is qualitatives®).

Some clarification of the hypotheses is necessary. First of all, one may
renormalize the highest curvature of E™ to be any desired positive value
by multiplication of the metric by a constant. Thus the hypotheses apply
to En itself despite the strict inequalities which happen to be very impor-
tant. Next?), by hp belonging to H one means that one can pick bases in
Tp and T so that one may think of them as being identified, in which case
that and (a) both become clear. With that understanding, too, the mea-
ning of all of (b) becomes clear. In fact, in 7, =T one thinks of all the
2-sections of E” and all those of M™ as situated with their vertices at the
origin; then there exists by hypothesis an element of H taking one set
into the other such that the curvatures on corresponding sections satisfy
the inequality. Now it is important to observe that it does not matter
at what point in E* T is taken since E” is homogeneous and, more impor-
tant, since every element of H leaves all curvature properties of E* at a point
mvariant hp need only be defined modulo left multiplication by H.

Just as in C. D. G. the central idea in the proof of theorem 1 is to de-
duce from its assumptions that the metric of M™ written in polar form
along a given o approximates that of E” sufficiently closely to permit
duplication of E™s geodesic structure by means of broken geodesics. It

will be seen to be sufficient to consider those ¢ (bars will be used hence-
forth to distinguish entities in M™ which correspond to those in E™) issuing

from a fixed P in M whose initial directions lie on X, where Z, is defined
as follows : having picked P ¢ E* and p e CCE" and a fixed o joining
them, consider 2, (as defined in (IT)) — then the inverse image under
ks of 2, on ) will be f,, (it being understood that Ap, which may be
taken as a map of 7' onto T, induces a map of X, the sphere of polar

8) Since the holonomy group H is always a subgroup of the orthogonal group which
in turn is thu holonomy group of the sphere (constant curvature) the hypotheses of
Theorem 1 need not be so complicated in this case. In fact when E% = S%” one may
identify any Tp with T and the identity map will fullfill the hypotheses, thus accounting
for the seemingly simpler formulation of Theorem 1in C.D. G. Also, the case E2% = Pn
the hermitian elliptic, projective space, implies that the “unknown’ manifold M?2" ig
& so-called ‘“Kaéhler’ manifold, the latter being precisely a Riemannian manifold whose
holonomy group is a subgroup of the unitary group.

") Hypotheses (a) and (b), the explanatory remarks following Theorem 1, and the
paragraph in section 3 where formula (9) is proved may be replaced by the simpler
formulation in the paragraph on the last page added in proof.
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co-ordinates about P in M, onto X the analogous sphere in E”). Obser-

ving that the same (y, s) may be used about P and P simultaneously
one finds (next section) that theorem 1 may be deduced from

Theorem 2. Under the conditions of the preceding paragraph and the
hypotheses of Theorem 1 with the exception that the constant c(E™) in (b)
18 replaced by an arbitrary 0<c<<1 one has

) ] /37 \ 1—sin*6, sin* @,
ds® + aap (s) dya dyp < ds* + (Sm ‘Z K: K") (82) dYo dYo ,

where the left-hand term ts the line-element of M™ written tn polar form along
= A
o; 0<s<

o

, A<l and 0y=0,(4,c) for fized A tends to O as

¢c—>1. (exand B run from 1 to n, and f,, and X, are both given by y, .,
= e e zyn--l:())'

I remark that the reverse inequality is also valid but not needed here.
A more precise statement in the case E™® = §" is Theorem 3 of C. D. G.

2. Deduction of Theorem 1 from Theorem 2

First of all, let me exhibit the c¢(E") whose existence is the real asser-
tion of Theorem 1. That this c¢(E®) will really do what is claimed for it
in the subsidiary hypotheses will become clear as this section progresses.
Its introduction at this point is artificial, but it clarifies the exposition.
Namely, I first pick a fixed 0 <e<1 and then choose 4 and ¢ so close to 1
(but not equal) that

n(A-—V’—‘———)E(sian‘n/Vm) 37/ VEm» (5)

min

where K, = inf K %) and K, = sup K,. Then fix 4 and choose ¢
even closer to 1 if necessary so that sin? 6, = ¢. That is possible by
Theorem 2 (6, -0 fixed A<1 and ¢ — 1). One sees how much room
there is for juggling ¢, 4, and ¢ in order to find the best possible ¢ parti-
cularly when the dependence of ¢ (i. e. 6, really) on ¢ and 4 is so compli-
cated (see section 3).

To show that the c¢(E") thus produced does indeed fill the bill I need
some preliminary statements, remarks, and notation.

8) Kmin is definitely greater than zero. K being the maximum root, not zero, for each
o and H being compact, the infimum will also not be zero.
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Let M™ henceforth be the ‘“trial’’ manifold which is to be compared
with E™ as per Theorem 1. Then the notation in section 1 following
Theorem 1 will be retained, in particular, the use of bars over symbols
to distinguish entities in M™ from their mates in E".

Now it will be proved in section 3 that the assumptions (a) and (b)
about M™ in Theorem 1 imply that Bonnet’s Lemma holds for M™ when
the extreme members of the inequality are set equal respectively to

Ky(us +- -+ up) + o+ Kn(uny, 40+ + )
on the right and the same quantity multiplied by ¢ (E™) on the left of the
inequality. Then as a consequence of that and of I one sees that on a P
1ssuing from P e M the first pornt conjugate to P will lie between

8 =n/l/f{—; and n/l/g—li_.'; .
The first important statement which results is:
(i) Let E% (r) be the geodesic sphere of radius r about PeMr, i.e.
the set of geodesic arcs of length r issuing from P. If r<z/V K, then

the italicized statement implies that one can make :S_”} (r) into a (open,
bounded) manifold, denoted by the same symbol, in the same way that M7

was generated in the proof of Cartan’s Theorem. E% (r) ts homeomorphic
to the interior of a solid euclidean sphere while the set in M™ covered by it is
only locally homeomorphic thereto.

This distinction between a “space of geodesics’’ and the set in M"
covered by it will be absolutely vital in the proof of Theorem 1 and is
necessitated by the fact that M» itself may a priori be of such small
diameter that even a short arc of geodesic will wrap itself ‘round and
‘round M™ making it impossible to work directly thereon. What may
often appear to be a circumlocution will be justified in this light.

At this point let me also dispose of another property of -@% (r) re-
quired in the sequel. Namely

(i) Sy '(r), r <3}n/VK,,, the boundary of S%(r), which is ho-
meomorphic to a euclidean S~ is locally concave toward P, i.e. has

positive-definite second fundamental form when any sufficiently small
piece of it is considered as embedded in M™. That means that if attention

is focused on one geodesic radius o and on the hyperplane made up of
short geodesic arcs orthogonal to o at its endpoint then the geodesics

neighboring; and joining P to the hyperplane are longer than c. A proof
of (ii) will be given in section 3 (see C. D. G., p. 43). An important conse-
quence of (ii) is
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(iii) S (r), r< | VKmx, is geodesically convex in the sense that
any geodesic arc o in M» j joining two points which are covered by Sp (r)
will itself be covered and thus appear as a geodesic in S +(r) joining two
points covering the original points in M, f o is a member of a contin-
uous one-parameter family of geodesic arcs all of whose end-points are
m 5—2— (r) and at least one of which is entirely developed therein (such as
a radius of E% (7).

The proof of (iii) is a trivial consequence of (ii) since if it were not true
there would be a member of the one-parameter family which would be

entirely developed in g’% (r) except for one point at which it would be
tangent to Sp (r); but (i) shows that is impossible.

The stage for the real substance of the proof, the comparison of M»
(satisfying (a) and (b) in Theorem 1) with E* with an eye toward imita-
tion of the latter’s structure, will now be set by a slightly more detailed
discussion of that structure than was given in section 1.

First consider E” and a point P in it which is fixed for the remainder of
the section. The first conjugate points with respect to P on the geodesics
o issuing from P form the conjugate locus C as in section 1. I observe
once more that X', the sphere of polar coordinates about P is subject to a
double “fibering’’ by the ¢ cutting it and ending in C'. Namely X' is first
fibered by the domains of equivalence 2, containing the initial directions
of those o which are transformable into one another by g ¢ H. Then each
2, is fibered into the spheres 2, comprising the initial directions of those
o meeting at one point p e C. On each of these last mentioned o mark

off the point at the distance Ax| l/f(—; from P, where A has the value
chosen in (5). The locus of the resulting points I call E"-'(1), having
done the same for all p e C, while the totality of arcs of ¢ ending therein
I call E»(A). In addition let X, (1) be the subset of E»-'(4) cut out by
those ¢ whose initial directions lie in 2, ; and if o, be any particular one
of the latter and y any half great circle in 2, with one end at the point
where ¢, cuts 2, then the o which cut 2, along y will cut 2, (1) along
an arc I'. Concerning all these things one has the all-embracing

(iv) En»(A)is homeomorphic to a solid sphere while E”-1(4) is homeo-
morphic to an (n — 1)-sphere and is fibered in the same way as X'
E" — E*(2) is a solid “tube” T about C consisting of a “base space”
C and “fibers” A, which are solid “disks” of geodesic arcs of length

(1 — A a/VK,
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issuing from each p € C, these arcs being nothing other than the contin-
uation of the ¢ issuing from P and going through X,(1) on E*-1(4). C is
itself already a cross-section in 7'. All these statements follow easily from
(I) = (IV) in section 1.

(v) The following closely related additional observations, seemingly
irrelevant, will actually serve as a guide for completing the proof. Namely,
each fiber 4, of T being solid, i. e., cell-like, one could, by picking a
point ¢ other than p in each A4,, construct another cross section (Schnitt-
fliche) C’ of C in T by a familiar process since no ‘“obstruction’ will arise.
One could then replace the radii of 4, by geodesic arcs 7 joining the new
q € 4, to the points of 2 (1) so that in place of the ¢ joining P to C one
obtains the broke ¢’ joining P to C’. Now the 7, coming from the interior
of the convex 4,, obviously meet the ¢ nicely and at larger than right
angles. Therefore from E"(A), the v, and C’ one can construct a space
of broken geodesics E*, which is @ manifold (even at the ‘“corners’) and
covers E™ and is, therefore, homeomorphic to E™.

One more observation :

(vi) The sphere of radius 1 #/V'K_, — o (¢0>0 sufficiently small)
about p, 87, contains 2 ,(4) in its interior. That is not obvious because
K, < K,,,; therefore, even though A>>1} it is not clear that

(1—V)aVEK,<iVK_,

To establish it I use the following device. The curve I' on X, (1) (see re-
marks before (iv)) has length

(#|VK,)sin (An]V'K,) VEK,) =@V K, sin dx ,
by (4), which is less than or equal to
(7] V Epp)sin An <} 7V Kpgr — 0

by (5). Now any such I" by its definition starts at the point ¢ €2 (4)
where o, cuts the latter. Therefore, I' may be developed by the c-process
in 87 since, by the preceding inequality and Lemma 1 in section 1, the
geodesic radii joining ¢ to I" obtained in the process will be shorter than

3 nf VI?;;: But the totality of the I'" exhaust X, (4) just as their pre-
images, the half great circles, in X~ exhaust the latter. Therefore, X' (1)
may be-developed in toto in S] ; and since 87 by (iii) is convex ((iii) applies
equally to E™), A, which is really the geodesically convex closure of X, (A)
s also contained in S;. But the same reasoning applies also to any
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q € 2,(A). Therefore, 4, lying in every §7, every fixed point in 4, is
joined to every ¢ e X,(A) by a geodesic arc of length <1 #/VK_, — 0.
In particular S contains 2,(4). q.e.d.

Now it is a very simple matter indeed after these preliminaries to show
how (iv), (v), and (vi) can be applied word for word in M" with only
technical modifications — with the exception that the locus C which is a
priori absent in M™ must be constructed precisely by the devices indicated
n (v) and (vi).

In fact, let P e Mr also be fixed once and for all as was P ¢ E™.
X is the sphere of polar coordinates about P, and o is any geodesic

issuing from P. As remarked in section 1, the linear transformation hp
(notation slightly changed) in (b) of Theorem 1 may chosen as a trans-
formation of 7's onto T, (which under proper choice of bases becomes an
element of H). Under A3 X and xz correspond, and according to (b) under
this correspondence any 2, p e CCE", is mapped onto what was called
2 And for the ¢ whose initial directions fall on the subsphere Z.‘ one has
Theorem 2. One can then pursue the parallel with (iv), (v), and (v1) Sup-
pose 1n particular that one defines M™(A) and M1 (l) by ma,rkmg off on
each ¢ the point ¢ at the distance A n/l/K along o from P, where ¢
(i. e., its initial direction) corresponds to ¢ under kl—, and K, is the cor-
respondmg maximum curvature in E®. Then, thanks to the italicized
statement before (i), one obtains the limited analogue of (iv):

(vii) Mm(4) and M"-1(A) are homeomorphic respectively to a solid
sphere and an (n — 1)-sphere while the sets covered by them are only
locally so.

Furthermore, just as 2 (4) on E*~1(4) is homeomorphic to 2, on X
and is filled out in the natural way by the curves I" of length

<%n/VKmax — e,

sois X »(4) on M"~1(1) homeomorphic to ;‘:’ onZX and filled out by I whose

length by Theorem 2 and (5) is also <3} nf l/ K .. — o. Thus one has the
limited analogue of (vi):

(v111) If S— is the geodesic sphere of radius % n/l/ K. .« — o about any

q e »(4) then the latter can be developed in S starting with _q_, by the
c-process®). In partwular by (111) the geodeszcally convex closure (in the

sense indicated there), 4,, of 2 (A) will be contained in every S— 3

9) The hypothesis that M" is complete is used whenever the c-process is used.
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;1- € Z'—,,(A), 8o that the latter will automatically be developed in :S'-g where {) 18
any point tn Z,, (Figure 2).

I can now easily construct a locus CC M which will be locally homeo-
morphic to CCE™, and the process will be precisely that described in

constructing ¢’ in (v). Namely, after decomposing C into sufficiently
small simplexes I pick any vertex p and arbitrarily pick as its image

point, p, in the corresponding A;, of M. I do the same for the p be-
longing successively to the edges, faces, etc., the continuous extension

of the map always being possible because Zp (being convex) is solid, so

Ap-Shaded Area Figure 2

that no obstruction will arise. A little more care and the use of standard

approximation theorems will ensure that the map of C onto C, the set of
p thus obtained, be a local homeomorphism. I suppress the routine and
tedious details.

The construction of Mn, the space of broken geodesics which covers M™,
will follow easily from further appeal to (viii).

Indeed, according to (viii) fp(}.) is contained in Eg, the geodesic
sphere of radius 3 #/ l/f{;; — o, whose boundary, E,"{l, by (ii) has posi-
tive definite second fundamental form. Now I claim

(ix) If, in Eg, one applies the c-process to the geodesic radius o of

Mn-1(4) which ends in the point g; ef;,(l), starting with 21-, then one
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reaches :S'-g_l before reaching P and finds that at the point 5 where o cuts
_g;_l it does so transversely, i. e. , & 18 not tangent to —gg_l at a

The proof of the last b part of (ix) is clear, i. e., 1f P zs not reached first
then it is obvious that ¢ cannot be tangent to S— " at q because the local
convexity would imply that the arc of ¢ sufficiently close to q would
have to lie entirely outside ;S-;,, contradicting the facts. The slight techni-
cal difficulty is to show that P is not attained in applying the c-process
to o, i. e., that the entire arc of ¢ from P to q is not developed in Eg .
It is enough to show that is not the case for one single o by using the local

Ap-Shaded Area Figure 3

convexity again in a simple argument (C. D. G., p. 52, last paragraph,
and p. 53). Now even that is not self-evident for Sg, but it certainly is
for Sqﬁ, one of whose geodesic radii is just a sub-arc (of length

3 ”/VKmax - 9)

of a o, radius of f—(l) (of length 4 x| I/K >3n/V'K_,,). Then by
sliding S— contmuously to S- one sees by the same local convex1ty that P

cannot suddenly enter S; (otherwise some arc of some ¢ which was partly
in and partly out of gﬁ would also be tangent to Ef—l). q.e.d.

To form M», the space of broken geodeszcs covering M™, one now joins
each p eC to all the correspondmg q, the points where the o issuing
from p and ending in z »(4) cutb S , by the geodesic radii of the latter

which were obtained by developing the ¢ in :S'_% (Figure 3). Notice that
M»-1(2) has disappeared from consideration altogether while only part
of M"(A) remains.

Thanks to (ix) and (v) it is then a simple matter, requiring only some
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continuity considerations of a routine nature and, therefore, omitted

here, to verify that M is homeomorphic to E” and covers M™ — which
shows that the choice of ¢(E™) in (5) fulfills the requirements of Theo-
rem1l. Q.E.D.

3. Proof of Theorem 2 and related analytical facts?)

Returning to the analytical situation in the opening paragraphs of the
introduction, one sees that some words about Bonnet’s lemma are in
order. The proof thereof is a simple consequence of some standard facts
about solutions of the Jacobi equations (1) (see for example, Morse, Cal-
culus of Variations in the Large, Chapter I). In fact, if #(s) is a vector

solution of (1) such that #(0) = 7(s,) = 0 then, after a simple integra-
tion by parts, one finds that

I(sy) Ejlﬂ (n,n')ds =0

and (not so easily) conversely, where

Q (773 "7’) =N Na — Rnanﬁ Na 7B -

I(s,) is the second variation of the length integral in M for curves con-
necting P and ¢(s;) on . Now define

7(7)555@,?)@ and I(r jg(n 7)

where Q (1, ') = 1y 14 — Rionp Mo mg_ and similar notation holds for

I (r), n bemg a solution of (1),  of (1). Observe that the curvature in-
equality of Bonnet’s lemma implies

Qm, ) <Qm,n) <@, ), (6)

just the reverse thereof, where the same argument appears in all terms.
Observing that if the interval 0 < s <r contains no point con]ugate

to P (s = 0) on ¢ with respect to (1), (1) or (1) then 7(s), 77( s), and
7(s) are relatively minimizing for their respective integrals one finds

—femmas<feqne<fdanas=In o

10) The differentiability hypotheses are used in appropriate places throughout this sec-
tion without explicit mention.
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by (6) where #%(0) = :;(O) and #(r) = 5 (r). A similar reasoning esta-
blishes the analogous

I(r) <I(r) (8)
where the left-hand side is evaluated for an ;7- with the same end condi-

tions as the preceding # and?y . Bonnet’s lemma then follows immediately
from (7), (8), and the above remark to the effect that I(r) = 0 implies
that @ (r) is conjugate to P on ¢.

In order to make the applications of the lemma necessary in the initial
paragraphs of section 2 one must show that (6) and hence (7) and (8)

are valid Whenf(r) isreplaced by J (r) = f Q,(p, u')ds and f(r) by J,(r)
r 0
= (Q,(», v') ds, where
0

Q1 (1, 4") = protto— (K {pd+ - - +oa 3+ + K (g, at - Han_y})
Q. (v, "”):”L’x ”c'x —c(K, { 7’%‘1" e +”il}+ T +Km{”¢21m-1+1+ e +"’i—1})
and u und » are solutions respectively of (3) and of (3) modified by multi-
plying the roots K; by c.

In other words, I must deduce from the assumptions (a) and (b) about
M™ made in Theorem 1 that

¢ (K (uy+ - Fun,) A Ko (g, it un 1)} < Bagagitqg  (9)
<K, (uj+-- "i‘uil) +- et K'm(uim-1+l+' ctup_y)
for all s >0 (remember that R,,,p is a function of the arc-length
along ¢)!!), where v = (u,, ..., %,_;, 0) is & unit vector with constant
coefficients in the Fermi coordinates along o (therefore parallelly propa-
gated).

To prove (9)%), I observe that o may be thought of as a geodesic simul-
taneously in M7, E". In particular P may be thought of as common to

all, as well as the set of Fermi coordinates z in N (s) in each of which a
basis has been chosen so that a parallelly propagated vector has constant

components (the metrics are all euclidean and, therefore, osculating
along ;). To utilize (b), I observe that bases may be chosen in 7' and
T, (P = 1_5) so that hz whose existence is postulated in (b) will be the

identity in N (0) with the result that (9) is automatically true for s = 0.

11) T now change notation to conform with section 2.

12) Hypotheses (a) and (b), the explanatory remarks following Theorem 1, and the
paragraph in section 3 where formula (9) is proved may be replaced by the simpler
formulation in paragraph on the last page added in proof.
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For every s>0 choose a new basis in N (8) so that the linear transfor-
mation 4 (s) of N (0) into N (s) induced by the parallel displacement of a

frame of vectors (having constant components in the old bases) along o
in the metric of E™ becomes a member of H (see remarks after Theorem 1).

Similarly choose still another basis in N(s) so that the corresponding
h(s) generated by the parallelism due to M™ becomes a member of H. Now
by assumption (a) HCH so that h(s) k-1(s) (viewed as a transforma-

tion of the tangent space Ty of M™ (N (8) 1ntersect1ng o at Q) spanned

by N (s) and the unit tangent vector of ¢, onto the corresponding T,
when referred to the two bases referred to (after expanding each of them

by the addition of one vector in N (8)) becomes a member of H ; and by the
remarks following Theorem 1 in section 1 corresponding 2-sections under
any heH of Tz onto T, = T3 will possess curvatures satisfying the
inequality in (b). In particular, the 2-section y spanned by » and (0,...,
0, 1), the unit tangent vector to v, being displaced parallelly with
respect to both M™ and E™, the numerical vectors obtained by referring
them to one basis in 7' will be transformed into the numerical vectors
obtained by referring them to the other basis in T3 = T, by hk71,i.e.,
the resulting 2-sections will possess curvatures satisfying (b); but that s

precisely (9).

Having established (68), (7), and (8) in the desired context, let me, be-
fore going on to Theorem 2 and as a preliminary to it, establish (ii) in
section 2. I first recall the following analytical details from C. D. G.,

p. 41-44 (changing notation slightly). Consider the locus Sn=1(r) of end
points of geodesm arcs of fixed length r 1ssu1ng from P and nelghbormg .
The points on Sn-1 (r) sufficiently close to o will be umquely represented
by their Fermi co-ordinates z in the hyperplane N (r) which is at once
tangent to Sn—1 (r) and orthogonal to catQ (r). If Q (r) is not conjugate
to P for 0 < r < s, then there will be a unique 7, solution of (1), such
that #%(0) = 0, #n(r) = z. In that case

I(r) =of"Q(77’ ') ds = .fuﬁ (r) ] faﬂ (r) 7 (r) "B (r) (10)

(cf. C. D. G., p. 43) where f,5(r) z,2g is the second fundamental form of
S7—1(r). Correspondingly one has

Jo)= [, (u, p)ds = VE cot r VE@E +--+2)  (11)
(¢]
+---+ VK, cot r Vf{—,;(zzm_1+1+- o4 22)

314



after explicit calculation, when ux is a solution of (3) such that u(0) = 0,
u(r) =z. J,(r) has the same expression modified by the introduction
of the factor ¢ under each radical and the use of a solution » of the sui-
tably modified (3).

Observe now that if one momentarily sets all K, = K_,. in J(r) and
replaces }(r) by the former in (8) then (ii) follows immediately.

Finally, I come to the main task of this section, the proof of Theorem 2.
To avoid repetition I refer back to the pertinent lines of section 1 for
notation. Since, as remarked there, a,g(s) = n*(s)-nf(s) = 73 ), where
the > are n — 1 vector solutions of (1) satisfying 7%(0)-%8(0) = é,g,
n® (0)-nf" (0) = dqg, in particular, for the purposes of Theorem 2 it will
be sufficient to show

7(8)-7(8) < (s2)™™(sin? s Ve K JeK % , 0<s<ia/VK,, (12)
where 7 is a solution of (1) such that #(0) = 0, 5'(0)-5'(0) = 1, and the
last (n — 1) — n, components of 7 are zero at s = 0 (this last signi-
fying that the initial direction of the tangent of # lies in J' ). Indeed,
setting # = n*dy,/V dy,dy, one finds

nn= na.nﬂdyadyﬂ/dyadya
= aaﬁdyadyﬂldyadya < (sz)simeo (Sinzsl/cKa/cKa)l_sin2go

which, on multiplying by the denominator, ¢s the concluston of Theorem 2
(o« and B run only from 1 to n).
If the principal directions of the quadratic form R,,,s(s) were propa-

gated parallelly along o, one could separate the variables in (1) by an
orthogonal transformation with constant coefficients and then apply the
ordinary Sturm comparison theorem to each variable separately, ob-
taining thereby the inequality (12) without the exponent. However, that
is not the case in general, and even Morse’s n-dimensional version of the
Sturm comparison theorem is of no use in this situation. I have, there-
fore, been forced to devise a new set of differential equations leading to a
new type of comparison theorem — one which compares “normal dis-

placements” from o rather than distances along o from P to first con-
jugate points.

The equations in question will be derived easily from (10) and from
Hamilton’s principle of varying action, not to be confused with the more
familiar principle of least action — more popularly associated with Hamil-
ton’s name. I make reference here, once and for all, to Webster [1],
pp. 131-135, particularly formula (96).
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The principle being merely a formal apparatus (in reality a mere inte-
gration by parts) which is interpreted physically, it is only necessary to
change notation in order to use it here. Thus the time ¢ becomes s; the
generalized position coordinates ¢, become 7, ; the kinetic energy 7' be-
comes (up to a constant factor) 7, 7,; the potential energy W becomes
R,ungnamg; the Lagrangian T' — W = L becomes £2(n,7’); and the
action integral S becomes I(r).

At this point, however, it is more useful to make correspond to the g;

not the 7, but the polar co-ordinates in N (r) such that z, = o cos 0,
2,=g8in0,...,etc. (the others being irrelevant). In particular, when
Ne = 24, 0F 18 precisely the quantity to be estimated vn (12), namely, the
squared length of the normal displacement vector 7. 0 is the colatitude
of 7 (r) measured from the pole of the sphere Zn~2 of polar co-ordinates in

N (r) with center at @_ (r). I pick that pole so that in the limit as » — 0,
6 — 0 for the particular % (r) in question. Thus 6 will measure how much
n rotates out of its original posmon (the whole spindle of geodesics is-

suing from o and neighboring ¢ will “twist’’ in general because the prin-
cipal directions of R,,,g do so0).

Henceforth, those particular values of the variables which describe #
will be written as usual while the unrestricted co-ordinates will be barred.

With the new ¢q;, T = 7,7, becomes o2 + 020’2 4. ... The canoni-
cal momenta defined by p, = 97/dq; become 2¢’, 2020’, etc

Hamilton’s principle states that p, = dS/dq,. Translating into the
new terminology and recalling that

8 = I(r) = f,8(r) 2,428 _=__-52 (f1 cos? 6 + f2 sin 0 cos 6 + f sin? é_)

one obtains
o' = o(f, cos? 0 + f,sin 6 cos 6 + f, sin? 0) (13)

260’ = — f,(2sin 6 cos 0) + f, (cos? § — sin? 6) 4 f,(2sin O cos 6)  (14)
= (f — f,) sin 20 + f, cos 20

where

n—1 n—1
fr=hyfa= Eflaﬂgﬁ’ and f; = ¥ faﬁ Ll .

=2 anB 2 92

But from (7) and (8) with proper change of notation and from (11) and
its mate one obtains
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_ 2 2
o® [I/chotrl/K1 (00326+22+'L'+z"‘) R

92

2 2
+VK,, cotr VK, (z"m“+l+_'2' T )]
0

< f18%4%8 = 0% (f, €08? 6 + f, sin 0 cos O -+ f, sin? 0) (15)
- _ _ 2 2
<92[V0K1 cot r V¢ K, (cos20 42T Rk ) G
0

2 2
+VcK, cot r VcK, (z""'“‘“ + — + z”‘l)]
e

On applying the right-hand inequality of (15) to (13) and observing,
first, that 1

s

VeK,cotr Ve K, <

and, second, that 23 +..-.4+ 22 , = —9_2 sin® 6, one obtains

14 i s
% < (Ve K, cot r V¢ K,) cos? 0 + —}; sin? 6

=VcKqscotr Ve Ko + sin? 0 (-lr— — V¢ K, cot r Vm) (16)

<V'¢c K, cot r Ve Ko + sin? 6, (—:.— — VcKscot r Ve K.,)

where it must be recalled that K, = K, and the last inequality holds
because the last bracket is non-negative, 6, being

sup 6(r) , O_<_r_<_ln/l/IT, .

Integrating both sides of (16) from r, to r,, 0<r,<r,<An/V K,
one has after exponentiating

o (rs) < sin r, V¢ Ko (r2 sin r, 1/6-1_{_.,)5'»1112 0, . )
o(ry) sinr, VeK, \r,sinr, VK,

Now since p2 = 7.7 one sees that o' (0) = 1(5'(0)-n'(0) =1 by as-
sumption) so that

lim o (ry) 1y 8inn Ve K,

—_ == ]/C Kol
r>0 sin 7, V¢ K, VecK, " >0 Ty v
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therefore, letting r, — 0 in (17) one obtains, after squaring, (12) where it
remains to be shown that 6, -0 as ¢ — 1.

To demonstrate this last I turn to (14), and to estimate the coefficients,
fs — f1, fs, thereof I refer to (15). Setting 6 successively equal to 0 and

—;—t— one obtains

VK,cotr l/fq<fl<l/ cK,cotrVcK,
O<f; <06, , (18)

where @ and @, are the left- and right-hand sides respectively of (15)

without the cos? 6 term.
For f, — f, one deduces

f —f<® — VK, cot r VK, . (19)

Setting 6 = —'} on the other hand one obtains

fo<VcK, cotrV cK,+60,—f, —fs
<VcK,cotrVecK,—V K,cotrl/_li'—;—f— 0, — 6 (20)
by (18). Calling the right-hand side of

(19) p, and © — VcK cotrVcK,, v ,

applying (19) and (20) to (14) and factoring, one has

20'<[sin 26 + (1 — y/y,) cos 20] p, . (21)
Calling
b= sup (1—yly) 1>b>0
o<r<ia/|/K4

and adding the term by, to the right-hand side of (21) one obtains
260'<[sin 20 4 b(1 4 cos 20)] v, .

Dividing by the bracket and integrating (Peirce, Short Table of Inte-
grals) from r, to 7, one has

log {b 4 tan 6(r,)} — log {b + tan 0(r,)} < j‘etpcdr .

Estimating y, as in (16) one has

b+ta.n6(r2)<1_,; sinr; Ve Kq
b4 tan0(r)) r, sinr, VeK,
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Manipulating and letting r, — 0(0(r,) = 0) one has finally

; b r, Ve Ko . niYec _ .
tan 0 (ry) < (sinr2 o 1)_<_b(-—————sin“/&_ﬂ 1) (22)

Since A was fixed in (5) of section 2 and b — 0 (that is easily seen) one
sees that 0, 0 as ¢ — 1 which establishes Theorem 2 and hence
Theorem 1.

Added in Proof. Hypotheses (a) and (b) of Theorem 1 and the further
reasoning attendant thereon can be materially simplified by means of a
suggestion kindly made by Professor Hopf. To avoid the awkward busi-
ness of choosing bases in the tangent spaces at two different points, 7',
and T, so that the linear transformation, 4, between them generated
by parallel displacement becomes a member of H one simply observes
that A is such that A'Hh € H. (a) and (b) can then be replaced by:

For each PeM" there exists a linear transformation k, of 7', onto

T such that hpHh:' C H (A)
etc.

The second paragraph after Theorem 1 then becomes unnecessary;
however, it is again important to observe that A, may be replaced by
any other A, having the property (A).

The proof of formula (9) in section 2 now runs as follows: If I can
show that the linear transformation, t3 of TG onto T, which assigns to
the vector w = (u,, ..., u,_,, 0) in T the vector with the same
numerical components (consistent bases have already been chosen) in
T,, has property (A); then by the above observation the curvature
hypothesis of Theorem 1 applies and (9) is an immediate consequence. But

tg=rkhp gt

where g is the transformation of 7' onto T'; obtained by parallel dis-
placement along ¢ and which also takes u into a vector with the same
components because of the euclidean coordinate system along o; k is
the analogous transformation along o in E"; and k3 is the transformation
of T's onto T, which already exists by the hypothesis of Theorem 1
and which also may be assumed to have the constant component pro-
perty by identifying 7' with T, . Now
tgHty, =khzg*Hghs k™ CkhzHhy k™ ckHEk* c H,

and that is property (A) for .
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On the Pontryagin product
in spaces of paths
By R. Bort and H. SAMELSON?)

Introduction

For a topological (arcwise connected) space X, let E be the function
space consisting of the paths in X which start at a certain point x, and
let 2 be the subspace of E consisting of the closed paths or loops ; these
spaces have been studied in particular by M. Morse [7] and J.-P. Serre [10] ;
E is a fiber space over X. Now 2 admits a natural multiplication : two
loops in succession make a new loop (actually there is a more general
operation between £ and £2). This multiplication gives rise to a multi-

1) The work reported on hare was done while the first author was under ONR contract
No. Nonr 330(00) and the second author was under contract to the Office of Ordnance
Research.
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