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Geodesics, symmetric spaees, and differential

geometry in the large1)

By H. E. Rauch, Philadelphia

1. Introduction, symmetric manifolds, and main theorem

Modem differential geometry, in particular Riemannian geometry, the
subject of this paper, is a branch of analysis arising from problème of
geometry and clothed in its language. Now it is an inévitable task in
studying any analytical System to view it "in the large," i. e. in con-
junetion with the manifold of ail its parameter Systems and solutions
with the resuit that geometrical considérations of another kind, among
them topology, enter the picture. Thus it is my task hère to présent an
investigation of the effect of certain natural hypothèses about a
Riemannian metric on the manifold which bears it - the outstanding question
in differential geometry in the large.

In a manner which I will make précise the essential conclusion will be

that for a significant class ofmanifolds2) parallelism (the holonomy group)
and curvature détermine the topological structure of the manifold and
that they do so via the geodesics since 1) the geodesics détermine the
topological structure (and more) and 2) parallelism and curvature détermine

the geodesics ; hence the présent paper deals, in reality, with the
effect of curvature on geodesics.

To préface the main resuit and as an essential preliminary let me
relate the results of prior investigations dealing, first, with 2).

Consider for the moment an n-dimensional Riemannian manifold Mn
(the notation introduced in this paragraph will, with minor variations,
be standard throughout the paper) with metric tensor gt}, ail being of
sufficient differentiability, say, C3 at least. A classical method of Bonnet
(see Rauch [2]3), pp. 39-46 and références there for what follows) appli-

*) For a brief summary and discussion of the main results of this paper see Rauch [1].
2) Includmg the classical spaces of geometry and analysis, i. e those of constant

curvature, hermitian elliptic (complex projective) space, the Grassmann manifolds properly
metrized, and the compact semi-simple Lie groups.

8) Heremafter referred to as C. D. G.
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cable to surfaces and, with straightforward generalizations, to n-dimen-
sions gives the foliowing information about the effect of the curvature of
g%i on the relative behavior of its infinitely near geodesics. Let a be a
fixed géodésie issuing from a fixed P e Mn, and introduce the co-ordi-
nates (of Fermi) which are locally euclidean along a, (z1?..., zw_i, zn),
where zn — s is the arc-length along a measured from P, and

z {zli...izn_1)
is the set of cartesian coordinates of a point on the (n — 1)-plane N(r)
orthogonal to a at Q(r), zn s r. Let z z(e, s), zn s be the
eo-ordinates of a one-parameter family of geodesics issuing from P and
including a for e 0 (z(0, 5) 0). Then the ''infinitésimal displacement

vector" 2 /A x

de

satisfies the Jacobi équations :

rfa + Rnpn*yp ° (n not summed) (1)

The prime dénotes differentiation with respect to s ; ail Greek indices
run from 1 to n — 1 ; and the repeated index convention for summation
is used unless contrary indication is given. Bnpn0L in (1) are the compo-
nents of the Riemann-Christoffel tensor of gt3 in the coordinates z along a,
i. e., they are functions of s only. If u (ul9..., un_x, 0) is any unit
vector perpendicular to a at Q(s) then Rn0Lnpuaup is the Riemannian
curvature of Mn at the point Q (s) and the 2-section a spanned by u and the
unit tangent vector to a. In particular for a manifold of constant curvature

the équations (1) become

& + Kpa=0 (2)

Suppose that a vector solution r\ of (1) vanishes at P and again for the
first time at Q (r). Then Q (r) is the first point conjugale to P on a. Loosely
speaking, Q(r) is the first point where a géodésie issuing from P and
neighboring a "meets" a again. The arc of a given by 0 < s < r will be

relatively minimizing ; for s > r it will cease to be so. Also, a sufficiently
small neighborhood of Q(s), s <r, will be simply covered by the
geodesics issuing from P and close to a.

Looking at (2) one sees that if K > 0 then the first conjugate point is at
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and the geodesics eurve in on one another ; if, however, K < 0, then
there is no conjugate point ; and the geodesics fan out like the straight
Unes in ordinary space. Label the équations obtained from (1) by re-

placing B^p by Bnanp9 (ï)—similarly for Bn<xnp, (î). One obtains then
what I call

Bonnet's Lemma. Assume that

Then the first point conjugate to P on a with respect to (1) (if any) lies be-

tween thosetaken with respect to (1) and (1) respectively, being doser to P
ihan the former and farther than the latter.

The proof of Bonnet's Lemma will be given in section 3 along with
related analytical détails.

Two obvious corollaries will be the key to the two theorems which
form the sum total of what had been done in this direction before CD. G.

and the présent paper.

Corollary 1. Let K(P ,y) be the Biemannian curvature of Mn at the

point P for the 2-section y, and letQ(r), as above, be the first point conjugate
to P on any a.

*t 0<£ < K(P, y) <H for ail P €Mn, ail y
then

7t n< r <

Corollary 2. With the same notation, if for ail P and y

K(P9y)<0
then there is no point conjugate to P on any a issuing from it.

Assume now that the Mn in question is complète with respect to its
metric - every bounded séquence of points has a limit point.

Then Corollary 1 has as a conséquence the following

Theorem (Bonnet). A complète Biemannian Mn for which

0<K<K(P,y)
for ail P € Mn and ail y, is compact and is of intrinsic diameter less than or

equal to—-==-
VK

Similarly Corollary 2 implies the second
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Theorem (Hadamard, Cartan). The simply connectée covering Mn of
a complète Mn for which

for ail P eMn and ail y, is homeomorphic to etœlidean space, En.
The ideas used in the simple proofs of thèse theorems form an intégral

part of the paper, and so they find their place hère.
An initial, highly important observation is that the universal covering

Mn of Mn may automatically be endowed with the same local differential
geometry as Mn itself (e. g., the Clifford-Klein space-forms and the
sphère) so that in the last analysis ail conclusions will apply to the
simply connected Mn. That is true of the first theorem.

To dispose of Bonnet's theorem one must know that every point of a
complète Mn may be joined to a fixed point P by an absolutely mini-
mizing (shortest) géodésie arc. But according to Corollary 1 each such

n
arc must be no longer than——- otherwise it could not even be relati-

nvely minimizing. Therefore, every point of Mn is closer to Pthan —= —
yK

the last part of the theorem. In particular every séquence is bounded
and has, therefore, a limit point. In other words Mn is compact.

Concerning Cartan's theorem, the proof to follow will contain what
are unnecessary éléments for the immédiate purpose but important for
later applications. Consider the geodesics a issuing from a fixed point
P e Mn. The totality of the a make up what I call the space of geodesics,

Mg, associated with Mn. A point of Mg is a point of Mn together with
a a on which it lies and the arc-length s measured along a to the point in
question, i. e., every point Q of Mn will give rise to a set of points Qg e Mng

which cover Q, the set being discrète if Q is not conjugate to P on any a.
A neighborhood Ng of Qg e M* will consist of those points in Mg which
cover a cell-like neighborhood N of a point Q e Mn covered by Qg.

Again Ng will be a cell if Qg is not conjugate to P.
But according to Corollary 2 there are no conjugate points. Therefore,

Mg is a well defined manifold and becomes homeomorphic to En when
one makes P correspond to the point 0 and the a to the straight lines
through 0 in En.

Now I claim that Mg covers Mn in the accepted sensé, or, in other

words, Mg Mn (Mg is simply connected, being homeomorphic to En).
Given a curve G in Mn beginning at Q, I must show that one can develop
G along the curve Cg in Mng, i. e., find a locally homeomorphic image Cg

in Mg, which begins at any assigned Qg covering Q. The obvious means
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Figure 1

of doing that constitutes what was called the c-process in CD. G., p. 47,
because of its patent analogy with a standard argument in analytic
continuation of fonctions of a complex variable. Let t be a parameter on C
such that the points of C may be written Q(t), t > 0, when Q(0) Q.
Given Q there will be at least one géodésie arc a joining Q to P because
Mn is complète ; therefore, there will be at least one Qg e M* covering
Q. Pick one and the corresponding arc aQ joining Q to P. Q not being
conjugate to P on a0, a sufficiently small
sphère 8Q about Q will correspond to a
similar sphère in M*, i. e., So will be

simply covered by géodésie arcs neigh-
boring a0. In particular a sufficiently small
arc : Q (t), 0 < t < tx of G will automati-
cally be developed in M*, and one obtains
a second arc ax joining Q{t^ to P and
neighboring o*0. Continue the process
(Figure 1), obtaining a{ and Q(t{) Qt. In
this manner, one develops G in M™ step
by step. I hâve only to show that, at least
when G is rectifiable (which is enough) ail
of C can be so developed. I need the essen-
tial.

Lemma 1. The length of any o^ ob-

tained in devéloping C in Mg by the c-

process is less than the sum of the lengths

of the initial a0 and the arc : Q {tt), 0< t < ti,
of C already developed.

The proof is an obvious conséquence of the relative minimizing pro-
perty of géodésie arcs without conjugate points, namely : the length of

ax will be less than the length of al_1 plus the length of
Consequently if the Q{ converged to an interior point Q' of G, the arcs at,
being bounded in length by a and the arc QQ' of C would converge to a
géodésie arc a' joining Q' to P on which Q' could not be conjugate to P.
Then one could start the whole process over again. q. e. d.

One sees then that the really délicate considérations occur in the case

of positive curvature. To gain some insight into this case let us examine
a broad ciass of spécial examples which, in fact, will furnish the dues to the

solution of the more gênerai problem. Consider the remarkable class of
Riemannian manifolds called symmetric and discovered by Elie Cartan
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(see Cartan [1], [2], and [3] and références there for what follows). De-
noting them generically by En, one finds that the symmetric manifolds
are co-set spaces of semi-simple Lie groups G and they fall into two
catégories - compact or open according as G is compact or not. The En
differ from other homogeneous spaces by their characteristic property of
admitting an involutive transformation or symmetry. As Riemannian
manifolds the En posses an intrinsic metric which is invariant under G
and in which the symmetry appears as an isometric reflection of the
geodesics through a fixed point. But most important is the fact that the
open En ail hâve non-positive curvature so that the simply connected
ones are ail homeomorphic to En by Cartan's theorem ; while on the
other hand the compact ones which include the group spaces of the G them-
selves ail hâve non-negative curvature. / confine myself, therefore, to the
considération of compact, simply connected Eni). The geodesics of the En
are the orbits of one-parameter subgroups of translations of G.

The vital difiEerential-geometric property of the symmetric En (which
is, in fact, équivalent to the existence of the symmetry) is Property E :
the Riemannian curvature of any 2-section y at P e En is preserved by
parallel displacement of (P, y). Parallel displacement in En is équivalent
to translation by an élément of G and an analysis of the translations
together with Property E leads to Property F : the holonomy group H of
En coïncides with the isotropy group g. H, I recall, is the group of linear
transformations of the tangent space TP at P € En onto TQ at Q (see
addendum at end of paper) generated by the parallel displacement of a
frame along ail curves joining Pto Q (in particular when P=Q). The same
définition holds good for the holonomy group H of an arbitrary Riemannian
Mn with the understanding that since En is assumed simply connected
one is dealing with the restricted holonomy group, i. e. when P=Q only
those curves which are shrinkable are admitted. g is the subgroup of G

which leaves a point P fixed, and PropertyF, strictly speaking, dealsnot
with g but with the isomorphic group of linear transformations of TP
into itself generated by g which, when En G, is the adjoint group.

Using Properties E and F one may draw some analytical conclusions
which, in turn, will lead to important statements about the géodésie
structure of a given En. Returning to the beginning of this section, one

may consider a fixed P e En, a fixed géodésie a issuing from P, and the
co-ordinates (z, s) in which gl3 becomes euclidean along a. In the co-ordi-

4) It should be stated that every En is the direct product of irreducible faetors, and the
curvature alternative applies to them, however, no assumption of îrreducibihty is made
in this paper. I do assume that ail faetors be compact.
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nates (z, s) a necessary and sufficient condition for a vector to be propa-
gated parallely along a is that it hâve constant components. Hence the
tangent vector to a, (0,0,..., 1), and the unit vector,

u= (%,..., ^n_-i,0) >

span a 2-section y which is propagated parallel to itself the length of a.
Accordingly the form Rn€tnpuaup, being the curvature at the point (0, s)

in the direction y, has constant coefficients by Property E. Therefore,
after a preliminary orthogonal transformation of the z's (the same for
ail s), Rnunp being symmetric in a and /S, the équations (1) will take the
f°rm 4 + i^ai 0 ai 1,...,% (3)

where Kx>K2>Kz>• • • >Km > 0 are the distinct characteristic roots
of RnocnpuOLup and the 7^. are their multiplicities.

Introduce now géodésie polar coordinates (y, s) (yt,..., yn^1} s)

with P as pôle. That means to choose an auxiliary (n — 1)-sphère Z
about P, on it coordinates y such that dy^dy^ is its line-element ; and
to assign the coordinates (y, s) to a point in En which lies at the distance s

out from P on the géodésie a whose initial direction at P is specified by
y on 27.

Then the nature of g{j in the coordinate Systems (y, s) and (z, s) and
the relationship between the latter enable one to show (C. D. G., p. 45,
last paragraph) that if the Une élément of any Mn, let alone En, be written
in polar form along a :

x _ds* + a^dy^dy^
then aap — rf-'rft r\*rfy where the rf- are n — \ vector solutions of
(1) such that ^a(0) 0 and ^a'(0).^^'(0) <5aj3. In particular for En

if one chooses

/ sin s

the non-zero entry being in the «1-st place, etc. as solutions of (3), then
the line-element of En in polar form along a falls into blocks :

(4)
where I hâve assumed that Km 0 - the usual circumstance.

Observe, however, that the characteristic roots and multiplicities are
not necessarily the same for ail a issuing from P but only for those which

300



are transformable into a by g (^ H). Indeed H is only transitive on Zin
the En of rank X 1 (Cartan [2]) which are only those of constant
curvature (sphères) and the hermitian elliptic (projective) spaces defined
over the complex, quaternion, and Cayley algebras. For rank A > 1 E is
divided into domains of transitivity Sa under H, and for each Ea the
roots K and multiplicities na are the same since H conserves curvature
(Property F) while the roots may vary continuously from Za to Za, (the
multiplicities changing only when some roots become coincident).

In contrast to the manifolds of négative curvature the dominant rôle
is now played by the locus of first conjugate points, henceforth designated
by G, of P. Indeed, the following observations about G easily deduced
from the preceding will be essential.

(I) On each g issuing from P the first conjugate point p will fall at

s

i. e., will be determined only by the highest characteristic root of the curvature

form — call it Ka hereafter. That foliows immediately from (3).

(II) (4) shows clearly that each such conjugate point p is the meeting-
place of ooWl geodesics of the same length (actually of closed geodesics
making up the spindle of great circles on an Sni going through the pôles P
and p) whose initial tangents eut out onla subsphere, hereafter desig-
nated as Zp >p is, of course, conjugate to P on ail thèse geodesics.

(III) It follows easily from II that G, unlike the conjugate locus in an
arbitrary Mn, is a smoothly embedded locus in En and that the points of
G sufficiently close to p together with sufficiently small arcs of the
geodesics terminating therein form a cell-like neighborhood of p. In other
words, if one forms E™, as in the proof of Cartan's theorem, one may complète

it to a compact manifold by the addition of G.

(IV) As a conséquence of (III) one may show that E™ covers En, but
as En was assumed simply connected so one may conclude that Eng En.

Therefore, En consists of a cell, made up by the géodésie arcs issuing from
P, and a singular locus G which must then contain ail the topological
properties of En. In the case when En is itself a compact, semi-simple Lie
group space G is the locus of singular éléments - those which do not
admit a unique canonical représentation.

While (I)-(IV) are the only properties of En needed in this paper I
should like to make two additional observations without proof. Together
with the foregoing they show how clearly and intuitively the topology
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of the En is laid bare and that new ways of researeh are opened up by the
présent method.

(V) For rank A > 1 the smallest Km is zéro, and the corresponding
geodesics make up the maximal toroid containing a which fact, in view
of (I) and (IV), shows how irrelevant the toroids are in visualizing the
internai structure of En.

(VI) An explicit analysis of the locus G, particularly of the sub-loci
of those points équivalent to any one p e C under H or some subgroup,
is possible and should disclose the generating homology cycles. In par-
ticular it should account for the known structure of the compact semi-
simple Lie groups (Hopf [1]).

As the simplest examples to illustrate what has preceded let me cite
the sphère, Sn, bearing the metric of constant positive curvature K and
the complex projective space Pn (2n real dimensions) with the hermitian
elliptic metric (Study [1]). For the former G 0+(n + 1), the orthogonal

group with positive déterminant on n + 1 variables ; H g
0+(n) ; Ko K ; n1 n — 1, and P and p are opposite pôles

joined by semi-great circles while (VI) holds good. In the latter case
G U(n -j- 1), the unitary group on n -f 1 complex variables ;

H=g= U(n); Ka K>0, K2=^ ; nx 1, na 2n - 1 ; if P

is the origin then p is the point at infinity on the projective Une (complex)
joining P to p ; and the geodesics joining them ail lie in that line forming
an ordinary S2 of curvature K. (VI) holds, too, the subgroup of U(n)
which transforms the geodesics through the origin of a projective line
among themselves being the "cirele group" generated by multiplying ail
the inhomogeneous coordinates by eie.

Such a particular, detailed, and accessible geometrical structure of an
En would seem to be an intrinsic and characteristic property of the peculiar
integrable nature of En, that is to say, of the fact that En adroits a set of
infinitésimal displacements (équivalent to a set of partial differential
équations) satisfying Lie's first theorem (complète integrability of said
équations) with the conséquence that the ordinary differential équations
of the geodesics admit those very infinitésimal transformations (thus be-

coming integrable in Lie's sensé). In other words, if the metric coefficients
of En were slightly perturbed in such a way that the resulting metric no
longer admitted a group of displacements and its geodesics no longer
satisfied integrable équations then, though the new geodesics differ only
slightly from the old, the particular délicate structure of G is completely
destroyed ; and the new manifold bearing the perturbed metric might
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differ radically in topology from that of En whose global structure was
completely determined by the local rigid integrability of its metric structure

(En E% being, in fact, constructed by intégration of the équations

of its geodesics).
But, and this is the main resuit of the paper, if the holonomy group of

the perturbed metric is no larger than H and if the variation in terms of
eurvature is sufficiently eonstrained, no matter how arbitrary the
perturbation otherwise, the locus G may be reconstructed, as it were, and
the sundered ends of the geodesics rejoined to it by means of additional
géodésie arcs — thus reconstituting the géodésie and topological structure
by means of broken geodesics.

Thus one sees that the symmetric manifolds, far from being isolated
phenomena of a spécial nature, dérive their structure from certain
parallelism and curvature properties which when satisfied to a certain
degree of approximation delimit a gênerai class of Riemannian manifolds
with the same structure. And in ail probability that is the strongest state-
ment one can make about the effect of gênerai differential-geometric
hypothèses on the topology of a gênerai manifold.

Thus I présent finally

Theorem 1. Let En (n > 2) be an n-dimensional, simply connectée,

symmetric Riemannian manifold of positive curvature, with holonomy
group H. Then there exists a constant 0<c(En) < 1 of the following nature :

if Mn, a complète %-dimensional Riemannian manifold of class C3 and
restricted holonomy group H, is such that5)

(a) JET c H.
(b) There exists for each PeMn a transformation hp eH of the

tangent space TP at P e Mn onto the tangent space T at a fixed point of
En under which

c(JE*) K(hpy)<K(P,y)<K(hPy) for ail y

(where y is a 2-section in Tp,hPy its image in T, K(P,y) the curvature
of Mn at P in the direction y, K(hpy) the corresponding curvature
of En) ; then the universal covering Mn of Mn is homeomorphic to E*1.

The main theorem of C. D. G. is the spécial case of Theorem 1 when
En 8n and c(Sn) ~.75. When E2n Pn one can compute by the

6) Hypothèses (a) and (b), the explanatory remarks following Theorem 1, and the
paragraph in section 3 where formula (9) is proved may be replaced by the simpler
formulation in the paragraph on the last page added in proof.

303



methods of section 3 ciP*1) and find that it equals about .95. One sees

then that as the degree of complication increases the numerical value of
c(Ert) may cease to be impressive, but the real content of the theorem
is qualitative6).

Some clarification of the hypothèses is necessary. First of ail, one may
renormalize the highest curvature of En to be any desired positive value
by multiplication of the metric by a constant. Thus the hypothèses apply
to En itself despite the strict inequalities which happen to be very important.

Next7), by hp belonging to H one means that one can pick bases in
TP and T so that one may think of them as being identified, in which case

that and (a) both become clear. With that understanding, too, the mea-
ning of ail of (b) becomes clear. In fact, in TP T one thinks of ail the
2-seetions of En and ail those of Mn as situated with their vertices at the
origin ; then there exists by hypothesis an élément of H taking one set
into the other such that the curvatures on corresponding sections satisfy
the inequality. Now it is important to observe that it does not matter
at what point in En T is taken since En is homogeneous and, more important,

since every élément of H leaves ail curvature properties of En at a point
invariant hP need only be defined modulo left multiplication by H.

Just as in C. D. G. the central idea in the proof of theorem 1 is to de-
duce from its assumptions that the metric of Mn written in polar form
along a given a approximates that of En sufficiently closely to permit
duplication of En'& géodésie structure by means of broken geodesics. It
will be seen to be sufficient to consider those a (bars will be used hence-

forth to distinguish entities in Mn which correspond to those in En) issuing
from a fixed P in Mn whose initial directions lie on Ev where 2JP is defined
as follows : having picked P çEn and p eCc:En and a fixed a joining
them, consider Ev (as defined in (II)) - then the inverse image under

hp of Zv on 27 will be Ev (it being understood that hp, which may be

taken as a map of Tp onto TP, induces a map of 27, the sphère of polar

6) Since the holonomy group H is always a subgroup of the orthogonal group which
in turn is thu holonomy group of the sphère (constant curvature) the hypothèses of
Theorem 1 need not be so complicated in this case. In fact when En Sn one may
identify any Tp with T and the identity map will fullfill the hypothèses, thus accounting
for the seemingly simpler formulation of Theorem 1 in C. D. G. Also, the case E2n =P»
the hermitian elliptic, projective space, implies that the "unknown" manifold M2n is
a so-called "Kâhler" manifold, the latter being precisely a Riemannian manifold whose

holonomy group is a subgroup of the unitary group.
7) Hypothèses (a) and (b), the explanatory remarks following Theorem 1, and the

paragraph in section 3 where formula (9) is proved may be replaced by the simpler
formulation in the paragraph on the last page added in proof.
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co-ordinates about P in Mn, onto 27 the analogous sphère in En). Obser-

ving that the same (y, s) may be used about P and P simultaneously
one finds (next section) that theorem 1 may be deduced from

Theorem 2. Under the conditions of the preceding paragraph avd the

hypothèses of Theorem 1 with the exception that the constant c(En) in (b)
is replaced by an arbitrâty 0 <c < 1 one has

ck, v) dy«dv«>

where the left-hand term is the line-element of Mn written in polar form along

a; 0 < s < ~—L=, X<\ and 0o 0o(X, c) for fixed X tends to 0 as
V Ko

c -> 1. (a and p run from 1 to nx and Zp and Zp are both given by yni+1
• • • Vn-l 0).

I remark that the reverse inequality is also valid but not needed hère.
A more précise statement in the case En Sn is Theorem 3 of C. D. G.

2. Déduction oî Theorem 1 îrom Theorem 2

First of ail, let me exhibit the c (En) whose existence is the real assertion

of Theorem 1. That this c(En) will really do what is claimed for it
in the subsidiary hypothèses will become clear as this section progresses.
Its introduction at this point is artificial, but it clarifies the exposition.
Namely, I first pick a fixed 0 < e < 1 and then choose A and c so close to 1

(but not equal) that

(5)

where Krï±ï inf Ka8) and i?max sup Ka. Then fix A and choose c

even closer to 1 if necessary so that sin2 00 e. That is possible by
Theorem 2 (0Q -» 0 fixed A < 1 and c -> 1). One sees how much room
there is for juggling e, A, and c in order to find the best possible c parti-
cularly when the dependence of e (i. e. 0Q really) on c and A is so compli-
cated (see section 3).

To show that the c (En) thus produced does indeed fill the bill I need
some preliminary statements, remarks, and notation.

8) -Kmin is definitely greater than zéro. KQ being the maximum root, not zéro, for each
a and H being compact, the infimum will also not be zéro.
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Let Mn henoeforth be the "trial" manifold which is to be compared
with En as per Theorem 1. Then the notation in section 1 foliowing
Theorem 1 will be retained, in particular, the use of bars over symbols
to distinguish entities in Mn from their mates in En.

Now it will be proved in section 3 that the assumptions (a) and (b)
about Mn in Theorem 1 imply that Bonnet's Lemma holds for Mn when
the extrême members of the inequality are set equal respectively to

on the right and the same quantity multiplied by c(E>l) on the left of the

inequality. Then as a conséquence of that and of I one sees that on a a

issuing from P e Mn the first point œnjugate to P will lie between

s nll/Kê and n/VcK^
The first important statement which results is :

(i) Let 8j>(r) be the géodésie sphère of radius r about P eifn, i. e.

the set of géodésie arcs of length r issuing from P. If r <n\VKm&x then
the italicized statement implies that one can make $p (r) into a (open,
bounded) manifold, denoted by the same symbol, in the same way that Mng

was generated in the proof of Cartan's Theorem. 8j>(r) is homeomorphic
to the interior of a solid euclidean sphère while the set in Mn covered by it is
only locally homeomorphic thereto.

This distinction between a "space of geodesics" and the set in Mn
covered by it will be absolutely vital in the proof of Theorem 1 and is
necessitated by the fact that Mn itself may a priori be of such small
diameter that even a short arc of géodésie will wrap itself 'round and
'round Mn making it impossible to work directly thereon. What may
often appear to be a circumlocution will be justified in this light.

At this point let me also dispose of another property of $J(r) re-
quired in the sequel. Namely

(ii) aSjTV), r < \ njVK^^, the boundary of Bj>(r), which is

homeomorphic to a euclidean S71*1 is locally concave toward P, i. e. has

positive-definite second fundamental form when any sufficiently small
pièce of it is considered as embedded in Mn. That means that if attention
is focused on one géodésie radius a and on the hyperplane made up of
short géodésie arcs orthogonal to a at its endpoint then the geodesics

neighboring a and joining P to the hyperplane are longer than a. A proof
of (ii) will be given in section 3 (see C. D. G., p. 43). An important
conséquence of (ii) is
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(iii) $js- (r), r < \ n\ vK^^, is geodesically convex in the sensé that
any géodésie are a in Mn joining two points which are covered by 8? (r)
will itself be covered and thus appear as a géodésie in 8^>(r) joining two
points covering the original points in Mn, if a is a member of a continuons

one-parameter family of géodésie arcs ail of whose end-points are

in 8p (r) and at least one of which is entirely developed therein (such as

a radius of 8p(r)).
The proof of (iii) is a trivial conséquence of (ii) since if it were not true

there would be a member of the one-parameter family which would be

entirely developed in #J(r) except for one point at which it would be

tangent to 8jT (r) ; but (ii) shows that is impossible.

The stage for the real substance of the proof, the comparison of Mn
(satisfying (a) and (b) in Theorem 1) with En with an eye toward imitation

of the latter's structure, will now be set by a slightly more detailed
discussion of that structure than was given in section 1.

First consider En and a point P in it which is fixed for the remainder of
the section. The first conjugate points with respect to P on the geodesics
a issuing from P form the conjugate locus C as in section 1. I observe
once more that E, the sphère of polar coordinates about P is subject to a
double "fibering" by the a cutting it and ending in C. Namely E is first
fibered by the domains of équivalence Ea containing the initial directions
of those a which are transformable into one another by g eH. Then each

Ea is fibered into the sphères Ep comprising the initial directions of those
g meeting at one point p e C. On each of thèse last mentioned a mark
off the point at the distance X7t\VKa from P, where A has the value
chosen in (5). The locus of the resulting points I call E71-1^), having
done the same for ail p e C, while the totality of arcs of a ending therein
I call En{X). In addition let EV{X) be the subset of En~1{X) eut out by
those a whose initial directions lie in Ep ; and if ap be any particular one
of the latter and y any half great circle in Ep with one end at the point
where ap cuts Ep, then the a which eut Ep along y will eut Ep (A) along
an arc F. Concerning ail thèse things one has the all-embracing

(iv) En (A) is homeomorphic to a solid sphère while E71*1 (A) is homeo-

morphic to an {n — l)-sphere and is fibered in the same way as E.
En — En(X) is a solid "tube" T about G consisting of a "base space"
C and "fibers" Ap which are solid "disks" of géodésie arcs of length
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issuing from each p cC, thèse arcs being nothing other than the continuation

of the a issuing from P and going through SP(X) on E71-1 (A). C is
itself already a cross-section in T. Ail thèse statements follow easily from
(I) - (IV) in section 1.

(v) The foliowing closely related additional observations, seemingly
irrelevant, wiU actually serve as a guide for completing the proof. Namely,
each fiber Ap of T being solid, i. e., cell-like, one could, by picking a
point q other than p in each Api construct another cross section (Schnitt-
flâche) C of C in T by a familiar process since no "obstruction" wiU arise.
One could then replace the radii of Ap by géodésie arcs t joiningthenew
q e Ap to the points of Ep (A) so that in place of the a joining P to C one
obtains the broke af joining P to C". Nowthe t, coming from the interior
of the convex Ap, obviously meet the a nicely and at larger than right
angles. Therefore from En(k), the r, and C one can construct a space
of broken geodesics En', which is a manifold (even at the "corners") and
covers En and is, therefore, homeomorphic to En.

One more observation :

(vi) The sphère of radius \ ^/V^max ~~ Q (Q>® sufficiently small)
about p, S*, contains EP{X) in its interior. That is not obvious because

Ka < Km&x ; therefore, even though A > f it is not clear that

(1 - X) n\

To establish it I use the following device. The curve F on EP{X) (see
remarks before (iv)) has length

{n\VK~a)sin{[XnlVT^ VTQ) (n\V~Ka) sin A n

by (4), which is less than or equal to

by (5). Now any such F by its définition starts at the point q eZp{X)
where ap cuts the latter. Therefore, F may be developed by the c-process
in Bg since, by the preceding inequality and Lemma 1 in section 1, the
géodésie radii joining q to F obtained in the process will be shorter than

the totality of the F exhaust SP{X) just as their pre-
images, the half great circles, in Sp exhaust the latter. Therefore, Ep (A)

may bedeveloped in toto in 8™ ; and since 8% by (iii) is convex ((iii) applies
equally to En)y Ap which is really the geodesicatty convex closure of EP(X)
is also contained in $". But the same reasoning applies also to any
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q eZp(X). Therefore, Ap lying in every #", every fixed point in Ap is

joined to every q eZP (A) by a géodésie arc of length < \ n\VKm^x — q
Tn particular 8* contains ZP{X). q. e. d.

Now it is a very simple matter indeed after thèse preliminaries to show
how (iv), (v), and (vi) can be applied word for word in Mn with only
technical modifications - with the exception that the locus G which is a
priori absent in Mn must be constructed precisely by the devices indicated
in (v) and (vi).

In fact, let P e Mn also be fixed once and for ail as was P e En.

Z is the sphère of polar coordinates about P, and g is any géodésie

issuing from P. As remarked in section 1, the linear transformation hp
(notation slightly changed) in (b) of Theorem 1 may chosen as a
transformation of Tp onto Tp (which under proper choice of bases becomes an
élément of H). Under hp Z and Z correspond, and according to (b) under
this correspondence any Zp, p € C c En, is mapped onto what was called

Zp. And for the a whose initial directions fall on the subsphere Zp one has
Theorem 2. One can then pursue the parallel with (iv), (v), and (vi). Suppose

in particular that one defines Mn(K) and Mn~1 (A) by marking off on
each a the point q at the distance X nf\/Ka along a from P, where g

(i. e., its initial direction) corresponds to g under h^ and Ka is the cor-
responding maximum curvature in En. Then, thanks to the italicized
statement before (i), one obtains the limited analogue of (iv) :

(vii) Mn(X) and Mn~1(X) are homeomorphic respectively to a solid
sphère and an (n — 1)-sphère while the sets covered by them are only
locally so.

Furthermore, just as EP(K) on E7l~1(X) is homeomorphic to Ev on S
and is filled out in the natural way by the curves F of length

so is Zp (A) on Mn~1 (A) homeomorphic to Zp on Z and filled out by F whose

length by Theorem 2 and (5) is also <| n/VKm!iX — q. Thus one has the
limited analogue of (vi) :

(viii) If S~ is the géodésie sphère of radius \n\v Km&x — q about any
q eZp{X) then the latter can be developed in 8^, starting with q, by the
c-process9). In particular, by (iii) the geodesically convex closure (in the

sensé indicated there), d9, of Z!9W w^ oe contained in every 8^-

9) The hypothesis that Mn is complète is used whenever the c-process is used.
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q €£$(%), so that the latter mil automatically be developed in 8$ where p is

any point in Ap (Figure 2).

/ can now easily construct a locus CaMn which will be locally homeo-

morphic to CaEn, and the proeess will be precisely that described in
constructing C" in (v). Namely, after decomposing C into sufficiently
small simplexes I pick any vertex p and arbitrarily pick as its image

point, p, in the corresponding Ap of Mn. I do the same for the p be-
longing successively to the edges, faces, etc., the continuous extension
of the map always being possible because Av (being convex) is solid, so

Figure 2

that no obstruction will arise. A little more care and the use of standard

approximation theorems will ensure that the map of G onto G, the set of
p thus obtained, be a local homeomorphism. I suppress the routine and
tedious détails.

The construction of Mn, the space of broken geodesics which covers Mn,
will follow easily from further appeal to (viii).

Indeed, according to (viii) Ep (A) is contained in 8^, the géodésie

sphère of radius | ^/V^max ~~ Q> whose boundary, S-'1, by (ii) has positive

definite second fundamental form. Now I claim

(ix) If, in 8~, one applies the c-process to the géodésie radius a of
Mn"1(X) which ends in the point q c2^(A), starting with g, then one
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reaches 8~ before reaching P and finds that at the point q where a cuts
Zn-l fl-1$- it does so transversely, i. e., a is not tangent to S$ at g.

The proof of the last part of (ix) is clear, i. e., if P is not reached fit
then it is obvious that a cannot be tangent to 8^ at q because the local

convexity would imply that the arc of a sufficiently close to q would
hâve to lie entirely outside 8^, contradicting the facts. The slight techni-
cal difficulty is to show that P is not attained in applying the c-process

to a, i. e., that the entire arc of a from P to q is not developed in S-

It is enough to show that is not the case for one single a by using the local

zJp-Shaded Area Figure 3

convexity again in a simple argument (C. D. G., p. 52, last paragraph,
and p. 53). Now even that is not self-evident for 8-, but it certainly is

for Sq one of whose géodésie radii is just a sub-arc (of length

of a â, radius of Z-{X) (of length A n\VY'a>\7i\VKmfiJ. Thenby
sliding 8j continuously to 8% one sees by the same local convexity that P
cannot suddenly enter S^ (otherwise some arc of some a which was partly
in and partly out of 8^ would also be tangent to S^ q. e. d.

To form Mn, the space of broken geodesics covering Mn, one now joins
each p e G to ail the corresponding q, the points where the a issuing
from p and ending in EP{X) eut #^~\ by the géodésie radii of the latter
which were obtained by developing the a in 8% (Figure 3). Notice that
Jftl~1(A) has disappeared from considération altogether while only part
of Mn(X) remains.

Thanks to (ix) and (v) it is then a simple matter, requiring only some
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continuity considérations of a routine nature and, therefore, omitted
hère, to verify that Mn is homeomorphic to En and covers Mn - which
shows that the choice of c(En) in (5) fulfills the requirements of Theo-

rem 1. Q. E. D.

3. Prooî oî Theorem 2 and related analytical îacts10)

Returning to the analytical situation in the opening paragraphs of the
introduction, one sees that some words about Bonnet's lemma are in
order. The proof thereof is a simple conséquence of some standard facts
about solutions of the Jacobi équations (1) (see for example, Morse, Cal-
culus of Variations in the Large, Chapter I). In fact, if rj(s) is a vector
solution of (1) such that rj(O) rjis^) 0 then, after a simple intégration

by parts, one finds that

o

and (not so easily) conversely, where

Q (rj, r}') r\a rça

/(^j) is the second variation of the length intégral in Mn for curves con-
necting P and Q (st) on a. Now define

— r _ __ — ^ r *, ~ *I(r) iQ(rj, rjf) ds and I{r) $Q(rj, rj') ds
o o

where Q (rj,rjf) rj^rj^ — UnanpVocVp anc^ similar notation holds for

I(r), rj being a solution of (1), rj of (1). Observe that the curvature in-
equality of Bonnet's lemma implies

just the reverse thereof, where the same argument appears in ail terms.
Observing that if the interval 0 < s < r contains no point conjugate
to P (s 0) on a with respect to (1), (1), or (1) then rj(s), rj(s), and

rj(s) are relatively minimizing for their respective intégrais one finds

], r,') ds <$Q (^, î/) ds <jû (q, V) ds ï(r) (7)

10) The differentiability hypothèses are used m appropriate places throughout this
section without exphcit mention.
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by (6) where rj(O) rj(0) and rj(r) t](r). A similar reasoning esta-
blishes the analogous

J(r)<I(r) (8)

where the left-hand side is evaluated for an r\ with the same end conditions

as the preceding rj and rj. Bonnet's lemma then follows immediately
from (7), (8), and the above remark to the effect that I(r) 0 implies
that Q (r) is conjugate to P on a.

In order to make the applications of the lemma necessary in the initial
paragraphs of section 2 one must show that (6) and hence (7) and (8)

r
are valid when / (r) is replaced by J (r) J Qx (jbt, ju'jds and / (r) by Jc (r)

§Qc(v, v') ds, where

QAv,v') v'av'a~c(K1 { v\+ ¦ •

and fi und v are solutions respectively of (3) and of (3) modified by multi-
plying the roots Kt by c.

In other words, I must deduce from the assumptions (a) and (b) about
Mn made in Theorem 1 that

C {KM+- ••+<)+•••+ Km«m.1+1+- ' '+<-l)}<Hnan^0CUp (9)

<K1{u\+ ' • ' +<) + ' ' ' + Km(ulm_i+1+ •. +<_x)
for ail s > 0 (remember that Rn0Lnp is a fonction of the arc-length
along cr)11), where u (ux,..., un_x, 0) is a unit vector with constant
coefficients in the Fermi coordinates along a (therefore parallelly propa-
gated).

To prove (9)12), I observe that o* may be thought of as a geôdesic simul-

taneously in Mn, En. In particular P may be thought of as common to
ail, as well as the set of Fermi coordinates z in N(s) in each of which a
basis has been chosen so that a parallelly propagated vector has constant
components (the metrics are ail euclidean and, therefore, osculating

along ex). To utilize (b), I observe that bases may be chosen in Tp and

Tp (P — P) so that Ihp whose existence is postulated in (b) will be the

identity in N(0) with the resuit that (9) is automatically true for s 0.

n) I now change notation to conform with section 2.
12) Hypothèses (a) and (b), the explanatory remarks foliowing Theorem 1, and the

paragraph in section 3 where formula (9) is proved may be replaced by the simpler
formulation in paragraph on the last page added in proof.
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For every s > 0 choose a new basis in N (s) so that the linear transformation

h (s) of N(0) into N(s) induced by the parallel displacement of a

frame of vectors (having constant components in the old bases) along a
in the metric of En becomes a member of H (see remarks after Theorem 1).

Similarly ehoose still another basis in N(s) so that the corresponding
h (s) generated by the parallelism due to Mn becomes a member of H. Now
by assumption (a) HczH so that h(s)k-1(s) (viewed as a transformation

of the tangent space T-§ of Mn (N(s) intersecting a at Q), spanned

by N(s) and the unit tangent vector of a, onto the corresponding TQ
when referred to the two bases referred to (after expanding each of them

by the addition of one vector in N (s)) becomes a member of H ; and by the
remarks following Theorem 1 in section 1 corresponding 2-sections under

any h c H of Tq onto TQ Tq will possess curvatures satisfying the
inequality in (b). In particular, the 2-section y spanned by u and (0,...,
0, 1), the unit tangent vector to a, being displaced parallelly with
respect to both Mn and En, the numerical vectors obtained by referring
them to one basis in Tq will be transformed into the numerical vectors
obtained by referring them to the other basis in Tq TQ by Ai"1, i. e.,
the resulting 2-sections will possess curvatures satisfying (b) ; but that is
precisely (9).

Having established (6), (7), and (8) in the desired context, let me, be-
fore going on to Theorem 2 and as a preliminary to it, establish (ii) in
section 2. I first recall the following analytical détails from C. D. G.,

p. 41-44 (changing notation slightly). Consider the locus S71"1^) of end

points of géodésie arcs of fixed length r issuing from P and neighboring a.
The points on S11'1^) sufficiently close to a will be uniquely represented

by their Fermi co-ordinates z in the hyperplane N (r) which is at once

tangent to S71"1^) and orthogonal to a at Q(r). If Q(r) is not conjugate
to P for 0 < r < s, then there will be a unique rj, solution of (1), such
that rj(O) 0, rj(r) z. In that case

^ f^r) rjjr) rjp(r) (10)

(cf. 0. D. G., p. 43) where fap(r) z^zp is the second fundamental form of
S71"1^). Correspondingly one has

J(r) JQy.ii*, fi') ds VT.cot r VT^X +¦¦¦+ z\) (11)

+ • • • + VTm cot r VË^(zlm_l+1+ ¦¦¦+ 4.)
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after explicit calculation, when jll is a solution of (3) such that //(0) 0,
fj,(r) z. Jc(r) has the same expression modified by the introduction
of the factor c under each radical and the use of a solution v of the sui-
tably modified (3).

Observe now that if one momentarily sets ail K{ K^^ in J(r) and

replaces I(r) by the former in (8) then (ii) foliows immediately.
Finally, I corne to the main task of this section, the proof of Theorem 2.

To avoid répétition I refer back to the pertinent Unes of section 1 for
notation. Since, as remarked there, a^^s) rja(s)-rjP(s) rj" rfy where
the rja are n — 1 vector solutions of (1) satisfying ?ya(O)-r/^(O) ôap,
^a'(0)-^^'(0) ôrf, in particular, for the purposes of Theorem 2 it will
be sufficient to show

0 < s <Xn\V^a (12)

where 77 is a solution of (1) such that rj(O) 0, rj'(0)>r}'(0) — 1, and the
last (n — 1) — n1 components of r\ are zéro at s 0 (this last signi-

fying that the initial direction of the tangent of rj lies in Zv)- Indeed,

setting rj rjocdyJV/dyOùdyOL one finds

y^ (s*)»™6* (buïsV

which, on multiplying by the denominator, is the conclusion of Theorem 2

(oc and fi run only from 1 to n).
If the principal directions of the quadratic form RnOLnp(s) were propa-

gated parallelly along a, one could separate the variables in (1) by an
orthogonal transformation with constant coefficients and then apply the
ordinary Sturm comparison theorem to each variable separately, ob-
taining thereby the inequality (12) without the exponent. However, that
is not the case in gênerai, and even Morse's n-dimensional version of the
Sturm comparison theorem is of no use in this situation. I hâve, there-
fore, been forced to devise a new set of differential équations leading to a
new type of comparison theorem - one which compares "normal
displacements" from a rather than distances along a from P to first con-
jugate points.

The équations in question will be derived easily from (10) and from
Hamiltoris principle of varying action, not to be confused with the more
familiar principle of least action - more popularly associated with Hamil-
ton's name. I make référence hère, once and for ail, to Webster [1],
pp. 131-135, particularly formula (96).
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The principle being merely a formai apparatus (in reality a mère
intégration by parts) which is interpreted physically, it is only necessary to
change notation in order to use it hère. Thus the time t becomes s ; the
generalized position coordinates q{ become rja ; the kinetic energy T
becomes (up to a constant factor) rj^ rj^ ; the potential energy W becomes

^notnpVotVp î ^ke Lagrangian T — W L becomes Q(rj,rjf); and the
action intégral 8 becomes I(r).

At this point, however, it is more useful to make correspond to the q{

not the rja but the polar co-ordinates in N(r) such that z1== q cos 0,
z2 q sin 0,..., etc. (the others being irrelevant). In particular, when

rja za, q2 is precisely the quantity to be estimated in (12), namely, the
squared length of the normal displacement vector rj. 0 is the colatitude

of rj (r) measured from the pôle of the sphère En~2 ofpolar co-ordinates in

N(r) with center at Q(r). I pick that pôle so that in the limit as r -> 0,
6 -> 0 for the particular rj (r) in question. Thus 6 will measure how much

r] rotâtes out of its original position (the whole spinale of geodesics is-

suing from a and neighboring a will "twist" in gênerai because the principal

directions of Rnocnp do so).

Henceforth, those particular values of the variables which describe rj
will be written as usual while the unrestricted co-ordinates will be barred.

With the new q{, T rj^rj'^ becomes g'2 + Q20'2 + • • •. The canoni-
cal momenta defined by pt dTjdqi become 2q', 2q26', etc.

Hamilton's principle states that p{ dSjdqt. Translating into the
new terminology and recalling that

fap{r) zazp =^2(/i cos2 0 + /2 sinë cos 0 + /3 sin2 0)

one obtains
o' q{jx cos2 0 + f2 sin 6 cos 6 + f3 sin2 6) (13)

20' — /x(2 sin 0 cos 0) + /2 (cos2 0 - sin2 0) + /8(2 sin 0 cos 0) (14)

where

/1 ~ / ii> / 2 — J
a=2- v / and f ___

2 — JL / ia 2 ana /3 —
Q

But from (7) and (8) with proper change of notation and from (11) and
its mate one obtains
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X cot r VKX (cos2 6X (c

< /a/3z<*Z/î g2 (/i °os2 0~+ /2 sin 0~cos 0~+ /3 sin2 0) (15)

:

cot r

On applying the right-hand inequality of (15) to (13) and observing,
fîrst, that

1/c2J7cot r l/c^K~i < —

and, second, that z\ + • • • + £n-i ~ Q2 s^n2 0> one obtains

£- < (\Zc~Kl cot r l/ê^) cos2 0 + — sin2 6
Q r

)/cKo cot r V^Ko + sin2 0 — — ]/c^ cot r ]/c~KA (16)

cot r ]/cTTa + sin2 0O (-i- - l/c^â cot r

where it must be recalled that Kx =» Ka and the last inequality holds
because the last bracket is non-négative, 0o being

sup 6(r) 0 < r < X n\VKa

Integrating both sides of (16) from rx to r2,
one has after exponentiating

sin rx \/c Ka \r1 sin
/r2 sin rx \/c Ka\sin2 e*

X^ sin r2 l/cKfj)

Now since q2 rj-rj one sees that £;(0) l(^'(0)-^'(0) =1 by as-
sumption) so that

lim y v
*; — ; lim — ycKa ;

rx^o sin rx yc KQ yc Ka
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therefore, letting rx -> 0 in (17) one obtains, after squaring, (12) where it
remains to be shown that 0O -> 0 as c -> 1.

To demonstrate this last I turn to (14), and to estimate the coefficients,
/a ~ /i> /2> thereof I refer to (15). Setting 0 successively equal to 0 and

— one obtainsl
(18)

where @and 0e are the left- and right-hand sides respeetively of (15)

without the cos2 0 term.
For /3 — fx one deduces

h-h<B-V~KaGotrV^~u (19)

Setting 0 — on the other hand one obtains

/,< V~cKa cotr V7K~a+ 0C -h-h
<VJK~acot r V7K~a - V~K~acot r Vk"q + 0e - 0 (20)

by (18). Calling the right-hand side of

(19) y>e and 0 - VcK^cot r VcK~Q, y

applying (19) and (20) to (14) and factoring, one has

2 0' < [sin 2 6 + (1 - y/Ve) cos 2 0] V>c • (21)
Calling

6= sup (l—y>ly>c)> l>b>0

and adding the term bipc to the right-hand side of (21) one obtains

20'<[sin20 + 6(1 + cos 20)] y>c

Dividing by the bracket and integrating (Peirce, Short Table of
Intégrais) from rx to r2 one has

log {b + tan 0(r2)} - log {6 + tan 0(r1)}< fy>edr

Estimating y>c as in (16) one has

6 + tan 0 (r2) r2 sin rt YcKa
b + tan 0 (r3) rx sin r2 |/c iTa
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Manipulating and letting rx -> 0(0 (rx) -+ 0) one has finally

tan 0 (r.) < b (_hVçKa=m _ A < 6 / ^Al/c A (22)
\ sin r2 ^/c Ka \ sin A J/c rc /

Since X was fixed in (5) of section 2 and 6 -> 0 (that is easily seen) one
sees that 0O -> 0 as c -> 1 which establishes Theorem 2 and hence
Theorem 1.

Âdded in Proof. Hypothèses (a) and (b) of Theorem 1 and the further
reasoning attendant thereon can be materially simplified by means of a
suggestion kindly made by Professor Hopf. To avoid the awkward business

of choosing bases in the tangent spaces at two différent points, TP
and Tq so that the linear transformation, h, between them generated
by parallel displacement becomes a member of H one simply observes
that h is such that h-1 H h c H. (a) and (b) can then be replaced by :

For each Pc Mn there exists a linear transformation hP of TP onto
T such that TT,hpHhp1 c H (A)
etc.

The second paragraph after Theorem 1 then becomes unnecessary;
however, it is again important to observe that hP may be replaced by
any other hrp having the property (A).

The proof of formula (9) in section 2 now runs as foliows : If I can
show that the linear transformation, tg of Tq onto TQ, which assigns to
the vector u (ul9 un_t, 0) in Tq the vector with the same
numerical components (consistent bases hâve already been chosen) in
Tq has property (A) ; then by the above observation the curvature
hypothesisof Theorem 1 appliesand (9) is an immédiate conséquence. But

where g is the transformation of Tp onto Tq obtained by parallel
displacement along a and which also takes u into a vector with the same

components because of the euclidean coordinate System along a; h is
the analogous transformation along a in W ; and hP is the transformation
of Tp onto Tp which already exists by the hypothesis of Theorem 1

and which also may be assumed to hâve the constant component
property by identifying Tp with Tp. Now

tQHt'1 Jchpg^Hgh^k-1 c Jchp-Hh^Jc1 ç kHk"1 ç H,
and that is property (A) for tq.
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On the Pontryagîn product
in spaces of paths

By R. Bott and H. Samelson x)

Introduction

For a topological (arcwise connected) space X, let E be the fonction
space consisting of the paths in X which start at a certain point x, and
let Q be the subspace of E consisting of the closed paths or loops ; thèse

spaces hâve been studied in particular by M. Morse [7] and J.-P. Serre [10] ;

E is a fiber space over X. Now Q admits a natural multiplication : two
loops in succession make a new loop (actually there is a more gênerai
opération between E and Q). This multiplication gives rise to a multi-

x) The work reported on hare was done while the first author was under ONR contract
No. Nonr 330(00) and the second author was under contract to the Office of Ordnance
Research.
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