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Zur Funktionentheorie der Wellengleichung

Mit Anwendungen auf spezielle Reihen und Integrale mit
Besselschen, Whittakerschen und Mathieuschen
Funktionen

Von PeTER HENRICI, Washington, D. C.

Einleitung

1. Allgemeine Bemerkungen
1.1. Problemstellung

In zahlreichen neueren Arbeiten wurde von Bergmant), Vekua?) und
andern die Existenz von Funktionaltransformationen nachgewiesen,
durch welche die Klasse der in einem gegebenen Bereiche reguldren
Losungen einer elliptischen partiellen Differentialgleichung mit zwei un-
abhingigen Variabeln und mit analytischen Koeffizienten eineindeutig
auf die Klasse der in einem bestimmten Bereiche analytischen Funk-
tionen einer komplexen Verénderlichen abgebildet wird. Die vorliegenden
Untersuchungen verdanken ihre Entstehung der Fragestellung, ob es
moglich ist, diese Ergebnisse fiir die Theorie der speziellen Funktionen
der mathematischen Physik nutzbar zu machen.

Auf manche dieser speziellen Funktionen wird man bekanntlich ge-
fithrt, wenn man versucht, die sogenannte Wellengleichung

o%*v 0%v
ox? T oy?
(oder, im Falle k¥ = 0, die Potentialgleichung) in einem orthogonalen
Koordinatensystem zu separieren. Sieht man vom Fall der cartesischen

0%v 0
4+ 5 4+ kv=0

1) Bergman, 8., Zur Theorie der Funktionen, die eine lineare partielle
Differentialgleichung befriedigen, Rec. Math. Nouv. Ser.2 (1937), S.1169—
1198, Functions satisfying certain partial differential equations of elliptic
type and their representation, Duke Math. J. 14 (1947), 8. 349—366. The Kernel
Function and Conformal Mapping, Amer. Math. Soc. 1950. (Dort zahlreiche weitere
Literaturangaben.)

?) Vekua, I. N.,, Randwertaufgaben der Theorie der linearen elliptischen
Differentialgleichungen mit zwei unabhéngigen Veriénderlichen, Mittg. Geor-
gische Abt. Akad. Wiss, USSR 1, S. 29—34, 181—186, 497—500. (Jahrb. Fortschr. Math.
66 (1940), S. 456 ff.)
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Koordinaten, der sich spiter gesondert erledigen wird, und von den all-
gemeinen ellipsoidischen Koordinaten, die auf die hier nicht behandelten
Laméschen Wellenfunktionen fiihren, ab, so besteht der erste Schritt
hiezu in der Einfiihrung von Zylinderkoordinaten. Fordert man dann,
daB v vom Polarwinkel 9 nur durch den Faktor ¢**” (u beliebig komplex)
abhingen darf, so ergibt sich die Gleichung

0%v 0%*v 1 ov u?

gty ey T (E )
Diese Gleichung hat zwar die gewiinschte zweidimensionale Gestalt ;
ihre auf y = 0 analytisch von z abhingenden Losungen sind jedoch,
wie ein Potenzreihenansatz zeigt, daselbst als Funktionen von y ver-
zweigt. Diese fiir die spitere Theorie stéorende Komplikation wird ver-
mieden, wenn an Stelle von v die Funktion » = y—#v betrachtet wird.
Fiir diese ergibt sich mit » =y + 1 die Gleichung

o%u o%u 2v du
2 —

Indem wir fiir diese Gleichung Funktionaltransformationen der eingangs
erwihnten Art angeben und diese in geeigneter Weise auf Losungen der
Gleichung anwenden, sind wir in der Lage, zahlreiche zum Teil neue Er-
gebnisse iiber diese Funktionen zu finden. Wir lassen dabei fiir die Wellen-
zahl k beliebige komplexe Werte zu, betrachten dagegen beim Para-
meter v aus Griinden, die sich im Verlaufe der Arbeit manifestieren wer-
den, nur die Félle » =0 und Rvy>0. Die Resultate iiber spezielle
Funktionen werden sich dann zum Teil durch analytische Fortsetzung
auch fiir andere » als richtig erweisen lassen.

1.2. Aufbau der Arbeit

Im ersten Teil der Arbeit werden drei Sitze angegeben, die die Pro-
bleme der Existenz und der analytischen Fortsetzung der reguliren Lo-
sungen von (d,) von verschiedenen Seiten her beleuchten. Es werden zu
diesem Zwecke insbesondere zwei Integraloperatoren 2, und @, aufge-
stellt, die analytischen Funktionen einer Variabeln Losungen von (d,)
zuordnen. Der Operator 2, ist im Falle v = 0, den wir gesondert be-
trachten, identisch mit dem Bergmanschen Operator erster Art; er lost
fiir die auf die charakteristischen Koordinaten z = « + ¢y, 2* =2z — 1ty
transformierte Gleichung (d,) das charakteristische Anfangswertproblem.
Die erwdhnten Sétze bilden hier ein Beispiel zur Bergmanschen, geméif
einer kiirzlichen Mitteilung des Autors durch Einfiihrung der Riemann-
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sche Funktionen vereinfachten Theorie dieses Operators?). Im Fall Rv >0
kann diese Theorie wegen des dann singulidren Koeffizienten in (d,) nicht
mehr angewandt werden. Wir losen hier mit Hilfe des Operators ©,, der
eine auf diese Singularitdt zugeschnittene Neuschopfung darstellt, zu-
niéchst das nichtcharakteristische, aber singulire Anfangswertproblem
der Gleichung (d,), das entsteht, wenn die Werte der Losung auf y = 0
vorgeschrieben werden. Die Losung des charakteristischen Anfangswert-
problems wird damit auf die Losung einer Volterraschen Integralglei-
chung zuriickgefiithrt. Die Losung dieser Gleichung lif3t sich durch An-
wendung des Kalkiils der Differentiation gebrochener Ordnung aus der
Losung im nichtsinguldren Falle » = 0 gewinnen. — Fiir alle Operatoren
werden explizite analytische Ausdriicke angegeben.

Im zweiten Teil werden fiir die Losungen von (d,) die Analoga zu den
funktionentheoretischen Sdtzen von Taylor und Runge aufgestellt. Die
Rolle der Potenzen von z wird dabei von gewissen Kombinationen Bessel-
scher und Gegenbauerscher Funktionen (B.-G.-Funktionen) iibernom-
men. Insbesondere wird gezeigt, dafl jede regulire Losung von (d,) in
eine nach B.-G.-Funktionen fortschreitende Reihe (B.-G.-Reihe) ent-
wickelt werden kann. Der Konvergenzbereich dieser Reihe bestimmt
sich wie bei der Taylorreihe nach allgemeinen funktionentheoretischen
Gesichtspunkten. Als Korollar ergibt sich die klassische Theorie der (ver-
allgemeinerten) Neumannschen Reihen (in der Theorie der Besselschen
Funktionen), zu denen damit ein von der traditionellen Herleitung mit
Hilfe der Neumannschen Polynome voéllig verschiedener Zugang gewon-
nen ist.

Im dritten Teil werden Anwendungen auf spezielle Funktionen gege-
ben. In einem ersten Abschnitt werden fiir alle reguliren Losungen von
(d,), die durch Separation der Variabeln gewonnen werden konnen (es
handelt sich, einem alten Satze von H. Weber#?) zufolge, um Loésungen
in genau vier verschiedenen Koordinatensystemen), die B.-G.-Reihen
explizite angegeben. Im Falle der cartesischen und der elliptischen Ko-
ordinaten ergeben sich hierdurch bekannte Entwicklungen von Gegen-
bauer und Whittaker. In den beiden andern Koordinatensystemen er-
geben sich dagegen neue Reihen, niamlich im Falle der parabolischen
Koordinaten eine B.-G.-Reihe fiir das Produkt zweier Whittakerscher
Funktionen, die als Spezialfille Entwicklungen von Produkten Bessel-

3) Bergmans Integraloperator erster Art und Riemannsche Funktion,
Z. angew. Math. Phys. 3 (1952), S. 228—232.

4) Weber, H., Uber die Integration der partiellen Differentialgleichung
0%u/02% + 0%u/0y® + k®w = 0, Math. Ann. 1 (1869), S.1—36, insbes. S. 27f.
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scher, Laguerrescher und Hermitescher Funktionen enthilt, und im
Falle der Polarkoordinaten ein allgemeines Additions- und Multiplika-
tionstheorem fiir Besselsche Funktionen, aus dem durch spezielle Wahl
der Parameter die vier klassischen Additionstheoreme von Gegenbauer
und Graf sowie die Multiplikationstheoreme von Schafheitlin abgeleitet
werden koénnen.

In der zweiten Hilfte des dritten Teils werden mit Hilfe des Operators
@, verschiedene bestimmte Integrale ausgewertet. Es ergeben sich auf
diese Weise u. a. Verallgemeinerungen der Poissonschen und Laplace-
schen Integraldarstellungen Besselscher bzw. Legendrescher Funktionen,
sowie Integralgleichungen vom Volterraschen Typus fiir Mathieusche
Funktionen. Anhangsweise wird noch fiir Produkte Whittakerscher
Funktionen mit Hilfe der Orthogonalitédtseigenschaften der Gegenbauer-
schen Polynome ein Analogon zu einem bekannten Gegenbauerschen
Integral fiir Zylinderfunktionen angegeben.

1.3. Verwandte Untersuchungen

Auf die Gleichung (d,) (mit halb- oder ganzzahligem ») wird man auch
gefiihrt, wenn man im Raume von p = 2» 4 2 Dimensionen diejenigen
Losungen der Wellengleichung

0y
ox2

betrachtet, die nur von # =2, und y = (2% +.--4 22)} abhingen.
Durch Betrachtung dieser Gleichung haben schon Hobson?®) und in
neuerer Zeit Sommerfeld ¢) Resultate iiber spezielle Funktionen herge-
leitet. Es handelt sich dabei um Spezialfille der Entwicklungen (27) und
(49). Im Falle £ = 0 ist von diesem Gesichtspunkt aus (d,) als Gleichung
der verallgemeinerten axialsymmetrischen Potentiale neuerdings von
A. Weinstein und seinen Schiilern eingehend 7) untersucht worden. Ins-
besondere gibt Weinstein verschiedene Darstellungen fiir die Grund-
losungen dieser Gleichung. Mit & = 0 hat (d,) auch abgesehen von der
potentialtheoretischen Herkunft verschiedene physikalische Anwendun-
gen. Die Gleichung beherrscht (mit » = 3/2) die Torsion des axialsym-

2

n=1

+ k2u =0

5) Hobson, E. W., On Bessel’s Functions and Relations connecting them with
Hyperspherical and Spherical Harmonics, Proc. London Math. Soc. 25 (1894),
S. 49—175.

8) Somimerfeld, A., Die ebene und sphérische Welle im polydimensionalen
Raum, Math. Ann. 119 (1943), S. 1—20.

7) Weinstein, A., Discontinuous Integrals and Generalized Potential Theory,
Trans. Amer. Math. Soc. 63 (1948), S. 342—354.
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metrischen Stabes®) und (ebenfalls mit » = 3/2, in inhomogener Form)
die Theorie der dicken Schraubenfeder?); auf sie kann ferner Tricomis
bekannte Gleichung der Strémungen kompressibler Fliissigkeiten im
Gebiete des Schalldurchganges zuriickgefiihrt werden1?),

Allgemeine Losungen von Potential- und Wellengleichung, fiir letztere
sogar im Falle nichtperiodischer Zeitabhingigkeit, die wie unsere Opera-
torenlosungen von einer willkiirlichen Funktion abhingen, gaben Whit-
taker!!) und in seinem Gefolge fiir den mehrdimensionalen Fall Bate-
man!?). Da in den Beweisen dieser Autoren Potenzreihen verwendet
werden, iiber deren Konvergenzbereich nichts bekannt ist, gelten ihre
Darstellungen im Gegensatz zu unsern Resultaten in 1. nur im kleinen 13).
Zahlreiche Ergebnisse iiber die Gleichung (d,) finden sich implizite in den
zitierten Arbeiten von Bergman. Bergman gibt auch eine explizite Unter-
suchung4) und erzeugt mittels eines Operators aus analytischen Funk-
tionen Losungen von (d,), ohne indessen an dieser Stelle die Existenz des
inversen Operators zu beweisen. — Im allgemeinen Fall scheint die Glei-
chung (d,) noch nicht funktionentheoretisch untersucht worden zu sein.

Uber Beziehungen unserer Resultate iiber spezielle Funktionen zu ver-
wandten Untersuchungen werden wir an Ort und Stelle in den Abschnit-
ten 2 und 3 berichten.

2. Technische Vorbemerkungen
2.1. Gebiete

Wir betrachten im folgenden Gebiete der reellen (x, y)-Ebene und der
komplexen Ebene. Wie sich zeigen wird, bedeutet es keine Einschréinkung
der Allgemeinheit, anzunehmen, dafl diese Gebiete zur x-Achse bzw. zur
reellen Achse symmetrisch sind und den Nullpunkt enthalten. Um ferner
gewissen Umstédndlichkeiten der Beweisfiihrung, die mit dem eigent-

8) Weinstein, A., On the Torsion of Shafts of Revolution, The Proceedings of the
7th International Congress for Applied Mathematics, Vol. 1, S. 108—119,

9) Biezeno und Grammel, Technische Dynamik, 1939, S. 317 ff

10) Weinstein, A., On Tricomi’s Equation and Generalized Axially Symmetric
Potential Theory, Acad. Royale Belgique, Cl. d. Sc., 5¢ Sér. 37 (1951), S. 348—358.

1) Whittaker, E. T., On the partial differential equations of mathematical
Physics, Math. Ann. 57 (1902), S. 333—355, insbes. S. 342 ff.

12) Bateman, H., Proc. Lond. Math. Soc. (2) 1 (1907), S. 451—458, Vgl. auch Partial
Differential Equations of Mathematical Physics, New York 1944.

13) Im Falle der Whittakerschen Losung der Potentialgleichung wurde dies von Copson,
Proc. Roy. Soc. Edinbourgh 62 (1944), S. 31—36 hervorgehoben.

14) Bergman, S., Uber Kurvenintegrale von Funktionen zweier komplexer
Veréanderlicher, die die Differentialgleichung A4V 4+ V = 0 befriedigen,
Math. Z. 32 (1930), S. 386—406.

239



lichen Inhalt der Arbeit nichts zu tun haben, auszuweichen, beschrinken
wir uns auf konvexe Gebiete. Gebiete, die die genannten Voraussetzungen
erfiilllen, nennen wir zur Klasse K gehorig.

Wir betrachten ferner Gebiete des zweidimensionalen komplexen Rau-
mes K2. Diese werden stets die Struktur von Dizylindern haben, d. h. aus
der Gesamtheit aller Punkte (z,,2,) mit z, e ®, und 2z, € ®, bestehen,
wo ®, und ®, zwei feste Gebiete der z,- bzw. z,-Ebene bedeuten. Wir be-
zeichnen diese Gebiete mit &, X ®,.

2.2. Stetige Funktionaltransformationen

Definition. Es seien ® und § offene Bereiche in nicht notwendig
gleichartigen Rdumen. Es seien @ und ¥ lineare Mannigfaltigkeiten von
in ® bzw. § definierten komplexwertigen Funktionen®). Es sei £ eine
lineare funktionale Abbildung von @ auf ¥. Diese Abbildung nennen wir
stetig, wenn durch sie jede in ® lokal (und darum in jedem abgeschlosse-
nen Teilbereich von ®) gleichmédBig konvergente Funktionenfolge in
eine in § lokal gleichmiflig konvergente Folge iibergefiihrt wird.

Kriterium fur Stetigkeit. Im folgenden wird meist die nachstehende
Situation vorliegen : ® ist ein Gebiet ¢ K und ¥ ist die Klasse der in ®
analytischen Funktionen. §) ist ein elementares Gebiet des K* (n = 1, 2)
mit dem allgemeinen Punkt @ = (w,,...,w,). Die funktionale Abbil-
dung ist von der Form

Y@ = Qle] = !(P(tg @) + (1 —9)f (@) K@, t)dt , (1)

wo K(Q,t) fiir jedes £ €[0, 1] als Funktion von @ in § regulér ist und
f(@ und ¢g(Q) zwei analytische Funktionen von ¢ bedeuten, deren
Funktionswerte fiir alle @ €$ in & liegen. Fiir die Stetigkeit von £ ist
dann, wie aus (1) unmittelbar folgt, hinreichend, daf

Ofll K@, 1) | dt

in §) lokal gleichméflig beschrénkt ist.

Die in 2.1 erwidhnten bei der Zulassung nicht konvexer Gebiete ent-
stehenden Schwierigkeiten riihren davon her, daBl dann in (1) nicht mehr
fiir alle @ in der ¢-Ebene lings ein und desselben Weges integriert werden
kann, was, falls K (@, t) nicht eine ganze analytische Funktion von ¢ ist,
die Abschédtzung des Integrales kompliziert.

158) Tm folgenden wird es sich stets um gewisse Klassen analytischer Funktionen einer
oder zweier Variabeln handeln,
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2.3. Bezeichnung der speziellen Funktionen

In der Bezeichnung der speziellen Funktionen folgen wir Magnus und
Oberhettinger%) und Whittaker und Watson!?), die in den meisten
Fillen iibereinstimmen. Eine Ausnahme machen wir bei der verallge-
meinerten hypergeometrischen Reihe, die fiir beliebige komplexe

@y,...,a, und by,...,0, (b;#0,—1,—2,...; p=q-+1)

definiert ist durch
2, (@)n(@2)n - . - (@p)n ﬁ
n=0 (bl)n (bz)n .. (bq)n n’ ’

wo
(@), =a(@a+ 1)(a+2)...a+n—1), n=1,2,...,
(@) =1

das Pochhammersche Symbol bedeutet. Wir verwenden fiir diese Funk-
tion Baileys 1) Bezeichnung

Ay, gy ey By 2
”F"[bl,bz,...,bq ]
und schliefen uns auch Baileys Konvention an, im Falle z =1 das
Argument wegzulassen.
Ein hédufig vorkommender Spezialfall der verallgemeinerten hyper-

geometrischen Reihe ist die mit den Besselschen Funktionen verwandte
Funktion

oFi[v;2z] = ') (iVz) """, (2:1V2) 1) ;

sie ist (wie alle verallgemeinerten hypergeometrischen Reihen ,F, mit
p < q) eine ganze Funktion von z und geniigt, wie man aus der erwihn-
ten Verwandtschaft oder direkt durch Einsetzen der Potenzreihe beweist,
der Differentialgleichung

2F"+vF —F =0 .

16) Magnus, W. und F. Oberkettinger, Formeln und Sétze fiir diespeziellen Funk-
tionen der Mathematischen Physik. 2. Aufl. 1948.

17) Whittaker, E. T. and G. N. Watson, A Course of Modern Analysis, 4th. ed. 1943,

18) Bailey, W. N., Generalized Hypergeometric Series. Cambridge 1935.

19) Diese Funktion ist auch verwandt mit der Schléflischen Funktion F(a,z) (vgl.
Watson, G. N., A Treatise on the Theory of Bessel Functions, 2nd ed. 1944, 8. 90); der
Zusammenhang ist

F1v;el=I»F@y—1,z2).
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1. Allgemeine Satze iiber Existenz und analytische
Fortsetzung der Losungen von (d,)

11. Der reguliire Fall (»=0)

Wir betrachten in diesem Abschnitt die aus (d,) durch » = 0 ent-
stehende Differentialgleichung

02u 02u

und folgen dabei dem Wege unserer bereits zitierten Mitteilung. Wir
haben dort gezeigt, wie die Theorie des ersten Bergmannschen Integral-
operators mit Hilfe der Riemannschen Integrationsmethode hyperboli-
scher Gleichungen allein aus der Existenz der Grundlosung der betrach-
teten Gleichung heraus erschlossen werden kann. Fiir (d,) ist eine Grund-
losung bekanntlich gegeben durch die zur nullten Neumannschen Funk-
tion Ny(kr) proportionale Funktion

v(x,y; &, n) =dJelkr)logr + S(r) ,
r=@—8*+(@y—mn*,

wo die nullte Besselsche Funktion J,(k7) und ebenso die uns nicht
weiter interessierende Funktion S(r) ganze Funktionen von r% und da-
mit von z, y, &, 5 sind. Die formal hyperbolische Gleichung, in die (d,)
durch Einfiihrung der Riemannschen Normalkoordinaten

z=x—{—iy} )

¥=x — 1y

iibergeht und auf die nachher die Riemannsche Integrationsmethode an-
gewandt wird, ist mit u(z, y) = U(z, 2%)
02U k?

'W‘i‘m(]:o- (Do)

Do[U] = 4

11.1. DaB jede in einem Gebiete & der reellen (z, y)-Ebene zweimal
stetig differenzierbare Losung von (d,) daselbst reell-analytisch ist, ist
ein alter, schon von H. Weber2°) bewiesener Satz. Ist ® einfach zu-
sammenhéngend, so gilt der stérkere

Satz I,. Jede in einem einfach zusammenhingenden Gebiet & der reellen
(%, y)-Ebene zweimal stetig differenzierbare (und daher nach dem Satz von

20) Weber, 1. c., S. 3—6.
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H. Weber reell-analytische) Losung u(x, y) von (d,) kann zu einer im

Bereiche G X 6?) des komplexen (z,z*)- Raumes eindeutigen und analy-
tischen Funktion U (z,z*) fortgesetzt werden. Mit andern Worten : Es gibt

eine in & x ® analytische Losung von (D,) mit U (z, z) = u(zx, y).

Beweis. Der Beweis arbeitet mit den gleichen Mitteln wie der des
Satzes von H. Weber, nur wird die Analytizitit der Grundldsung stérker
ausgeniitzt. Es geniigt, den Beweis fiir jeden abgeschlossenen Teilbereich
®’ von @ zu fiihren, wobei der Rand 9%’ von &’ (mit der Normalen n)
noch als differenzierbar vorausgesetzt werden kann. Bezeichnet @ = (&,%)
den laufenden Punkt auf 9®’, so gilt, wie mit Hilfe der Greenschen For-
mel leicht bewiesen wird, fiir u(x, y) die bekannte Darstellung

[ dug ov

u(x, y) = " -——a—uo}dé‘o : (4)

aosr
Hier hingt auf der rechten Seite nur v von = und y ab. Bei Einfiihrung
der Normalkoordinaten (3) und mit { = & + ¢y, (*= & —in geht v
iiber in die Funktion

V(z,2%; £,0%) = R(z,2*; £,t%) logV(z — 0)(2* — C*) + S(z,2*; £,0%),

wo R und S wieder ganze Funktionen ihrer vier Argumente sind. Die ein-
zigen Singularitdten von V (als Funktion von z und z*) sind daher die
Singularititen des Logarithmus und mithin gegeben durch z = { oder
z* = {*. Fiir jedes feste [ e€d®’ kann also V = V (2, 2*) und damit
der Integrand in (4) in &’ X ®’ lings jeden Weges fortgesetzt werden

und ist daher nach dem Monodromiesatz in G’ x G’ eindeutig und ana-
lytisch?2). Da auBerdem der Integrand in jedem abgeschlossenen Teil-
bereich von (6’ — 96')x (6’ — 86’) gleichmiBig in der Integrations-
variabeln beschrinkt ist, ist nach einem bekannten Satz der Analysis
auch das Integral eine im gleichen Bereich analytische Funktion.

11.2. Wir formulieren jetzt zwei Sitze, die sich fast unmittelbar er-
geben, wenn auf die Gleichung (D,) die Riemannsche Integrationsme-
thode angewandt wird und die Anfangsfunktionen in geeigneten Berei-
chen analytisch gewihlt werden. Nach dem in unserer Mitteilung zitierten
Satz von Hadamard (und wie in diesem speziellen Fall natiirlich auch

21) & bedeutet das zu & konjugiert komplexe Gebiet, & X ® das kartesische Produkt
von G und G.
22) Hier wird der einfache Zusammenhang von ® beniitzt. Da8 der Satz im Falle mehr-

fach zusammenhingender Bereiche nicht richtig bleiben kann, lehrt schon im Falle &k = 0
die Funktion log 7.
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sonst bekannt 23)) ist die Riemannsche Funktion von (D,) identisch mit
dem auf Normalkoordinaten transformierten Koeffizienten des logarith-
misches Gliedes der Grundlosung von (d,), also gleich

Jolkr) = Jo (kV (2 — £) (z* — {¥))
k2
= |ti-ge—ne )|

Lost man hiermit die beiden hyperbolischen Anfangswertprobleme

Dy[U]=0;
11, U(z,0)=f(z) , U(0,2*) = f*(2¥)
(f(0) = *(0))

Dy[U]=0;
111, Uz, z*) = Ul(z* 2) ;
Uz,2) =9(2),

und

wo f, f* und g gegebene Funktionen bedeuten, durch die Riemann-
sche Formel, so ergeben sich die beiden folgenden Sitze :

Satz II,, Es set ® ein einfach zusammenhdingendes Gebiet, das 0 ent-
hilt. Dann gibt es zu jedem Paar von in ® bzw. G analytischen Funktionen
{f(), f*(z*)} (mit f(0) = f*(0)) genau eine in G X ® analytische
Losung

Uz, 2*) = Q[f, [*; 2, 2*]

des Problems I1,. Der Operator £2, ist stetig (im Sinne von 2.2) und wird

explizite dargestellt durch
2

Qulf. 132,241 = oF 15 = 2% 1(0) +

S~ 1 df (¢
+ [ob|t Fe—az| G at
0

2 T *
+ [ JF, 1;—’—;—z(t—z*) ”%z-(,,—f-’dt. (5)

L. -

0

Satz III,. Es set ® ein einfach zusammenhingendes, zur reellen Axe
symmetrisches Gebiet. Dann gibt es zu jeder in ® analytischen Funktion
g(z) esne in & X ® analytische Losung

2) Courant, R. und D. Hilbert, Methoden der Mathematischen Physik, Bd. 2,
1937, S. 316 £.
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Ulz,2*) = Oylg; 2, 2*]

des Problems I11,. Der Operator @, ist stetig und wird explizite dargestellt
durch

Oolg; 2, 2*]1 = %(9(2) + g9(z%) +

+ B e [ Ee-ne—olswa. @

Die Beweise dieser Sitze ergeben sich aus Riemanns Theorie wie folgt :
Die rechten Seiten von (5) bzw. (6) losen die Probleme IT, bzw. III, zu-
nichst fiir reelle Werte von z und z*. Sie bleiben auch fiir beliebige

Punkte (z,2*) e ® X® bzw. € ® X ® sinnvoll und stellen dort analyti-
sche Funktionen dar. Nach dem Prinzip der Permanenz der Funktional-
gleichung geniigen sie also auch dort den Bedingungen der Probleme II,
bzw. III,. Auch die Behauptungen iiber Stetigkeit und Eindeutigkeit
folgen aus der Riemannschen Theorie.

Selbstverstindlich konnen die Sétze auch elementar ohne Bezugnahme
auf die Riemannsche Theorie bewiesen werden. Aus der Ganzheit der
of'; und den Voraussetzungen iiber f(z) und f*(z*) folgt zunichst die

Analytizitit von (5) bzw. (6) in G X ® bzw. ® x&. Das Erfiilltsein
der Anfangsbedingungen 148t sich aus den Formeln leicht ablesen, wih-
rend das Bestehen der Differentialgleichung D,[U] = 0 durch Differen-
tiation und Beniitzung von (2) verifiziert werden kann. Die Stetigkeit
der Operatoren folgt daraus, dafl diese auf die Form (1) gebracht werden
konnen 2¢). Die eindeutige Bestimmtheit von U (z, 2*) ldBt sich durch
eine Potenzreihenmethode dhnlich der von uns in 12.1 benutzten be-
weisen.

Bemerkung. Satz 11, gilt offenbar auch, wenn 0 nicht innerer Punkt,
sondern Randpunkt von & ist, sofern nur die Funktionen f(z) und
f*(2*) so beschaffen sind, dafl die rechte Seite von (5) sinnvoll bleibt.

11.3. Aus den Sitzen von 11.1 und 11.2 kann auf mehrere Arten
auf das Bestehen von eineindeutigen, in beiden Richtungen stetigen Ab-
bildungen zwischen verschiedenen Funktionenklassen geschlossen wer-
den :

a) Die Sitze I, und II, ergeben eine solche Abbildung der Klasse aller

24) DaBB ® hier noch nicht konvex vorausgesetzt wurde, bedeutet, da der Kern eine
ganze Funktion auch von ¢ ist, fiir die Anwendung des Kriteriums noch keine Schwierig-
keit.
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in einem elementaren, den Nullpunkt enthaltenden Gebiet G reell-analy-
tischen Losungen von (d,) auf die Klasse aller Paare (f, f*) von in &

bzw. & analytischen Funktionen einer komplexen Variablen mit f(0)
= 1*(0);

b) Ist ® e K und wird U (z, 2*) durch die Forderung U(z, 0) =
U(0,2z) symmetrisch gemacht, so liefern die Sdtze I, und II, eine Ab-
bildung aller in einem zur reellen Achse symmetrischen Gebiet reell-
analytischen in y geraden Losungen von (d,) auf die Klasse aller in &
analytischen Funktionen einer Variabeln ;

c) Da im allgemeinen U (z,2) == U(z, 0), ergeben die Sidtze I, und
IIT, eine von b) verschiedene Abbildung der in einem zur reellen Achse
symmetrischen elementaren Gebiet reell-analytischen, in y geraden Losun-
gen von (d,) auf die Klasse der in & analytischen Funktionen einer
Variabeln ;

d) Aus den Abbildungen b) und c) folgt schlieBlich eine eineindeutige
Abbildung der Funktionen U(z,z) auf die Funktionen U (z, 0) oder,
da diese Funktionen beide in einem zur reellen Achse symmetrischen Ge-
biet ® analytisch, aber sonst beliebig gewidhlt werden koénnen, der
Klasse der in ® analytischen Funktionen auf sich selbst. Aus (5) (mit
z* =2z) und (6) (mit 2* = 0) folgt, daB diese Abbildung dargestellt

wird durch das Formelnpaar

9@ = o [1: = EZ |10 + 2 [ [1: 8 20 — 0| L0 2
K (7)
10 = 3@ +90) + = [oF |25 06— 0] g

Das Bestehen jeder dieser Formeln zieht das Bestehen der andern
nach sich. Wahrend naturgeméfl jede der Abbildungen a), b) und c¢)
streng an den analytischen Charakter der darin verbundenen Funktionen
gekniipft ist, ist dies fiir die Beziehungen (7), der Herkunft aus der Rie-
mannschen Theorie gemiB, nicht der Fall; sofern man sich auf reelle
Werte der Variabeln beschrinkt, reicht fiir ihre Giiltigkeit einmalige
stetige Differenzierbarkeit von f und g hin.

12. Der allgemeine Fall (R»> 0)

Wir verallgemeinern in diesem Abschnitt die Sdtze von 11. fiir den
Fall der allgemeinen Gleichung (d,), die durch Einfiihrung der Normal-
koordinaten (3) in
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D] = 0202* z —2*| 0z  0z* 4 =0 (D))
iibergeht. Erst diese Verallgemeinerung wird uns eine volle Ausniitzung
der Operatorenmethode fiir die Zwecke der Theorie der speziellen Funk-
tionen gestatten.

Leider kann in diesem allgemeinen Fall die Riemannsche Methode
nicht ohne Modifikationen verwendet werden. Nicht nur verbietet der
singulire Koeffizient in (D,) die unbekiimmerte Anwendung der Rie-
mannschen Formel, sondern auch die Riemannsche Funktion selbst ist
bei z = z* singulir und kann zudem im Falle 4 54 0 nur durch eine
nach hypergeometrischen Funktionen fortschreitende Reihe, deren Kon-
vergenz schwer zu iiberblicken ist, dargestellt werden?2?). Diese Um-
stinde zwingen uns zu einer Umstellung der Beweisanordnung von 11.

02U au oU k?
ol

12.1. Satz IIL,. Zu jeder in einem Gebiet & e K analytischen Funk-
tion g(2) existiert genau eine in ® X ® analytische Losung

U(z,2*) = 0,[g; 2, 2*]

von (D,) mit U(z,z) = g(z); sie ist in z und z* symmetrisch?8).

Wir trennen, wie es in solchen Fillen iiblich ist, Eindeutigkeits- und
Existenzbeweis. Mit der Eindeutigkeit kann gleichzeitig die Symmetrie-
behauptung mitbewiesen werden.

12.11. Eindeutigkeitsheweis

Wegen der Analytizitdtsbehauptung geniigt es, die nachstehenden Be-
trachtungen im Kleinen durchzufiihren. Eine eventuell existierende ana-
lytische Losung des Anfangswertproblems 148t sich in der Umgebung
jedes Punktes von ®, also auch in der Umgebung eines beliebigen Punktes
(z, 0) e ® in eine nach Potenzen von z und y fortschreitende Reihe ent-

wickeln, die in der Form
o0

u(x,y) =2 f.(x)y™

n=0

geschrieben werden kann. Da u(xz, y) (d,) erfiillt, ist

25) Als heuristisches Hilfsmittel hat uns die Riemannsche Methode gleichwohl groBe
Dienste geleistet. .

%) Dieser Satz geht — fiir das hier vorliegende spezielle Problem — in doppelter Hin-
sicht tber den klassischen Cauchy-Kowalewskischen Existenzsatz hinaus: Die Differen-
tialgleichung ist auf der Anfangskurve singulér, und das Anfangswertproblem wird nicht
nur fiir eine Umgebung der Anfangskurve, sondern im gro8en geltst.

247



Z{Ir(@) Y+ nn = Dia(@) = + 2nfy @)y + B (@)gn) = 0

oder nach Zusammenfassung gleicher Potenzen von y

2vf1(x) =0 s (8)
n(@) + (n+ 2)(n + 1+ 29)f, () + k2, (2) =0, (9)
n=20,1,2,...

Aus (8) ergibt sich zunichst wegen v #% 0 f,(x) = 0 und damit wegen
(9) fizen(®) =0 (n=1,2,...), woraus folgt, dafl u(z, y) in y gerade
und U (z, 2*) somit in seinen beiden Argumenten symmetrisch ist. Ist
weiter auch fo(z) = u(z, 0) = U(z,2) = 0, so folgt aus (9) f,,(x) =0
(m=1,2,...). Zur Anfangsfunktion 0 gehort also nur die Losung
u(x, y) = 0, was mit der eindeutigen Bestimmtheit durch die Anfangs-
funktion gleichbedeutend ist 7).

12.12. Existenzbeweis

Wir beweisen, iiber die bloe Existenz hinausgehend, folgenden

Zusatz zu Satz III,. Der Operator ©, ist stetig?®) und wird dargestellt
durch

0,lg;2,2*] =

1
I'v+ 1) .k 2 (112 | e\ DR
mfoF1[’”, —1—6—(2~—z*) (1 t)]g(z 3 +z 3 )(1 12)»=1d¢. (10)

-1

Wir werden zeigen, dafl die Funktion auf der rechten Seite die verlangten
Eigenschaften hat, in ® x® analytisch zu sein, stetig von g(z) abzu-
hidngen, fiir z* = 2z mit ¢(2) zusammenzufallen und (D,) zu befriedigen.

1. Analytizitdt. Ist 2¢® und 2* e ®, so liegen wegen der Kon-
vexitit von ® auch alle Zwischenpunkte

1 —
z1_2}_t—|—z* 2t-, —1<t<1,

27) Dieser Teil des Satzes wurde im Falle & = 0 als ,,Identifikationsprinzip* auf an-
derm Wege schon bei 4. Weinstein, 1. ¢. Trans. Am. Math. Soc. 63 (1948), S. 344, bewiesen.

28) Courant und Hilbert (1. c., S. 177) betonen die physikalische Unsachgemé&fBheit von
Anfangswertproblemen bei elliptischen Differentialgleichungen, weil bei ihnen die Losung
im allgemeinen nicht stetig von den Daten abhiingt. Unser Satz zeigt, unter welchen Be-
dingungen hier die stetige Abhéngigkeit gesichert ist und warum sie bei dem 1. c. ange-
filhrten Beispiel von Hadamard nicht besteht.

248



in . Fiir jeden festen Zwischenwert ¢ ist der Integrand eine analytische
Funktion von z und 2*. Wegen der in jedem abgeschlossenen Teilbereich
von ® X ® in bezug auf? gleichméBigen Beschrinktheit des Integranden
folgt dies nach einem bekannten Satz auch fiir das Integral.

2. Die Stetigkeit der funktionalen Abbildung @, ist eine unmittelbare
Folge des Kriteriums von 02. 2.

3. Fir z* =z ergibt sich wegen J';[»;0]=1

1
. ___F(v+-%)f -
=g(2) .
4. Der Nachweis, dall die durch (10) definierte Funktion U (z, 2*)
(D,) befriedigt, erfordert einigen kalkulatorischen Aufwand. Wir setzen
in diesem Abschnitt voriibergehend

1 +t Lalot_ oy
2
J2
s 2 12y —
s — PRl - =Y,
und schreiben zur Vereinfachung
— dg _
9(X) =g, ax =9
_ dF _ _,
1['!), Y] 'd—:Y“ = F .
Dann folgt mit _ I'v+3)
I'v) I'(})

aus (10) durch Differentiation unter dem Integralzeichen
1

oU 1+ k? e
0 —cf—TFg + g (e — (1 — e)F g}(l — pyr-dt,

l—tpy B ¥)(1 — ) F'gl (1 — 2)»-1dt
‘3‘5;,:*:0 B g——?(z——z)( g ) )

U 11—, kB N
W—cf{ 1 Fg -—-§—(z 2¥)t(1 — t2)F'g

e — Py — (= g — ey

249



Setzt man dies in (D,) ein, so kdnnen wegen

dg z—z* ,
a2

die Ableitungen von ¢ sukzessive durch partielle Integration weggeschaftt
werden. Hierdurch und unter Beachtung der von  F,[v; Y] befriedigten
Differentialgleichung (2) ergibt sich

*U 4y (0U oU
azaz*—z-——z*{ dz dz*}+ kU

4D,[U]=4
1
L2
=c l(l———tz)Fg”+ — ——(z—2*)t(1—12) F —4v(z—2*)"1UF |g’
of -3 ]
+ [— %(z—z*)z(l—tz)elf’"—-’—;i(1—t2) (1+2v)F’+k2F] g } (1—e2)v-1d¢

1
2

o[- % e—anta-mF g+ [ - Fe—rra—epE

— —k;—(l——ﬁ) (1+2v)F’-—|—k2F] g ] (1—¢2)v—1dt
1

—ck? f {—-%(z--z*)z(l—-ﬁ)p”- vF’—I—F] g(1—t2)v-1d¢

-1
1
:ck2f{—- YF" — vF' + F}g(1 — t?)*dt
-1

=0,

12.2. Satz 1. Jede in einem Gebiet ® € K reell-analytische (und dar-
um nach 12.11 in y gerade) Losung u(x, y) von (d,) kann zu einer im
Gebiete & x® des komplexen (z,z*)-Raumes eindeutigen analytischen
Funktion U (z,2*) fortgesetzt werden.

Wegen Satz III, ist dieser Satz dquivalent mit dem folgenden

Satz I/. Geniigt u(x,y) den Voraussetzungen von Satz I,, so kann
“die Funktion u(x, 0) zu einer in & analytischen Funktion ¢(z) = U(z, 2)
fortgesetzt werden.

Wegen Satz III, kann némlich diese Funktion g(z) zu einer in G X ®
analytischen Losung von (D,) fortgesetzt werden, die wegen der Ein-
deutigkeit der Fortsetzung fiir 2* = z mit u(x, y) iibereinstimmen muf.
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Zum Beweis von Satz I,” benétigen wir einige Eigenschaften der Neu-
mannschen Funktion, die wir in Form eines Lemmas zusammenstellen.

12.21. Lemma. Ist r= V(£ — )2+ n* und bedeutet N,(r) die
Neumannsche Funktion der Ordnung v?°), so ist fir n>0 die Funktion

Vak

'v(f, 77) = - v+l F(’V + _%_) n

v N, (k)

etne Losung der zu (d,) adjungierten Gleichung

e
Es gilt in der Umgebung von 1 = 0
2V7—,11:((:)+ 0 T (L o)
% - R (;:’%) T8 1+ o(1)} (11)
R

DaB} v (J‘,) befriedigt, ist, wie eine kleine Rechnung zeigt, gleichbedeu-
tend damit, daB die zu r—*N,(kr) proportionale Funktion n=%v (d,)
befriedigt. Dies wird unabhéngig von der gegenwirtigen Untersuchung
in 2.21 nachgewiesen. Die Relationen (11) folgen aus den elementarsten
Eigenschaften der Neumannschen Funktion ).

12.22. Beweis von Satz L.

Ist allgemein
_ %u 02u ou ou

lw) =55+ 5 T 05, +bg +ou

ein linearer Differentialausdruck und

0%v n *v  d(av)  9(by)
02 on? on. on

m(v) =

+ cv

%) Watson, 1. c. 8. 74, bezeichnet diese Funktion mit Y (r).

80) Die Funktion v(£, ) wird fir die Punkte (x, 0) als Grundlésung von (d,) dienen.
Da (d,) auf (z, 0) singulér ist, hat die Grundldsung in diesem Falle nicht die gewohnte
logarithmische Singularitit.
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der zu ihm adjungierte Differentialausdruck, so gilt bekanntlich3!) fiir
ein beliebiges die Voraussetzungen des GauB3schen Integralsatzes erfiillen-
des Gebiet B, in welchem « und v beide zweimal stetig differenzierbar
sind, die Beziehung

f{vl(u) — um(v)} df =(¢. {X cos (n, &) + Y cos (n, )} ds ; (12)
B 0B
dabei ist -
ou ov
X——v—é—é— ua{__ + auv ,
ou ov
Y=v—877———u~57—7—+buv ,

9B bedeutet den Rand von B und 7 seine duBere Normale. Identifizieren
wir in dieser Formel % und v mit den in Satz I, und im Lemma so bezeich-
neten Funktionen und I(u) = 0 mit (d,) und wihlen wir als Gebiet B
den oberhalb y = 0 gelegenen Teil von ® mit Ausschlull eines kleinen
Halbkreises k, vom Radius ¢ um den Punkt (z, 0), so erhalten wir, da
dann die linke Seite von (12) verschwindet,

ou 29 ov
B[+ 35w oo 0+ [ 2 (20 2t -0

Die lings der xz-Achse erstreckten Bestandteile dieses Integrales ver-
schwinden wegen (11). Das lings dem in y=0 gelegenen Teil von G
erstreckte Integral ist also gleich dem negativen lings k, genommenen
Integral. Ist (x + g cos ¢, gsin¢), 0 < ¢ < &, der laufende Punkt auf
k,, so erhalten wir hiefiir wegen

u(x + pcos @, psin @) = u(x, 0) 4+ o(1)

und unter Beniitzung der Relationen (11)

4

f{[v—?y— a ]cos -l—[ o u(—a—?—)————z—v—v)]sin } d
0 FY: oE @ an o n @Yo ap

([ ou ov ov 2y : .
=0f{ [65 cos<p+ sm(p]——u[aé, coscp—{—(mn——-g—v)sm(p]]gd(p_.

31) A. Sommerfeld, Partielle Differentialgleichungen der Physik, Leipzig 1947,
S.44f.
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-/ {o(l) + [u(x,O) + o(l)]———-‘f’il——<sin2-'¢cos2 p + sintvag)
0

Val'
ey [1r+0m)]} ap
r .
— u(z, 0) r(%)(;‘?; jr) 5y | sinede +o(1) )

= u(x, 0) + o(1) .

Es existiert daher der Grenzwert ¢ — 0 des Integrals iiber k,, und es
ergibt sich

(z, 0) ——-f[[ v——z—b—]cos(n 5)-]—[ (gz ——%Kv)—-v%%] cos (n,n)}ds

z/>0)

Hier hingt aber auf der rechten Seite nur v von x ab, und es kann, da »
als Funktion von x nur fiir Punkte €9® singulir wird, mit Hilfe des
Monodromiesatzes wie beim Beweis von Satz I, zu Ende geschlossen
werden.

12.3. Satz IL,. Zu jeder tn einem Gebiete & € K analytischen Funk-
tion f(2) gibt es genau eine in & X ® analytische Losung

Uz, z*) = Q,[f;z, 2*]

der Differentialgleichung (D,) mit U (z, 0) = f(z). Der Operator 2, st
stetig.

Wegen 12.11 ist U(z, 2*) in z und z* symmetrisch und daher auch
U(0, z*) = f(2*%). — Aus (10) erhalten wir mit z* = 0

U(z,0)=06,[g; 2, 0]

T Y 8 S [P

Diese Gleichung kann als eine Integralgleichung fiir die Funktion g(z)
bei gegebener Funktion U (z, 0) = f(z) aufgefaft werden. Besitzt sie zu
jeder vorgegebenen in ® analytischen Funktion f(z) eine im selben Ge-
biete analytische Lésung g (z), so existiert zu diesem g(z) nach Satz III,
eine Losung U (z, z*) von (D,), welche vermoge ihrer Konstruktion auf
2* = 0 mit f(z) zusammenfillt. Hingt g(z) stetig von f(z) ab, so gilt
dies nach Satz III, auch fir U (z, 2*). Zum Beweis von Satz II, geniigt
daher der Beweis von

32) Integration und Grenziibergéinge konnen vertauscht werden, da die 0-Aussagen von
(11) gleichmiBig in ¢ gelten.
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Satz II,). Die Integralgleichung (13) hat zu jeder in einem Gebiete
® € K analytischen Funktion f(z) genau eine im selben Gebiete analytische
Losung

g(2) = Q,lf;2,2] ;

diese Losung hingt stetig von f(2) ab.
Wir trennen wieder Eindeutigkeits- und Existenzbeweis.

12.31. Eindeutigkeit

Es geniigt, zu zeigen, daBl zur Funktion f(z) = 0 nur die Losung
g(z) = 0 gehort oder daBl bei nicht identisch verschwindendem g¢(z) auch
f () nicht identisch verschwinden kann. Wegen der Analytizitdt der be-
trachteten Funktionen geniigt es aullerdem, diesen Nachweis fiir eine
Umgebung von z = 0 zu erbringen. Nun ist der Kern von (13) von der
Gestalt

I'(v + 3) R T e
_f(—v)‘r_(%‘)‘oFl[v,ng (1 t)](l 12)r1=cy(1 —t?) +0(z),co#0.

Ist daher
g(z) =cp,z™ +0(mY) , ¢, #0,

so folgt in der Tat

f(2) =f[co(1 —2)v1 4 O(z)] [cm (z _1_—2};15-)'”_*_ 0 (zm+1)] di

1
= 27"¢,co2™ [ (1 + t)2(1 — 2)~1dt ++ O (2m+))
-1
=cp 2"+ 0@™) , ¢, #0,
also f(z)=£0.

12.32. Existenz

Nehmen wir auf der rechten Seite von (13) die Variabelntransforma-
tion

zl+t=1, dt:—-—2~(—z—1
2 2
vor, so folgt
1 —1¢2 T T
2 — (s — ) =4"(1 -1
21l mre—n, - 42(1 z),
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und es entsteht aus (13) die Volterrasche Integralgleichung

0= 2 fon s oo (1 )]

Leider sind die allgemeinen Existenztheoreme iiber analytische Losungen
der Volterraschen Integralgleichung ) in unserem Fall nicht anwendbar,
da sie sich nur auf reguldre Kerne beziehen und auch hier nur lokalen
Charakter haben. Unsere Methode wird darin bestehen, die Gleichung
durch Differentiation gebrochener Ordnung (oder, was dasselbe ist,
durch Zwischenschaltung einer Abelschen Integralgleichung) auf den
Fall » = 0 zuriickzufiihren, wo wir sie durch die in 11. entwickelte
Theorie auflosen konnen. Wir formulieren zu diesem Zweck zunichst ein
Lemma iiber die (komplexe) Abelsche Integralgleichung.

Lemma. Es sei f(z) eine in einem Gebiete & € K analytische Funktion.
Es seien ferner o und B zwei komplexe Zahlen mit Ra>0 und
R(B — a)>—1. Dann hat die komplexe Abelsche Integralgleichung
]
1
s e — \a—-1 — Ja
p6) =210 = gy [ = u@dr =11 (5)
0
genau eine Losung von der Form

2(v) = P#g(7) ,
wo g(t) in ® analytisch ist und stetig von f(z) abhdngt34).

Beweis. Dafl nicht mehr als eine Losung existieren kann, folgt wie fiir
die in Satz II,’ betrachtete Integralgleichung. Zum Beweis der Existenz
einer Losung geben wir eine solche explizite an. Es sei a diejenige positive
ganze Zahl mit der Eigenschaft ¢ — 1<Ra < a?%). Dann ist, wie wir
behaupten, eine Loésung von (15) mit den verlangten Eigenschaften ge-
geben durch die Funktion

deg
dz®
2(v) = I~[g] = 1 i [
o o J T 2@
0

wenn o £Xa .

() , wenn o =a ,

33) Enz. Math. Wiss. 2, 32, S. 1461.

3) Im Reellen ist (15) die auf Riemann (Versuch einer allgemeinen Auffassung der
Integration und Differentiation, Ges. Werke S. 331—344) und Liouville zuriickgehende
Definition der Integration der gebrochenen Ordnung «, die von Hadamard (Essai sur
I'étude des fonctions données par leur developpement de Taylor, Journ. Math. (4) 8 (1892),
8. 101—186, insbes. S. 154 f.) auf das Komplexe ausgedehnt wurde.

35) oder a = — [— R «].
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Da diese Funktion y(7) sicherlich existiert und von der Gestalt ©A—%g(7)
ist, wo g(7) in ® analytisch ist und (nach dem Kriterium von 02.2)
stetig von f(z) abhéngt, bleibt nur zu zeigen, dafl die Gleichung

A1) = I*I[Ff(2)]

fiir alle Funktionen f(z) =2, m = 0,1, 2,..., erfiillt ist. Man findet
leicht, zunichst im Falle a +# «,

1 e

- m] — S ——1 m
ISl f(r 2)a—a1 4m
0
1 da .ta-—a+ﬂ+m —a—14Bm
= T —o) @ (1 — t)a—o-1B+mgy

FE+m+1) 4
I'g—oa+m-+1) ’

und dieses Resultat gilt offenbar auch, wenn o = a. Damit ist

o J—a[sB+m7 — F(ﬁ+m+1) — 7)e-1gB-atm
I J—[2B ]—F(a)F(ﬂ—cx+m+ f(z 7)1 gB—atmdy

I'B+m + 1) zlg+mf —
—_ 1 — t o 1tﬂ—-a+mdt
') ' —a+m + 1) (

= zB+m
womit das Lemma bewiesen ist.

Mit Hilfe dieses Lemmas ist es nun moglich, eine Losung der zu (14)
dquivalenten Gleichung

@, (2) = 22" (2) ,
22v-1 ['(y + 1) v—-1 K
= TTOIm v =0 " om s v — 9o o)

zu konstruieren. Wir definieren die Funktion ¢,(z) als die Losung der
Gleichung

@, (2) = I"[@o(2)] . (17)
Weiter sei g, (z) definiert als die nach 11.3 (S. 12) existierende und ein-
deutig bestimmte Losung der Gleichung 3¢)

1{1((21),) z‘Po(Z) = ¢o(?) +‘]ji‘2—zfoF1[2§ %2—77(3’ — T)]go(")d'” . (18)

0
836) An dieser Stelle greifen wir auf den Fall ¥ = 0 zuriick.
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Dann ist die Losung von (16), wie wir behaupten, gegeben durch

g(7) = v7Vg9,(7) . (19)

Beweis. Wir zeigen zuerst, dal ¢g(v) in ® analytisch ist. Da f(z) in &
analytisch ist, ist, wenn r, (¢ = 1, 2) in ® analytische Funktionen be-
deuten, @ (z) = 2¥71r,(2) und nach (7) g,(7) = t”r,(7), also g(7) in ®
analytisch. Nun zeigen wir, daf} ¢g(7) die gegebene Integralgleichung (16)
befriedigt. Wir wenden hierzu auf die mit I'(»)z—! multiplizierte Glei-
chung (18) die Operation /¥ an. Auf der linken Seite ergibt sich wegen (17)

I'(v)> __Imrag

rey 9 =mare T v9
Auf der rechten Seite erhilt man durch Vertauschung der Integrations-
reihenfolge und Verwendung der Reihendarstellung von  F,

z

f(Z ""1{ (2) —l— F1[2;l§r(z—r)]&’—i~ﬂdr}dz

z
=f£‘1£_ﬂ{(z (Z — 7)v1! OFI[ ; I; t(z-—r)]dz}dr
° z z [k’r(z——t) m

-
2 T 1)] d”'}d’

Z 1 [kzr(Z—t)t m
w ————— i

kz
_ go(7) {(Z — 7)1 4 %(Z _ r)Vf(l — t)v—lm.—_o m'(7:+ 11! dt}dt

0
Z k*t(Z—1)]m+1
9o (7) _ o (”)[ 1 ]

| av

T meo (m+ 1! I'(v +m + 1)
Z
=fgo'f"r) (Z _ T)v-—l OFI[V;—]%:T(Z reee T)] dr

= fz ['c(Z——r)]"“loFl[”; L r)]g(r)dr ,

also die mit I'(v) I'(})/2?*2 I'(» + %) multiplizierte rechte Seite von
(16). Also lost die durch (17), (18) und (19) definierte Funktion g () diese
Integralgleichung. DaB g () stetig von f(z) abhingt, folgt aus der Stetig-
keit der Operationen (17), (18) und (19). Dies schlieft den Beweis von
Satz II,” und damit von Satz II, ab.
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Aus den Sdtzen 1, 11, und 111, folgt das Bestehen der zu 11.3 b), ¢) und
d) analogen funktionalen Abbildungen fir die Losungen von (D,).

2. Ubertragung der Sitze von Taylor und Runge
21. Moglichkeit der Ubertragung

Es ist fiir das folgende bequem, folgende Definitionen zu verwenden :

Es sei @ eine lineare Mannigfaltigkeit von in einem Gebiete &% definier-
ten Funktionen. Wir nennen ein System von Funktionen ¢,, (m = 0, 1,
2,...)

«) eine Entwicklungsbasis bzw.
f) eine Approximationsbasis

in ®, wenn die beiden folgenden Bedingungen erfiillt sind :

1. Jedes ¢, gehort zu @ ;
2. Jede Funktion ¢ €® kann

«) in eine in ® lokal gleichmiBig konvergente Reihe

2 Uy P

m=0
entwickelt werden bzw.
f) in ® durch ein lineares Aggregat

n

b P
0

m=
von endlich vielen Funktionen des Systems lokal gleichméflig
approximiert werden.

Beispielsweise bilden fiir die Klasse der analytischen Funktionen einer
Variabeln die Funktionen ¢,, = 2™ eine Entwicklungsbasis in bezug auf
die Kreise um 0 und (nach dem Satz von Runge??)) eine Approximations-
basis in bezug auf die Klasse aller einfach zusammenhéngenden Gebiete.
Diese Tatsachen konnen mit Hilfe der Sitze von 1. und kraft des folgen-
den Lemmas (dessen Beweis unmittelbar aus der Definition der Stetig-
keit folgt) zur Aufstellung dhnlicher Sétze fiir die Losungen von (d,) aus-
geniitzt werden :

Eine lineare, eineindeutige und in beiden Richtungen stetige Funktional-
transformation fithrt Basen in Basen iber. Unter ,,Basis“ kann dabei so-
wohl , Entwicklungsbasis® als auch ,,Approximationsbasis“ verstanden
werden.

87) Bieberbach, L., Lehrbuch der Funktionentheorie, Bd. I, 2. .Aufl,, S. 296 f.
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22. Aufstellung einer Basis

Das soeben angefiihrte Lemma besagt, daB die beiden Funktionen-
systeme
Pm(z, 2%) = Q275 2, 2%]
und
Yu(z,2¥) =06, [z";2,2*], m=0,1,2,...,

Basen fiir die Klasse der analytischen Losungen von (D,) darstellen, und
zwar sowohl Entwicklungsbasen fiir die Gebiete KR xR, wo R einen
Kreis um O bedeutet, als auch Approximationsbasen fiir die Gebiete
®x®, wo ® € K. Es zeigt sich jedoch, daf sich nur das erste der an-
gefithrten Systeme durch bekannte Funktionen ausdriicken liBt. Wir
berechnen diese Funktionen nicht konstruktiv durch Ausfithrung der
Operationen (17), (18), (19) und (10), sondern direkter als gewisse Parti-
kuldrlosungen von (d,), von denen wir nachtriglich zeigen, daf3 sie sich
fir z* = 0 auf die Funktionen ¢}, 2™ (c,, % 0) reduzieren.

22.1. Bessel-Gegenbauersche Funktionen

Wird in die durch z = rcosd, y =rsind auf Polarkoordinaten
transformierte Gleichung (d,) der Ansatz « = R(r) @(3) eingefiihrt, so
ergeben sich bei Durchfiihrung des iiblichen Separationsprozesses, wenn
als Separationskonstante die Zahl u(u + 2v) (mit dem freien Para-
meter u) verwendet wird, fir R(r) und @(#) die beiden gewohnlichen
Differentialgleichungen

d2R 2v+ 1 dR +(k2— u(u + 2v)

dr2+ r dr )R:O

und
daze de
W+ 2vctgt97‘—l~19—+u(u + 29)0 =0 .

Die erste Gleichung geht durch R(r) = r—*P(r) in

d2P+i dP (k2_(u_i;V)2)P=0,

dr? r dr

also in eine Besselsche Differentialgleichung iiber ; ihre allgemeine Losung
ist daher 773, (kr), wo 3,,, eine Zylinderfunktion der Ordnung
v + u bedeutet. Die zweite Gleichung geht durch Einfithrung der neuen
Variabeln ¢ = cos# mit @ (@) = T'(t) iiber in

T (2v+ 1)t dT | w(p+ 2v) T — 0
dt? 1 —1¢ dt 1 — ¢2 D
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Hiervon ist eine Losung die durch

1 —¢
¥ (t) = Fp+2v) o \p+ 20, —p—5—
= Plp+1)I@v) "1, 1y

definierte Gegenbauersche Funktion, die sich fiir nicht negatives ganzes
u = m auf ein Polynom reduziert. Losungen von (d,) in Polarkoordi-
naten sind also die Funktionen

(20)

Ch(cosd)r=3,, . (k7)) .

Setzen wir fiir die Zylinderfunktion die Besselsche Funktion ein und
multiplizieren wir mit einer passenden Konstanten (damit die Funktion
fir £k =0 oder » = 0 nicht identisch verschwindet), so entsteht die
Funktion
Vi 8.2 — v L+ 1) L(29) ~

Solr,9;k) =k>+ T T 29) C), (cos 9)r=vJ
oder, durch Normalkoordinaten und hypergeometrische Reihen ausge-
driickt,

FY (z, 2*; IC) — f—v—p F(,“ + 1) P(Q’l’) C? (Z + z*) (zz*)-{w Jv+u(k‘/z—£;<)

(kr) , (21)

v+p

B I'(2v + p) \2Vzz*
(Vz—Ve*)?
B (z2%)* -, p+2v;— ———— - kPzz*
o v+l (v+u—+-1) o'y vl 4V 22* 0F1[V+ﬂ+1a_ 4 ]
(22)

Wir nennen die durch (21) oder (22) definierte Funktion Bessel-Gegen-
bauersche Funktion (B.-G.-Funktion) des Ranges?®) » und der Ord-
nung . Sie ist fiir die betrachteten Werte von » und fiir beliebige u als
Funktion von 2z und z* eindeutig und analytisch im Bereiche € xE, wo
€ die ldngs der negativen reellen Achse aufgeschnittene Ebene bedeutet.

Dort kann (z2%)** nimlich durch die Vorschrift
largz |<m , |argz*|<m

eindeutig gemacht werden ; fiir den hypergeometrischen Faktor folgt die
Behauptung aus dem Monodromiesatz, da man, wie eine leichte Rech-

) Wegen Cj (cos®) = 1 ergibt sich hieraus insbesondere auch"die Behauptung des
Lemmas in 12.2, daB -V N (kr) eine Losung von (d,) ist.

39) Hobson, 1. c., bezeichnet in diesern Zusammenhang die Zahl p = 2y + 2 als ,,rank",
Sommerfeld, 1. c., p = 2v als Dimension der betreffenden Wellenfunktion.
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nung zeigt, bei der etwa von einem Punkte der positiv reellen Achse aus-
gehenden analytischen Fortsetzung mit der Variabeln

— (Vz— V%22V 22*) in GxE
nicht auf einen der fir die ,F, kritischen Punkte 1 und oo stoBt.

Fir y=m=20,1,2,... ist%)

1-cos?d
2F1[—-m,m+2v; 5 ]MF(Zw)F(v—(-m)

-m I-m 1
- m 2’ 2 ’cos?
T ) T @rpm) 200" F 1[ co8 '9]

v+1 1-v—m
so dall mit
v I'(2v)
“m = gmry I'(») I'(2v 4+ m) (v + m) (0)
auch gilt

m 1—m 4z22z*

— 53 ; k2zz*
an(z,z*;k):c;z(z—]l—z*)mzlf’l[ 2 2 (z+z*)2]0F1[v—l—m+l;— ]

l—y—m 4

' (23)
Da hier (z + z*)",F; ein Polynom ist, sind die Funktionen F,, (z,z*; k)
ganze Funktionen von z und z*. Wegen der aus (23) unmittelbar fliefen-
den Beziehung

F(z,0; k) =c,2m (24)

sind diese Funktionen proportional zu den gesuchten Funktionen ¢,,,
und es gilt

Satz IV. Die speziellen Bessel-Gegenbauerschen Funktionen
Fr(z,z*;k), m=0,1,2,...,

bilden fir die in z und z* symmetrischen, requliren Lésungen von (D,)
(»=10 oder Rv>0) eine Entwicklungsbasis in bezug auf die Gebrete
] XK und eine Approximationsbasis in bezug auf die Gebiete & X G, wo
K einen Kreis um 0 und & ein Gebiet € K bedeutet.

Die Funktionen F7 (z,z*;k)/c,, sind, wie ebenfalls aus (23) ersehen
werden kann, auerdem analytische Funktionen von » in jedem Gebiete
der v-Ebene, das die Punkte v = —1, —2,... nicht enthdlt. — Meist
wird es nicht nétig sein, bei den B.-G.-Funktionen die Abhéngigkeit von

49) Magnus und Oberhettinger, 1. c. S. 99. Die Formel folgt aus (20) durch eine quadrati-
sche Transformation der hypergeometrischen Reihe.
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k besonders hervorzuheben. Wir schreiben dann statt (21) und (22)
kiirzer f,(r,9) bzw. F,(z,z%)%).

22.2 Besondere Fille der Bessel-Gegenbauerschen Funktion

a) Besondere Werte der Variablen. Aus (22) folgt
Fl(z,2; k) = kvt ,(kz) .

b) Besondere Werte des Ranges. Eine Kummersche quadratische Trans-
formation der hypergeometrischen Reihe4?) ist

1 — cosd u 1 —u

— g+ 20— A

2F1[ Ho fo - 2 2 ]z(cosﬁ)l‘zFl[ 2 2 gﬂ].
v+ 3 v+ 1%

Man erhilt hieraus durch geeignete Zusammenfassung der entstehenden

hypergeometrischen Reihen

fir »=0:
.1 —cosd g l=p
2F1[, Py ——a—— ]z(cosﬁ)“zﬂ[ 5 g tgﬁ]
3 3
— (cos D) (14 2tgd)m —2|— (1 —2tg d)
= } (e? 4 e—ind)
fir » = 1 = ¢os g &;

? : .

- 2i(;:—sq)tg0 {(1+stgd)eri—(1—itgd)n+t)
1

~ 2¢(p+1)sin

_ sin(u+1)9

~ (u-+1)sind ’

5 {ei(p+1)8 — e+ }

41) DaB wir neben den Funktionen f;(r,ﬂ), die als Produkte zweier Funktionen je
einer Variabeln geschrieben werden kdnnen, noch die scheinbar komplizierteren Funk-
tionen F” (2, 2*) einfithren, hat seinen Grund darin, da8 im Polarkoordinatenraum die

den Punkten (2, 0) des Normalkoordinatenraumes entsprechenden Punkte fehlen. Mit
z = ret?, 2* = re-t% folgt nimlich aus 2* = 0, da e~*% den Ausnahmewert O nicht
annimmt, r = 0 und damit auch z = 0.

. 43) Kummer, F., Uber die hypergeometrische Reihe, Journ. reine angew. Math. 15
(1836), S. 39—83, insbes. 8. 77.
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also ist
Fi(z, 2% ; k) = k—+J ,(kr) cos pu &

1 % . — b—u—1 Sln(‘u""‘l)ﬁ'
Fule, 25 0) = k77 () (v + 1)rsind °
Fir » = % ist

1 — cos 9
— gt 1
2F1L e 2 ]=Pu(cosz9),

wo P, die Kugelfunktion erster Art der Ordnung u bedeutet ; insbeson-
dere erhdlt man fir y =m = 0,1, 2,... das m-te Legendresche Poly-
nom, und somit

F,‘,l’, (z,2%; k) = gt ,-4 Jyim(kr) P, (cOs D) .

c) Besondere Werte der Ordnung. Fir y = 0 und u = — 2» reduziert
sich die hypergeometrische Funktion (20) auf die Konstante 1; damit
ergibt sich unmittelbar

Fy(z,2*; k) = (kr)="J,(k7) ,
F?, (z,2%; k) = kvr—vJ_,(kr) .

Hieraus folgt insbesondere fiir » = 1

2 sink
F? (z,z*;k)=V—n- Su,lcrr '

3 . zl/’?’ cos kr
F2 (z,2%; k) -

d) Besonderer Wert der Wellenzahl k. Fir k — 0 reduziert sich der
Besselsche Anteil in (21) auf 1/2+* I'(v + p + 1), und es bleibt

I'(p + 1) I'(2v)
2Vt (u + v + 1) I'(2v + u)

Fi (z,2%;0) =

r# CF (cos 3) .

23. Neumannsche Reihen

In diesem Abschnitt ist k£ = 1 gesetzt.
Als (verallgemeinerte) Neumannsche Reihen werden in der Theorie
der Besselfunktionen Reihen von der Form

2 anzﬂv‘]v-m (2)
=0

263



bezeichnet 43). Hiefiir konnen wir nach 22.2a) auch schreiben

2 a,F(z,2) .

n=0
Der folgende Hauptsatz iiber Neumannsche Reihen folgt (fiir » =0
oder Rv>0) leicht als Korollar zu den Sitzen III, und IV :

Satz V. Jede in exnem Kreise um 0 analytische Funktion kann in eine
in jedem abgeschlossenen Teilbereich des Kreises gleichmdfig konvergente
Neumannsche Rethe entwickelt werden.

Beweis. Es sei f(z) die zu entwickelnde im Kreise & regulire Funktion.
Dann gestattet die nach Satz III, in & xR analytische Losung

0,[f;2,2*] von (D,)

nach Satz IV eine Entwicklung nach B.-G.-Funktionen; z = z* gibt
die Behauptung.

Der folgende Satz ist gelegentlich bei der Untersuchung spezieller
Funktionen ebenfalls niitzlich (vgl. 31.3).

Satz VI (Entfaltungssatz). st die Neumannsche Reihe

g(z) = X a,F,(z, 2) (25)
n=0
in esnem Kreise ] konvergent, so konvergiert

2 a,F(z,z*)

n=0

m K XK und stellt dort die Funktion O,[g;z,z*] dar.

Beweis. Der stetige Operator @, kann auf die in jedem abgeschlossenen
Teilbereich von & gleichmiBig konvergente Reihe gliedweise angewandt
werden. Es ist aber

OF,(2,2;k);2,2*] =F(z,2%; k) .

3. Anwendungen auf spezielle Funktionen

Die hier verwendete Methode rechtfertigt einige allgemeine Bemerkun-
gen.

Mit Truesdell#4) halten wir es fiir wiinschenswert, beim Studium spe-

43) Watson, 1. c., S.522ff. Neumann betrachtete nur den Fall » = 0; die Unter-
suchung des allgemeinen Falles geht auf Gegenbauer zuriick.

48) Truesdell, E., An Essay toward an Unified Theory of Special Functions,
Princeton 1948, 8. 7, S. 157.
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zieller Funktionen mit moglichst allgemeinen Methoden zu arbeiten und
nicht jeden besonderen Satz mit einem besonderen Kunstgriff zu be-
weisen. Eine solche Methode besteht beispielsweise darin, Funktionen
zu betrachten, die einer gewissen Funktionalgleichung geniigen. Trues-
dell arbeitet in seinem KEssay mit der sogenannten F-Gleichung

or
w(t,a):F(t,(x—{— 1) .

Es ist von Interesse, seine Methode mit der hier verwendeten, Losungen
einer gewissen partiellen Differentialgleichung zu betrachten, zu ver-
gleichen. Der Anwendungsbereich der F-Gleichung erstreckt sich, wie
Truesdell gezeigt hat, iiber eine weite Klasse spezieller Funktionen, und
die Methode liefert dort eine grofle Zahl iibersichtlicher Resultate. Dafiir
ist ihre Leistungsfdhigkeit im einzelnen beschrinkt#). Mit einer spe-
ziellen Gleichung wie (d,) wird dagegen der Anwendungsbereich natur-
gemill eingeschrinkt ; dafiir kann sich die Methode in einzelnen Féllen
als leistungsfihiger erweisen.

Eine andere Methode in der Theorie der speziellen Funktionen besteht
darin, den Betrachtungen eine Funktionaltransformation zugrunde zu
legen und von den Eigenschaften der Objektfunktionen auf die der Bild-
funktionen zu schliefen. Das klassische Beispiel hiefiir bildet die Methode
der Laplacetransformation. Doetsch, Erdelyi, Tricomi und viele andere
Autoren haben gezeigt, wie diese fiir verschiedene Klassen spezieller
Funktionen oft in iiberraschender Weise nutzbar gemacht werden kann.
Auch unsere Methode kann von diesem funktionalanalytischen Gesichts-
punkt aus verstanden werden. Die Transformation 2, (mit z* = z) hat
beispielsweise die Eigenschaft, die Potenzen von z auf die Besselschen
Funktionen abzubilden.

Die anerkannten, ,,modernen“ Beweise von Sédtzen iiber spezielle
Funktionen46) erfolgen gewohnlich unter strengem Verzicht auf jedes
Argument aus der Theorie der partiellen Differentialgleichungen. Solche
Argumente werden hochstens als heuristisches Prinzip gelten gelassen.
Nun ist zwar zuzugeben, daf} es physikalische Autoren auf diesem Gebiet
gelegentlich an geniigender Strenge fehlen lassen?’). Anderseits waren
aber die klassischen Autoren?®) beim Aufstellen von Sitzen iiber spe-

[13

45) Sie bietet, um nur ein Beispiel zu nennen, keine entscheidenden Vorteile beim Be-
weis der verschiedenen Additionstheoreme der Besselschen Funktionen.

48) Watson, 1. c. ; Whattaker und Watson, 1. c.

47) vgl. Sommerfeld, Jahresbericht der Dtsch. Math. Ver. 21 (1913), 8. 309—353 und die
Kritik dieser Arbeit bei Carslaw, Proc. Lond. Math. Soc. (2) 13 (1914), S. 239.

48) zu denen wir etwa C. Neumann, Stokes, Rayleigh, Sommerfeld zéhlen.
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zielle Funktionen oft gerade durch ,,physikalische®, das heiflt der Theorie
der partiellen Differentialgleichungen entstammende Vorstellungen in-
spiriert #). Wir hoffen, mit den nachfolgenden Beispielen den Nachweis
zu erbringen, daB es in einzelnen Fillen weder trivial noch unmoglich ist,
solche Uberlegungen auf eine feste Basis zu stellen.

31. Bessel-Gegenbauersche Reihen spezieller Funktionen

Gleichung (d,) kann in genau vier Koordinatensystemen, nimlich in
cartesischen, parabolischen, elliptischen und Polarkoordinaten separiert
werden. Die entsprechenden Losungen sind bekannte Funktionen. Wir
geben im folgenden ihre Entwicklungen nach Bessel-Gegenbauerschen
Funktionen (B.-G.-Reihen) an, wobei wir uns im wesentlichen der beiden
folgenden Methoden bedienen :

A) Methode der erzeugenden Funktion. Die zu entwickelnde Losung sei
F(z, 2*). Man betrachtet die ,,erzeugende Funktion® der B.-G.-Reihe

F(z,0)=23b,z™;

m=0

nach den Sétzen III und IV ist die B.-G.-Reihe dann gegeben durch

QV[E bmzm;z’z*] = 2; bm Fm(z’z*) ’

m=0 m=0 :n
wo c,, die S. 27 erklirte Bedeutung hat.

B) Entfaltungsmethode. Es sei von der zu entwickelnden Funktion fiir
2* = z die Neumannsche Reihe

F(z,2) = 5 a,F(z, 2)
M=

bekannt. Nach Satz VI ist dann
F(z,2*) =X a,F(z,2*) .

m=0

31.1. Cartesische Koordinaten

Der Bernoullische Ansatz ergibt die im ganzen (x,y)-Raum regulire
Losung

u(z, y) = (kysin o)+ J,_y(ky sin o) % 2 (26)

49) Es wiederholt sich also hier, natiirlich in viel kleinerem MaBstabe, die Geschichte des
Dirichletschen Prinzips.
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mit dem Separationsparameter o. Wird « =rcos?, y =rsinéd ge-
setzt, so wird » eine symmetrische Funktion von « und 4. In der B.-G.-
Reihe )
u(z,y) =2a,F,(z,2*%
n=0
C; (cos &)
C. (1)

mul, da
Fy(z,2%) = kv=—rr=vdJ, . (kr)

nur durch den Faktor C} (cos) von & abhiangt, aus Symmetriegriinden

auch
: a, = C? (cos ) aj,

sein, wo a,, von « unabhingig ist. Zur Berechnung von a,, kann deshalb
o = 0 gesetzt werden. Die erzeugende Funktion ist dann

tkz o8 _:‘1"_ "
e? =2 ( 2)
n=o 0!
ik \n
a, _— __._(_.—5_.:_)..__
" alel O%(1)
— 2 T'() (k)" (v + ) ,
so daBl die gesuchte Entwicklung lautet
(kr sin o sin #)~v+}  J,_y(kr sin o sin §) e*&r 08 cos s

= 2" I'(v) X (ik)"(v + n) C; (cos o) F, (2, 2*; k) ,

n=0
oder, wenn die B.-G.-Funktion durch Besselsche und Gegenbauersche
Funktionen ausgedriickt wird,
(kr sin asin @)+ J,_y (k7 sin o sin §) e*¥7 s 0s?
C; (cosx) C,,
Cn(1)

z'n

und es ergibt sich demnach

il (kr)=*d, (k7)) . (27)

=2"I"(v) z'i" (v + n)

31.2. Parabolische Koordinaten
31.21. Werden in (d,) die durch

x = 3(& —n?)
y=2¢&n

80) Watson, 1. c., S. 370, wo auch Spezialfille der Entwicklung angegeben sind. Die Ent-
wicklung wurde als Verallgemeinerung der Jacobi-Angerschen Entwicklung, in die sie fiir
v = 0 und o = 0 iibergeht, von Gegenbauer angegeben. Physikalische Beweise fir ganz-
und halbzahliges v gaben Hobson und Sommerfeld.
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definierten parabolischen Koordinaten (£, #) eingefiihrt, so geht die
Gleichung mit u(x, y) = v(&, n) iiber in

o*v ~ 0%  2v dv |, 2» dv 5 450 .

o Ton T e o T 5 T REE =0 (28)

Eine (im (z,y)-Raum) ganze Losung dieser Gleichung ist, wie wir be-
haupten,

v, )= (kén "t M u

a4k’

(—ekn?) , (29)

=

o] <
|

o5

WO

/1 2 >
i ] (30)
die Whittakersche konfluente hypergeometrische Funktion erster Art
ist 51).
Wir weisen zundchst nach, dafl (29) die Gleichung (28) befriedigt. Mit
v(&,n) = E(&)H(n) ergibt (28) bei Einfiihrung der Separationskonstan-
ten u fiir £ und H die beiden Gleichungen

d?E 2y dE 5 £9 =
d*H  2v dH - -
d772+77 d'ly+(k77_‘u)H_O’
die sich, wenn neue unabhingige Veridnderliche s = tk&2, ¢ = — 1kn?
und durch
v 1 L4 1
E(§)=s  41X(s), Hp)=1t =2 1Y)

neue abhingige Verdnderliche X und Y eingefiihrt werden, beide in die
Gleichung der Whittakerschen Funktionen

aw 1 K 1 — A2

K72 S

transformieren, wo W = X bzw. Y, 2 = s bzw. { und

(31)

v 1
“=LE a7
gesetzt ist.

Um weiter die Ganzheit von »(&, z) als Funktion von x und y (oder,

was damit gleichwertig ist, als Funktion von 2z und z*) nachzuweisen,

51y Whittaker und Watson, 1. c., S. 337 f.
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bemerken wir zunéchst, daB sich die Faktoren z**# in (30) mit dem Fak-

tor (k&n)~~% in v(£, %) wegheben. Die beiden Exponentialfunktionen
ergeben zusammen die ganze Funktion

ik
- — (&= —ikx
e 2 ° =€

Es bleibt noch das Produkt der beiden ,F;. Aus der Definition der para-
bolischen Koordinaten folgt

= o+ Vaty=3Vet Very
= —xz+Va +yt=31(Vz— Varp

Da jede ,F', einzeln eine ganze Funktion ihres Argumentes ist, haben wir
nur zu zeigen, dal das Produkt

¥ [~—x+z+%;—"§ﬂ/z‘+ 1/5*)2] 7 [—K+Z+%;E§—V5+Vé;)2]
THea 4 N DY R

(32)

wurzelfrei ist. Der allgemeine beim Ausmultiplizieren der beiden Reihen
entstehende Summand ist aber von der Form

const {(V'z + Va*)n(Vz — Vaxpm 4 (V2 + Ve¥)m(Vz — Via¥ymy
odermit n =m +n’, n’ =0,
const {(Vz + V2¥)(Vz — VX))o {(Vz + Vet + (V2 — V')
= const (z — 2%)2m (g2 4 (M) mi-2 k2 4.y
also wurzelfrei. Die Ganzheit ist damit bewiesen.
31.22. Zur Berechnung der Koeffizienten der B.-G.-Reihe
V(e 2% = o(, 1) = 2 a,Fo(z, 2%)
bedienen wir uns der Methode der erzerlgoenden Funktion. Es ist

. 1. tk2]) 2
lFl[ A+ 2]}
24+ 1

ikz

V(z,0)=¢ 2

oder wegen 52)
ikz — 1-1"_16_%_ A l.-__ilf_z_
e—TlFl[ K+A+§, D) ]__ F1{K+ +2; ) ]
21 41 21+ 1

52) Whittaker und Watson, 1. c.

-
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tkz 1kz
V(z,0)=,F, [""‘“H ]1F ["HH ‘"”“]

24+1 22+1
© (—xt+A+4)n (—”5‘3) o (x+A+1), ( ”“)
m{o 24+1), m! n‘fv‘; (22+1),  n!

( @762)" 5 (=D)™(—x+A4+)mlc+2A4+4)0m
m=o ml(n—m)!(24+1),(24A+1),_,,
( zkz)”(x—«}—l—l—g F —2A—n,A—«k+%, —n;

n!(2A+1),% *| —A—x—n+}, 2441

Il

I

I

|
\1[\18 uMB f[\qs

b,z"
mit
b——(___?:k)n(l‘*—'c—}‘%)nF "_22"'—%)}'—_"—{—%7“”’;
T2 W @A, Y A —nt+ L2441 |
Es folgt also nach 31. A) (S. 32)

_ b, (n 4 ) (A + x + 3), (2v), (—1k)"
““""'{;};‘“2 r'e) (24 + 1), n!

wo die Argumente der ;F, der Kiirze halber weggelassen wurden. Die ge-
suchte Entwicklung lautet also, wenn noch gemif (31) » durch A aus-

gedriickt wird,
(kEm) ™ M, 5 (k&) M, (—iky?)=222FE(20+ )

Fs

XE (n+244+3)(A+r+3),(4441), (—ik)* ¥ —2A—n,A—k+1,—n;
=0 (2441), n! T _l—k—n+},24+1

X FE*d(z, 2% k) . (33)

Werden die B.-G.-Funktionen als Produkte Besselscher und Gegen-
bauerscher Funktionen geschrieben und die parabolischen Koordinaten
gemil} der aus (32) folgenden Beziehungen

9
2 2
&2 = 27 cos 5

2 ind
i 27 8in 5

durch Polarkoordinaten ausgedriickt, so lautet die Entwicklung 53)

83) Entwicklungen einer einzelnen Whittakerschen Funktion in Besselreihen wurden an-
gegeben von Abramowitz, J. Math. Phys. 29 (1951), S. 303—308 ; Buchholz, Math. Z. 53
(1950), S.387—402; Karlin, J. Math. Phys. 28 (1949), S. 43—44; Tricomi, Ann. Mat.
Pura Appl. (4) 26 (1947), S. 141—175. In allen diesen Féllen sind die Koeffizienten der
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(fr sin 9)-22-1 M, , (2ikr cos? —z—) M, ., (-—— 21 kr sin? —g—)

.__(2)2 F(Zl-{—%é )"+ 24+ 3)(A + « + 1),

Fr 22+ 1),

—~ 24 —mn, A~ , .
* 3F2[—— A— 1_ n +K%+2i + 1n ]szw (kr) C31 44 (cos 9) . (33")

31.23. Spezialfille 54)

31.231. Wihrend sich die gewohnliche hypergeometrische Reihe vom
Argument 1, wenn sie konvergiert, gemifl der Gau3schen Formel

zFl[a, b;]= I'(c) I'(c —a — b)

c I'(c —a) I'lc — b) (34)

stets durch I'-Funktionen ausdriicken 14Bt, ist bei der Reihe

a, b, ¢;
F 2 b b
3 2[d, e ]

soweit bis heute bekannt ist, diese Darstellung nur moglich, wenn die Para-
meter gewisse Nebenbedingungen erfiillen. Eine solche Nebenbedingung
ist beispielsweise

d=1+a—-b, e=14a—c (35)

und es ist in diesem Fall 55)

7 a,b,c;]  I'(l+3e)'(1+a—b)I'(1+a—c) '(1+3a—b—c)
2ld, e - I'(l4a)T'(Q+ia—b)I'1+ia—c)F'(1+a—b—c)

Die Bedingung (35) ist fiir die in (33) auftretende (und, da abbrechend,
eo ipso konvergente) ;F, im Falle « = 0 erfiillt. Wegen %6)

M, , (2) = 2% e M7 T(A+1) 2 J, (Jiz) (37)

. (36)

degeneriert dabei gleichzeitig die linke Seite zu einem Produkt Bessel-

Reihenentwicklungen nur entweder durch erzeugende Funktionen (wie bei Buchholz und
Tricomi) oder durch Rekurrenzformeln (wie bei Abramowitz und Karlin) definiert. Unsere
Entwicklung (33) diirfte neu sein.

84) Spezielle Fille von Formeln mit vielen Parametern sind gewdhnlich nur dann von
Interesse, wenn sich dabei gleichzeitig mehrere der darin enthaltenen Funktionen auf
einfachere Funktionen reduzieren. Die hier angefiihrten Fille sind von dieser Art.

8) Bailey, 1. c., S.13 fi. Reihen vom Typus 3F,, die die Bedingungen (35) erfiillen,
werden als ,,well-poised* bezeichnet.

58) Whittaker und Watson, 1. c.
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scher Funktionen. Auf der rechten Seite ergibt (36)57)
g [T™ —22—n, A+4%;
? 2[——2—~n+-§-, 24+1 ]
_ rA—n) TG—A—n)T2A+1) T}+i+in)
-~ IQ—n)I'(}—2A—n) (22+1+3n) I'(A+4)
{O n=2m-+1,

(2m)! I'(2A+4-1) I'(}-A-2m) ['(3+A+m) .
O T TGED) Ta—m T@ititm)  “=2m m=0,1,2,...

Damit wird

a’2m+1 - 0

_ yan LEAY) @A 2m) Dt Atm) DAt 4m) (kY
[TG+DP T(1++m) m!

und man erhilt die ebenfalls neue Entwicklung

(k&n)2 J)\(FEE) I\ kn?) = 2l§+ 1)
X 2 : (14 2+n) ar T (2% E)

oder mit Beriicksichtigung von (21) unter Verwendung von Polarkoordi-
naten

oo e 2) 0o )< S
7w (kr)?
(1) (=)™(2i+3+2m) '(3+A+m) g
& (?)m TAFAfm) Tt ifm) 2 2aebrom(ED) Cint 2 (cos?d). (38)

31.232. Wird in (33) der Grenziibergang k — 0 vollzogen, so ent-
steht auf der linken Seite wegen

2 o | A 1 k’§2
limlFI[Mr% 41 k’”‘f]—ﬁm 2( TR 4”“) *
k>0 24+1 k>0 n=0 (23-41), n!

A
“‘ém(—z(zﬁ)ﬁ
= I'(22+ 1) ('/"5)—21 T (Vi &)

57) Bei der Anwendung von (36) mufl voriibergehend n durch n + ¢ ersetzt und der
Grenziibergang &—> 0 vollzogen werden.
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und 2
...__._!i_- — P L/

fim IFI['I NEARETTE "'“72] _3 (“5)

k>0 24+ 1 n=0 p! (24 + 1),

— 2
= rea+ 1 (X2) " r, (Vi

das von (38) verschiedene Produkt

—2A _ . —
(rea+ P (A50) T e §LaVan)

einer gewohnlichen und einer modifizierten Besselschen Funktion. Auf
der rechten Seite ergibt sich unter Beniitzung der GauBlschen Formel (34)

o (n+24+1)(44+1),
}:_I)I; an-—227‘+%['(23+%) (22__*_1)””!

ey 97 1P
n,—2A—n,A+3} 4“0]

.  STR i O AV
m(osss oo

2A+1)(44+1), (—2Y) —n,—24—n;
ST i Ll ), F[ : n]
(2A4-1), n! 2441

r@ea —
= P24+ r((mﬁi:)) (nzu) '

Damit erhalten wir die Entwicklung

22+ 5 L2 Atd+n) p
(244+1) 2o I'(2A+14n) n!

sie kann unter Verwendung von Polarkoordinaten und 22.3d) mit u =1
(was keinen Verlust an Allgemeinheit bedeutet) auch wie folgt geschrie-

ben werden :

F+4 (z,2%;0) ;

—2A . _
B I (VD LnVien) =

4

L= (=)

T [T@HDE20(2411), 44+ 1),
Hievon ist der Spezialfall 4 = 0

: —2 . _
(T s 29) : J2)\(V2r cos g) Iz;\( V2r sin%)

C** % (cos 9) . (39)

Jo (V:‘Z_; cos g) I, (Vﬂ sin %) ———-n;’o(—(%;;—)_l P, (cos &)
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angefiihrt (aber nicht bewiesen) bei Truesdell%); aber auch die allge-
meine Formel (39) ist nicht neu, sondern ihrerseits ein Spezialfall der
Schldflischen Potenzreihenentwicklung des Produktes zweier Bessel-
funktionen von nicht notwendig gleicher Ordnung %°).

31.233. Im Falle x = 4 + % reduzieren sich die konfluenten hyper-
geometrischen Reihen in (30) auf 1, und es ist daher

_ﬂ“':l_: —tk
v(f,m) =€ 20 =¢ .

Wegen der Eindeutigkeit der B.-G.-Reihe muf} sich daher (33) auf die
Gegenbauersche Verallgemeinerung (Fall o« = 0 in (27)) der Jacobi-
Angerschen Reihe reduzieren. In der Tat erhalten wir mit 24 4 3=

a, = 2 I'(») (n 4+ ) (v + ). (27), (— ik)"an[—n, 0,%——v~n;]
(» + n! —2A—mn,2+1

— 2 I')(n + (20, L

und damit wieder die bekannte Gegenbauersche Entwicklung

[ -]

e~ % = 2v (kr)v I'(v) X (n+v) i, (kr) O (cos &) .
n=0
31.234. Produkte Hermitescher Polynome. Fir Fir A= — } bzw.
A=+%}und k=A+%4n, n=0,1,2,... ist®)

n+i‘ —1‘( ) égn( ))n zi e_.%z He2n (22) ’

—1
Mn-i—i’: i‘ (z) = m z& e—%z H62n+1 (22)

WO

He, () = (— 1y ek

(6“52')

das n-te Hermitesche Polynom bedeutet. Fiir die gleichen Werte der
Parameter reduzieren sich geméafl 22.2b) in den B.-G.-Funktionen die
Gegenbauerschen Polynome auf trigonometrische Funktionen. Driickt
man die parabolischen Koordinaten durch Polarkoordinaten aus und be-

achtebman o . ) gy 4 m) ()
lim
v>0 .l-' (21")
88) T'ruesdell, 1. c., 8. 2; die dortige Formel enthélt einen Druckfehler.

89) Watson, 1. c., S. 148.
80) Magnus und Oberhettinger, 1. c., S. 105 f.

I, m=20
61 - = ’
)gm_NeumannscheZa.hl——{ 2, m=1,2,..

= g, m!6l) |
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so ergeben sich aus (33) die beiden speziellen B.-G.-Entwicklungen
e—ikrcosd fo (2 Vikr cos %) He,, (2V— ikr sin %)

_ (2n)!

2( m(d + m),  F [ m’_n’%—m;]Jm(kr)cosmﬂ,
0

m= m_n+27%

e—tikr cos{}HeZn_H (2 V@k?’ COS 0) H62n+1 (2 V —ikr sin %)

(2n 4 2)! 3 m—+1,-n,3-m
— 9l T 4): — g)ym=1(
mE I, 2( )" 1(3 +m),  F [ Cmtdd ]J (kr)sinm @,

aus deren erster fiir » = 0 wieder die Jacobi-Angersche Reihe hervor-
geht.

31.235. Produkte Laguerrescher Polynome. Fir A = 0 ergeben sich
aus M, ,(z) die Laguerreschen Funktionen im engern Sinn 62)

Ly(2) = 278 ed* My,, o(2) ,

die fir y=m =0,1,2,... in die Laguerreschen Polynome iiber-
gehen. Gleichzeitig reduzieren sich gemif3 22.2b) in der B.-G.-Entwick-
lung die Gegenbauerschen Polynome auf Legendresche Polynome, und es
ergibt sich aus (33’) die Entwicklung

e s S L, (2ikr cos? -—g) L, ( — 24kr sin? —?)

_ %g(*m (n + 3 (e + 1),

-n,
" [ e, 1 ] Jyin(kr) P, (cCOS D) .
Sie beriihrt sich bei g = 0 mit der Gegenbauerschen Entwicklung (27),
wenn dort » = %—, a = 0 gesetzt wird; ein Spezialfall, der iibrigens
schon vor Gegenbauer von Bauer ¢%) gefunden worden war.

31.236. Obwohl sich dadurch keine bedeutenden Vereinfachungen
ergeben, sei wegen ihres physikalischen Interesses ¢4) schlieBlich noch die
sich aus (33’) durch ¥ = 0 ergebende Neumannsche Reihe einer einzel-
nen Whittakerschen Funktion angefiithrt. Wegen C} (1) = (2v),/n! (oder

62) Magnus und Oberhettinger, 1. c., S. 124.

)
83) J. reine angew. Math. 56 (1859), S. 104—106.

$4) Die Funktion iy «, (z) wird in der angelséchsischen Literatur als ,,Coulomb
Wave Function* bezeichnet ; sie hingt mit den Losungen der Schraédingergleichung im
Falle des Coulombpotentials zusammen. Vgl. die Literaturangaben in der in 53) zitierten
Arbeit von Abramowitz.
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auch aus (33) mit Beriicksichtigung von 22.2a)) ergibt sich

(26kr) 4 My, (2ikr) = (727—)2”*1"(21 +3)

% (=)0 + 204-3) A4k +-3)a (42+1), o [~2Amdrtdn;
Xné; n!(2A+1), 3F2[—Z—r<-—n+%,2}.+ 1 J2A+1}+n(k7')-

31.3 Elliptische Koordinaten
31.31. Durch Einfiihrung der durch
x = h Cos & cos 7
y = h Sin £ sin g

(b = const) definierten elliptischen Koordinaten (&, %) geht (d,) mit
w(z, y) = v(f 7) %) in die separierbare Gleichung

0%v

8§2+ +2v Ctgfas +2vctgng k2h? (Cos? & — cos?2n)v =0

iiber. Sie ergibt mit dem Ansatz

v(&,9) = E(§)H(n)
fir & und H die beiden gewﬁhnlichen Differentialgleichungen

a2y g _

rE + 2v Ctgf 5 — (@ — 29qCos 28) E=0 , (40)
2

(fiI;I +2vctg17—d£]——|—(a——2qcos2n)H—O (41)

wo g = }k2h® gesetzt ist und a einen Separationsparameter bedeutet.
Ihre allgemeinen Losungen sind die sogenannten Sphéroidfunktionen.
Fiir diese Funktionen haben sich noch keine einheitlichen Bezeichnungen
eingebiirgert und es sind noch nicht alle zu ihrer Theorie gehorigen
Grundprobleme abgeklirt ). Gut untersucht sind dagegen die Spezial-
fille v =0 und v = 1, die auf Mathieusche Funktionen fiihren. Um
Weitldufigkeiten zu vermeiden, beschrinken wir uns auf diese beiden
Fille. Wir verwenden in diesem Abschnitt durchgehend die Bezeichnun-
gen von McLachlan 67).

85) Eine Verwechslung mit den Bezeichnungen von 31.2 ist wohl nicht zu befurchten.

66) Eine Ubersicht iiber die bis heute bekannten Resultate gibt J. Meizner, Klassifi-
kation, Bezeichnung und Eigenschaften der Sphéroidfunktionen, Math.
Nachr. 5 (1951), S. 1—18.

87) Theory and Application of Mathieu Functions, Oxford 1947,
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Wir befassen uns hier nur mit den in der ganzen Ebene reguliren
Losungen von (d,). Diese Losungen miissen in # notwendig periodisch
sein. Zu gegebenem q besitzt (41) (mit » = 0) periodische Losungen mit
der Periode 2z nur, wenn a gewisse diskrete Werte a,, a,,...; b, 0,,...
annimmt. Die zugehorigen Losungen werden mit ce, (1, ¢) bzw. se, (7, q)
bezeichnet ; sie sind fiir jedes ¢ ganze Funktionen von 7 und besitzen
Fourierentwicklungen der Form

Cean(, q) = 2 AGVcos 27

Clynir (0, q) = ZLA‘;'E”COS (2r + 1) 7
Pr=

0

8€ymi1(n, ) = 2B‘22,”++11)sin (2r4+ 1) 7

r=10

862n+2(77a q) = Zszz:ﬁf)Sin (27‘ + 2) n, n= o, 1,... ,

wo die Koeffizienten 4 und B wohlbestimmte (und wohltabulierte)
Funktionen von ¢ bedeuten. Zugehorige (das heilt zu gleichen Werten
von q und a gehorige) Losungen von (40) sind, wie man durch Variabeln-
transformation leicht sieht, die Funktionen

Ce,(£,9) = ce,(1 &, q) , n=0,1,...,
und

Se,(£,9) = —18e,t&,q), mn=1,2,... .

Ganze Losungen von (d,) in elliptischen Koordinaten sind daher die Pro-
dukte

v,(x,y) = Ce,(&,q)ce,(n,q) , n=0,1,2,... (42)

und
w, (%, y) = 8Se, (£, q) sen(ns 9 n=1,2,... (43)
31.32. Wir berechnen die B.-G.-Entwicklungen dieser Funktionen

mit der Entfaltungsmethode (S. 266). Die Funktionen v, und w, miissen
dabei gesondert betrachtet werden.

31.321. Entwicklung von v,(z, y). Auf y = 0 ist » = 0 und daher
v,(x, 0) = Ce,(&,q9)ce,(0,9), x=hCosé& .
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Die Neumannsche Reihe von Ce,(&,q) kann auf elementarem Wege
gewonnen werden®) und lautet

Cen(t, @) = S0 5 (— 1y 42T, (kb Cos &)

9 !
ena(b0) = — 250 3 (— 1y AR Ty (B Con )
1 r=0

Der Entfaltungssatz (Satz VI) gibt unmittelbar

Cey (&, 9) cern(n, q)

_ Cés cey (0, r Alon
2(”}’2”)2 ( q’Z( 1) AT (kr) cos 2r 9 (44)

Cegnia (&, q) cegn iy (7, 9)
2032n+1(%‘7z q) Cypyr (0,9) 2
hk A(2n+1)

31.322. Entwicklung der w,(x, y). Die Funktionen w,(x, y) sind in
7 und damit y ungerade und unterwerfen sich damit nicht den angegebe-
nen Entwicklungssitzen iiber die Gleichung (d,). Dagegen ist die Funk-

tion Se,(&,q) se,(n,q)
h Sin & sin 7

ll

z (1) AGnAOT y, 1 (k7) cos (27 1)3. (45)

—_ 1
wn(xa y) =—&—wn(x, y) =

eine bei y = 0 regulidre in y gerade Losung von (d,). Zur Anwendung
des Entfaltungssatzes haben wir wieder zunéchst die Neumannreihe (mit
dem Parameter » = 1) von

Sea£,
B,(z, 0) = s D sl (0,

zu gewinnen. Unter Anwendung elementarer Methoden %) findet man

Se1(6,9) 2882"’”( ’ Q) Jory1(kh Cos §)

2n+1)
ASine —  hpm 2T Ve DB e
Segi2(£,9) 4862n+1 (0, q) 1y 2n+2) Joryo(kh Cos §)
hSmE Rtk BEO M( D@+ 2) Byl = Gos g

und damit durch Entfaltung zunichst fir w,(z, y) wegen 22.2b)

Sepi1(£,9) 8€5,,1(n, q) — 28€9,,1(3 7, Q) se;n+] (0, 9)
h Sin £ sin 7y h B(12”+1)

o Jop. i (k7) 8in (27 + 1) 9
1\ 2n+1) ¢ 2r4-1
szo( 1r(2r + 1)BYY, kr  (2r + 1)sind ’

88) McLachlan, 1. c., S. 158 f.
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Segnia(€, q) 8€,42(1, Q) — 4[83£n+2(0, q))?
h Sin & sin 5 h2k B@r+2

i Jorio(kr) sin (27 4 2) 9
— 1) (2n+2) ¥ 2ri2
Xr{—:o( )(2r + 2) By kr  (2r + 2)sind

und hieraus wegen % Sin &siny = rsind fir w,(z, y)

2se i -l-n, se 0,
Segn+1(§, q) 862n+1(77’ q) j— 2 +1(2 q) 2n+1( Q)

hk BE™D
X X (= 1 BE 0 s (kr) sin 27 + 1) (46)
4 86,n 0,9)]?
Se2n+2(§: Q) 8627&—{—2(’79 Q) = [hz ;{;2%;2”*'%2]
X X (— 1)"B@* AT, o (kr) sin (2r + 2) 9 . (47)

r=0

Wir haben damit die vier bekannten Reihenentwicklungen (44), (45),
(46) und (47), die in der Theorie der Mathieuschen Funktionen gewthn-
lich mit Hilfe der von diesen Funktionen befriedigten Integralgleichungen
(von Whittaker) bewiesen werden, aus unseren allgemeinen wellen-
funktionentheoretischen Prinzipien hergeleitet.

31.4. Polarkoordinaten

Da (D,) gegeniiber den Translationen 2’ =2z + ¢, 2* = 2* 4 { in-
variant ist, ist mit der schon in 22.1 als Normallésung in Polarkoordina-
ten gewonnenen B.-G.-Funktion F)(z,2*) auch Fi(z+ {,2* 4+ ()
eine Losung von (D,). Setzen wir | arg { | <=z voraus, so ist diese Losung
in der Umgebung von 2z = 2* = 0 reguldr und kann also daselbst in
eine B.-G.-Reihe entwickelt werden. Diese Reihe kann als ein allgemeines
Additionstheorem fiir Besselsche Funktionen angesehen werden ; sie ent-
hilt, wie sich zeigen wird, als Spezialfille die Additionstheoreme von
Graf-Sommerfeld und von Gegenbauer sowie die sogenannten Multipli-
kationstheoreme.

Zur Entlastung unserer Formeln betrachten wir die Félle £ = 0 und
k=1, auf die sich der allgemeine Fall zuriickfiihren liBt, gesondert.
Wir bedienen uns der Methode der erzeugenden Funktion.

31.41. k = 0. Aus der Definition (22) folgt
[(z+) (z*4-0) 13* 7 _”,M+2v;__(yz—|—c__l/z*+c)2

v vt put1)2 1 4V (2+0) (*+-¢)
v+4

Fla+L,2%4-8 ;0)=
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und die erzeugende Funktion ist daher

(Va+L-VC)e
. N (R 14, Tk B
14

Unter Verwendung zweier quadratischer Transformationen der hyper-
geometrischen Reihe ¢?) gewinnen wir hieraus

— z \2
Fa+¢,850) (1 +5) n|-5 -3 () ]
W(2+C,8;0) =—; R | 2’ 2 7 z
p 2+ P+ ut1) i 4(1+ c)
_ & s — 2
= HIprat) T, ¢ ] (48)

Gliedweise Anwendung von 2, (mit k£ = 0) ergibt die Entwicklung

L\
Fl(a+8,2%+850)= F(vgfu) oy 2 ) 2N e, s0)

oder in reeller Schreibweise, wenn wir in Anlehnung an Watson die geo-
metrisch leicht verstindlichen Abkiirzungen 7°)

d =V(@E+)*+ )=V + 2lrcosd + 12,

—— rcos:?‘—}— ¢ (49)
einfithren, @
I'(p + 1) F(2v) ) (— #)n v
T@r + a) C’ (cos p) = {v 2 @), (— —Z,—) C’ (cos¥) . (50)

Da (48) fiir |z |<| {| analytisch ist, konvergiert diese Entwicklung fiir
lz]<|&], |2*|<|¢| oder |re**?|<|¢|. Sie geht im speziellen

Fall 4 = — 2 und mit ¢ = —% in die bekanntlich fiir beliebige Werte

von » giiltige, gewohnlich zur Definition der Gegenbauerschen Polynome
benutzte Entwicklung
(1 — 2t cos @ + £2)~v = 3 i* O’ (cos F) (51)

n=0
iiber.

89) Kummer, 1. c.

) Watson, 1. c., §. 360. Die Watsonschen GroBen o und y sind identisch mit den unsri-
gen, wenndort Z =, z=r und ¢ = n —1 gesetzt wird. Zur geometrischen Illustra-
tion vgl. Fig. 28 von Watsons Treatise.
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31.42. k= 1. Nach (22) ist die erzeugende Funktion von

Fiz+¢,25+ 851
gegeben durch

AR NIS)

_ leror
2 (v4p+1)

_(Va4-2-V7y?
{"i;“”“ Vett ]oFl[v+u+1;-‘”f)c} .
Y4

Wir berechnen die Koeffizienten ihrer Taylorreihe durch Multiplikation
der Taylorreihen der beiden Faktoren [(z + ¢){1#*,F, und ,F,, wobei
wir fiir den ersten Faktor auf das im vorhergehenden Abschnitt gefun-
dene Resultat zuriickgreifen konnen. Fiir den zweiten Faktor ergibt eine
elementare Reihentransformation

. (= +0) ¢ |-
et s :
F(v+u+1)°F‘[”+”+l’ 1 ] Znl To T atnt)

_ ®© n (__ i)nzmgzn-m
—,,g':,,,fzom!(n——m)! I'+p+n+1)
=2' ) (___ i)k+m CZk(C z)m
m=0k=om'k'r(‘l’+‘u+k+m+l)
. (8 2
=Z wrre ey R e m 1=

) S A ©

¢

Damit ist die Taylorreihe der erzeugenden Funktion

@y G,

m=0

e +8,231) =07, F, [;, o —%]méo—(—ig—)immm
- 5 3(2) S 3 e S
=3 o 4, (_m_%)m ,

b 4@ = 2 () L0 (a0 2
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gesetzt wurde. Wird hierauf beiderseits £, (mit ¥ = 1) angewandt, so
ergibt sich
Fr (et = 5

m=0 m!

o (@ ot 2% )

— F(,y)éo(_‘wl)m(?n"""’) (21’)'mc_y A;’mF:‘(Z,Z*; 1) (53)

oder in reeller Form (unter Verwendung der Bezeichnungen (48))

2vI'(v) I'2y + p)
I'(2v) I(p + 1)

@, (@) CF (cos p) =

X I (= 1y 4 0)L AL (0 1 (1) Oo0s ) . (53)

Dies ist die gesuchte Entwicklung in ihrer allgemeinsten Form. Sie kon-
vergiert mit (48) fir |z|<| |, |2*|<]| {|; im speziellen Falle u =
m=0,1,2,... konvergiert sie, da (48) sich dann auf ein Polynom
reduziert, fiir beliebige Werte von z und z*. Wir leiten aus ihr im folgen-
den die verschiedenen speziellen Additions- und Multiplikationstheoreme
iiber Besselsche Funktionen her.

31.421. Additionstheoreme von Gegenbauer. Die beiden Additions-
theoreme von Gegenbauer sind équivalent mit den Formeln7?)

5, (#) =2 T0) I (=) (mt9) 8T () 1T () G2 (c08D) (54)
m=0
und

ST (@) = 20 T'(0) X (mA9) ey (E)r"T o (r) O (cOS D) . (55)
m=0

Die erste dieser Formeln ergibt sich aus (53’) durch x = 0. Fiir die
linke Seite ist dies eine Konsequenz von 22.2c), und auf der rechten
Seite ist, da in (52) nur der Term mit » = 0 nicht verschwindet,

A, m(€) = Jyim(E) (56)

Die zweite Formel folgt aus (53’) durch 4 = — 2y. Fiir die linke Seite
ist dies ebenfalls evident aus 22.2c¢). Auf der rechten Seite ergibt sich
unter Verwendung der folgenden, leicht aus einer Formel von Watson
herzuleitenden Beziehung 72)

1) Watson, 1. c., S. 363 ff. Wegen der scheinbaren Nichtiibereinstimmung in den Vor-
zeichen vgl. Anmerkung 7°),

2) Man setzte in Formel (1) von Watson, l.c., 8.143, y = —a, » = —a— k. Die
Formel 148t sich leicht auch direkt beweisen.
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k ]c 92 \»
pé’o (p) (a),,(—z—) Joaprp(@) =(—1FJ 4 () (k=0,1,2,...) (57)
mit » = o, k=m

A 0= 5 () O (F) Torima®

(-' l)mJ—v—m (C) ’ (58)
woraus (55) unmittelbar folgt.

31.422. Additionstheoreme von Graf und Sommerfeld. Mit den Be-
zeichnungen (49) lauten die genannten Additionstheoreme 73)

0

J“(a)coslty):f‘j'(—— 1) e m(8) I (r) cOs m 9 (59)
und
J (@) sin gy 2_2 (— D™ () () sinm I . (60)

Man erhilt die erste Formel, wie dies fiir die linke Seite sofort aus 22.2b)
folgt, aus (53) als Grenzfall » — 0. Unter Verwendung von (57) (mit
= m, a = — u) und unter Beachtung von

(") _ 1 61)

lim
v—>0 (27’)p Ep

ergibt (52) 74
Az,m(C) = lim f (m) __(_::_ﬁ,)_l‘__(f_)l (‘g_)nJv+y+m—'n (C)

v>0n=0 \N (2%),, ¢
=17 @ 1 2 () (= 0 (5) Vtna®

=3 {Jpm (&) + (= )", _n(0)} -

Beachtet man noch
2 I'(v)(m + ») I'(m + 2v)

lim T(2v) m! = fm

so ergibt sich damit aus (53’) die zu (59) offenbar #quivalente Formel

Tu@)cos pyp = T (0 (— )Ty (O} () cO D

2

3) Watson, 1. c., S. 359 ff. Wegen der Vorzeichen beachte man wieder %),
%) DaB auf der rechten Seite von (53’) der Grenziibergang gliedweise vollzogen wer-
den kann, folgt aus dem in 32. bewiesenen Satz VII.
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Eine zu (60) gleichwertige Formel fliet aus (53’) mit » = 1. Auf der
linken Seite ergibt sich wegen 22.2b)

sin (u 4 1) p
(0 + 1)siny

Auf der rechten Seite ergibt (52) wieder unter Beniitzung von (57) (mit
k=m4+1,a=—pu—1)

0= 3 () G (2] e
LA s

@2 () eDn () Frewrrinatt)

&1 yyq ()

1
= D) @ + (= DM@} -

Wegen o siny = rsind liefert nun (53’) nach Multiplikation mit
(@ + 1)rsind®, wenn noch x4 -+ 1 durch u ersetzt wird, die zu (60)
gleichwertige Formel

Jyu(w)sinpy = 21(— 1P 4T ym(8) — (= 1) Ty (£) }  u(7) sin M .
m=

31.423. Multiplikationstheoreme. In gleicher Weise, wie die Gegen-
bauerschen Additionstheoreme aus der allgemeinen Entwicklung (53) ab-
geleitet wurden, folgen die (im Prinzip von Lommel stammenden) soge-
nannten Multiplikationstheoreme aus einem allgemeinen Multiplika-
tionstheorem, das aus (53) durch die folgende spezielle Wahl der Para-
meter entsteht; :

s= (=1, 2%=0 (|2 —1|<1%)
Auf der linken Seite von (53) entsteht so die Funktion

Fr((2—1)C+¢,8;1)=FyaL, L5 0)

C“ —M,’V;l—22
2"+“F(v+u+l)2 1_27 ]o 1[7+H+

1262
‘]

- M ;1*22-
e 2F1[2v” ’ (A0 Jpu(A0) |

%) Im Falle u = 0,1, 2,... fillt diese Voraussetzung dahin.
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wihrend sich rechts die B.-G.-Funktion reduziert auf

] o I'(2v) 21 m
B =080 = g w2

Nach Multiplikation mit (A () lautet die Entwicklung demnach jetzt

o )

R—— M’ ,}; —_— b . v 0 2 v

A [Tt =2 EL 0.

Fir y =0 und u = — 2» ergeben sich hieraus wegen (56) bzw. (58)

und im zweiten Fall wegen

. — 22
2F1[2v, v; 1 1]:__ [1— (1 — )] = A-2
2v

die beiden bekannten Multiplikationstheoreme 7€)

- (5ot

TR = X A2, ()
und (/12—-1 )m
T A=A 2 2T, ()

32. Analytische Fortsetzung hinsichtlich »

Die in 31. hergeleiteten Resultate iiber B.-G.-Reihen spezieller Losun-
gen U?(z,2*) von (D,) sind insofern noch unbefriedigend, als abgesehen
vom Falle » = 0 ihr Beweis auf den Bereich Rv >0 beschrinkt blieb.
Der folgende Satz gestattet, das Problem der analytischen Fortsetzung
der B.-G.-Reihe einer Funktion U¥(z, z*) hinsichtlich » auf die analyti-
sche Fortsetzung der Funktion U¥(z, 0) zuriickzufiihren.

Satz VII. Es bezeichne & die Kreisscheibe |z |<<r, wo r eine feste
Zahl >0 bedeutet, und es ser N ein die Punkte v = — 1, — 2,... nicht
enthaltendes Gebiet der v-Ebene, dessen Durchschnitt mit Rv >0 mnicht leer
ist. Bs set die Funktion UV (z,0) in XN analytisch in z und v. Dann
konnen die (a priori nur in N~ {‘Rv > O} definierten) Qlieder der B.-G.- Reihe

QU0 (2,0)] = U?(z,2*) = 2a, F, (z, 2% (61)
n=0

analytisch in N hinein fortgesetzt werden, und die Rethe (61) konvergiert
m |KXK XN lokal gleichmifig. Sie stellt deshalb dort die amalytische
Fortsetzung der Funktion Q,[U*(z, 0)] dar.

8) Watson, 1. c., S. 142,
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Wir beweisen zunéchst das folgende

Lemma. Essei 0<r' <r” und |2z| <7, |2%| Zr'. Dann existiert
bei festem k eine in N lokal gleichmdpig beschrimkte Zahl m,, so daB fir
alle m > m,

1o k. I'(v)
> Fl(z,z ’k)'<2K’wI‘(v+

m! r'm
m) ?
m

wo mit v = v, + 19y (v, v, reell)

r’ \—2v1 alvyl
(1 + --_) e, 1 =<0

7.//

r’ \—2v1 =:ivel
1— 77* € y N1 = 0

K ==

gesetzt ist.

Beweis des Lemmas. Wir beniitzen fiir die B.-G.-Funktion die Darstel-
lung (23). Es ist eine einfache Folge aus einem bekannten Satz aus der
Theorie der Besselfunktionen??), daBl zu jedem »&N bei festem k ein
in N lokal gleichmiBig beschrinktes m, existiert, so daB, falls | zz*| <7'2,
fiir alle m >m,

< 2. (62)

oFl[v+m+ 1;-'“2”*]

4
Zur Abschitzung der beiden ersten Faktoren in (23) gehen wir von (51)
aus. Indem wir dort ¢ =V¥zz* v setzen und fiir das Gegenbauersche
Polynom die in (23) fiir £ = 0 enthaltene Darstellung beniitzen, er-
gibt sich die fiir | 7| <1/r’ giiltige Entwicklung

[(A—712)(1 —72¥)] "= E’ F(w-}—@ (z42z*)m,F, [— 27 2 (zz*)?

m=0 m! F(V) 1—y—m

m l—m’ 4z2*
™,

(63)
auf die wir jetzt die Cauchysche Koeffizientenabschitzung anwenden.
Es ist fir | 7| = 1/¢"

!/

(l-i)gg 1 —72)(1 —72%) | < (1“{—‘:7)2,

7.//

|arg [(1 — 72)(1 — z2¥)][ <=,

und daher
LA =72 (1 —2%)] 77 | = | v ita=raa=ren |
< | (1 —72)(1 —72*)| "1™l
<K.

77) Watson, 1. c., S. 44, Formel 1.
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Damit folgt nach Cauchy unmittelbar

I+ m) m 1—m  4zz* x
Yy m m —_2_" 2 ’ *)2
“mi T ¢ 1) ZF‘L_,,_m &+ 2% ] =~y

woraus sich in Verbindung mit (62) die Behauptung des Lemmas ergibt.

Beweis von Satz VII. Es sei |
Uv(z,0) = X b}, z™ (64)
m=0
Mit U (2,0) sind die Koeffizienten b}, in # und damit wegen a, = b} /c}.)
nach der Bemerkung am Schlufl von 22.1 die einzelnen Glieder von (61)
in K x]xN analytisch. Es sei ' <r”<r” <r. Dann gibt es ein in N
lokal gleichméBig beschrinktes m,, so daf} fir m >m,

m! T(w) | (7" \m
(L) <1

I'(v + m)
Wegen des Lemmas ist darum fiir m>my,= Max (m,, m,) und fiir
2] <o, 2% | <

b m! I'(v)
™ I'(v + m)
Wegen der Stetigkeit von K (als Funktion von ») und weil mit (64)

a, F) (2,2%) | <2K r’m < 2K |b)

7./// m

auch X | by | "™ in N lokal gleichmiBig konvergiert, folgt damit die

absolun::eound lokal gleichmiBige Konvergenz von (61).
Auf Grund von Satz VII kénnen nun die Giiltigkeitsbereiche der in
31. abgeleiteten Schliisselformeln wie folgt angegeben werden :
(27): vs£ —1,—2,...;r,a,d beliebig;
(33'): 44 % — 2, —3, —4,...; r,«,? beliebig ;
(58): 2y £ —1,—2,...; 2v+u#—1,—2,...; |re?|<| ] .

33. Bestimmte Integrale

Die FErgebnisse der vorangegangenen Abschnitte fithren auf zwei
Wegen unmittelbar zu bestimmten Integralen mit speziellen Funktionen
hin.

A) Die in 1. aufgestellten Operatoren &, und 2, fithren, auf spezielle
Losungen von (d,) angewandt, zu Integralbeziehungen fiir diese Losun-
gen ;
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B) Man gelangt zu bestimmten Integralen mit Gegenbauerschen Poly-
nomen, die sich durch Besselfunktionen ausdriicken lassen, wenn man auf
die (reell geschriebenen) B.-G.-Reihen von 31. die bekannten Orthogo-
nalitédtsrelationen der Gegenbauerschen Polynome8)

n 0, m+#p
| Ch(cos @) C} (cos @) sin®* gpde = Val'(2v + m)
0 221y + m)m![T'(»)]? °

m=p (65)

anwendet.

Da nur die erste Methode mit dem Thema dieser Arbeit unmittelbar
zu tun hat, filhren wir nur diese in einiger Vollstindigkeit durch. Wir be-
schréinken uns dabei, da dies die iibersichtlicheren Integrale liefert, auf
den Operator @, . Fiir die Methode B) geben wir anhangsweise ein charak-
teristisches Beispiel.

33.1 Auswertung von @), fiir die Normallosungen von (d,)

33.11 Cartesische Koordinaten
Einsetzen der Losung (26) in (10) ergibt wegen

eikx cos o

u(x, 0) =

1
2v-4I'(v 4+ 1)
die Integralbeziehung

(ky sin o)~"+3J,_3 (ky sin o) e+ 08>

1
~ 2T () I'(3)

Setzt man hier x = 0, schreibt man

) ) k2y?sin2 | .
etk cos o (2 +1iy cos @) 0F1 [,, < o Y 1 4 sm2”‘1<p d¢ .

kysmna=Y , kycosa=X

und ersetzt man » — } durch », so ergibt sich nach Multiplikation mit ¥

Y)V o
(+ e XY .
rexpTa) o °’°F1[”+%" 4 sz‘p]s‘“”’d"”'

0
Erteilt man hier dem freien Parameter X den Wert 1Y, so ergibt dies das
bekannte Poissonsche Integral

&)

To+H T,

']v(Y)=

Jv(Y)::

8) Bateman, H., On the inversion of a definite integral, Proc. London Math. Soc.
(2) 4 (1906), S. 461—491, insbes. S. 472.
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Fir X = 0 erhalten wir dagegen, wenn wir die ', durch die ent-
sprechende Besselfunktion ausdriicken,

J, (Y)= |/§I%£J,,_%(Y sin @) sinv+ig dp .

Dies ist ein spezieller Fall des ersten endlichen Integrals von Sonine??).

33.12 Parabolische Koordinaten
Die Grundformel (10) liefert, auf die Losung (29) angewandt, unmittel-
bar
. . ) . )
(kr sin #)—22-1 M, 5 | 2¢kr cos? —2-—) My )| — 2¢kr sin? —)

2
_ I(24+1
- rE+yr

()%)f[%kr (cos & 4 isin & cos @)]~2~4 M, A(29k7 (cos & + isin & cos ¢))
0

2 »2 a2
X 0F1[2).—|—%; ——ﬂim—(’v]sin“qod(p :

Angesichts der ausgiebigen Behandlung der Spezialfille der Whittaker-
schen Funktion in 31.2 begniigen wir uns damit, die folgenden speziellen
Fille dieser Formel niederzuschreiben :

k = 0 ergibt (vgl. 31.231)

F [A 11— (MCOS@%Y] F [z o ], 7 e (kTSinz"%)z]
0+ 1 ’ o+ 1 ’

4 4

14

. Ir2i+1) . [kr(cosd+isind cosg)]?
abk==p il LA s : |
0

1 2
0F1[2},+%—, . (kTS;:n(p) ]sin“‘ dQD :

der Grenziibergang k — 0 ergibt (vgl. 31.232)

rco,sz—%; rsinz—é—
ol 21+1;———2———— o' 21+1;+———§——~
_ I'ei+41) A _ r(cosd® +isindcos @) |. ,
=TEi+D F(%)‘[OFI[2A—|—1, - 5 sint*pdg .
0

) Watson, 1. c., S. 373.
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Hier konnen die Funktionen ,F', selbstverstdndlich durch Besselfunk-
tionen ausgedriickt werden, was aber die Ubersichtlichkeit der Formeln
nicht erhoht.

33.13. Elliptische Koordinaten

Man wird auf bemerkenswerte Volterrasche Integralgleichungen fiir
Mathieusche Funktionen zweiter Art gefiihrt, wenn man @, auf die
Funktionen v,,(x, y) und @, auf die Funktionen #,, ,(x, y) von 31.3
anwendet und nachtréglich x = 0 setzt?). Es ist, wie schon in 31.3
bemerkt, -
'Uzn(x» O) = cezn(ov q) Cezn(‘:"’ q) ’

!
se 0,q) Se =,
By (, 0) = 2n+1( hQ)Sin Z:H( q) ’

wo x=h Cos & (x) . (66)

Wir haben v,,(iy, 0) bzw. @,,,,(¢y, 0) zu berechnen, wo y = k Sin &.
Aus (66) folgt
— . x @ AN
....(x)—ArCos-i—log(h + (—h-) 1)

und deshalb
H(1y) = Ar Cos —Z

2
Yy

LS

~—z%n+ArSmy

=iim+ &%) .
Nun ist aber nach bekannten Eigenschaften der Mathieuschen Funk-
tionen 82)

Ceu (i 5+ &.0) = cem(— 5 +1 19)

mcezn(——if—}-—g—,q)

( )ce2n(i£ '—Q)
(— D)rCey,(&, — q) .

%) Die Funktionen vy, und w,, , eignen sich hiefiir nicht, da sie auf # = 0 ver-
schwinden,

81) Die Vieldeutigkeit geht in der Periodizitiat der Mathieuschen Funktionen auf.

82) MacLachlan, 1. c., S. 21 ff.

Il

Il
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In gleicher Weise findet man
Sesn41 (?/ “g— + ¢, 9) = (= 1)" Ceypy (&, — 9 ),

ferner ist Sin (z—g— -+ E) = 4+ ¢ Cos &  Damit erhidlt man aus
(6) bzw. (10) (mit » = 1), wenn alles durch elliptische Koordinaten

ausgedriickt und 7 = —g— gesetzt wird,

Oe2n(£? Q) ceZn (—;—' > Q) = (_ l)ncezn(o’ q){ern(Sa - Q)

§

Si : -

o = ;nf‘/‘OFl[z; —Q(Slnz E“‘ Slnzx)]oem(x: _Q) Cosxdx ’
0

bzw.

Seuia(€.0) seanis (5 19)
&
(= 1600, ) [ oFs (15 — g (Sin? § — $in? )1Cesns (1, —D)d7™) -
0

33.14. Polarkoordinaten

Wendet man (10) auf die Funktionen F} (z,2*;k) an, so ergibt sich
mit Z = 1(z + 2*) + 3 (z — 2*) cos ¢

I'(v4-1%) d k? : .
14 % . . __~%)2 2 v . 2yv—1
Fi (2,2 ,lc)————«——r(v)_~.__~(%)‘[OF1 Y16 (z—2*)2sin? @ | F}, (Z,Z ; k) sin®* g dg
0

oder in reeller Form unter Verwendung von Polarkoordinaten, wenn
alles durch Besselsche und Gegenbauersche Funktionen ausgedriickt
wird, '

I'(2v +p) I'(» + 3)

(kr)—vJ 2= I'(u + 1) I'(2v) I'(})

(kr) CF, (cos ¥) =

v+

X flkr (cos & 4 i sin & cos @)1= J,,, (kr (cos & + i sin & cos p))
0
X (kr sin 9 sin @)~v+1J _, (k7 sin ¢ sin @) sin?*1¢ dp . (67)

Wegen der Schnitte in der z-Ebene und in der z*-Ebene von 0 bis — oo
mul} hier im Falle u £0,1,2,... & # xn vorausgesetzt werden. Im

8) Ce(&, q) und Ce(&, —q) sowie Se(&,q) und Se(§, —q) verhalten sich zuein-
ander wie die gewohnliche und die modifizierte Besselfunktion.

8) Fir ¢— 0 ist Cey,(£, 9)—> Cos 2né und Se,y, (5, ¢)— Sin (2n + 1) und die
beiden Integralgleichungen reduzieren sich auf triviale Identitéiten zwischen trigonometri-
schen Funktionen.
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T

Fa.lle|19|>2

geradlinig, sondern so zu wihlen, dafl diese Schnitte gemieden werden®®).

ist auBerdem der Integrationsweg in der ¢-Ebene nicht

Im Falle 4 = %— ergibt (67) eine bekannte Formel von Rutgers?®8). Multi-

pliziert man (67) mit (k7)~* und la8t man dann k gegen 0 gehen, so ergibt
sich die ebenfalls bekannte Integraldarstellung8?)

I'(v+4) '(2v+p)
I'(v)I'($)I'(2v) 1’(#+1)0

der Gegenbauerschen Funktionen.

Cp(cos ¥) =

(cos & + ¢ sin & cos @)* sin?* 1o de

33.2. Anwendung der Orthogonalititseigenschaften der
Gegenbauerschen Polynome

Wir geben fiir diese Methode (Methode B von S.288), die bei den
B.-G.-Reihen von 31.1 und 31.3 auf bekannte Integralformeln fiihrt,
nur ein Beispiel. Aus (33’) ergibt sich durch Multiplikation mit

(kr)2A+1 224 (cos @) sin* 1 9

Integration nach ¢ und Beachtung von (65)

fMK,x (273109' cos? %) M, (— 2¢kr sin? —122) C?*1 (cos ) sin2*§ dd
0

et (i (e d)n T (42 14m)
= T2ty m! @11, s 2["'](’“”)“2/\+%+m(’“(‘éé)

wo ,F, die gleichen Argumente wie in (33) hat. Diese Formel vertritt fiir
Produkte Whittakerscher Funktionen die Rolle des Gegenbauerschen
Integrals bei Zylinderfunktionen?®8). Sie kann im Falle m = 0 auch sehr
elegant mit Hilfe der Laplacetransformation gewonnen werden?®). Die
den Entwicklungen (38) und (39) entsprechenden Spezialfdlle dieser
Formel sind

' f J A(kr cos? 1;—) J ,\(kr sin? ?—;—) C2+$(cos #) sin?+19 dd
0

(=1 T G4+2A+m) C(G+24+m)
= T P T € argram (b7)

(69)

88) Dies ist stets moglich, wie eine elementare Uberlegung zeigt.

88) Watson, 1. c., S. 374, Formel 4. Auf der linken Seite dieser Formel fehlt der Faktor 2.

87) Magnus und Oberhettinger, 1. c., S. 99.

88) Watson, 1. c., S. 3617.

89) Doetsch, @., Theorie und Anwendung der Laplace-Transformation, Berlin
1937, S. 310. Das Integral kann denn als Faltung geschrieben werden.
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und

f Jax (Vﬂ cos %) I,, (Vﬁ; sin %—) C*+1(cos 9) sin2+19 d
0

. (___ 1)”7’27‘"'”""
22l (244 1), 42+ 1)(2A+3+n)

Fiir (69) hat im Falle m = 0 auch Watson?®) einen Beweis angegeben.
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