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Zur Funktionentheorie der Wellengleichung
Mit Anwendungen auf spezielle Reihen und Intégrale mit

Besselschen, Whittakerschen und Mathieuschen
Funktionen

Von Pbteb Henbici, Washington, D. C.

Einleitung
1. AUgemeine Bemerkungen

1.1. Problemstellnng

In zahlreichen neueren Arbeiten wurde von Bergman1), Vektta2) und
andern die Existenz von Funktionaltransformationen nachgewiesen,
durch welche die Klasse der in einem gegebenen Bereiche regulâren
Lôsungen einer elliptischen partiellen Differentialgleichung mit zwei un-
abhângigen Variabeln und mit analytisehen Koeffizienten eineindeutig
auf die Klasse der in einem bestimmten Bereiche analytisehen
Funktionen einer komplexen Verânderliehen abgebildet wird. Die vorliegenden
Untersuchungen verdanken ihre Entstehung der Fragestellung, ob es

môglich ist, dièse Ergebnisse fur die Théorie der speziellen Funktionen
der mathematischen Physik nutzbar zu machen.

Auf manche dieser speziellen Funktionen wird man bekanntlich ge-
fuhrt, wenn man versucht, die sogenannte Wellengleichung

dx* '
dy*

' dz*

(oder, im Falle k 0, die Potentialgleichung) in einem orthogonalen
Koordinatensystem zu separieren. Sieht man vom Fall der cartesischen

l) Bergman, 8., Zur Théorie der Funktionen, die eine lineare partielle
Differentialgleichung befriedigen, Rec. Math. Nouv. Ser. 2 (1937), S. 1169—
1198. Funotions satisfying certain partial differential équations of elliptic
type and their représentation, Duke Math. J. 14 (1947), S. 349—366. The Kernel
Function and Conformai Mapping, Amer. Math. Soc. 1950. (Dort zahlreiche weitere
Literaturangaben.

a) Vekua, I. N.t Randwertaufgaben der Théorie der linearen elliptischen
Differentialgleichungen mit zwei unabhângigen Verânderlichen, Mittg. Geor-
gische Abt. Akad. Wiss. USSR 1, S. 29—34, 181—186, 497—500. Jahrb. Fortschr. Math.
66 (1940), S. 456 ff.)
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Koordinaten, der sich spater gesondert erledigen wird, und von den all-
gemeinen ellipsoidischen Koordinaten, die auf die hier nicht behandelten
Laméschen Wellenfunktionen fuhren, ab, so besteht der erste Schritt
hiezti in der Einfuhrung von Zylinderkoordinaten. Fordert man dann,
daB v vom Polarwinkel # nur durch den Faktor e%tJ>& (/j, beliebig komplex)
abhangen darf, so ergibt sich die Gleichung

d2v d*v 1 dv
+ +dx2+W +

y dy +T W '

Dièse Gleichung hat zwar die gewiinschte zweidimensionale Gestalt ;

ihre auf y 0 analytisch von x abhângenden Lôsungen sind jedoch,
wie ein Potenzreihenansatz zeigt, daselbst als Funktionen von y ver-
zweigt. Dièse fur die spâtere Théorie stôrende Komplikation wird ver-
mieden, wenn an Stelle von v die Funktion u y-v-v betrachtet wird.
Fur dièse ergibt sich mit v \x + \ die Gleichung

dy2 y dy v

Indem wir fur dièse Gleichung Funktionaltransformationen der eingangs
erwàhnten Art angeben und dièse in geeigneter Weise auf Lôsungen der
Gleichung anwenden, sind wir in der Lage, zahlreiche zum Teil neue Er-
gebnisse ûber dièse Funktionen zu finden. Wir lassen dabei fur die Wellen-
zahl k beliebige komplexe Werte zu, betrachten dagegen beim Para-
meter v aus Grunden, die sich im Verlaufe der Arbeit manifestieren wer-
den, nur die Fâlle v 0 und 9t*>>0. Die Resultate iiber spezielle
Funktionen werden sich dann zum Teil durch analytische Fortsetzung
auch fur andere v als richtig erweisen lassen.

1.2. Aufbau der Arbeit

Im ersten Teil der Arbeit werden drei Sâtze angegeben, die die
Problème der Existenz und der analytischen Fortsetzung der regulâren
Lôsungen von (dv) von verschiedenen Seiten her beleuchten. Es werden zu
diesem Zwecke insbesondere zwei Integraloperatoren Qv und 0V aufge-
stellt, die analytischen Funktionen einer Variabeln Lôsungen von (dv)
zuordnen. Der Operator Qv ist im Falle v 0, den wir gesondert
betrachten, identisch mit dem Bergmanschen Operator erster Art ; er lôst
fur die aufdiecharakteristischen Koordinaten z x -\- iy, z* x — iy
transformierte Gleichung (dv) das charakteristische Anfangswertproblem.
Die erwàhnten Sâtze bilden hier ein Beispiel zur Bergmanschen, gemâB
einer kûrzlichen Mitteilung des Autors durch Einfuhrung der Riemann-
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sche Funktionen vereinfachten Théorie dièses Operators 3). Im Fall 9îv > 0

kann dièse Théorie wegen des dann singulâren Koeffizienten in (dv) nicht
mehr angewandt werden. Wir lôsen hier mit Hilfe des Operators 0vi der
eine auf dièse Singularitât zugeschnittene Neuschôpfung darstellt, zu-
nâchst das nichtcharakteristische, aber singulâre Anfangswertproblem
der Gleichung (dv), das entsteht, wenn die Werte der Lôsung auf y 0

vorgeschrieben werden. Die Lôsung des charakteristischen Anfangswert-
problems wird damit auf die Lôsung einer Volterraschen ïntegralglei-
chung zurtickgefuhrt. Die Lôsung dieser Gleichung laBt sich durch An-
wendung des Kalklils der DifiEerentiation gebrochener Ordnung aus der
Lôsung im nichtsingulâren Falle v 0 gewinnen. — Fur aile Operatoren
werden explizite analytische Ausdrûcke angegeben.

Im zweiten Teil werden fur die Lôsungen von (dv) die Analoga zu den
funktionentheoretischen Satzen von Taylor und Runge aufgestellt. Die
Rolle der Potenzen von z wird dabei von gewissen Kombinationen Bessel-
scher und Gegenbauerscher Funktionen (B.-G.-Funktionen) ûbernom-
men. Insbesondere wird gezeigt, daB jede regulâre Lôsung von (dv) in
eine nach B.-G.-Funktionen fortschreitende Reihe (B.-G.-Reihe) ent-
wickelt werden kann. Der Konvergenzbereich dieser Reihe bestimmt
sich wie bei der Taylorreihe nach allgemeinen funktionentheoretischen
Gesichtspunkten. Als Korollar ergibt sich die klassische Théorie der (ver-
allgemeinerten) Neumannschen Reihen (in der Théorie der Besselschen

Funktionen), zu denen damit ein von der traditionellen Herleitung mit
Hilfe der Neumannschen Polynôme vôllig verschiedener Zugang gewon-
nen ist.

Im dritten Teil werden Anwendungen auf spezielle Funktionen gege-
ben. In einem ersten Abschnitt werden fur aile regulâren Lôsungen von
(dv), die durch Séparation der Variabeln gewonnen werden kônnen (es

handelt sich, einem alten Satze von H. Weber4) zufolge, um Lôsungen
in genau vier verschiedenen Koordinatensystemen), die B.-G.-Reihen
explizite angegeben. Im Falle der cartesischen und der elliptischen Ko-
ordinaten ergeben sich hierdurch bekannte Entwicklungen von Gegen-
bauer und Whittaker. In den beiden andern Koordinatensystemen
ergeben sich dagegen neue Reihen, nâmlich im Falle der parabolischen
Koordinaten eine B.-G.-Reihe fur das Produkt zweier Whittakerscher
Funktionen, die als Spezialfâlle Entwicklungen von Produkten Bessel-

8) Bergmans Integraloperator erster Art und Riemannsche Funktion,
Z. angew. Math. Phys. 3 (1952), S. 228—232.

4) Weber, H., t}ber die Intégration der partiellen Differentialgleichung
d*ujdx2 + d2uldy2 + k2u 0, Math. Ann. 1 (1869), S. 1—36, insbes. S. 27 f.
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scher, Laguerrescher und Hermiteseher Funktionen enthâlt, und im
Falle der Polarkoordinaten ein allgemeines Additions- und Multiplika-
tionstheorem fur Besselsche Funktionen, aus dem durch spezielle Wahl
der Parameter die vier klassischen Additionstheoreme von Gegenbauer
und Graf sowie die Multiplikationstheoreme von Schafheitlin abgeleitet
werden kônnen.

In der zweiten Hâlfte des dritten Teils werden mit Hilfe des Operators
0V verschiedene bestimmte Intégrale ausgewertet. Es ergeben sich auf
dièse Weise u. a. Verallgemeinerungen der Poissonschen und Laplace-
schen Integraldarstellungen Besselscher bzw. Legendrescher Funktionen,
sowie Integralgleichungen vom Volterraschen Typus fur Mathieusche
Funktionen. Anhangsweise wird noch fur Produkte Whittakerscher
Funktionen mit Hilfe der Orthogonalitâtseigenschaften der Gegenbauer-
schen Polynôme ein Analogon zu einem bekannten Gegenbauerschen
Intégral fur Zylinderfunktionen angegeben.

1.3. Verwandte Untersuchungen

Auf die Gleichung (dv) (mit halb- oder ganzzahligem v) wird man auch
gefûhrt, wenn man im Raume von p 2v + 2 Dimensionen diejenigen
Lôsungen der Wellengleichung

* d2u

betrachtet, die nur von x xx und y (x\ -\— • + ^|)^ abhângen.
Durch Betrachtung dieser Gleichung haben schon Hobson5) und in
neuerer Zeit Sommerfeld6) Resultate iiber spezielle Funktionen herge-
leitet. Es handelt sich dabei um Spezialfàlle der Entwicklungen (27) und
(49). Im Falle k 0 ist von diesem Gesichtspunkt aus (dv) als Gleichung
der verallgemeinerten axialsymmetrischen Potentiale neuerdings von
A. Weinstein und seinen Schûlern eingehend7) untersucht worden. Ins-
besondere gibt Weinstein verschiedene Darstellungen fiir die Grund-
lôsungen dieser Gleichung. Mit k 0 hat (dv) auch abgesehen von der
potentialtheoretischen Herkunft verschiedene physikalische Anwendun-

gen. Die Gleichung beherrscht (mit v 3/2) die Torsion des axialsym-
6) Hobson, E. W., On Bessel's Functions and Relations Connecting them with

Hyperspherical and Spherieal Harmonies, Proc. London Math. Soc. 25 (1894),
S. 49—75.

0) Sommerfeld, A., Die ebene und sphârische Welle im polydimensionalen
Raum, Math. Ann. 119 (1943), S. 1—20.

7) Weinstein, A., Discontinuous Intégrais and Generalized Potential Theory,
Trans. Amer. Math. Soc. 63 (1948), S. 342—354.
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metrischen Stabes8) und (ebenfalls mit v 3/2, in inhomogener Form)
die Théorie der dicken Schraubenfeder9) ; auf sie kann ferner Tricomis
bekannte Gleichung der Strômungen kompressibler Fliissigkeiten im
Gebiete des Schalldurchganges zurûckgefuhrt werden10).

Allgemeine Lôsungen von Potential- und Wellengleichung, fur letztere
sogar im Falle nichtperiodischer Zeitabhângigkeit, die wie unsere Opera-
torenlôsungen von einer willktirlichen Funktion abhângen, gaben Whit-
taker11) und in seinem Gefolge fur den mehrdimensionalen Fall Bate-
man12). Da in den Beweisen dieser Autoren Potenzreihen verwendet
werden, ûber deren Konvergenzbereich nichts bekannt ist, gelten ihre
Darstellungen im Gegensatz zu unsern Resultaten in 1. nur im kleinen13).
Zahlreiche Ergebnisse liber die Gleichung (d0) finden sich implizite in den
zitierten Arbeiten von Bergman. Bergman gibt auch eine explizite Unter-
suchung14) und erzeugt mittels eines Operators aus analytischen Funk-
tionen Lôsungen von (d0), ohne indessen an dieser Stelle die Existenz des
inversen Operators zu beweisen. —- Im allgemeinen Fall scheint die
Gleichung (dv) noch nicht funktionentheoretisch untersucht worden zu sein.

Ûber Beziehungen unserer Resultate uber spezielle Funktionen zu ver-
wandten Untersuchungen werden wir an Ort und Stelle in den Abschnit-
ten 2 und 3 berichten.

2. Technische Vorbemerkungen
2.1. Gebiete

Wir betrachten im folgenden Gebiete der reellen (x, «/)-Ebene und der
komplexen Ebene. Wie sich zeigen wird, bedeutet es keine Einschrànkung
der Allgemeinheit, anzunehmen, daB dièse Gebiete zur #-Achse bzw. zur
reellen Achse symmetrisch sind und den Nullpunkt enthalten. Um ferner
gewissen Umstândlichkeiten der Beweisfûhrung, die mit dem eigent-

8) Weinstein, A.t On the Torsion of Shafts of Révolution, The Proceedings of the
7th International Congress for Applied Mathematies, Vol. 1, S. 108—119.

9) Biezeno und Grammél, Technische Dynamik, 1939, S. 317 fî.
10) Weinstein, A., On Tricomi's Equation and Generalized Axially Symmetric

Potential Theory, Acad. Royale Belgique, Cl. d. Se, 5e Sér. 37 (1951), S. 348—358.
u) Whittaker, E. T., On the partial differential équations of mathematical

physics, Math. Ann. 57 (1902), S. 333—355, insbes. S. 342 fî.
12) Bateman, H., Proc. Lond. Math. Soc. (2) 1 (1907), S. 451—458. Vgl. auch Partial

Differential Equations of Mathematical Physics, New York 1944.
18 Im Falle der Whittakerschen Lôsung der Potentialgleichung wurde dies von Copson,

Proc. Roy. Soc. Edinbourgh 62 (1944), S. 31—36 hervorgehoben.
14) Bergman, S., Ûber Kurvenintegrale von Funktionen zweier komplexer

Verânderlicher, die die Differentialgleichung AV + F 0 befriedigen,
Math. Z. 32 (1930), S. 386—406.
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lichen Inhalt der Arbeit nichts zu tun haben, auszuweichen, beschrânken
wir uns auf konvexe Gebiete. Gebiete, die die genannten Voraussetzungen
erfûllen, nennen wir zur Klasse K gehôrig.

Wir betrachten ferner Gebiete des zweidimensionalen komplexen Rau-
mes K2. Dièse werden stets die Struktur von Dizylindern haben, d. h. aus
der Gesamtheit aller Punkte (zlt z2) mit zx c ©x und z2 e ©2 bestehen,
wo ffix und ffi2 zwei feste Gebiete der zx- bzw. z2-Ebene bedeuten. Wir be-
zeichnen dièse Gebiete mit ©x X ©2.

2.2. Stetige Funktionaltransformationen

Définition. Es seien © und <?) offene Bereiche in nicht notwendig
gleichartigen Râumen. Es seien 0 und W lineare Mannigfaltigkeiten von
in © bzw. <F) definierten komplexwertigen Funktionen15). Es sei Q eine
lineare funktionale Abbildung von 0 auf W. Dièse Abbildung nennen wir
stetig, wenn durch sie jede in © lokal (und darum in jedem abgeschlosse-
nen Teilbereich von ffi) gleichmâBig konvergente Funktionenfolge in
eine in § lokal gleichmâBig konvergente Folge ubergefuhrt wird.

Kriterium fur Stetigkeit. Im folgenden wird meist die nachstehende
Situation vorliegen : © ist ein Gebiet € K und W ist die Klasse der in ©
analytischen Funktionen. £> ist ein elementares Gebiet des Kn (n 1,2)
mit dem allgemeinen Punkt Q (wli..., wn). Die funktionale Abbildung

ist von der Form

W{Q) Q[V] jv(t g (Q) + (1 - t)f(Q)) K{Q, t)dt (1)
o

wo K(Q,t) fur jedes t e [0, 1] als Funktion von Q in § regulâr ist und
f(Q) und g(Q) zwei analytische Funktionen von Q bedeuten, deren
Funktionswerte fur aile Q € § in © liegen. Fur die Stetigkeit von Q ist
dann, wie aus (1) unmittelbar folgt, hinreichend, daB

1

K(Q,t)\dt

in § lokal gleichmâBig beschrankt ist.
Die in 2.1 erwâhnten bei der Zulassung nicht konvexer Gebiete ent-

stehenden Schwierigkeiten ruhren davon her, daB dann in (1) nicht mehr
fur aile Q in der £-Ebene lângs ein und desselben Weges integriert werden
kann, was, falls K(Q,t) nicht eine ganze analytische Funktion von t ist,
die Abschâtzung des Intégrales kompliziert.

15) Im folgenden wird es sich stets um gewisse Klassen analytiseher Funktionen einer
oder zweier Variabeln handeln.
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2.3. Bezeichnung der speziellen Funktionen

In der Bezeichnung der speziellen Funktionen folgen wir Magnus und
Oberhettinger16) und Whittaker und Watson17), die in den meisten
Fâllen ubereinstimmen. Eine Ausnahme machen wir bei der verallge-
meinerten hypergeometrischen Reihe, die fur beliebige komplexe

al9... ,ap und bl9...,bq (6,^0,-1,-2,...; p ^ q + 1)

definiert ist durch

£ («l)n(«2)n * • * K)n &
(6)(6)(6) i '

wo
(a)n a(a+ l)(a + 2)... (a + n - 1) n l,2,...
(«)o 1

das Pochhammersche Symbol bedeutet. Wir verwenden fur dièse Funk-
tion Baileys18) Bezeichnung

ra1)aa,...,a1,;zl
'L^i.ft 6, J

und schlieBen uns auch Baileys Konvention an, im Falle z 1 das

Argument wegzulassen.
Ein hâufig vorkommender Spezialfall der verallgemeinerten

hypergeometrischen Reihe ist die mit den Besselschen Funktionen verwandte
Funktion

sie ist (wie aile verallgemeinerten hypergeometrischen Reihen JFq mit
V ^ g) eine ganze Funktion von z und geniigt, wie man aus der erwahn-
ten Verwandtschaft oder direkt durch Einsetzen der Potenzreihe beweist,
der Differentialgleichung

zF" + vFf —F 0

16) Magnus, W. und F. Oberhettinger, Formeln und Sâtze fur die speziellen
Funktionen der Mathematischen Physik. 2. Aufl. 1948.

17) Whittaker, E. T. and G. N. Watson, A Course of Modem Analysis. 4th. éd. 1943.
18) Bailey, W, N., Generalized Hypergeometric Séries. Cambridge 1935.
19) Dièse Funktion ist auch verwandt mit der Schlâflisehen Funktion F (a, z) (vgl.

Watson, G. N., A Treatise on the Theory of Bessel Functions, 2nd éd. 1944, S. 90) ; der
Zusammenhang ist
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1. Allgemeine Sàtze iiber Existenz und analytische
Fortsetzung der Lôsungen von (dv)

11. Der regulâre Fall (v=0)

Wir betraehten in diesem Abschnitt die aus (dv) dureh v 0 ent-
stehende Differentialgleichung

und folgen dabei dem Wege unserer bereits zitierten Mitteilung. Wir
haben dort gezeigt, wie die Théorie des ersten Bergmannschen Integral-
operators mit Hilfe der Riemannschen Integrationsmethode hyperboli-
scher Gleichungen allein aus der Existenz der Grundlôsung der betrach-
teten Gleichung heraus erschlossen werden kann. Fur (dQ) ist eine Grundlôsung

bekanntlich gegeben dureh die zur nullten Neumannschen Funk-
tion NQ(lcr) proportionale Funktion

v(x, y;£,r)) J0(kr) log r + S(r)

wo die nullte Besselsche Funktion J0(kr) und ebenso die uns nicht
weiter interessierende Funktion S(r) ganze Funktionen von r2 und da-
mit von x, y, |, r\ sind. Die formai hyperbolische Gleichung, in die (d0)

dureh Einfûhrung der Riemannschen Normalkoordinaten

z* x — ly |

ubergeht und auf die nachher die Riemannsche Integrationsmethode an-
gewandt wird, ist mit u(x, y) U(z, z*)

11.1. DaB jede in einem Gebiete © der reellen (x,y)-~Ebene zweimal
stetig differenzierbare Lôsung von (d0) daselbst reell-analytisch ist, ist
ein alter, schon von H. Weber20) bewiesener Satz. Ist © einfach zu-
sammenhàngend, so gilt der stârkere

Satz !<>. Jede in einem einfach zusammenhàngenden Gebiet © der reellen

(x, y)-Ebene zweimal stetig differenzierbare (und daher nach dem /Satz von

20) Wéber, 1. c, S. 3-—6.
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H. Weber reell-analytische) Losung u(x, y) von (d0) kann zu einer im
Bereiche © x©21) des komplexen (z, z*)-Baumes eindeutigen und analy-
tischen FunJction U(z, z*) fortgesetzt werden. Mit andern Worten : Es gibt
eine in © x© analytische Lôsung von (Do) mit U(z,z) u(x, y).

Beweis. Der Beweis arbeitet mit den gleichen Mitteln wie der des
Satzes von H. Weber, nur wird die Analytizitât der Grundlôsung stàrker
ausgenûtzt. Es geniigt, den Beweis fur jeden abgeschlossenen Teilbereich
©' von © zu fuhren, wobei der Rand d©; von ©; (mit der Normalen n)
noch als differenzierbar vorausgesetzt werden kann. Bezeiehnet Q (^,rj)
den laufenden Punkt auf 3©', so gilt, wie mit Hilfe der Greenschen Formel

leicht bewiesen wird, fur u(x, y) die bekannte Darstellung

1 Ç\duQ dv{)J\
Hier hângt auf der rechten Seite nur v von x und y ab. Bei Einfïïhrung
der Normalkoordinaten (3) und mit f f + **7> C* — ir\ geht v
uber in die Funktion

V(z,z*; C,C*) R(z,z*; f ,f*)logl/(z - Ç)(z* - f*) + 8{z,z* ;£,£*)

wo R und 8 wieder ganze Funktionen ihrer vier Argumente sind. Die ein-
zigen Singularitâten von V (als Funktion von z und z*) sind daher die
Singularitàten des Logarithmus und mithin gegeben durch z f oder
2* _ £* pur je(jes feste f e 3©' kann also F V(z,z*) und damit
der Integrand in (4) in ©'x©' lângs jeden Weges fortgesetzt werden

und ist daher nach dem Monodromiesatz in & x ©; eindeutig und ana-
lytisch22). Da auBerdem der Integrand in jedem abgeschlossenen
Teilbereich von (©' — 3©/)x(©/ — 3©;) gleichmâBig in der Integrations-
variabeln beschrânkt ist, ist nach einem bekannten Satz der Analysis
auch das Intégral eine im gleichen Bereich analytische Funktion.

11.2. Wir formulieren jetzt zwei Sâtze, die sich fast unmittelbar er-
geben, wenn auf die Gleichung (Do) die Riemannsche Integrationsme-
thode angewandt wird und die Anfangsfunktionen in geeigneten Berei-
chen analytisch gewahlt werden. Nach dem in unserer Mitteilung zitierten
Satz von Hadamard (und wie in diesem speziellen Fall natùrlich auch

21 C5 bedeutet das zu © konjugiert komplexe Gebiet, © X (S das kartesische Produkt
von © und ©.

22) Hier wird der einfache Zusammenhang von © benùtzt. Dafi der Satz im Falle mehr-
fach zusammenhângender Bereiche nicht riehtig bleiben kann, lehrt schon im Falle k 0
die Funktion log r.
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sonst bekannt23)) ist die Riemannsehe Funktion von (Do) identisch mit
dem auf Normalkoordinaten transformierten Koeffizienten des logarith-
misches Gliedes der Grundlôsung von (d0), also gleich

J0(kr) J0(kV(z -

Lôst man hiermit die beiden hyperbolischen Anfangswertprobleme

D0[U] 0 ;

U(z, 0) - f(z)

und
ri

[7(z,z*) U(z*,z) ;

U(z,z)

wo /, /* und g gegebene Funktionen bedeuten, durch die Riemannsehe

Formel, so ergeben sich die beiden folgenden Sâtze :

Satz II0. Es sei © ein einfach zusammerihangendes Oebiet, dus 0 ent-

halt. Dann gibt es zu jedem Paar von in © bzw. © analytischen Funktionen

{/(«), f*(z*)} (mit /(0) /*(0)) genau eine in ©x© analytische
Losung

des Problems II0. Der Operator i?0 ist stetig (im Sinne von 2.2) und wird
explizite dargestellt durch

0
z*

(5)

Satz III0. Es sei © ein einfach zusammenhangendes, zur reellen Axe
symmetrisches Oebiet. Dann gibt es zu jeder in © analytischen Funktion
g(z) eine in © x © analytische Losung

™) Courant, R. und D. Hilbert, Methoden der Mathematischen Physik, Bd. 2,

1937, S. 316 f.
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U(z,z*) 0o[g;z,z*]

des Problème IIIo. Der Operator ©0 ist stetig und wird explizite dargestelU
durch

(6)-£¦ (* - **) J0Ft [2 ; - -J (z - t) (z* - <)]

Die Beweise dieser Sâtze ergeben sich aus Riemanns Théorie wie folgt :

Die rechten Seiten von (5) bzw. (6) lôsen die Problème II0 bzw. III0 zu-
nâchst fur réelle Werte von z und z*. Sie bleiben auch fur beliebige
Punkte (z, z*) e © X © bzw. e © x © sinnvoll und stellen dort analyti-
sche Funktionen dar. Nach dem Prinzip der Permanenz der Funktional-
gleichung genugen sie also auch dort den Bedingungen der Problème II0
bzw. III0. Auch die Behauptungen ûber Stetigkeit und Eindeutigkeit
folgen aus der Riemannschen Théorie.

Selbstverstândlich kônnen die Sâtze auch elementar ohne Bezugnahme
auf die Riemannsche Théorie bewiesen werden. Aus der Ganzheit der
ÙF1 und den Voraussetzungen uber f(z) und f*(z*) folgt zunâchst die

Analytizitât von (5) bzw. (6) in ©x© bzw. ©x®. Das Erfulltsein
der Anfangsbedingungen lâBt sich aus den Formeln leicht ablesen, wàh-
rend das Bestehen der Differentialgleichung D0[U] 0 durch Differen-
tiation und Benûtzung von (2) verifiziert werden kann. Die Stetigkeit
der Operatoren folgt daraus, daB dièse auf die Form (1) gebracht werden
kônnen24). Die eindeutige Bestimmtheit von U(z,z*) lâBt sich durch
eine Potenzreihenmethode âhnlich der von uns in 12.1 benutzten be-
weisen.

BemerJcung. Satz II0 gilt ofïenbar auch, wenn 0 nicht innerer Punkt,
sondern Randpunkt von © ist, sofern nur die Funktionen f(z) und
f*(z*) so besehaffen sind, daB die rechte Seite von (5) sinnvoll bleibt.

11.3. Aus den Sàtzen von 11.1 und 11.2 kann auf mehrere Arten
auf das Bestehen von eineindeutigen, in beiden Richtungen stetigen Ab-
bildungen zwischen verschiedenen Funktionenklassen geschlossen werden

:

a) Die Sâtze Io und II0 ergeben eine solche Abbildung der Klasse aller

24) Dafî © hier noch nicht konvex vorausgesetzt wurde, bedeutet, da der Kern eine

ganze Funktion auch von t ist, fur die Anwendung des Kriteriums noch keine Schwierig-
keit.
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in einem elementaren, den Nullpunkt enthaltenden Gebiet © reell-analy-
tischen Lôsungen von (d0) auf die Klasse aller Paare (/, /*) von in ©
bzw. ® analytischen Funktionen einer komplexen Variablen mit /(0)

/*(0);
b) Ist © eK und wird U(z, z*) durch die Forderung U(z, 0)

U(0,z) symmetrisch gemacht, so liefern die Sâtze Io und IIo eine Ab-
bildung aller in einem zur reellen Achse symmetrischen Gebiet reell-
analytischen in y geraden Lôsungen von (d0) auf die Klasse aller in ©
analytischen Funktionen einer Variabeln ;

c) Da im allgemeinen U(z,z)^k U(z, 0), ergeben die Sâtze Io und
IH0 eine von b) verschiedene Abbildung der in einem zur reellen Achse
symmetrischen elementaren Gebiet reell-analytischen, in y geraden Lôsungen

von (d0) auf die Klasse der in © analytischen Funktionen einer
Variabeln ;

d) Aus den Abbildungen b) und c) folgt schlieBlich eine eineindeutige
Abbildung der Funktionen U(z9 z) auf die Funktionen U(z, 0) oder,
da dièse Funktionen beide in einem zur reellen Achse symmetrischen
Gebiet © analytisch, aber sonst beliebig gewâhlt werden kônnen, der
Klasse der in © analytischen Funktionen auf sich selbst. Aus (5) (mit
z* z) und (6) (mit z* 0) folgt, daB dièse Abbildung dargestellt
wird durch das Formelnpaar

g(z) 0F1 1; -~- /(O) + 2 0FAl;^z(t-z)\^(t)dt

*-t(z-t)\g(t)dt
0

Das Bestehen jeder dieser Formeln zieht das Bestehen der andern
nach sich. Wâhrend naturgemâB jede der Abbildungen a), b) und c)

streng an den analytischen Charakter der darin verbundenen Funktionen
geknûpft ist, ist dies fur die Beziehungen (7), der Herkunft aus der Bie-
mannschen Théorie gemâB, nicht der Fall ; sofern man sich auf réelle
Werte der Variabeln beschrânkt, reicht fur ihre Giiltigkeit einmalige
stetige Differenzierbarkeit von / und g hin.

12. Der allgemeine Fall (9lv>0)

Wir veraUgemeinern in diesem Abschnitt die Sâtze von 11. fur den
FaU der allgemeinen Gleichung (dv), die durch Einfuhrung der Normal-
koordinaten (3) in
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ubergeht. Erst dièse Verallgemeinerung wird uns eine voile Ausnûtzung
der Operatorenmethode fur die Zwecke der Théorie der speziellen Funk-
tionen gestatten.

Leider kann in diesem allgemeinen Fall die Riemannsche Méthode
nicht ohne Modifikationen verwendet werden. Nicht nur verbietet der
singulâre Koeffizient in (Dv) die unbekiimmerte Anwendung der Rie-
mannschen Formel, sondern auch die Riemannsche Funktion selbst ist
bei z z* singular und kann zudem im Falle k ^ 0 nur durch eine
nach hypergeometrischen Funktionen fortschreitende Reihe, deren Kon-
vergenz schwer zu ûberblicken ist, dargestellt werden25). Dièse Um-
stânde zwingen uns zu einer Umstellung der Beweisanordnung von 11.

12.1. Satz JHy. Zu jeder in einem Oebiet © eK awalytischen Funktion

g (z) existiert genau eine in © x © analytische Lôsung

von (Dv) mit U(z, z) g(z); sie ist in z und z* symmetrisch^).
Wir trennen, wie es in solchen Fâllen iiblich ist, Eindeutigkeits- und

Existenzbeweis. Mit der Eindeutigkeit kann gleichzeitig die Symmetrie-
behauptung mitbewiesen werden.

12.11. Eindeutigkeitsbeweis

Wegen der Analytizitâtsbehauptung genùgt es, die nachstehenden Be-

trachtungen im Kleinen durchzufuhren. Eine eventuell existierende ana-
lytische Lôsung des Anfangswertproblems lâBt sich in der Umgebung
jedes Punktes von ©, also auch in der Umgebung eines beliebigenPunktes
(#, 0) € © in eine nach Potenzen von x und y fortschreitende Reihe ent-
wickeln, die in der Form

u(x,y) Zfn(x)yn

geschrieben werden kann. Da u{x, y) (dv) erfullt, ist

25 Als heuristisehes Hilfsmittel hat uns die Riemannsche Méthode gleichwohl grofie
Dienste geleistet.

*) Dieser Satz geht — fur das hier vorliegende spezielle Problem — in doppelter Hin-
sicht ûber den klassischen Cauehy-Kowalewskischen Existenzsatz hinaus : Die Differen-
tialgleichung ist auf der Anfangskurve singulâr, und das Anfangswertproblem wird nicht
nur fur eine Umgebung der Anfangskurve, sondern im grofien gelôst.
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oder nach Zusammenfassung gleicher Potenzen von y

2vf1(x) 0 (8)

/«(*) + (n + 2)(n + 1 + 2i>)/n+2(z) + i«/n(*) <> (9)

Aus (8) ergibt sich zunâehst wegen v ^ 0 ^(a?) 0 und damit wegen
(9) /i+2n(a;) 0 (w 1,2,...), woraus folgt, daB u(x, y) in y gerade
und U(z, z*) somit in seinen beiden Argumenten symmetrisch ist. Ist
weiter auch fo(x) u(x, 0) U(z, z) 0, so folgt aus (9) f2n(%) 0

(n 1,2,...). Zur Anfangsfunktion 0 gehort also nur die Lôsung
u(x, y) — 0, was mit der eindeutigen Bestimmtheit durch die Anfangsfunktion

gleichbedeutend ist27).

12.12. Existenzbeweis

Wir beweisen, uber die bloBe Existenz hinausgehend, folgenden

Zusatz zu Satz III,,. Der Operator 9V ist stetig28) und wird dargestellt
durch

Tï <—T«H « (^+^)d-.-)'-*. (10)

Wir werden zeigen, daB die Funktion auf der rechten Seite die verlangten
Eigenschaften hat, in ©x© analytisch zu sein, stetig von g(z) abzu-

hângen, fur z* z mit g(z) zusammenzufallen und (Dv) zu befriedigen.
1. Analytizitât. Ist z € © und z*e®, so liegen wegen der Kon-

vexitât von © auch aile Zwischenpunkte

27) Dieser Teil des Satzes wurde îm Falle k ~ 0 als ,,Identifikationsprmzip" auf an-
dermWege schon bei A. Weinstem, 1. c. Trans. Am. Math. Soc. 63 (1948), S. 344, bewiesen.

28) Courant und Hilbert (1. c, S, 177) betonen die physikalische Unsachgemafiheit von
Anfangswertproblemen bei elhptischen Differentialgleichungen, weil bei îhnen die Lôsung
îm allgememen nicht stetig von den Daten abhangt. Unser Satz zeigt, unter welchen Be-
dingungen hier die stetige Abhangigkeit gesichert ist und warum sie bei dem 1. c. ange-
fuhrten Beispiel von Hadamard nicht besteht.
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in ©. Fur jeden festen Zwischenwert t ist der Integrand eine analytische
Funktion von z und z*. Wegen der in jedem abgeschlossenen Teilbereich
von © X © in bezug auf t gleichmâfiigen Beschrànktheit des Integranden
folgt dies nach einem bekannten Satz auch fur das Intégral.

2. Die Stetigkeit der funktionalen Abbildung ©v ist eine unmittelbare
Folge des Kriteriums von 02.2.

3. Fur z* z ergibt sich wegen 0F1 [v ; 0] 1

9(*) •

4. Der Nachweis, da8 die durch (10) definierte Funktion U(z,z*)
(Dv) befriedigt, erfordert einigen kalkulatorischen Aufwand. Wir setzen
in diesem Abschnitt voriibergehend

z-^~~ + z —2— -a
m

' -z*)2(l -t2) Y
16

und schreiben zur Vereinfachung

0Ft[v ;Y]=F
Dann folgt mit j,,

c
r(v)

aus (10) durch DifiEerentiation unter dem Integralzeichen

ef{Fg' + ^(z- z*){l -
-1

1

f\^F' ^(- z*)(l -9z*
-1

1
^2 TJ r(l /2 1*2

W-yi1Ti"'-T^-^'(I-
-1

_ _^_. (^ __ 2*)2(i _ ^)2j/^ _ (i _ t*)F'g\ (1 - «2)v"1^
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Setzt man dies in (Dv) ein, so kônnen wegen

^ __
z - z* „,

dt ~ 2~g
die Ableitungen von g sukzessive durch partielle Intégration weggeschafft
werden. Hierdurch und unter Beachtung der von qFx\v ; Y] befriedigten
Differentialgleichung (2) ergibt sich

T" (z-z*)t(l-t*)F'g'+ [-*L(z-

-{z-z*f (1 -t*)F"-vF'+F\g( 1

i
=cifc2 f[-

— 1

1

=cP A- YF" - vFf + F}g(l -
-i

0

12.2. Satz Iv. Jede in einem Oebiet © eK reéll-analytische (und dar-

um nach 12.11 in y gerade) Losung u(x9 y) von (dv) hann zu einer ira
Gebiete ©X© des komplexen (z,z*)-Raumes eindeutigen analytischen
Funktion U(z,z*) fortgesetzt werden.

Wegen Satz IIIV ist dieser Satz âquivalent mit dem folgenden

Satz lj. Oenûgt u(x, y) den Voraussetzungen von Satz Iv, so hann
die Funktion u(x, 0) zu einer in (S analytischen Funktion g{z)= U{z,z)
fortgesetzt werden.

Wegen Satz IÏI,, kann nâmlich dièse Funktion g(z) zu einer in © x ©
analytischen Lôsung von (Dv) fortgesetzt werden, die wegen der Ein-
deutigkeitderFortsetzungfur z* 5 mit u(x, y) ubereinstimmenmuB.
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Zum Beweis von Satz 1/ benôtigen wir einige Eigenschaften der Neu-
mannschen Funktion, die wir in Form eines Lemmas zusammenstellen.

12.21. Lemma. Ist r ]/(è — x)2 + rj2 und bedeutet Nv(r) die
Neumannsche Funktion der Ordnung v29), so ist fur rj>0 die Funktion

Vnk»
rj2vr~vNv(kr)

eine Losung der zu (dv) adjungierten Oleichung

d2v d2v 2v dv 1
2 2v\ _d£2 drj2 rj drj \ rj2] ~

Es gilt in der Umgebung von r 0

(dv)

V
r2v

¦{1+0(1)}

dv

dv
¦ v —

n Vn r2v+2

(11)

DaB v (dv) befriedigt, ist, wie eine kleine Rechnung zeigt, gleichbedeu-
tend damit, da8 die zu r~vNv{kr) proportionale Funktion rj~2vv (dv)

befriedigt. Dies wird unabhângig von der gegenwârtigen Untersuchung
in 2.21 nachgewiesen. Die Relationen (11) folgen aus den elementarsten
Eigenschaften der Neumannschen Funktion30).

12.22.

Ist

Beweis von

allgemein

Un

Satz Iv'.

dri3

du
a

dr, + h
^w

ein linearer Differentialausdruek und

d2v d2v d(av)
x ; 3^2 3^2 drj

d(bv)
drj

29) Watson, 1. c. S. 74, bezeichnet dièse Funktion mit Yy{r).
30) Die Funktion v(£tt)) wird fur die Punkte (a;, 0) als Grundlôsung von (dy) dienen.

Da (dv) auf (a?, 0) singulâr ist, hat die Grundlôsung in diesem Falle nicht die gewohnte
logarithmische Singularitat.
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der zu ihm adjungierte Differentialausdruck, so gilt bekanntlich31) fur
ein beliebiges die Voraussetzungen des GauBschen Integralsatzes erfiïllen-
des Gebiet 33, in welchem u und v beide zweimal stetig differenzierbar
sind, die Beziehung

f{vl(u) - um(v)} df (£ {X cos (n, f) + Y cos (n, rj)} ds ; (12)
0093

dabeiist *

du dv* **
Y=v-= ^-^ \-buv

933 bedeutet denRand von SB und n seine âuBere Normale. Identifizieren
wir in dieser Formel u und v mit den in Satz ïv und im Lemma so bezeich-
neten Funktionen und l(u) 0 mit (dy) und wâhlen wir als Gebiet S
den oberhalb y 0 gelegenen Teil von © mit AusschluB eines kleinen
Halbkreises kQ vom Radius q um den Punkt (x, 0), so erhalten wir, da
dann die linke Seite von (12) verschwindet,

du dvl t t. [ du (2v dv

Die lângs der #-Aehse erstreckten Bestandteile dièses Intégrales ver-
schwinden wegen (11). Das lângs dem in y^O gelegenen Teil von 3(5

erstreckte Intégral ist also gleich dem negativen langs lcQ genommenen
Intégral. Ist (x + Q cos <p, g sin q>), 0 ^ <p ^ n, der laufende Punkt auf
kQ, so erhalten wir hiefur wegen

u(x + Q cos cp, q sin q>) t£(#5 0) + o(l)

und unter Benûtzung der Relationen (11)

du dv

du 1 rat; /a» 2V \ i|

81) J.. Sommerfeid, Partielle Dif ferentialgleichungen der Physik, Leipzig 1947,
S. 44 f.
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f\o(l) +\u{x,O) + o(l)l /7^+1) (sin^ycos2^ + sin2"*2?)

[ + o(l)J

Es existiert daher der Grenzwert q -> 0 des Intégrais iiber ke, und es

ergibt sich

Hier hàngt aber auf der rechten Seite nur v von x ab, und es kann, da v
als Funktion von x nur fur Punkte € 3© singulâr wird, mit Hilfe des

Monodromiesatzes wie beim Beweis von Satz Io zu Ende geschlossen
werden.

12.3. Satz IIV. Zu jeder in einem Gebiete ©eiC analytischen Funktion

f(z) gibt es genau eine in © x © analytische Lôsung

U(z,z*)=Qv[f;z,z*]
der Differentialgleichung (Dv) mit U(z, 0) /(z). Der Operator Qv ist
stetig.

Wegen 12.11 ist U(z, z*) in z und z* symmetrisch und daher auch
[7(0, z*) /(«*). — Aus (10) erhalten wir mit z* 0

U(z,O) 0v[g;z,O]

Dièse Gleichung kann als eine Integralgleichung fur die Funktion g (z)
bei gegebener Funktion U(z, 0) f(z) aufgefaBt werden. Besitzt sie zu
jeder vorgegebenen in © analytischen Funktion f(z) eine im selben
Gebiete analytische Lôsung g(z), so existiert zu diesem g(z) nach Satz IIIV
eine Lôsung 17(2, z*) von (Dv), welche vermôge ihrer Konstruktion auf
z* 0 mit f(z) zusammenfâllt. Hângt g(z) stetig von f(z) ab, so gilt
dies nach Satz IIIV auch fur U(z, z*), Zum Beweis von Satz ÏIV geniigt
daher der Beweis von

82 Intégration und Grenzùbergânge kônnen vertauscht werden, da die o-Aussagen von
(11) gleichmâfiig in q> gelten.
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Satz H/. Die Integmlgleichung (13) hat zu jeder in einem Oebiete

© € K analytischen Funktion f(z) genau eine im selben Oebiete analytische
Lôsung

g(z)=Qv[f;z,z] ;

dièse Lôsnng hàngt stetig von f{z) ab.

Wir trennen wieder Eindeutigkeits- und Existenzbeweis.

12.31. Eindeutigkeit

Es genxigt, zu zeigen, daB zur Fuaktion f(z) 0 nur die Lôsung
g (z) 0 gehôrt oder daB bei nicht identisch verschwindendem g (z) auch

/ (z) nicht identisch verschwinden kann. Wegen der Analytizitât der be-
trachteten Funktionen geniigt es auBerdem, diesen Nachweis fur eine
Umgebung von z 0 zu erbringen. Nun ist der Kern von (13) von der
Gestalt

Ist daher

so folgt in der Tat
1

/ («) y [e.( 1 - «y"1 + 0 (z) j ^cm (z :~^'"+ 0 («"•+!)j <ft

-1

-î

also

12.32. Existenz

Nehmen wir auf der rechten Seite von (13) die Variabelntransforma-
tion

vor, so folgt

«
1 — t2 t /

4 2 \
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und es entsteht aus (13) die Volterrasche Integralgleichung

0

Leider sind die allgemeinen Existenztheoreme iiber analytische Lôsungen
der Volterraschen Integralgleichung33) in unserem Fall nicht anwendbar,
da sie sich nur auf regulâre Kerne beziehen und auch hier nur lokalen
Charakter haben. Unsere Méthode wird darin bestehen, die Gleichung
durch Differentiation gebrochener Ordnung (oder, was dasselbe ist,
durch Zwisehenschaltung einer Abelschen Integralgleichung) auf den
Fall v 0 zurackzufuhren, wo wir sie durch die in 11. entwickelte
Théorie auflôsen kônnen. Wir formulieren zu diesem Zweck zunâchst ein
Lemma ûber die (komplexe) Abelsche Integralgleichung.

Lemma. Es sei f(z) eine in einem Gebiete © e K analytische Funktion.
Es seien ferner oc und /? zwei komplexe Zahlen mit 5Ra>0 und
9?(/8 — a) >— 1. Dann hat die komplexe Abelsche Integralgleichung

V(z) zPf(z) =T^-J(z - T)«-*X{T)dr I«\x\ (15)

0

genau eine Losung von der Form

x(r) TP-«g(r)

wo g(r) in © analytisch ist und stetig von f(z) abhangt3*).
Beweis. DaB nicht mehr als eine Losung existieren kann, folgt wie fur

die in Satz 11/ betrachtete Integralgleichung. Zum Beweis der Existenz
einer Losung geben wir eine solche explizite an. Es sei a diejenige positive
ganze Zahl mit der Eigenschaft a — l<9îa<a35). Dann ist, wie wir
behaupten, eine Losung von (15) mit den verlangten Eigenschaften ge-
geben durch die Funktion

daw
^ (t) wenn a a

l da

wenn a ^ a

33) Enz. Math. Wiss. 2, 32, S. 1461.
84) Im Reellen ist (15) die auf Riemann (Versuch einer allgemeinen Auffassung der

Intégration und Differentiation, Ges. Werke S. 331—344) und Liouville zurûckgehende
Définition der Intégration der gebrochenen Ordnung a, die von Hadamard (Essai sur
l'étude des fonctions données par leur développement de Taylor, Journ. Math. (4) 8 (1892),
S. 101—186, insbes. S. 154 f.) auf das Komplexe ausgedehnt wurde.

85)oder a — f—5Ra].
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Da dièse Funktion %(r) sicherlich existiert und von der Gestalt T^~~agr(r)

ist, wo g(r) in (5 analytisch ist und (nach dem Kriterium von 02.2)
stetig von f(z) abhângt, bleibt nur zu zeigen, daB die Gleichung

fur aile Funktionen f(z) zm, m 0, 1, 2,..., erfûllt ist. Man findet
leicht, zunaehst im Falle a ^ ex,

ï^ ï" 44
(a — oc) dra

l
J v ;

- « + m + 1)

und dièses Résultat gilt offenbar auch, wenn a a. Damit ist

_ y

womit das Lemma bewiesen ist.
Mit Hilfe dièses Lemmas ist es nun môglich, eine Lôsung der zu (14)

âquivalenten Gleichung

/* r
J V
0

(16)
_ L J I * J

o

zu konstruieren. Wir definieren die Funktion q)0(z) als die Lôsung der
Gleichung

tpv(z) Iv[<p0(z)] (17)

Weiter sei go(z) definiert als die nach 11.3 (S. 12) existierende und ein-
deutig bestimmte Lôsung der Gleichung36)

z

-jtj^Z(po(z) ~go(z)+—z 0FA2;—t(z — r)\go(r)dT (18)

o

*•) An dieser Stelle greifen wir auf den Fall v 0 zurûck.
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Dann ist die Losung von (16), wie wir behaupten, gegeben durch

9(r) r-vg0(r) • (19)

Beweis. Wir zeigen zuerst, da8 g(r) in © analytisch ist. Da f(z) in ffi
analytisch ist, ist, wenn rx (i 1, 2) in © analytische Funktionen be-
deuten, cpo(z) zv-lrt(z) und nach (7) go(r) rvr2(r), also g(r) in ©
analytisch. Nun zeigen wir, daB </(t) die gegebene Integralgleichung (16)
befriedigt. Wir wenden hierzu auf die mit r{v)z~x multiplizierte Glei-
chung (18) die Opération Iv an. Auf der linken Seite ergibt sich wegen (17)

r(2v) rvX f ~~ 22p-1 r(v + i) Yvy * '

Auf der rechten Seite erhalt man durch Vertauschung der Integrations-
reihenfolge und Verwendung der Reihendarstellung von ^j^

o
7

i o^ [2 ; ^ T(* - r)]

o

z

f
0

Z

also die mit J» r(|)/221'-1 /> + |) multiplizierte rechte Seite von
(16). Also lôst die durch (17), (18) und (19) definierte Funktion g(x) dièse

Integralgleichung. DaB g(x) stetig von f(z) abhângt, folgt aus der Stetig-
keit der Operationen (17), (18) und (19). Dies schliefit den Beweis von
Satz 11/ und damit von Satz IIv ab.
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Aus den Sâtzen Iv, IIv und IIIv folgt das Bestehen der zu 11.36), c) und
d) anahgen funktionalen Abbildungen fïïr die Lôsungen von (Dv).

2. Obertragung der Sâtze von Taylor und Runge

21. Mogliehkeit der Ubertragung

Es ist fur das folgende bequem, folgende Definitionen zu verwenden :

Es sei 0 eine lineare Mannigfaltigkeit von in einem Gebiete © definier-
ten Funktionen. Wir nennen ein System von Funktionen cpm (m 0, 1,

2,...)
a) eine Entwicklungsbasis bzw.
P) eine Approximationsbasis

in ©, wenn die beiden folgenden Bedingungen erfiïllt sind :

1. Jedes <pm gehôrt zu 0 ;

2. Jede Funktion <p e 0 kann

a) in eine in © lokal gleichmâBig konvergente Reihe

P

entwickelt werden bzw.
/S) in © durch ein lineares Aggregat

mpm
m=0

von endlich vielen Funktionen des Systems lokal gleichmaBig
approximiert werden.

Beispielsweise bilden fur die Klasse der analytischen Funktionen einer
Variabeln die Funktionen <pm zm eine Entwicklungsbasis in bezug auf
die Kreise um 0 und (nach dem Satz von Runge37)) eine Approximationsbasis

in bezug auf die Klasse aller einfach zusammenhangenden Gebiete.
Dièse Tatsachen kônnen mit Hilfe der Sâtze von 1. und kraft des folgenden

Lemmas (dessen Beweis unmittelbar aus der Définition der Stetig-
keit folgt) zur Aufstellung âhnlicher Sâtze fur die Lôsungen von (dv) aus-

genûtzt werden :

Eine lineare, eineindeutige und in beiden Richtungen stetige Funktional-
transformation filhrt Basen in Basen ûber. Unter 55B&sis" kann dabei so-
wohl „Entwicklungsbasis" als auch „Approximationsbasis" verstanden
werden.

87) Bieberbach, L., Lehrbuch der Funktionentheorie, Bd. I, 2 .Aufl., S. 296 f.
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22. Aufstellung einer Basis

Das soeben angefuhrte Lemma besagt, daB die beiden Funktionen-
systeme

<pm(z,z*) Qv[z™;z,z*]
und

Basen fur die Klasse der analytischen Lôsungen von (Dv) darstellen, und
zwar sowohl Entwicklungsbasen fur die Gebiete 5tx5l, wo 5t einen
Kreis um O bedeutet, als auch Approximationsbasen fur die Gebiete
© X ©, wo © € K. Es zeigt sich jedoch, daB sich nur das erste der an-
gefuhrten Système durch beKannte Funktionen ausdrucken lâBt. Wir
berechnen dièse Funktionen nicht konstruktiv durch Ausfuhrung der
Operationen (17), (18), (19) und (10), sondern direkter als gewisse Parti-
kulârlôsungen von (dv), von denen wir nachtrâglich zeigen, daB sie sich
fur z* 0 auf die Funktionen cvm zm (cvm ^ 0) reduzieren.

22.1. Bessel- Gegenbauersche Funktionen

Wird in die durch x r cos &, y r sin ê auf Polarkoordinaten
transformierte Gleichung (dv) der Ansatz u R(r) 0(ê) eingefûhrt, so

ergeben sich bei Durchfuhrung des iiblichen Separationsprozesses, wenn
als Separationskonstante die Zahl //(^ -f- 2v) (mit dem freien Para-
meter ju) verwendet wird, fur R(r) und 0(ê) die beiden gewôhnlichen
Differentialgleichungen

d2R 2v + 1 dR
dr2

"*
r dr~

und

Die erste Gleichung geht durch R(r) r~vP(r) in

dr* + r dr

also in eine Besselsche Differentialgleichung liber ; ihre allgemeine Lôsung
ist daher r-v!^v+tl(kr), wo 3v+/a eine Zylinderfunktion der Ordnung
v + fx bedeutet. Die zweite Gleichung geht durch Einfuhrung der neuen
Variabeln t cosê mit &(ê) T(t) ûber in

\)t dT p(p + 2v)
* dt ^ 1 *2dt* 1-t* dt ^ 1 -
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Hiervon ist eine Lôsung die durch

2v) L + 2v, -
J }

definierte Gegenbauersche Funktion, die sich fur nicht négatives ganzes
fjt m auf ein Polynom reduziert. Lôsungen von (dv) in Polarkoordi-
naten sind also die Funktionen

Setzen wir fur die Zylinderfunktion die Besselsche Funktion ein und
multiplizieren wir mit einer passenden Konstanten (damit die Funktion
fur k 0 oder v 0 nicht identisch verschwindet), so entsteht die
Funktion

oder, durch Normalkoordinaten und hypergeometrische Reihen ausge-
drûckt,

'ZZ*

(22)

Wir nennen die durch (21) oder (22) definierte Funktion Bessel-Gegen-
bauersche Funktion (B.-G.-Funktion) des Ranges39) v und der Ord-

nung fi. Sie ist fur die betrachteten Werte von v und fur beliebige [x als

Funktion von z und z* eindeutig und analytisch im Bereiche 6x6, wo
6 die lângs der negativen reellen Achse aufgeschnittene Ebene bedeutet.

Dort kann (zz*)**1 nâmlich durch die Vorschrift

| argz | <n \ arg z* | <n

eindeutig gemacht werden ; fur den hypergeometrischen Faktor folgt die

Behauptung aus dem Monodromiesatz, da man, wie eine leichte Rech-

38) Wegen CVQ (cos^) 1 ergibt sich hieraus insbesondere auch die Behauptung des

Lemmas in 12.2, dafi r~vNv(kr) eine Lôsung von (dv) ist.
89) Hobson, 1. c, bezeichnet in diesem Zusammenhang die Zahl p 2v + 2 als ,,rank",

Sommerfeldy Le, p 2v als Dimension der betreffenden Wellenfunktion.
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nung zeigt, bei der etwa von einem Punkte der positiv reellen Achse aus-
gehenden analytischen Fortsetzung mit der Variabeln

- (Vz - Vz*)2/(2Vzzï) in (g x (g

nicht auf einen der fur die 2FX kritischen Punkte 1 und oo stôBt.

Fur fx m 0,1,2,... ist40)

m \-m 1 1

[

J

so daB mit

cVfn=
2™+" J» r(2v + m){v + m) ^ 0)

auch gilt
r m 1—m àzz* ~]

*m \"~T' 9~;? *\2 [ k2ZZ*'

Ll—v—m J L

(23)

Da hier (z + z*)m2F1 ein Polynom ist, sind die Funktionen Fvm(z,z* ; k)
ganze Funktionen von z und z*. Wegen der aus (23) unmittelbar flieBen-
den Beziehung

Fvm(z,0;k) cvmzm (24)

sind dièse Funktionen proportional zu den gesuchten Funktionen cpm,

und es gilt

Satz IV. Die speziellen Bessel-Gegenbauerschen Funktionen

Fvm(z,z*;k) m 0,1,2,...
bilden fur die in z und z* symmetrischen, regulâren Losungen von (Dv)
(v 0 oder 9î^>0) eine Entwicklungsbasis in bezug auf die Oebiete

Six Si und eine Approximationsbasis in bezug auf die Oebiete © X ©, wo
Si einen Kreis um 0 und © ein Gebiet € K bedeutet.

Die Funktionen Fvm(z, z* ; k)\cvm sind, wie ebenfalls aus (23) ersehen

werden kann, auBerdem analytische Funktionen von v in jedem Gebiete
der y-Ebene, das die Punkte v — 1, — 2,... nicht enthâlt. — Meist
wird es nicht nôtig sein, bei den B.-G.-Funktionen die Abhàngigkeit von

40) Magnus und Oberhettinger, 1. c. S. 99. Die Formel folgt aus (20) durch eine quadrati-
sche Transformation der hypergeometrischen Reihe.

261



k besonders hervorzuheben. Wir schreiben dann sfcatt (21) und (22)
kurzer /*(r,#) bzw. l^(z, z*)41).

22.2 Besondere Fâlle der Bessel-Oegenbauerschen Funktion

a) Besondere Werte der Variablen. Aus (22) folgt

F;(z, z ; *) k-»-*z-"Jv+IA(lcz)

b) Besondere Werte des Ranges. Eine Kummersche quadratische
Transformation der hypergeometrischen Reihe42) ist

1 — cos êi
I

[

Man erhàlt hieraus durch geeignete Zusammenfassung der entstehenden
hypergeometrischen Reihen
fur v 0 :

l-ooe

fur r 1

[
1

41 DaÛ wir neben den Funktionen /v(r,^), die als Produkte zweier Funktionen je
einer Variabeln geschrieben werden kônnen, noch die scheinbar komplizierteren
Funktionen Fv (z, z*) einfûhren, hat seinen Grund darin, dafi im Polarkoordinatenraum die

den Punkten (z, 0) des Normalkoordinatenraumes entsprechenden Punkte fehlen. Mit
z rei&f z* re~^ folgt nâmlich aus z* 0, da e~*^ den Ausnahmewert 0 nieht
annimmt, r » 0 und damit auch z 0,

- *a) Kummer, F.f Cber die hypergeometrische Reihe, Journ. reine angew. Math. 15

(1836), S. 39—83, insbes. S. 77.
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also ist
j^(z, z* ; k) k-^J^kr) cos ^ #

Fi / * h) Jfefi J (ÎM sin

Fur v | ist

wo P^ die Kugelfunktion erster Art der Ordnung /u bedeutet ; insbeson-
dere erhâlt man fur p m 0, 1, 2,... das ra-te Legendresche Poly-
nom, und somit

Fi(z, z*;k) k-™-h-ïji+m(kr)Pm (cos^)

c) Besondere Werte der Ordnung. Fur /u 0 und ^ — 2v reduziert
sich die hypergeometrische Funktion (20) auf die Konstante 1 ; damit
ergibt sich unmittelbar

F"0(z,z*;k) (kr)-"Jv(kr)

Hieraus folgt insbesondere fur v ^

Fi (z z*-k)-VY 8i

kr

d) Besonderer Wert der Wellenzahl k. Fur k -> 0 reduziert sich der
Besselsche Anteil in (21) auf 1/2"+/* J> + /^ + 1), und es bleibt

+ ^ r o^costfj

23. Neumannsche Reihen

In diesem Abschnitt ist k 1 gesetzt.
Als (verallgemeinerte) Neumannsche Reihen werden in der Théorie

der Besselfunktionen Reihen von der Form
00

Zanz-»Jv+n(z)
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bezeichnet43). Hiefur k5nnen wir nach 22.2a) auch schreiben

Der folgende Hauptsatz ûber Neumannsche Reihen folgt (fur v 0

oder 9îv>0) leicht als Korollar zu den Sâtzen IIIv und IV :

Satz V. Jede in einem Kreise um 0 analytische Funhtion kann in eine

in jedem abgeschlossenen Teilbereich des Kreises gleichmâfiig konvergente
Neumannsche Reihe entwickelt werden.

Beweis. Es sei f(z) die zu entwickelnde im Kreise Si regulâre Funktion.
Dann gestattet die nach Satz IIIV in Six Si analytische Lôsung

©„[/;«, 2*] von (Dv)

nach Satz IV eine Entwicklung nach B.-G.-Funktionen ; z z* gibt
die Behauptung.

Der folgende Satz ist gelegentlich bei der Untersuchung spezieller
Funktionen ebenfalls niitzlich (vgl. 31.3).

Satz VI (Entfaltungssatz). Ist die Neumannsche Reihe

g{z) ZanFvn{z,z) (25)

in einem Kreise R konvergent, so konvergiert

in Si x5l und stellt dort die Funktion Ov[g ; z, z*] dar.

Beweis. Der stetige Operator &v kann auf die in jedem abgeschlossenen
Teilbereich von Si gleichmaBig konvergente Reihe gliedweise angewandt
werden. Es ist aber

0v[Fvn(z,z;k);z,z*]=Fvn(z,z*;k)

3. Anwendungen auf spezielle Funktionen

Die hier verwendete Méthode rechtfertigt einige allgemeine Bemerkun-

gen.
Mit Truesdell44) halten wir es fur wunschenswert, beim Studium spe-

43) Watson, 1. c, S. 522 f¥. Neumann betrachtete nur den Fall v — 0 ; die
Untersuchung des allgemeinen Falles geht auf Gegenbauer zurûek.

44) Truesdell, E., An Essay toward an Unified Theory of Spécial Functions,
Princeton 1948, S. 7, S. 157.
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zieller Funktionen mit môglichst allgemeinen Methoden zu arbeiten und
nicht jeden besonderen Satz mit einem besonderen Kunstgriff zu be-
weisen. Eine solche Méthode besteht beispielsweise darin, Funktionen
zu betrachten, die einer gewissen Funktionalgleichung genugen. Trues-
dell arbeitet in seinem Essay mit der sogenannten jF-Gleichung

dF
dt (t,oc)=F(t,oc + 1)

Es ist von Interesse, seine Méthode mit der hier verwendeten, Lôsungen
einer gewissen partiellen Differentialgleichung zu betrachten, zu ver-
gleichen. Der Anwendungsbereich der i^-Gleichung erstreckt sich, wie
ïruesdell gezeigt hat, uber eine weite Klasse spezieller Funktionen, und
die Méthode liefert dort eine groBe Zahl ubersichtlicher Resultate. Dafur
ist ihre Leistungsfâhigkeit im einzelnen beschrànkt45). Mit einer spe-
ziellen Gleichung wie (dv) wird dagegen der Anwendungsbereich natur-
gemâB eingeschrânkt ; dafur kann sich die Méthode in einzelnen Fâllen
als leistungsfâhiger erweisen.

Eine andere Méthode in der Théorie der speziellen Funktionen besteht
darin, den Betrachtungen eine Funktionaltransformation zugrunde zu
legen und von den Eigenschaften der Objektfunktionen auf die der Bild-
funktionen zu schlieBen. Das klassische Beispiel hiefïïr bildet die Méthode
der Laplacetransformation. Doetsch, Erdelyi, Tricomi und viele andere
Autoren haben gezeigt, wie dièse fur verschiedene Klassen spezieller
Funktionen oft in iiberraschender Weise nutzbar gemacht werden kann.
Auch unsere Méthode kann von diesem funktionalanalytischen Gesichts-
punkt aus verstanden werden. Die Transformation Qv (mit z* z) hat
beispielsweise die Eigenschaft, die Potenzen von z auf die Besselschen
Funktionen abzubilden.

Die anerkannten, ,,modernen" Beweise von Sâtzen uber spezielle
Funktionen46) erfolgen gewôhnlich unter strengem Verzicht auf jedes
Argument aus der Théorie der partiellen DifiEerentialgleichungen. Solche

Argumente werden hôchstens als heuristisches Prinzip gelten gelassen.
Nun ist zwar zuzugeben, daB es physikalische Autoren auf diesem Gebiet
gelegentlich an genûgender Strenge fehlen lassen47). Anderseits waren
aber die klassischen Autoren48) beim Aufstellen von Sâtzen liber spe-

45) Sie bietet, um nur ein Beispiel zu nennen, keine entscheidenden Vorteile beim Be-
weis der verschiedenen Additionstheoreme der Besselachen Funktionen.

48) Watson, 1. c. ; Whittaker und Watson, 1. c.
47) vgl. Sommerfeld, Jahresbericht der Dtsch. Math. Ver. 21 (1913), S. 309—353 und die

Kritik dieser Arbeit bei Carslaw, Proc. Lond. Math. Soc. (2) 13 (1914), S. 239.
48) zu denen wir etwa O. Neumann, Stokes, Rayleigh, Sommerfeld zâhlen.
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zielle Funktionen oft gerade durch ,,physikalische", das heiBt der Théorie
der partiellen Differentialgleichungen entstammende Vorstellungen in-
spiriert49). Wir hoffen, mit den nachfolgenden Beispielen den Naehweis
zu erbringen, daB es in einzelnen Fâllen weder trivial noch unmôglich ist,
solche tîberlegungen auf eine feste Basis zu stellen.

31. Bessel-Qegenbauersche Reihen spezieller Funktîonen

Gleichung (dv) kann in genau vier Koordinatensystemen, nàmlich in
cartesischen, parabolischen, elliptischen und Polarkoordinaten separiert
werden. Die entsprechenden Lôsungen sind bekannte Funktionen. Wir
geben im folgenden ihre Entwicklungen nach Bessel-Gegenbauerschen
Funktionen (B.-G.-Reihen) an, wobei wir uns im wesentlichen der beiden
folgenden Methoden bedienen :

A) Méthode der erzeugenden Funktion. Die zu entwickelnde Lôsung sei

F(z, z*). Man betrachtet die ,,erzeugende Funktion" der B.-G.-Reihe

nach den Sâtzen III und IV ist die B.-G.-Reihe dann gegeben durch

m=0 cm

wo cvm die S. 27 erklârte Bedeutung hat.

B) Entfaltungsmethode. Es sei von der zu entwickelnden Funktion fur
z* z die Neumannsche Reihe

fft-0
bekannt. Nach Satz VI ist dann

31.1. Cartesische Koordinaten

Der Bernoullische Ansatz ergibt die im ganzen (#,y)-Raum regulâre
Lôsung

*{x, y) (ky sin «)-*+* Jv^(ky sin «) eikx C08a (26)

49) Es wiederholt sich also hier, natùrlich in viel kleinerem Maûstabe, die Geschichte des
Dirichletschen Prinzips.

266



mit dem Separationsparameter oc. Wird x r cos#, y r sin# ge-
setzt, so wird u eine symmetrische Funktion von a und ê. In der B.G.-
Reihe ^

n=0
muB, da

nur durch den Faktor Gvn (cos) von # abhangt, aus Symmetriegranden
auch

«n Cvn (cos a) an

sein, wo a'n von a unabhângig ist. Zur Berechnung von an kann deshalb

a o gesetzt werden. Die erzeugende Funktion ist dann

«.

und es ergibt sich demnach ik ¦> n

a' =__ill

2* J» (ik)n (v + n)

so daB die gesuchte Entwicklung lautet

(kr sin oc sin 0)-"+* Jv_j(fcr sin a sin <&) eikr «" a cos *

2V r(v) Z (ik)n(v + n) Cvn (cos oc) Fn(z, z* ; k)

oder, wenn die B.-G.-Funktion durch Besselsche und Gegenbauersche
Funktionen ausgedrûckt wird,

(kr sin a sin 0)-"+i «/„ 1 (Jfcr sin a sin <&) ei1cr cosa cos*

^ 50) (27)

31.2. Parabolische Koordinaten

31.21. Werden in (dv) die durch

60) Watson, 1. c, S. 370, wo auch Spezialfàlle der Entwicklung angegeben sind. Die
Entwicklung wurde als Verallgemeinerung der Jacobi-Angerschen Entwicklung, in die aie fur
v — 0 und a 0 ùbergeht, von Oegenbauer angegeben. Physikalische Beweise fur ganz-
und halbzahliges v gaben Hobson und Sommerfeid.
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definierten parabolischen Koordinaten (|, rj) eingefuhrt, so geht die
Gleichung mit u(x, y) v(Ç, tj) liber in

Eine (im (x, î/)-Raum) ganze Lôsung dieser Gleichung ist, wie wir be-
haupten,

v(f, rj) (k Çrj)-v-% Mjl_ v__±{ik |2) Mj^ v_ _ ±(-i Je rj2) (29)
Mk ' 2 4 4ÏA; ' 2 4

WO

MKBA*) ^*-îiri\À + *~K;*\ (30)
L2A + 1 J

die Whittakersche konfluente hypergeometrische Funktion erster Art
ist51).

Wir weisen zunàchst nach? daB (29)* die Gleichung (28) befriedigt. Mit
#(|? yj) 3(£)H(rj) ergibt (28) bei Einfûhrung der Separationskonstan-
ten jbt fur S und H die beiden Gleichungen

drf rj drj

die sich, wenn neue unabhângige Verânderhche s ikÇ2, t — ~ ikrj2
und durch

neue abhângige Verànderliche X und F eingefuhrt werden, beide in die

Gleichung der Whittakerschen Funktionen

#W_ {_ J_ ,*__ 1- A2
W 0

4 '

s z2

transformieren, wo TT X bzw. Y, z s bzw. ^ und

"24
gesetzt ist.

Um weiter die Ganzheit von v(Ç, rj) als Funktion von x und y (oder,
was damit gleichwertig ist, als Funktion von z und z*) nachzuweisen,

61) Whittaker und Watson, 1. c, S. 337 f.
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bemerken wir zunâchst, daB sich die Faktoren zx+i in (30) mit dem Fak-
tor (k$r))~v~i in v(Ç,r]) wegheben. Die beiden Exponentialfunktionen
ergeben zusammen die ganze Funktion

Es bleibt noch das Produkt der beiden 1F1. Aus der Définition der para-
bolischen Koordinaten folgt

x + Vx2 + y2 1 V7+ Vz*)2
(32)

— x + Vx2 + y2 %(Vz — Vz*)2

Da jede tFx einzeln eine ganze Funktion ihres Argumentes ist, haben wir
nur zu zeigen, daB das Produkt

1

2A+ 1
1 1

2A+1
wurzelfrei ist. Der allgemeine beim Ausmultiplizieren der beiden Reihen
entstehende Summand ist aber von der Form

const {(Vz + V^*fn{V^~ Vz*)2m + (Vz + Vz*)2m(Vz - Vz*)2n}

oder mit n m + nf, nf ^ 0

const {(Vz+ Vz*){Vz- Vz*)}2m{(Vz + V^fnt + (Vz - Vz*)2n'}

const (z - z*)2m {z2nl + (2nzf) z2n'~2 z*2 H }

also wurzelfrei. Die Ganzheit ist damit bewiesen.

31.22. Zur Berechnung der Koeffizienten der B.-G.-Reihe

V(Z, Z*) V(f, fl) E <*nFn(z, »*)
n=0

bedienen wir uns der Méthode der erzeugenden Funktion. Es ist

oder wegen52)

L 2A+1 J L2A + 1 J

62) Whittaker und Watson, 1. c.
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V(z,O)=1F1\ 2, \FA ^
L2A+1 J L2A+1 JL2A+1 J L2A+1

hs
m! nf0 (2A+l)n »!

_-/ ifcz\"(K+A+|)B r-2A-n,A-K+i,-n;]
«fol 2 / TC!(2A+l)n3jP2[-A-K-n+!,2A+l J

mit "=0
"

°" \ 2 ; «! (2A + 1)B
3JP aL- A - « - w + J, 2A + 1 J

-

Es folgt also nach 31. A) (S. 32)

a"~ <~2 rW (2JH-1). ^T3^ '

wo die Argumente der 3.F2 der Ktirze halber weggelassen wurden. Die ge-
suchte Entwicklung lautet also, wenn noch gemâB (31) v durch X aus-
gedrûckt wird,

1 MK,X (ik f«) MK>x (- ik rf)

J

(33)

Werden die B.-G.-Funktionen als Produkte Besselscher und Gegen-
bauerscher Funktionen geschrieben und die parabolischen Koordinaten
gemâB der aus (32) folgenden Beziehungen

ri2 2rsin2 —

durch Polarkoordinaten ausgedrûckt, so lautet die Entwieklung 53)

68 Entwicklungen einer einzelnen Whittakerschen Funktion in Besselreihen wurden an-
gegeben von Abramowitz, J. Math. Phys. 29 (1951), S. 303—308; Buchholz, Math. Z. 53
(1950), S. 387—402; Karlin, J. Math. Phys. 28 (1949), S. 43—44; Tricomi, Ann. Mat.
Pura Appl. (4) 26 (1947), S. 141—175. In allen diesen Fâllen sind die Koeffizienten der
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(kr sintf)-2*-1 MK.X Uikr cosa ^\ MK,X (- 2ikr sin2-^

(i) "A"

31.23. Spezialfâlle54)

31.231. Wâhrend sich die gewôhnliche hypergeometrische Reihe vom
Argument 1, wenn sie konvergiert, gemâB der GauBschen Formel

2^[c J r(c-a) T{c-b) K }

stets durch P-Funktionen ausdriicken lâBt, ist bei der Reihe

Ta, b, c;l
[d, e \

soweit bis heute bekannt ist, dièse Darstellung nur môglich, wenn die Para-
meter gewisse Nebenbedingungen erfullen. Eine solche Nebenbedingung
ist beispielsweise

d=l + a — b, e= 1 + a — c (35)

und es ist in diesem Fall55)

^4 • (3«)

Die Bedingung (35) ist fur die in (33) auftretende (und, da abbrechend,
eo ipso konvergente) ZF2 im Falle k 0 erfùllt. Wegen56)

MOt7i(z) 2»e~ "*» r(X+ l)ziJx $iz) (37)

degeneriert dabei gleichzeitig die linke Seite zu einem Produkt Bessel-

Beihenentwicklungen nur entweder durch erzeugende Funktionen (wie bei Buchholz und
Tricomi) oder durch Rekurrenzformeln (wie bei Abramowitz und Karlin) definiert. Unsere
Entwicklung (33) dûrfte neu sein.

u) Spezielle Fâlle von Formeln mit vielen Parametern sind gewôhnlich nur dann von
Interesse, wenn sich dabei gleichzeitig mehrere der darin enthaltenen Funktionen auf
einfachere Funktionen reduzieren. Die hier angefûhrten Fâlle sind von dieser Art.

65) BaiUy, 1. c, S. 13 fi\ Reihen vom Typus 3F2> die die Bedingungen (35) erfullen,
werden als ,,well-poisedu bezeichnet.

6e) WhiUaker und Watson, 1. c.

271



scher Funktionen. Auf der rechten Seite ergibt (36)57)

0, n=2m+l,
(2m)! r(2X+l)

X) m!

Damit wird

(-le*)
m!

und man erhâlt die ebenfalls neue Entwicklung

y-

Xnto

oder mit Berûcksichtigung von (21) unter Verwendung von Polarkoordi-
naten

(kr sin*)-» JA (ir cos^ -^) Jx lier sin^ -|)

31.232. Wird in (33) der Grenzubergang Je -> 0 vollzogen, so ent-
steht auf der linken Seite wegen

2A+1 J w»=<> (2A+l)n n\

=0^! (2A+1)W

57) Bei der Anwendung von (36) muô vorûbergehend n durch n + e ersetzt und der
Grenzûbergang e —> 0 vollzogen werden.
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und

L2A + 1 J »=o n\ (2A + !)„"

das von (38) verschiedene Produkt

einer gewôhnlichen und einer modifizierten Besselschen Funktion. Auf
der rechten Seite ergibt sich unter Benutzung der GauBschen Formel (34)

(2A+1), L2A+1 J

Damit erhalten wir die Entwicklung

n!

sie kann unter Verwendung von Polarkoordinaten und 22. 3d) mit /u, 1

(was keinen Verlust an Allgemeinheit bedeutet) auch wie folgt geschrie-
ben werden :

(39)

Hievon ist der Spezialfall A 0

Jo (VTr cos|) J,

18 Commentarii Mathematici Helvetici 273



angefûhrt (aber nicht bewiesen) bei Truesdell58) ; aber auch die allge-
meine Formel (39) ist nicht neu, sondern ihrerseits ein Spezialfall der
Schlàflischen Potenzreihenentwieklung des Produktes zweier Bessel-
funktionen von nicht notwendig gleicher Ordnung59).

31.233. Im Falle k X + \ reduzieren sich die konfluenten hyper-
geometrischen Reihen in (30) auf 1, und es ist daher

Wegen der Eindeutigkeit der B.-G.-Reihe muB sich daher (33) auf die

Gegenbauersche Verallgemeinerung (Fall a 0 in (27)) der Jacobi-
Angerschen Reihe reduzieren. In der Tat erhalten wir mit 2 X + ^ v

a - 2" rM(n + V){V + ^"(2v)« (-»*)" F \-n,0,j-v-n;-]

2' r(v)(n + v)(2v)n{~^r

und damit wieder die bekannte Gegenbauersche Entwicklung

e~ikx
«==0

31.234. Produkte Hermitescher Polynôme. Fur Fur A — J bzw.

+ l und /c A + |+n, 7i 0, 1,2,... ist60)

Mn+h _j (*) -i=^

wo

das w-te Hermitesche Polynom bedeutet. Fiir die gleichen Werte der
Parameter reduzieren sich gemâB 22.2b) in den B.-G.-Funktionen die

Gegenbauerschen Polynôme auf trigonometrische Funktionen. Drûckt
man die parabolischen Koordinaten durch Polarkoordinaten aus und be-

achtet man / x n/e% \ rt/ \(m + v)r(2v + m)r(v)

58) Truesdell, 1. c, S. 2 ; die dortige Formel enthâlt einen Druckfehler.
69) Watson, 1. c, S. 148.
60) Magnus und Oberhettinger, 1. c, S. 105 f.

~ Neumannsehe Zahl { o\ â m I,
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so ergeben sich aus (33') die beiden speziellen B.-G.-Entwicklungen

He2n I 2 Vikr cos — I He2
\ * J

e-ikr cob* Hei U YWr cos ^\ Hein hv^ïk? sin

-i;(m-0

e-i»r co8* ^e2n+1

_ f—m, — n, A — m ;1 TJ2 '« ' Jm(*r

^\ He2n+1 (2 V^Wr sin ^\

aus deren erster fur n 0 wieder die Jacobi-Angersche Reihe hervor-
geht.

31.235. Produkte Laguerrescher Polynôme. Fiir A 0 ergeben sich
aus MK x(z) die Laguerreschen Funktionen im engern Sinn62)

die fiir /w m 0,l,2,... in die Laguerreschen Polynôme ùber-
gehen. Gleichzeitig reduzieren sich gemâB 22.2b) in der B.-G.-Entwiek-
lung die Gegenbauerschen Polynôme auf Legendresche Polynôme, und es

ergibt sich aus (33') die Entwicklung

e-ikr cos * _|\ Lfi (2ikr sin2 ^
3 2l-n-[t, 1 J J^ p

Sie beruhrt sich bei /à 0 mit der Gegenbauerschen Entwicklung (27),
wenn dort v ^, a 0 gesetzt wird ; ein Spezialfall, der iibrigens
schon vor Gegenbauer von Bauer63) gefunden worden war.

31.236. Obwohl sich dadurch keine bedeutenden Vereinfachungen
ergeben, sei wegen ihres physikalischen Interesses 64) schliefilich noch die
sich aus (33;) durch ê 0 ergebende Neumannsche Reihe einer einzel-
nen Whittakerschen Funktion angefuhrt. Wegen Cvn(\) (2v)Jn (oder

62) Magnus und Oberhettinger, 1. c, S. 124.
63) J. reine angew. Math. 56 (1859), S. 104—106.

u) Die Funktion z~ iMKi\{z) wird in der angelsâchsischenLiteraturals „Coulomb
Wave Function" bezeichnet ; sie hângt mit den Lôsungen der Schrôdingergleichung im
Falle des Coulombpotentials zusammen. Vgl. die Literaturangaben in der in 58) zitierten
Arbeit von Abramowitz.
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auch aus (33) mit Berûcksichtigung von 22.2a)) ergibt sich

(2 \
-j-j

Xnéo r*!(2A+l)

31.3 Elliptische Koordinaten

31.31. Durch Einfuhrung der durch

x h Cos £ cos rj

y h Sin | sin r\

(h — const) definierten elliptischen Koordinaten (I, i?) geht (dv) mit
u(xf y) v(Ç, ^)65) in die separierbare Gleichung

W W W ^j (Cos2 f ~cos2^v

uber. Sie ergibt mit dem Ansatz

fur S und H die beiden gewôhnlichen Differentialgleichungen

*2M ^r-(a- 2q Cos 2|) S 0 (40)

^ + 2v ctg ^ -^- + (a - 2q cos 2n) H 0 (41)

wo g J&2A2 gesetzt ist und a einen Separationsparameter bedeutet.
Ihre allgemeinen Lôsungen sind die sogenannten Sphâroidfunktionen.
Fur dièse Funktionen haben sich noch keine einheitlichen Bezeichnungen
eingeburgert und es sind noch nicht aile zu ihrer Théorie gehorigen
Grundprobleme abgeklârt66). Gut untersucht sind dagegen die Spezial-
fâlle v 0 und v 1, die auf Mathieusche Funktionen fuhren. Um
T^eitlâufigkeiten zu vermeiden, beschrânken wir uns auf dièse beiden
Falle. Wir verwenden in diesem Abschnitt durchgehend die Bezeichnungen

von McLachlan67).
65) Eine Verwechslung mit den Bezeichnungen von 31 2 ist wohl nicht zu befurchten.
68) Eine Ûbersicht uber die bis heute bekannten Resultate gibt J. Metxner, Klassifi-

kation, Bezeichnung und Eigenschaften der Sphâroidfunktionen, Math.
Nachr. 5 (1951), S. 1—18.

67 Theory and Application of Mathieu Functions, Oxford 1947.
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Wir befassen uns hier nur mit den in der ganzen Ebene regulâren
Lôsungen von (dv). Dièse Lôsungen miissen in rj notwendig periodisch
sein. Zu gegebenem q besitzt (41) (mit v 0) periodische Lôsungen mit
der Période 2n nur, wenn a gewisse diskrete Werte aQ9al9... ; bx, 62,...
annimmt. Die zugehôrigen Lôsungen werden mit cen(rj, q) bzw. sen(rj, q)
bezeichnet ; sie sind fur jedes q ganze Funktionen von rj und besitzen
Fourierentwicklungen der Form

ï) MVi"*» (2r
r=0

ï) 2JB%$»mn (2r + 1) r,
0r=0

in (2r + 2) i,, n 0, 1,...

wo die Koeffizienten A und £ wohlbestimmte (und wohltabulierte)
Funktionen von q bedeuten. Zugehôrige (das heiBt zu gleichen Werten
von q und a gehôrige) Lôsungen von (40) sind, wie man durch Variabeln-
transformation leicht sieht, die Funktionen

und
Sen(S9q) -isen(i£,q) n=l,2,...

Ganze Lôsungen von (d0) in elliptischen Koordinaten sind daher die Pro-
dukte

vn(x,y) =Cen(Ç,q)cen(ri,q) n 0,1,2,... (42)
und

Wn(%, y) 8en{£, q) sejrj, q) n 1, 2,... (43)

31.32. Wir berechnen die B.-G.-Entwicklungen dieser Funktionen
mit der Entfaltungsmethode (S. 266). Die Funktionen vn und wn mûssen
dabei gesondert betrachtet werden.

31.321. Entwicklung von vn(x, y). Auf y 0 ist rç 0 und daher

vn(x, 0) (7ew(|, g) cew(O, g) x A Cos £
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Die Neumannsche Reihe von Cen(Ç,q) kann auf elementarem Wege

gewonnen werden68) und lautet

q) Ce*n{}i'q) 1 (- l)r 4f^ (** Cos

,q) - ^nVi)
Der Entfaltungssatz (Satz VI) gibt unmittelbar

(44)

(45)

31.322. EntwicJclung der wn(x, y). Die Funktionen ^w(o;3 y) sind in
t^ und damit y ungerade und unterwerfen sich damit nicht den angegebe-
nen Entwicklungssâtzen iiber die Gleichung (d0). Dagegen ist die Funk-

eine bei y 0 regulâre in y gerade Lôsung von (dx). Zur Anwendung
des Entfaltungssatzes haben wir wieder zunâchst die Neumannreihe (mit
dem Parameter v — 1) von

zu gewinnen. Unter Anwendung elementarer Methoden68) findet man

n+2) J2r+2(MCos|)

und damit durch Entfaltung zunâchst fur ~wn(x, y) wegen 22.2b)

g) se2n+1(rj, q) ^ 2se2n+1{\n, q) ae2n+](0, q)

Bin(2r+

«) McLachlan, 1. c, 8. 158 f.
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Se2n+2

oo

,(*,?)¦

l)r 2t*

5e2n+2

+ 2).

4[se2B+2(0,g)]2

j^r (2r + 2) sin#
und hieraus wegen A Sin | sin rj r sin # fur wM (a;, y)

fit (£ a\

X f (- l)r£<22rB++11)«/2r+i(tr) sin (2r + 1) # (46)
0

X f (- lVB$;++VJîr+2(kr) sin (2r + 2) 0 (47)
r=0

Wir haben damit die vier bekannten Reihenentwicklungen (44), (45),
(46) und (47), die in der Théorie der Mathieuschen Funktionen gewôhn-
lich mit Hilfe der von diesen Funktionen befriedigten Integralgleichungen
(von Whittaker) bewiesen werden, aus unseren allgemeinen wellen-
funktionentheoretischen Prinzipien hergeleitet.

31.4. Polarkoordinaten

Da (Dv) gegenuber den Translationen zf z + f, «*' z* + f
invariant ist, ist mit der schon in 22.1 als Normallôsung in Polarkoordinaten

gewonnenen B.-G.-Funktion F^(z,z*) auch ^(z + C, z* +
eine Lôsung von (Dv). Setzen wir | arg f | <n voraus, so ist dièse Lôsung
in der Umgebung von z z* 0 regulâr und kann also daselbst in
eine B.-G.-Reihe entwickelt werden. Dièse Reihe kann als ein allgemeines
Additionstheorem fur Besselsche Funktionen angesehen werden ; sie ent-
hâlt, wie sich zeigen wird, als Spezialfâlle die Additionstheoreme von
Graf-Sommerfeld und von Gegenbauer sowie die sogenannten Multipli-
kationstheoreme.

Zur Entlastung unserer Formeln betrachten wir die Fàlle k 0 und
k 1, auf die sich der allgemeine Fall zuruckfuhren lâBt, gesondert.
Wir bedienen uns der Méthode der erzeugenden Funktion.

31.41. k 0. Aus der Définition (22) folgt
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— li.li + 2v; —

und die erzeugende Funktion ist daher

f, 0)

Unter Verwendung zweier quadratischer Transformationen der hyper-
geometrischen Reihe69) gewinnen wir hieraus

1+f; ajx 2 ' 2 '
«0+f)

(48)

Gliedweise Anwendung von ûv (mit k 0) ergibt die Entwicklung

(M)^+n+l)/ 2 \»
jjJ!n[z,z ,0)

oder in reeller Schreibweise, wenn wir in Anlehnung an Watson die geo-
metrisch leicht verstândlichen Abkûrzungen70)

S =V(z f)

cos ^
r cos # + C

einfiihren,

(49)

F(2v + fz)

Da (48) fur | z | < | C | analytisch ist, konvergiert dièse Entwicklung fiir
I 2 | < | f |, | «* | < | f | oder | r e±i& | < | £ | • Sie geht im speziellen

T
Fall /j, — 2i> und mit f —— in die bekanntlich fur beliebige Werte

von v gultige, gewôhnlich zur Définition der Gegenbauerschen Polynôme
benutzte Entwicklung

(1 — 2t cos 0 + t*)~* £tnCvn (cos ê) (51)

uber.

69) Kummer, 1. c. ^
70) Wa^on, 1. c, S. 360. Die Watsonschen Grôûen o> und y> sind identisch mit den unsri-

gen, wenn dort Z f, z r und g? n — # gesetzt wird. Zur geometrisehen Illustration

vgl. Fig. 28 von Watsons Treatise.
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31.42. k 1. Nach (22) ist die erzeugende Funktion von

gegeben durch

Wir berechnen die Koeffizienten ihrer Taylorreihe durch Multiplikation
der Taylorreihen der beiden Faktoren [(2+ C)C]^2^i un(l 0^1 > wobei
wir fur den ersten Faktor auf das im vorhergehenden Abschnitt gefun-
dene Résultat zuriickgreifen kônnen. Fur den zweiten Faktor ergibt eine
elementare Reihentransformation

1
F L

> + p + 1)O1L
L ^—J

J> + p + 1)O1L + ^"^ ' 4 J-nto ni rfr + /* + n

/

(» - m)! /> + /u + n + 1)

m=o *=M> w! A;! F(v + /i + k + m+l)

|/+ft 00

Damit ist die Taylorreihe der erzeugenden Funktion

*> + C,C;i)=C,*'i[2/>'''
z\w

(-1T
wo
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gesetzt wurde. Wird hierauf beiderseits Qv (mit k 1) angewandt, so

ergibt sich

*+: ;i) f !*£^o Ml

2v rw J- >ir(my)(2^_y
n=o "*!

oder in reeller Form (unter Verwendung der Bezeichnungen (48))

X S (- l)»(m + ^)f-M^m(O r-J^fr) C;(cos #) (53')

Dies ist die gesuchte Entwicklung in ihrer allgemeinsten Form. Sie kon-
vergiert mit (48) fxir | z | < | f |, | s* | < | Ç \ ; im speziellen Falle ju

m 0, 1, 2,... konvergiert sie, da (48) sich dann auf ein Polynom
reduziert, fur beliebige Werte von z und 2*. Wir leiten aus ihr im folgen-
den die verschiedenen speziellen Additions- und Multiplikationstheoreme
uber Besselsche Funktionen her.

31.421. Additionstheoreme von Gegenbauer. Die beiden Additions-
théorème von Gegenbauer sind aquivalent mit den Formeln71)

2TW f (-l^(m+v)C-vJv+m(C)r-Jv+m(r)Cl(cosê) (54)

und

(cos^?) (55)

Die erste dieser Formeln ergibt sich aus (53') durch (jl 0. Fur die
linke Seite ist dies eine Konsequenz von 22.2c), und auf der rechten
Seite ist, da in (52) nur der Term mit n 0 nicht verschwindet,

Die zweite Formel folgt aus (53;) durch ju, — 2v. Fur die linke Seite
ist dies ebenfalls évident aus 22.2c). Auf der rechten Seite ergibt sich
unter Verwendung der folgenden, leicht aus einer Formel von Watson
herzuleitenden Beziehung72)

71 Watson9 1. c, S. 363 fî. Wegen der scheinbaren Niohtûbereinstimmung in den Vor-
zeiohen vgl. Anmerkung 70).

72) Man setzte in Formel (1) von Watson, 1. c, S. 143, fi — — a, v — — a — k. Die
Formel lâfît sich leicht auch direkt beweisen.
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i (*) («) (~Y J-*+*-p(0 (~ l)"J-«-k (f) (* 0, 1, 2, (57)

mit v a, k m

(- l)m^_,-m(C) (58)

woraus (55) unmittelbar folgt.

31.422. Additionstheoreme von Graf und Sommerfeld. Mit den Be-
zeichnungen (49) lauten die genannten Additionstheoreme73)

/„(£) cos n v E (- l)mJ^+m(f Jm(r) cosmO (59)

und

J (60)

Man erhalt die erste Formel, wie dies fur die linke Seite sofort aus 22.2b)
folgt, aus (53') als Grenzfall v ->0. Unter Verwendung von (57) (mit
k m, a — /i) und unter Beachtung von

ergibt (52) '*)

- hm £ ^J (2.)B i

Beachtet man noch

+ 2y)

r(2v) m! m '

so ergibt sich damit aus (53') die zu (59) offenbar âquivalente Formel

oo / l)m e

m==o ^

78) Wat8on, 1. c, S. 359 ff. Wegen der Vorzeichen beachte man wieder 70).
74) Daû auf der rechten Seite von (53X) der Grenzûbergang gliedweise voUzogen wer-

den kann, folgt aus dem in 32. bewiesenen Satz VII.
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Eine zu (60) gleichwertige Formel flieBt aus (53') mit v 1. Auf der
linken Seite ergibt sich wegen 22.2b)

Auf der rechten Seite ergibt (52) wieder unter Benùtzung von (57) (mit
jfe m+l,a=—/* — 1)

-A* (n-
n+l

w+1/m+l\ (2\n£[ )(^i)^j

Wegen a> sin xp r sin ^ liefert nun (53') nach Multiplikation mit
(/* + l)rsin#, wenn noch ju + l dureh jn ersetzt wird, die zu (60)
gleichwertige Formel

31.423. Multiplikationstheoreme. In gleicher Weise, wie die Gegen-
bauerschen Additionstheoreme aus der allgemeinen Entwicklung (53) ab-
geleitet wurden, folgen die (im Prinzip von Lommel stammenden) soge-
nannten Multiplikationstheoreme aus einem allgemeinen Multiplika-
tionstheorem, das aus (53) durch die folgende spezielle Wahl der Para-
meter entsteht :

2==(A2-l)f, z* 0 (| P- 1 |

Auf der linken Seite von (53) entsteht so die Funktion

2'+* n* + +

76) Im Falle /i 0, 1, 2,... fâllt dièse Voraussetzung dahin.
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wâhrend sich rechts die B.-G.-Funktion reduziert auf

F(ti ntfliuf^(x 1) :, o, i) - 2,(r + m) r{v) r(m + 2v)

Nach Multiplikation mit (A Ç)v lautet die Entwicklung demnach jetzt

h y ' \

Fur \x 0 und ^ — 2i> ergeben sich hieraus wegen (56) bzw. (58)
und im zweiten Fall wegen

tFt\2v9 Vl l ~~ A21 [1 - (1 - A2)]- A"2"

die beiden bekannten Multiplikationstheoreme76)

und

32. Analytische Fortsetzung Mnsichtlich v

Die in 31. hergeleiteten Resultate liber B.-G.-Reihen spezieller Lôsun-

gen Uv(z,z*) von (Dv) sind insofern noch unbefriedigend, als abgesehen
vom Falle v 0 ihr Beweis auf den Bereich 5Rv>0 beschrânkt blieb.
Der folgende Satz gestattet, das Problem der analytischen Fortsetzung
der B.-G.-Reihe einer Funktion Uv(z, z*) hinsichtlich v auf die analytische

Fortsetzung der Funktion Uv(z, 0) zuruckzufxihren.

Satz VII. Es bezeichne 51 die Kreisscheibe \ z \<r, wo r eine feste
Zahl > 0 bedeutet, und es sei 31 ein die Punkte v -— 1, — 2,... nicht
enthaltendes Gebiet der v-Ebene, dessen Durchschnitt mit 9îv>0 nicht leer

ist. Es sei die Funktion Uv(z,0) in 51x51 analytisch in z und v, Dann
kônnendie (apriori nurin 9t^{9îï>>0} definierten)Glieder der B.-G.-Beihe

®AUv(z, 0)] U"(z, 2*) ZavnFvn (z, z*) (61)

analytisch in 91 hinein fortgesetzt werden, und die Reihe (61) konvergiert
in 51x51x51 lokal gleichmâfiig. Sie stellt deshalb dort die analytische
Fortsetzung der Funktion Qv[Uv(z, 0)] dar.

76) Watson, 1. c, S. 142.
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Wir beweisen zunâchst das folgende

Lemma. Es sei 0 < r' < r" und | z | «g rf, | z* | <£ r;. Da?m existiert
bei festem k eine in 9t Zo&aï gleichmâfïig beschrânkte Zahl m0, so dafî fur
aile m>m0

< 2K i»
r(v + m)

m r"m

wo mit v ~ vx + iv2 (vl9 v2 reell)

K

n\v2\

V r" J

gesetzt ist.

Beweis des Lemmas. Wir benutzen fur die B.-G.-Funktion die Darstel-
lung (23). Es ist eine einfache Polge aus einem bekannten Satz aus der
Théorie der Besselfunktionen77), daB zu jedem ve$l bei festem k ein
in 91 lokal gleiehmâBig beschrànktes m1 existiert, so daB, falls | zz* \ <r'2,
fur aile m>m1

v + m+ 1; 4—I < 2- (62)

Zur Abschâtzung der beiden ersten Faktoren in (23) gehen wir von (51)
aus. Indem wir dort t Vzz* r setzen und fur das Gegenbauersche
Polynom die in (23) fur k 0 enthaltene Darstellung benutzen, er-
gibt sich die fur | r | < ljrf giiltige Entwicklung

f \-m

(63)
auf die wir jetzt die Cauchysche Koeffizientenabschâtzung anwenden.

Es ist fur | r | l\r"

fm
\-m

1—v—m

rf \2
i--pr)

rr \2

und daher

-TZ*)]-" |

-tz)(1-tz*)

") Watson, 1. c, S. 44, Formel 1.
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Damit folgt nach Cauchy unmittelbar

r(v + m)
(z + z*)*)m Imi~T>

1 — v -

\ — m 4:ZZ*

2 ' (z + z*)2 K
m! /»

woraus sich in Verbindung mit (62) die Behauptung des Lemmas ergibt.

Beweis von Satz VII. Es sei

J7"(z, 0) 27 6£zm (64)

Mit Uv (z, 0) sind die Koeffizienten bvm in 91 und damit wegen avm b^/c!^)
nach der Bemerkung am SchluB von 22.1 die einzelnen Glieder von (61)
in 51x51x91 analytisch. Es sei rf <r"<rnr <r. Dann gibt es ein in91
lokal gleichmâBig beschrânktes m2, so daB fur m>m%

m\ r(v)
r(v + m) < 1

Wegen des Lemmas ist darum fur m>mo= Max (m1, m2) und fur

<2K m\r(v) rf/™< 2K
r(v + m)

Wegen der Stetigkeit von K (als Funktion von v) und weil mit (64)
00

auch 2J | bvm | r'!'m in 91 lokal gleichmâBig konvergiert, folgt damit die

absolute und lokal gleichmaBige Konvergenz von (61).
Auf Grund von Satz VII kônnen nun die Gûltigkeitsbereiche der in

31. abgeleiteten Schlusselformeln wie folgt angegeben werden :

(27): i>^_i,-2,,..;r,a,0beliebig;
(33'): 4A =5* - 2, - 3, - 4,... ; r, k, ê beliebig ;

(53'): 2*^-1,-2, ...; 2v + p # - 1, -2,... ; |re±w|<|C|

33. Bestimmte Intégrale

Die Ergebnisse der vorangegangenen Abschnitte fuhren auf zwei
Wegen unmittelbar zu bestimmten Integralen mit speziellen Funktionen
hin.

A) Die in 1. aufgestellten Operatoren ©v und Qv fuhren, auf spezielle
Lôsungen von (dv) angewandt, zu Integralbeziehungen fur dièse Lôsun-

gen;
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B) Man gelangt zu bestimmten Integralen mit Gegenbauerschen Poly-
nomen, die sich durch Besselfunktionen ausdriicken lassen, wenn man auf
die (reell geschriebenen) B.-G.-Reihen von 31. die bekannten Orthogo-
nalitâtsrelationen der Gegenbauerschen Polynôme78)

| 0, m ^p
J Cvm(coB <p) Cvp (cos q>) ain*v<pd<p VnT(2v + m) ,_.l 2^(v + m)m\[r(v)f >m==P (65)

anwendet.
Da nur die erste Méthode mit dem Thema dieser Arbeit unmittelbar

zu tun hat, fûhren wir nur dièse in einiger Vollstàndigkeit durch. Wir be-
schrânken uns dabei, da dies die ûbersichtlicheren Intégrale liefert, auf
den Operator &v. Fur die Méthode B) geben wir anhangsweise ein charak-
teristisches Beispiel.

33.1 Auswertung von 0V fur die Normallosungen von (dv)

33.11 Cartesische Koordinaten

Einsetzen der Lôsung (26) in (10) ergibt wegen

u

die Integralbeziehung

(x> 0) ~ 2"-i e

{k y sin oc^+iJ^ (k y sin a) e*** co8 a

0

Setzt man hier x 0, schreibt man

ky sin a Y ky cos a X
und ersetzt man v — \ durch v, so ergibt sich nach Multiplikation mit Y

o

Erteilt man hier dem freien Parameter X den Wert i Y, so ergibt dies das
bekannte Poissonsche Intégral

78) Bateman, H., On the inversion of a definite intégral, Proc. London Math. Soc.

(2) 4 (1906), S. 461—491, insbes. S. 472.
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Fur X 0 erhalten wir dagegen, wenn wir die 0F1 durch die ent-
sprechende Besselfunktion ausdriicken,

Y^lJv-l{Yain<p) ah

Dies ist ein spezieller Fall des ersten endlichen Intégrais von Sonine79).

33.12 Parabolische Koordinaten

Die Grundformel (10) liefert, auf die Lôsung (29) angewandt, unmittel-
bar

Uikr cos2 -|A MKt x (- 2ikr sin2 ^(1er sin tf)-2*-1 MK, x Ui

/ t2^r (cosi? + i«9i^i?cos9?)]-x-è-M"K,x(2^r (cos^ + i^in^ cosç?))

X

Angesichts der ausgiebigen Behandlung der Spezialfâlle der Whittaker-
schen Funktion in 31.2 begnûgen wir uns damit, die folgenden speziellen
Fâlle dieser Formel niederzuschreiben :

K 0 ergibt (vgl. 31.231)

[ (*r 00^4

0 4+ ;

r
1! 2

0

(Jcr sin w)21

der Grenzubergang i-> 0 ergibt (vgl. 31.232)

rcos2— rsm2—-LJ[^J22A+1;

r(2A+l)i)iW
o

79) TTa^on, 1. c, S. 373.
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Hier kônnen die Funktionen qFx selbstverstândlich durch Besselfunk-
tionen ausgedrtickt werden, was aber die Ûbersichtliehkeit der Formeln
nicht erhôht.

33.13. Elliptische Koordinateii

Man wird auf bemerkenswerte Volterrasche Integralgleichungen fur
Mathieusche Funktionen zweiter Art gefûhrt, wenn man &0 auf die
Fjmktionen v2n(x,y) und 0X auf die Funktionen w2n+1(x, y) von 31.3
anwendet und nachtràglich x 0 setzt80). Es ist, wie schon in 31.3
bemerkt, ^^ Q) ^^ q) ^^^ g) ^

m _ 8e'in+1(0,q)8e2n+1(S,g)

WO
x h Cos S (x) (66)

Wir haben vin(iy, 0) bzw. w2n+1(iy, 0) zu berechnen, wo y h8i
Aus (66) folgt

und deshalb
S{iy)

Ar Sin-|^

Nun ist aber nach bekannten Eigenschaften der Mathieuschen
Funktionen82) / \ / \li ^ + I, gj cc2n / - -|- + i i, q\

2K(|, - g)

80) Die Funktionen v2n+i unc^ ^£«+2 ©ignen 8icn hiefûr nicht, da sie auf x 0 ver-
schwinden.

81 Die Vieldeutigkeit geht in der Periodizitàt der Mathieusehen Funktionen auf.
82) MacLacMan, 1. c, S. 21 fî.
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In gleicher Weise findet man

ferner ist Sin 1 i -^—h ^ 1 + i Cos |. Damit erhâlt man aus

(6) bzw. (10) (mit v 1), wenn ailes durch elliptische Koordinaten

ausgedriickt und rj — gesetzt wird,

r> q) ce2n — q) (— l)nce2n(0, q){Ce2n($, — q)

q Sin | C
Vi [2 _ q (Sin2 ^ _ gin2 x)] Ce2n(x> _ q) Cos x

bzw.
2

o

0

33.14. Polarkoordinaten

Wendet man (10) auf die Funktionen F^(z, z* ; k) an, so ergibt sich
mit Z ^ (z + z*) + \ (z — z*) cos <p

Fl [v ; II {z~z*)2 sin2 <t\FV^z>z'k) sif; (z,z*- k)=r(vml
o

oder in reeller Form unter Verwendung von Polarkoordinaten, wenn
ailes durch Besselsche und Gegenbauersche Funktionen ausgedriickt
wird,

(*r)-' J^(hr) C; (cos «)
8

X J[fcr (cos & + i sin ê cos 9?)]~v e/v+ilt (i^* (cos $ + i sin # cos ç>))
o

X (Jcr sini? sin ç?)-*'+1Jv_1(^r sin ê sin 99) sin21'-1^ dç? (67)

Wegen der Schnitte in der 2-Ebene und in der 2*-Ebene von 0 bis — 00
mu8 hier im Falle /«^0,l,2,... ê ^ tz vorausgesetzt werden. Im

83) Oe(|, q) und Oe(£,—q) sowie Se(Ç,q) und £e(£,—^) verhalten sich zuein-
ander wie die gewôhnliche und die modifîzierte Besselfunktion.

M) Fur q->0 ist <7e2n(£, ?)-> Cos 2n{ und ^e2n+1(|, g)-> Sin (2n + 1)1 und die
beiden Integralgleichungen reduzieren sich auf triviale Identitâten zwischen trigonometri-
schen Funktionen.
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Falle | ê \ > -=- ist auBerdem der Integrationsweg in der 99-Ebene nicht

geradlinig, sondern so zu wâhlen, da8 dièse Schnitte gemieden werden85).

Im Falle # — ergibt (67) eine bekannte Formel von Rutgers86).Multi-

pliziert man (67) mit (kr)-f* und lâBt man dann k gegen 0 gehen, so ergibt
sich die ebenfalls bekannte Integraldarstellung87)

/(cos * + •'sin »cos ** sin2v'1<p d<p

o

der Gegenbauerschen Funktionen.

33.2. Anwendung der Orthogonalitâtseigenschaften der

Gegenbauerschen Polynôme

Wir geben fur dièse Méthode (Méthode B von S. 288), die bei den
B.-G.-Reihen von 31.1 und 31.3 auf bekannte Integralformeln fuhrt,
nur ein Beispiel. Aus (337) ergibt sich durch Multiplikation mit

Intégration nach & und Beachtung von (65)

fMK,xUikr cos2^-) MK,X (~ 2ikrsw.*

c • • •

wo ^F2 die gleichen Argumente wie in (33) hat. Dièse Formel vertritt fur
Produkte Whittakerscher Funktionen die Rolle des Gegenbauerschen
Intégrais bei Zylinderfunktionen88). Sie kann im Falle m 0 auch sehr

élégant mit Hilfe der Laplacetransformation gewonnen werden89). Die
den Entwicklungen (38) und (39) entsprechenden Spezialfalle dieser
Formel sind

fjx (kkr cos2 -|-) jdkr sin

85) Dies ist stets môglich, wie eine elementare Ûberlegung zeigt.
86) Watson, 1. c, S. 374, Formel 4. Auf der linken Seite dieser Formel fehlt der Faktor 2.
87) Magnus und Oberhettinger, 1. c, S. 99.
88) Watson, 1. c, S. 367.
89) Doetsch, O,, Théorie und Anwendung der Laplace-Transformation, Berlin

1937, S. 310. Das Intégral kann dann als Faltung geschrieben werden.
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und
n

r cos ^\ JaA (V¥r sin ~\ C£x+i(cos 0) si

2*n\ (2A + l)

Fur (69) hat im Palle m 0 auch Watson90) einen Beweis angegeben.
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