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Cohomologie modulo 2 des complexes
d’Eilenberg-MacLane

Par JEAN-PIERRE SERRE, Paris

Introduection

On sait que les complexes K (7, q) introduits par Eilenberg-MacLane
dans [4] jouent un réle essentiel dans un grand nombre de questions de
topologie algébrique. Le présent article est une contribution & leur étude.

En nous appuyant sur un théoréeme démontré par A. Borel dans sa
thése [2], nous déterminons les algébres de cohomologie modulo 2 de
ces complexes, tout au moins lorsque le groupe /7 posséde un nombre
fini de générateurs. Ceci fait I’objet du § 2. Dans le § 3 nous étudions le
comportement asymptotique des séries de Poincaré des algébres de coho-
mologie précédentes ; nous en déduisons que, lorsqu’un espace X vérifie des
conditions trés larges (par exemple, lorsque X est un polyédre fini, sim-
plement connexe, d’homologie modulo 2 non triviale), il existe une in-
finité d’entiers ¢ tels que le groupe d’homotopie z,(X) contienne un
sous-groupe isomorphe & Z ou & Z,. Dans le § 4 nous précisons les rela-
tions qui lient les complexes K (I7, q) et les diverses «opérations coho-
mologiques»; ceci nous fournit notamment une méthode permettant
d’étudier les relations entre i-carrés itérés. Le § 5 contient le calcul des
groupes =, .5(S,) et =, 4(S,); ce calcul est effectué en combinant les
résultats des §§ 2 et 4 avec ceux d’'une Note de H. Cartan et 'auteur
([3], voir aussi [14]). Les §§ 4 et 5 sont indépendants du § 3.

Les principaux résultats de cet article ont été résumés dans une Note
aux Comptes Rendus [9].

§ 1. Préliminaires
1. Notations

Si X est un espace topologique et G un groupe abélien, nous notons
H,(X,G@) le i-eme groupe d’homologie singuliére de X & coefficients
dans G ; nous posons H_(X,Q) = X7, H,(X, @), le signe ) représen-
tant une somme directe.
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De fagon analogue, nous notons H*(X, @) les groupes de cohomologie
de X, et nous posons H*(X,@) = 3¢, H{(X, Q).

Les groupes d’homologie et de cohomologie relatifs d’un couple (X, Y)
sont notés H,(X,Y ;G) et H'(X,Y; Q).

Nous notons Z le groupe additif des entiers et Z, le groupe additif des
entiers modulo ».

2. Les i-carrés de Steenrod

N. E. Steenrod a défini dans [12] (voir aussi [13]) des homomorphis-
mes :
Sq*: H(X,Y ;Z,) - H"*(X,Y ;Z,) (i entier > 0) ,
ol (X,Y) désigne un couple d’espaces topologiques, avec Y c X. Ces

opérations ont les propriétés suivantes?):

2.1. Sqtof* = f*o 8¢’ lorsque f est une application continue d’un
couple (X, Y) dans un couple (X', Y’).

2.2. 8¢*c 6 = 808¢, 6 désignant le cobord de la suite exacte de
cohomologie.

2.3. Sq¢¥(z-y) =X 1-: 8¢ (%) -8qg¥(y), x -y désignant le cup-produit.
2.4. Sq¢i(x) = «? si dim. x =1, Sq¢¥(x) =0 si dim. x<s.
2.5. Sq°(z) = =.
On sait que toute suite exacte 0 -4 — B — (C — 0 définit un opé-
rateur cobord 6: H*(X,Y ;(C) - H**(X,Y ; A). En particulier:
2.6. Sq* coincide avec I’opérateur cobord attaché & la suite exacte
0>2,>2,—>27,—>0.

On a donc une suite exacte :

Sal
2.7. ... >HWX,Y;Z) —>HVX,Y;Z,) > H"\(X,Y ; Z,)
- H" Y (X, Y ;Z,) > ...
3. Les i-carrés itérés

On peut composer entre elles les opérations S¢’. On obtient ainsi les
i-carrés itérés Sq'to 8q'*o...0 8¢ qui appliquent H"(X,Z,) dans le
groupe H"*+i1+---+ir(X 7). Une telle opération sera notée Sq’, I dé-
signant la suite d’entiers {i,,...,7,}. Nous supposerons toujours que

1) Ces propriétés sont démontrées dans [12], & I'exception de 2.3, dont on trouvers la
démonstration dans une Note de H. Cartan aux Comptes Rendus 230, 1950, p. 425.
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les entiers 4,,...,4, sont > 0 (ceci ne restreint pas la généralité, a
cause de 2.5).

Les définitions suivantes joueront un réle essentiel par la suite :
3.1. L’entier n(l) =1, +---+ ¢, est appelé le degré de I.
3.2. Une suite / est dite admissible si I’'on a :
Uy = 20,8 =205, ..., 0,y =21, .
3.3. Si une suite I est admissible, on définit son excés e(I) par:

e(I) = (i, — 295) + (b — 2¢3) + -+ -+ (4 — 2¢,) + %

“—‘—"&1—7:2—...“-1:T=21:1—n(1) B

Par définition, e(/) est un entier >0, et si e(l) = 0 la suite I est
vide (V’opération Sq’ correspondante est donc 1'identité).

4. Les complexes d’Eilenberg-MacLane

Soient ¢ un entier, /7 un groupe (abélien si ¢ > 2). Nous dirons qu’un
espace X est un espace K(II,q) si n,(X)=0 pour 7z£¢q, et si
7, (X) = II. On sait (cf. [4]) que les groupes d’homologie et de cohomo-
logie de X sont isomorphes a ceux du complexe K (1, q) défini de fagon
purement algébrique par Eilenberg-MacLane. Nous noterons ces groupes
H,II;q,Q) et Hi(Il;q,@), G étant le groupe de coefficients.

Pour tout couple (I7,q) il existe un espace X qui est un espace
K(I1,q) (cf. J.H.C. Whitehead, Ann. Math. 50, 1949, p. 261—263).
Soit X’ le complexe cellulaire obtenu en «réalisant géométriquementy
le complexe singulier de X 2); on sait que x,(X’) = #;(X) pour tout
¢ >0, donc X’ est un espace K(I1,q). Comme d’autre part on peut
subdiviser simplicialement X’, on obtient finalement :

4.1. Pour tout couple (I1,q) il existe un espace K(II,q) qui est un
complexe simplicial.

(Ici, comme dans toute la suite, nous entendons par complexe simplicial
un complexe K qui peut avoir une infinité de simplexes et qui est muni
de la topologie faible : une partie de K est fermée si ses intersections avec
les sous-complexes finis de K sont fermées.)

%) L’espace X’ est défini et étudié dans les articles suivants: 1) J. B. Giever, On the
equivalence of two singular homology theory, Ann. Math. 51, 1950, p. 178—191;
2) J. H. C. Whitehead, A certain exact sequence, Ann. Math. 52, 1950, p. 51—110
(voir notamment les n°8 19, 20, 21),
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b. Propriétés élémentaires des espaces K(/1, q)

5.1. Pour tout couple (I1, q) l existe un espace fibré contractile dont la
base est un espace K(II, q) et dont la fibre est un espace K(II,q — 1).
Rappelons ([8], p. 499) que ’on obtient un tel espace fibré en prenant
Pespace des chemins d’origine fixée sur un espace K(I1, q).
L’énoncé suivant est évident:

5.2. St X est un espace K(II,q) et si X' est un espace KT, q), le
produst direct X x X' est un espace K(II + IT', q).

Soit maintenant X un espace K(II, q), le groupe IT étant abélien (ce
n’est une restriction que si ¢ = 1). On a alors H (X,Z) =1I, d’ou
HY(X,II) = Hom (I1,II). Le groupe HY%(X,II) contient donc une
«classe fondamentale» » qui correspond dans Hom (17, IT) & D'applica-
tion identique de /7 sur /1. Soit alors f: ¥ — X une application continue
d’un espace Y dans P'espace X ; 1’élément f*(u) est un élément bien
défini de He(Y,II) et il résulte de la théorie classique des obstructions
(cf. S. Eilenberg, Lectures in Topology, Michigan 1941, p. 57—100) que
Pon a:

5.3. St Y est un complexe simplicial, f — f*(u) met en correspondance
biunivoque les classes d’homotopre des applications de Y dans X et les élé-
ments de H(Y, II).

(On trouvera dans [5], IV un résultat trés proche du précédent.)

Si Y est un espace K(I1’,q), on a HY(Y,II) = Hom (I1’,II), d’ou:

5.4. 8 un complexe simplicial Y est un espace K(II',q), les classes
d’homotopie des applications de Y dans un espace K(II, q) correspondent
biunivoquement aux homomorphismes de IT" dans IT.

6. Fibrations des espaces K (1, q) 3)
Donnons-nous un entier ¢, et une suite exacte de groupes abéliens :
0>4—->B->C—0.
6.1. Il existe un espace fibré E, de fibre F' et base X , ou F' est un espace
K(A,q), E un espace K(B,q), X un espace K(C,q), et dont la suite
exacte d’homotopie (en dimension: q) est la suite exacte donnée.

Soient Y un complexe simplicial qui soit un espace K(B,gq), X un
espace K(C,q) et f: Y — X une application continue telle que

for 7 (Y) =7, (X)

q
soit ’homomorphisme donné de B sur C (cf. 5.4).

8) Ces fibrations m’ont été signalées par H. Cartan.
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On prend pour espace E ’espace des couples (y, «(f)), ol ye¥, et
ou «(t) est un chemin de X tel que «(0) = f(y). L’espace E est rétrac-
tile sur ¥, c’est donc un espace K(B, q). L’application (y, a(t)) — a(1)
fait de E un espace fibré de base X (c’est une généralisation immédiate
de la Proposition 6 de [8], Chapitre IV). La suite exacte d’homotopie
montre alors que la fibre F' de cette fibration est un espace K(C,q);
plus précisément, la suite :

Tg41(X) > 7 (F) = 7y (B) > 7o (X) - 7y (F)
est identique & la suite exacte 0 -4 — B — (C — 0 donnée.

On montre de fagon tout analogue I’existence d’un espace fibré o :

6.2. L'espace fibré est un espace K(A4,q), la fibre est un espace
K(C,q — 1) et la base est un espace K(B, q).

De méme, il existe un espace fibré ou :

6.3. L’espace fibré est un espace K(C,q — 1), la fibre est un espace
K(B,q — 1) et la base est un espace K(4, gq).

§ 2. Détermination de 1’algébre H*(I7; q, Z,)

7. Un théoréme de A. Borel

Soient X un espace et 4 = H*(X, Z,) I’algébre de cohomologie de X
4 coefficients dans Z,. On dit ([2], Définition 6.3) qu’une famille (zx;)
(t=1,...), d’éléments de 4 est un systéme simple de générateurs de A
i

7.1. Les z, sont des éléments homogénes de 4,

7.2. Les produits =z, .%; ...%;, (5,<t,<---<i,72>0 quel
conque) forment une base de 4, considéré comme espace vectoriel sur Z,.

Nous pouvons maintenant rappeler le théoréme de A. Borel ([2], Pro-
position 16.1) qui est & la base des résultats de ce paragraphe :

Théoréme 1. Soit E un espace fibré de fibre F et base B connexes par
arcs, vérifiant les hypothéses survantes :

«) Le terme E, de la suite spectrale de cohomologie de E (a coefficients
dans Z,) est H*(B,Z,) Q H*(F,Z,) (c’est le cas, comme on sait, si
7, (B) = 0 et st les groupes d’homologie de B ou de F sont de type finz).

p) H(E,Z,) =0 pour tout 1>0.
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y) H*(F,Z,) posséde un systéme simple de générateurs (x;) qui sont
transgressifs.

Alors, si les y, sont des éléments homogénes de H* (B, Z,) qui corres-
pondent aux x; par transgression, H*(B, Z,) est U'algébre de polyndmes
ayant les y, pour générateurs.

(En d’autres termes, les y, engendrent H*(B,Z,) et ne vérifient
aucune relation non triviale.)

Nous utiliserons ce théoreme principalement dans le cas particulier o
H*(F,Z,) est elle-méme une algebre de polyndémes ayant pour généra-
teurs des éléments transgressifs z,, de degrés =,. Il est immédiat que
H*(F,Z,) admet alors pour systéme simple de générateurs les puissances
(2r)-emes des z; (1 =1,...,; r=20,1,...). Sia et r sont deux en-
tiers, désignons par L(a,r) la suite {2''a,...,2a,a}; d’aprés 2.4
on a 22" = 8¢ (z,), les notations étant celles du n® 3. Soient
alors t,e HY*'(B,Z,) des éléments qui correspondent par trans-
gression aux z, ; puisque les S¢* commutent & la transgression ([8], p. 457),
les éléments 2z{2" sont transgressifs et leurs images par transgression
sont les SqZ®i"(¢,). Appliquant le Théoréme 1, on obtient donc :

7.3. Sous les hypothéses précédentes, H*(B, Z,) est Ualgébre de poly-
ndémes ayant pour générateurs les SqX""(t) (1 =1,...; r=0,1,...).

8. Détermination de P’algébre H*(Z,; q, Z,)

Ona H'(Zy;q,%,) = 0 pour 0<i<gq, et HY(Z,;q,2Z,) = Z,. Nous
désignerons par u, 'unique générateur de ce dernier groupe.

Théoréme 2. L’algébre H*(Z,; q,Z,) est Ualgébre de polynomes ayant
pour générateurs les éléments Sq'(w,), ou I parcourt Uensemble des suites
admissibles d’excés <q (au sens du n° 3).

On sait que ’espace projectif réel & une infinité de dimensions est un
espace K(Z,,1); H*(Z,;1,2Z,) est donc l’algebre de polynémes ayant
u, pour unique générateur ; comme d’autre part e(l) <1l entraine que [
soit vide, le théoréme est vérifié pour ¢ = 1.

Supposons-le vérifié pour ¢ — 1 et démontrons-le pour ¢. Considérons
la fibration 5.1. Par hypothése, H*(Z,;q — 1,Z,) est l'algébre de
polynémes ayant pour générateurs les éléments z; = Sq’(u,_,), ou J
parcourt I’ensemble des suites admissibles d’excés e(J)<<q — 1. Nous
noterons s; le degré de I’élément z;; on a s; =q — 1 4+ n(J). Il est
clair que u,_, est transgressif et que son image par la transgression
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est u,. D’apres [8], loc. cit., 2, est donc aussi transgressif et v(z;) =
8¢’ (u,). Il s’ensuit que ’on peut appliquer 7.3 & la fibration 5.1, ce
qui montre que H*(Z,;q,Z,) est l'algébre de polynémes ayant pour
générateurs les éléments Sq“®7'" oS¢’ (u,), ou r parcourt I’ensemble des
entiers > 0, et J l’ensemble des suites admissibles d’exces <q — 1.
La démonstration du Théoréme 2 sera donc achevée si nous prouvons le
Lemme suivant :

Lemme 1. St a tout entier r > 0, et & toute suite admissible J =
{155 9%} d'excés <q — 1, on fait correspondre la suite :

I={2r~1'8J,...,28J,8J,j1,...,jk} s O’ll 8J=q—l+n(!]) ’

on obtient toutes les suites admissibles d’excés <<q wune fois et une seule.

Notons d’abord que s;—2j, = n(J) — 2j,+¢—1 =q—1—e(J)>0,
donc I est une suite admissible. Si r =0, ona I =J, d’oi e(l) =
e(J)<g—1; si r>0, ona e(l)=-ce(J)+ sy — 2j, =q — 1. Ainsi,
en prenant r =0 on trouve toutes les suites admissibles d’exces
e(I)<qg— 1, et en prenant >0 on trouve des suites admissibles
d’exces ¢ — 1.

Inversement, si I'on se donne une suite admissible I = {3,,...,¢,}
d’excés ¢ — 1, r et J sont déterminés sans ambiguité :

r est le plus grand entier tel que ¢, = 24,,...,4,_, = 21, ,
A (R

La suite associée au couple (r,J) est bien I car 'on a:
q—1=cel) =19 — 2t,.y + e(J) =1, — 20,4y + 2¢,,;, — n(J) ,

dott i, =n(J)+qg—1=s;, et 4, ,=28;,...,45, = 2'L.s,.
Le Lemme 1 est donc démontré.

9. Exemples

H*(Z,;1,Z,) est 'algébre de polyndémes engendrée par u, .
H*(Z,; 2,Z,) est’algebre de polynémes engendrée par :
Uy, Squ,, S¢S qtu,, ..., 8q2*Sq2* 1. .. §¢2Sqtu,, ... .

H*(Z,; 3,Z,) est’algebre de polynémes engendrée par :
ug, Sq?uy;, S¢*Sq?us, ..., Sq2"Sq2" 1. .. 8¢%us,, ...
Sqtus, S¢®Sqlus, S¢S Sq u,, ..., Sqg3-2"8q3-2" 1, .. 838 u,, . ..

Sq2*1...8¢28q us, ..., SqeF+ve" | Sgek+18¢2%-1 | Sq28qlu,,...
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10. Détermination de 1’algébre H*(Z;q, Z,)

Le cercle S, est un espace K(Z,1); ceci détermine H*(Z; 1,Z,).
Nous pouvons donc nous borner au cas ou ¢ > 2. Nous désignerons en-
core par u, l'unique générateur de H?(Z;q, Z,).

Théoréme 3. 8¢ q > 2, Ualgébre H*(Z; q,Z,) est Ualgebre de poly-
noémes ayant pour générateurs les éléments Sq'(u,) on I parcourt Uen-
semble des suites admissibles {i,,...,%,}, dexcés <q, et telles que
1, >1.

On sait que P'espace projectif complexe & une infinité de dimensions
est un espace K(Z,2); H*(Z;2,Z, est donc l'algebre de polynomes
ayant u, pour unique générateur; comme d’autre part e(/)<2 et
t,>1 entrainent que I soit vide, le théoréme est vérifié pour g = 2.

A partir de ]a on raisonne par récurrence sur ¢, exactement comme
dans la démonstration du Théoréeme 2. Il faut simplement observer que,
si ¢ > 3, les suites I dont le dernier terme est > 1 correspondent, par

la correspondance du Lemme 1, aux couples (r,J) ou le dernier terme
de J est >1.

Corollaire. Siv q > 2, Ualgébre H*(Z ;q,Z,) est isomorphe au quo-
tient de Ualgébre H*(Z,; q,Z,) par Uidéal engendré par les Sq’ (uy,) ou I
est admassible, d’excés <q, et de dernier élément égal a 1.

De facon plus précise, I’homomorphisme canonique Z — Z, définit
(grace & 5.4) un homomorphisme de H*(Z,; q,Z,) dans H*(Z;q, Z,),
et les théoréemes 2 et 3 montrent que cet homomorphisme applique la

premiere algébre sur la seconde, le noyau étant 1’idéal défini dans I’énoncé
du corollaire.

11. Détermination de ’algébre H*(Z, ;q,Z,) lorsque m = 2" h > 2

L’algebre H*(Z,,; 1,Z,) n’est pas autre chose que I’algebre de coho-
mologie modulo 2 du groupe Z,,, au sens de Hopf. Sa structure est bien
connue (on peut la déterminer soit algébriquement, soit en utilisant les
espaces lenticulaires) :

(’est le produit tensoriel d’une algébre extérieure de générateur u, et
d’'une algébre de polyndémes de générateur un élément v, de degré 2.
L’élément v, peut étre défini ainsi :

Soit 4§, l'opérateur cobord attaché a la suite exacte de coefficients
0 —Z, = Zoh+1 — Zyn — 0. Soit u; le générateur canonique de
HY(Z, ;1,%,); onaalors v. = 6, (u,).
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Si h était égal & 1, on aurait 4, = Sq¢', d’aprés 2.6; mais comme
nous avons supposé k > 2, §, différe de Sq* (on a d’ailleurs Sq(u,) =
u} = 0), Nous écrirons: v, = S¢}(u,), lorsque cette écriture ne pourra
pas préter & confusion.

Le raisonnement de [8], p. 457, montrant que les S¢* commutent & la
transgression, se laisse adapter sans difficulté & I'opération §,, et montre
ainsi que v, est un élément transgressif de H?*(Z,,; 1, Z,) dans la fibra-
tion qui a K(Z,,,1) pour fibre et K(Z,, 2) pour base. Comme
H*(Z,, ; 1,2, a pour systéme simple de générateurs le systeme :

Uy, v = Sgh(wy), SPSG(wa), - .., 8g*. .. 8PSGwy) ...

le théoréme 1 montre que H*(Z,;2,Z,) est 'algébre de polynémes
ayant pour générateurs les éléments :

Uy, Sqh (%), ..., 8q2% ... 828 ¢k (uy),... .

Ceci nous conduit & la notation suivante: si [ = {i,,...,7} est une
suite admissible, on définit Sgj(u,) comme étant égal & Sq’(w,) si
i,>1, et & Sg¢*...8¢"*8¢}(u,) si i, =1 (S¢}(u,) a le méme sens
que plus haut, autrement dit Sgj}(u,) = 6, (u;), u, désignant le généra-
teur canonique de H%(Z,;q,Z,)).

La détermination de H*(Z,,; q,Z,) se poursuit alors par récurrence
sur ¢, exactement comme celle de H*(Z,; q,Z,), & cela pres que les
S¢; remplacent les Sq’. On obtient finalement :

Théoréme 4. Si¢ q > 2, lalgébre H*(Z,;q,Z,), ow m = 2" avec
h > 2, est Ualgébre de polynomes ayant pour générateurs les éléments
8¢z (u,) o I parcourt Vensemble des suites admissibles d’excés <gq.

Comme les Sqi correspondent biunivoquement aux S¢’, on a:

Corollaire. H*(Z,,;q,2Z,) et H*(Z,;q,Z,) sont isomorphes en tant
qu’espaces vectoriels sur le corps Z,.
Le résultat précédent est valable méme si ¢ = 1.

12. Détermination de I’algébre H*(II; q,Z,) lorsque /I est un groupe
abélien de type fini

Le résultat suivant peut étre considéré comme classique :

Théoréme 5. Soient IT et IT' deux groupes abéliens, IT étant de type fing,
et soit k un corps commutatsf. L'algébre H* (Il + IT "+ q, k) est isomorphe
au produit tensoriel sur k des algébres H*(IT;q,%k) et H*(IT';q, k).
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Rappelons la démonstration: Soient X un espace K(II,q) et X' un
espace K(IT',q). L’espace X xX' est unespace K(IT 4 IT’,q), comme
nous ’avons déja signalé (5.2). Puisque I7 est de type fini, les groupes
d’homologie de X sont de type fini en toute dimension d’apres [8], p. 500
(voir aussi [11], Chapitre II, Proposition 8). Appliquant alors un cas
particulier de la formule de Kiinneth?), on a:

H*(X xX', k) = H*(X, k) @ H*(X', k) ,

ce qui démontre le Théoréme 5.

Comme tout groupe abélien de type fini est somme directe de groupes
isomorphes & Z et de groupes cycliques d’ordre une puissance d’un
nombre premier, le Théoréme 5 rameéne le calcul de H*(I1 ; q, Z,) aux trois
cas particuliers: Il =2, Il =2Zu, I =12, avec p premier 2.
Les deux premiers cas ont été traités dans les n°8 précédents et I'on sait
par ailleurs (cf. [8] et [11], loc. cit.) que H"(Z,,; q,Z,) = 0 pour n>0,
si m est un entier impair ; le troisiéme cas conduit donc & une algébre de
cohomologie triviale, et la détermination de H*(I[;q,Z,) est ainsi
achevée, pour tout groupe /I de type fini.

13. Relations entre les diverses algébres H*(II; q, Z,)

Dans ce qui précede nous avons traité indépendamment les cas I = Z,
II =2Z,, Il =2Z,,. 11 y a cependant des relations entre ces trois cas,
qui proviennent des fibrations du n° 6. Nous allons en donner un exemple :

Posons m = 2%, avec h > 1. Considérons la suite exacte

0~>Z—->%4—-2,—>0,

ou le premier homomorphisme est la multiplication par m. En appli-
quant 6.3 on en déduit I’existence d'une fibration ou l'espace fibré est
un espace K(Z,,q — 1), ou la fibre est un espace K(Z,q — 1) et la
base un espace K(Z,q). Soit u,, l'unique générateur du groupe
HeY(Z;q,Z,); I'image de u,_; par la transgression 7 est nulle, car sinon
HeY(Z_;q — 1,Z,) serait nul, ce qui n’est pas; puisque les S¢’ com-
mutent & la transgression, on a v(Sq'w,_,) = 0 pour toute suite I, et
comme H*(Z;q — 1,Z,) est engendré par les Sq'u,_,, il s’ensuit que
toutes les différentielles d, (r > 2) de la suite spectrale de cohomologie
modulo 2 de la fibration précédente sont identiquement nulles. Le terme
E_, de cette suite spectrale est donc isomorphe au terme E,, ce qui donne :

4) Ce cas particulier est démontré dans [8], p. 473.

207



13.1. L’algébre graduée associce ¢ H*(Z,;q — 1,Z,), convenable-
ment filtrée, est isomorphe a H*(Z ;q,Z,) Q H*(Z ; q — 1, Z,).

En particulier :

13.2. H*(Z,;q9—1,2,) e¢ H*(Z;q,2Z,) Q H*(Z;q — 1,2Z,) sont
tsomorphes en tant qu’espaces vectoriels sur le corps Z,.

On notera que 13.2 fournit une nouvelle démonstration du Corollaire
au Théoréeme 4. D’un autre c6té, il serait facile de tirer 13.2 des Théo-
rémes 2, 3, 4.

14. Les groupes stables; cas de la ecohomologie

-IT et G étant deux groupes abéliens, nous poserons?®) :
14.1. A4,(11,6G)=H, . ,IT;q,G), avec g>mn.

On sait (cf. [5] ainsi que [8], p. 500) que ces groupes ne dépendent pas
de la valeur de ¢ choisie, mais seulement de I7, G et n. Ce sont les «groupes
stables».

Le raisonnement du Théoréme 5 montre immédiatement que 'on a la
formule suivante (voir aussi [5]):

14.2. A,(IT+1T',0) = A,(II,¢) + A,(IT',@) pour tout n > 0.

On définit de facon analogue les groupes A"*(/1,G) = H"+4(Il;q, ),
avec q¢>mn. Les Théoréemes 2, 3, 4 permettent de déterminer ces groupes
lorsque G = Z,, et lorsque II =Z, Z,, ou Z,, avec m = 2*;

Théoréme 6. L’espace vectoriel A™(Z,,Z,) (resp. A™(Z,,,Z,), avec
m = 2%) admet pour base U'ensemble des éléments Sq'(u) (resp. Sq}(u)),
ow I parcourt Uensemble des suites admissibles de degré n .

(Nous avons noté  'unique générateur de A4°(Z,,, Z,)).
Par exemple, A9(Z,,Z,) admet pour base les six éléments :
Sq%u, S¢*Sq*u, S¢®Sq?u, S¢'Sq*u, Sq¢"S8¢*Sq'u, S¢S Sq'u .

Théoréme 7. L’espace vectoriel A™(Z,Z,) admet pour base I’ensemble
des éléments Sq'wu, ou I parcourt I'ensemble des suites admissibles dont le
dernier terme est > 1 et dont le degré est n.

Par exemple, A%(Z,Z,) admet pour base les trois éléments: Sq'°u,
S¢¥Sq*u, Sq¢’Sq*u.

5) La notation adoptée ici différe d’une unité de celle de [5].
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15. Les groupes stables; cas de 1’homologie

Pour passer des groupes de cohomologie modulo 2 aux groupes d’homo-
logie nous aurons besoin du Lemme suivant :

Lemme 2. Soient X wun espace, n un entier > 0. Supposons que

H,(X,Z) ait un nombre fini de générateurs, et que la suite :
Sqt Sqt
H'"\(X, Z,) > H"(X, Z,) > H* (X, Z,)

soit exacte. Posons N = dim. [H"(X, Z,)[Sq'(H" (X, Z,))].

Le groupe H,(X,Z) est alors somme directe d'un groupe fint d’ordre
impair et de N groupes isomorphes a Z,.

Pour simplifier les notations, nous poserons L, = H,(X, Z). D’aprés
la formule des coefficients universels®), on a, pour tout groupe abélien @,
une suite exacte :

0—->Ext(L,,,G4d)—H(X,G) —Hom (L,,G) -0 .
En appliquant ceci & G =Z, et & G = Z;, on obtient le diagramme :

0 —-Ext(L,,,2,) > H"(X,Z,) >Hom (L,,Z,) > 0

2 Py 1t v
0 - Ext(L,,,2Z,) - H"(X,Z,) - Hom (L,,Z,) - 0 .

D’apres la suite exacte 2.7, le noyau Q" de
Sqt: Hv(X, Z,) - H**\ (X, Z,)

est égal & I'image de y. Comme I'application ¢ est sur (d’aprés une pro-
priété générale du foncteur Ext), il s’ensuit que @ contient Ext(L,_,,Z,).
Soit d’autre part R I'image de Sq': H" (X, Z,) - H*(X,Z,). On
voit facilement (par calcul direct, par exemple) que toute classe de coho-
mologie fe R* donne 0 dans Hom(L,, Z,). Donc R” est contenu dans
Ext (L,_,,Z,).
Vu I'hypotheése faite dans le Lemme, on a donc:

Qn = R*» —= Ext (Ln_.la Z2) .

Ainsi I'image de y est égale & Ext(L,_,, Z,). Il s’ensuit que ’homo-
morphisme y est nul; compte tenu de la structure des groupes abéliens
a un nombre fini de générateurs, ceci montre que L, est somme directe
d’un groupe fini d’ordre impair et d’un certain nombre de groupes Z,.

8) Voir par exemple S. Eilenberg and N. E. Steenrod, Foundations of Algebraic
Topology, L., Princeton 1952, p. 161.
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11 est clair que le nombre de ces derniers est égal & la dimension de
Hom (L, , Z,) c’est-a-dire & N.

Théoréme 8. Le groupe A,(Z,,Z) est somme directe de groupes Z, en
nombre égal au nombre des suites admissibles I = {i,,...,1,}, ou ¢, est
paretow n(l) =1t +---+ 1, estégala n.

Nous allons déterminer ’opération Sq! dans A4*(Z,,Z,), de fagon a
pouvoir appliquer le Lemme 2.

Rappelons que 'on a Sq¢'S¢” = Sq*+! si n est pair, et Sq'Sq” =0
si n est impair. On tire de 1a :
si ¢, est impair

. . 0
1 U tk :[ . .
Sq (qu-Sq u) lqu,l‘i'l.”Sq"ku si ’1:1 est p&ir .

Soit alors B” (resp. C™) le sous-espace vectoriel de A"(Z,, Z,) engendré
par les Sq’(u) ou ¢, est pair (resp. impair). A"(Z,, Z,) est somme directe
de B et de C"; d’apres la formule écrite plus haut, Sq! est nul sur C" et
applique isomorphiquement B sur C"+!. La suite :

A"Y(Z,, Z,) E A™(Z,, Z,) ’1 A"+Y(Zy, Z,)

est donc exacte, et B" est isomorphe & A"(Z,, Z,)/Sq* A" (Z,, Z,).
Le théoréme résulte alors du Lemme 2, et du fait (démontré dans [8],
p. 500), que A,(Z,,Z) est un groupe fini d’ordre une puissance de 2.
On démontre de méme ;

Théoréme 9. Le groupe A,(Z,,Z), n>0, est isomorphe a A,(Z,,Z)
lorsque m est une puissance de 2.

Théoréme 10. Le groupe A,(Z,Z), n>0, est un groupe fini dont le
2-composant est somme directe de groupes Z, en nombre égal au nombre des
suites admissibles I = {i,,...,%}, ou i, est pair, 1,>1, et on n(l) =
ty+---+ 1, estégal a n.

Remarque. En comparant les Théorémes 7 et 8, on peut montrer que
A,(Z,,Z) est isomorphe & A4,(Z, Z,). De fagon générale, on conjecture
que A,(II,G) est isomorphe & A4,(G,II) quels que soient les groupes
abéliens G et IT; il suffirait d’ailleurs de démontrer le cas particulier
IT = Z pour avoir le cas général (compte tenu des résultats annoncés
par Eilenberg-MacLane dans [5], I1, ceci vérifie la conjecture en question
pour = 0,1,2,3).

Théoréme 11. Pour tout groupe abélien 11, le groupe A,(11,Z), n>0,
est un groupe de torsion dont le 2-composant est somme directe de groupes
1somorphes o Z,.
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Soient I, les sous-groupes de type fini de /7 ; puisque I7 est limite in-
ductive des IT_, le complexe K (II,q) est limite inductive des complexes
K(Il,,q), et on en conclut que A,(/I,Z) est limite inductive des
A,(Il,,Z) ce qui réduit la question au cas ou I7 est de type fini.

En utilisant la formule 14.2, on est alors ramené au cas des groupes
cycliques, qui est traité dans les Théorémes 8, 9, 10.

Remarque. Le fait que A,(I1,Z) soit un groupe de torsion résulte
aussi de [8], p. 500—501.

§ 3. Séries de Poincaré des algébres H*(IT; q, Z,)
16. Définition des séries de Poincaré

Soit. L un espace vectoriel, somme directe de sous-espaces L,, de dimen-
sion finie ; la série de Poincaré de L est :

L) = ¥=_, dim (L,)-t» . (16.1)

Lorsque L est de dimension finie, la série formelle précédente se réduit
& un polyndéme, le polynéme de Poincaré de L.

Soit II un groupe abélien de type fini, et prenons pour L 1’algébre
H*(Il;q,Z,) = 2 H"(Il; q,Z,). La série de Poincaré correspondante
sera notée &(I7; q,t). On a donc par définition :

I q,t) = Xy dim (H"(1T; q, Zy)) -t~ . (16.2)

De méme, nous noterons (I, t) la série de Poincaré de A*(I1, Z,).
D’apres le Théoréme 5 du § 2, on a:

SUT + 1T ;5 q,8) =9I ;q,t)-0(T ; q,1t) . (16.3)
D’apres la formule 14.2, on a:
I + IT', t) =9I, t) + 911, t) . (16.4)

On pourrait d’ailleurs déduire 16.4 de 16.3 au moyen de la formule
suivante (qui ne fait qu’exprimer la définition des groupes stables) :

9T, 1) = lim, 214, — 1

g> ¢

(16.5)

1%7. La série 9(Z,;q,t)

Soit d’abord L une algébre de polynomes dont les générateurs ont

pour degrés les entiers m,,...,m;,... . La série de Poincaré de L est
évidemment :
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L (?) :T-TTZI"E?"T‘ (17.1)

1

Compte tenu du Théoréme 2 du § 2, ceci donne :

T—— 1
?9(227Q2t) :e(l)!qm. (17.2)

Pour transformer cette expression, il nous faut calculer le nombre de
suites admissibles I, d’excés <q, telles que ¢ 4+ n(l) = n, ou n est
un entier donné. Or, soit I = {¢;,...,7,} une telle suite, et posons:
o =1y — 2%, ..., Op_y = 4y — 2%,, a, = t,. Par hypothese les o, sont
>0, 'ona 27_,a <qg— 1, etil est clair que les a; déterminent sans
ambiguité la suite /. La condition ¢ 4+ n(l) = n équivaut a

§=00‘i(2i“1)=‘”’—q .

Posons oy =¢q —1— 27 _,a,. On a alors J]_ o, =q — 1, et:
n=1+4 3_ 020 . (17.3)
On voit ainsi que les suites I vérifiant les conditions écrites plus haut
correspondent biunivoquement aux suites d’entiers > 0: {«,,..., o},

de somme ¢ — 1, qui vérifient 17.3.
Nous pouvons écrire 17.3 sous la forme suivante :

m=1 20 W2 2 2 e 2 (17.4)

ou 2! figure «, fois. Comme 7 _ o, =¢q — 1, il y aura en tout ¢ — 1
puissances de 2. Ceci montre que le nombre de suites I vérifiant les con-
ditions écrites plus haut est égal au nombre de décompositions de » de la
forme :

n=1-42Mm 4 2% ... 2rgvec hy =h,>---=h,, >0 . (17.5)
D’out:

1
Théordme 1. 9(Z,;q,6)= | |

R hg—
Ry B . 2 ligeg 20 1 — 2"+ +2he14a

Pour ¢ =1, la famille des A, est vide, et le Théoréme redonne la
série de Poincaré de H*(Z,;1,Z,):

17.6. §(Z,; 1,1) = 1)(1 — ¢).

Le Théoréme 1 donne également la valeur de #(Z,,; q,t) lorsque m
est une puissance de 2. En effet, d’apres le Corollaire au Théoréme 4 du

§2,ona:
D Zms;q,t) =0Zy;q,t) si m=2k, (17.7)
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18. La série #(Z;q,1t)

Si ¢g =1, on a évidemment 9(Z;q,?) = 1+ t. Nous pouvons donc
supposer ¢q = 2.

On raisonne alors comme au numéro précédent. La condition 7,>1 du
Théoréme 3 du § 2 équivaut & «,>1, ou encore & h, = h,. La condi-
tion 17.5 doit donc étre remplacée par la suivante :

n=14+ 20 4 2% 4 ok 4 ... 4 9k | (18.1)

ou encore :
no=1- 2+t 4 ok 1 ... 1 ohg-1 (18.2)

d’ol1, en renumérotant les h;, le résultat suivant (valable si ¢ > 2,
rappelons-le) :

1
Théoréme 2. H(Z;q,t) = k,>h2Eq_2>o T CYr T el
En comparant les Théorémes 1 et 2 on voit que 9#(Z; g, t) ne differe
de 9(Z,; ¢ — 1, t) que par I’omission des termes correspondants a h, =h,.
Or ces derniers définissent justement #(Z;q—1,t), comme on I'a vu
plus haut. On a donc:

Corollaire 1. 9(Z;q,t) = 0(Zy;q — 1,0)/0(Z;q— 1,1) .

En itérant, on obtient :

Zy; 9 — L,t)- 3 (Zy;9 — 3,0). ..

V2o q—2,)0(Zy; q — 4,8) ...
Remarque. On peut retrouver les résultats précédents d’une autre

facon : en utilisant 13.2, on démontre d’abord le Corollaire 1, puis on en
tire par récurrence sur ¢ le Théoréme 2.

Corollaire 2. ¥(Z;q.t) =

19. Les séries 9(Z,,t) et 9(Z,1t)

D’apres le n° 17, la dimension de A"(Z,, Z,) est égale au nombre des

suites d’entiers > 0: {oy,...,a}, telles que:
n=X_,0-(20—1) . (19.1)
En comparant avec 17.1, on obtient :
Théoréme 3. 9(Z,,¢) = lso1 1—:_—%{; :

D’aprés 17.7, on a:

VZy,t) =0(Zy,t) si m=2", (19.2)
Le Corollaire 1 du Théoréme 2, joint a la formule 16.5, donne I'identité
suivante : 3Z, 1) = I Zy, )1 + 1) . (19.3)
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D’ou:

1 ®© 1
Théoréme 4. ¥ (Z,t) = T | |i=2 TR

20. Exemples

$(Zy; 2,8) = 1J(1 — 13)(1 — 3)(1 — £5) (1 — ) (1 — #27). ..
=14 82+ 8 4 14 + 25 + 20 + 267 ++ 368+ 415 + 4410 + 5411 4 G412
+ 6113 814 8415 | ..

(Z;3,1)=1/(1 — 3)(1 — 5)(1 — ) (1 — ¢17). ..
___..._1+t3+t5+t6+t8+2t9+t10+t11+2t12+t13
4 281 4 3415 4 .,

& (Zy, t) = 1J(L.— ) (1 — B3)(1 — £7)(1 — t19) ...
= 1t £2+4 263 + 244 + 245 + 38 + 447 + 448 + 51 + 6410
b 611 7412 8413} Qg8 | 1145

$(Z,8) =11 —e)(1 —#)(1 — )1 —15)...
=124 83 4 13 + 15 4 20 4 247 + 248 + 3174 3410 4 3411
4812 4418 | 514 | 6415 ...

21. Convergence des séries ¢(I1; q,1)

Théoréme b. Lorsque I est un groupe abélien de type finz, la série en-
tiere 9(1l;q,t) converge dans le disque |t|<<1.

D’aprés les formules des numéros précédents, il suffit d’établir ce
résultat pour II = Z,. Dans ce cas, il nous faut voir que la série :

h hg—
th _—— i t2 1+...+2'11+1,
1Zhe=. .. kg 120

converge dans le disque |¢|<1, ce qui résulte immédiatement du fait
qu’elle est majorée par la série ¢-(3,_, t")4 L.

La singularité «dominante» de #(I7;q,t) sur le cercle [t| =1 est
t = 1; nous allons étudier le comportement de #(I7;q,t) au voisinage
de cette singularité. Il est commode pour cela de prendre comme nouvelle
variable x = — log, (1 — ¢), et comme nouvelle fonction log,?#, log,
désignant comme d’ordinaire le logarithme & base 2. En d’autres termes,
nous posons :

¢(I1;q,x) =log,#(Il;q,1 —27%), O0<La<+ o0, (21.1)

et nous sommes ramenés & étudier la croissance de ¢(I7; q, ) lorsque
x tend vers -+ co. Nous envisagerons d’abord le cas I = Z,.
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22. Croissance de la fonction ¢(Z,; q, z)

Théorédme 6. Lorsque x tend vers + oo, on a @(Z,;q,x) ~ 2%q !
(Rappelons que f(x) ~ g(x) signifie que lim. f(x)/g(x) = 1.)
Nous démontrerons ce théoréme par récurrence sur q. Lorsque g¢=1,
on a #(Z,;q,t) =1/(1 — 1), dou ¢(Zy;q,7) = .

Supposons le théoreme démontré pour ¢ — 1 et démontrons-le pour q.
Pour simplifier les notations, nous écrirons 9 (f) au lieu de ¥(Z;; ¢, ¢)
et ¢,(x) aulieude ¢(Z,;q, ).

Nous introduirons les fonctions auxiliaires suivantes :

o= TT .

hi>he>. .. hg_y>0 1 __ehireheq . yohe-1
@d(z) = log, 92 (1 — 2—=) ,

1
=TT -

hi=he>...hg1>0 1— t2h1+1+--v+2h¢1-—1+1 :

Les inégalités évidentes :
ohitl 4 4 kgt > 0k Ly 9 4] > 2k ... 2her
entrainent les inégalités :
P(t) <0, (8) <) pour 0<LE< (22.1)

Mais par ailleurs &, (¢) ne différe de 9)(f) que par les facteurs correspon-
dants & h, , = 0, c’est-a-dire par ¥,_,(¢). On a donc:

9y () = 93(6)/ By (B) . (22.2)
En comparant 22.1 et 22.2, on obtient :
PV (t) <D (8) <OY(E)  pour 0 <E<T . (22.3)

d’ol, en prenant les logarithmes :

P () — @1 (?) < (@) < gg(x)  pour 0L a<foo. (22.4)

Si I'on savait que ¢)(x) ~ x4q!, on aurait () — @, (%) ~ 29q!
(car, d’aprés I’hypothése de récurrence, ¢, ,(x) ~ a2 (g — 1)!), d’ou
?,(z) ~ gb(x) ~ a%g |

Nous sommes donc ramenés & prouver que ¢)(x)~ x%q! Pour cela,
substituons ¢2 & ¢ dans 9%(f). On obtient visiblement #9(:2) = &;(f)
= 99(t)/¥,_,(t), d’oli, en prenant les logarithmes :

93 (%) = @1 (%) + gy(w — 1 — log, (1 — 2771 . (22.5)
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Lorsque « tend vers + oo, log, (1 — 2—=-1) tend vers 0 par valeurs
inférieures. Pour tout ¢>0, on a donc, pour « assez grand :

Prx — 1)+ @1 () < gp(x) < gd(x — 1+ &) + @, () . (22.6)

D’apres I’hypothése de récurrence ¢,_,(x) ~ 247Y/(¢q — 1) !; donec, pour
tout ¢ >0, on a, pour « assez grand :

(1—&)-atiflg — ) <gpa(@) <(L+ &)t Yg—1! . (22.7)
En combinant 22.6 et 22.7 on obtient :
golx — 1) + (1 — &)-a2Y(g — 1) ! <o) < gg(x — 1+ &)
+ (14 &)attf(g — 1)1
Or, il est bien connu que I’équation aux différences finies :
f@) =f(x — 1) + A-227Y(¢ — 1) !

admet une solution de la forme F(x) = 4-29q! + R(x), ou R(x) est
un polynéme de degré <¢q. En outre, si une fonction continue g vérifie

glx) <gxe — 1)+ 4.2 (g —1)!,

il est clair qu’il existe une constante K telle que g(x) < F(z) + K. On
a un résultat analogue en remplagant < par >.

Appliquant ceci & la fonction ¢)(x), on conclut a 'existence de deux
polynémes R’ et R”, de degrés <gq, tels que I’on ait, pour x assez grand :

14+ ¢

1—-—6.

(1—¢)-29q! + R () < ¢Y(x) < xllg! + R (x) .

Comme ¢ et & sont arbitraires, les inégalités précédentes entrainent
que lim. ¢ (x)/(x%/q!) = 1, ce qui achéve la démonstration, d’aprés ce
qui a été dit plus haut.

23. Croissance de la fonetion ¢(I7;q, x) lorsque /7 est de type fini

Théoréme 7. ¢(Z,,;q,z) ~2%q! si m est une puissance de 2.
En effet ¢(Z,,;9, %) = ¢(Z4,;q, x) d’aprés 17.7.

Théoréme 8. ¢(Z;q,x) ~ 2 Y(q — 1)!

Pour ¢ = 1 on vérifie directement que ¢(Z;q, ) tend vers 1 lorsque
x tend vers + oco. Pour ¢ > 2, ona

HNZ;q,t) =0(Zy;9 — 1,00 Z;q9 —1,1) ,

216



d'ot ¢(Z;q,%) = @(Zy;9q—1,2) —@(Z;q— 1,x) et le Théoréme 8
résulte de la, par récurrence sur q.
En combinant les Théorémes 6, 7, 8 on obtient :

Théoréme 9. Soit IT un groupe abélien de type fini, somme directe d’un
groupe fini d’ordre impair, de r groupes cycliques d’ordre une puissance de
2, et de s groupes cycliques infinis.

a) St r>=1, ona o(Il; q,x) ~r-29q! ,
b)Si r=0e s>=1, ona p(l;q,x) ~s-227Y(g —1)! ,
c) S r=0¢e s=0, ona ¢(ll;q,x)=0.

Remarque. A c6té des ¢(I1;q,x) on peut définir
eI, x) = log, 3 (11,1 — 2-%) .

On montre facilement que ¢(Z,, ) ~@(Z,; 2, z) ~ 2?/2, d’ou égale-
ment ¢(Z, x) ~ x2/2. Mais j’ignore si ces résultats ont une application
topologique analogue au Théoréme 10.

24. Application topologique
Nous nous proposons de démontrer le théoréme suivant :

Théoréme 10. Soit X un espace topologique connexe par arcs, stmple-
ment connexe, et vérifiant les conditions suivantes :

1) H,(X,Z) est un groupe abélien de type fini pour tout +>0,

2) H,(X,Z,) =0 pour i assez grand,

3) H,(X,Z,) # 0 pour au moins un 1 # 0.

Il existe alors une infinité d’entiers v tels que le groupe d’homotopre
n,(X) contienne un sous-groupe isomorphe a Z ouw a Z,.

(On notera que les conditions 1 et 2 sont vérifiées d’elles-mémes si X
est un polyédre fini.)

Remarquons tout d’abord que d’aprés [8], p. 491 (voir aussi [11],
Chapitre III, Théoréme 1) la condition 1 entraine que x,;(X) soit un
groupe de type fini pour tout ¢. La propriété «x,(X) contient un sous-
groupe isomorphe & Z ou a Z,» équivaut donc a la suivante «x,(X) &® Z,
# 0». Soit j le plus petit entier >0 tel que H,(X,Z,) # 0. D’aprés
[8], [11], loc. cit., n;(X) ® Z, = H,(X,Z,) # 0. En outre, ona j > 2
puisque =, (X) = 0.

Raisonnons alors par 1’absurde, et supposons qu’il existe un plus grand
entier ¢ tel que #n,(X) ® Z, % 0. On a évidemment ¢ >j > 2. Nous
poserons [l = xz (X).
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Nous allons obtenir une contradiction en étudiant les propriétés des
espaces (X,?) obtenus en tuant les + — 1 premiers groupes d’homo-
topie de X (au sens de [3], I, voir aussi [11] et [14]). Rappelons que par
définition on a x.(X,i) =0 pour r <, n(X,?:) = x(X) pour
r>=1.

Considérons d’abord l'espace T' = (X, ¢ + 1). D’apreés les hypothéses
faites, on a #,(7) ® Z, = 0 pour tout r, d’'out H,.(T,Z,) = 0 pour tout
r>0 d’apres [8], [11], loc. cit.

Venons-en & l'espace X, = (X, q). D’apres [3], I, X, a méme type
d’homotopie qu’'un espace fibré X, de fibre 7' et de base un espace
K(n,(X),q) = K(II,q). En appliquant alors un résultat connu ([8],
p- 470), on obtient :

H\(X,,Z,) = H(X,, Z,) = H(IT ; q, Z,) pour tout ¢ > 0. (24.1)
Sil'on désigne par X () la série de Poincaré de H* (X, Z,), on a donc:
X, () =90I;q,t) . (24.2)

De fagon analogue, soit X,(t) la série de Poincaré de H*(X,, Z,)7),
avec X, = (X, ¢). On sait (cf. [3]) que X, est un espace fibré de base
X, et de fibre un espace K(z,_,(X), g — 2). Les séries de Poincaré des
algebres de cohomologie modulo 2 de ces trois espaces vérifient donc la
relation :

Xq(t) < X __1(t)"i9(7tq__1(X) 4 — 2’ t) ’ (24‘3)

ou le signe < signifie que tous les coefficients de la série formelle écrite
a gauche sont inférieurs aux coefficients correspondants de la série for-
melle écrite & droite. De méme :

Xq—-l (t) < Xq—z (t) ’ﬁ(”q—Z(X) q — 33 t)
..... (24.4)
X3(t) < Xy(t)-d(my(X);1,¢) .

On a évidemment X,(t) = X (¢), série de Poincaré de H*(X, Z,), qui
se réduit d’ailleurs & un polynéme, vu les hypothéses 1 et 2. Multipliant
les inégalités précédentes, on obtient :

M5 ¢, 1) = X, ()< X T Tom(X);6—1,1) .

1<i<g
A fortiort, la méme inégalité vaut pour les fonctions définies par les

) On a le droit de parler de ces séries de Poincaré parce que les groupes d’homologie
des X, sont de type fini (puisqu’il en est ainsi des groupes d’homotopie, d’aprés I'hypo-
thése 1).
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séries précédentes dans l'intervalle [0, 1]. Comme X (¢) est un polynéme,
X (2) est borné sur [0, 1] par une constante &, et I’'on a :
HIT;q,0) <h- T 0@(X);i—1,0), 0<i<l.

I<i<q
En passant aux fonctions ¢(I7;q, z), I'inégalité précédente devient :

pIT;q,2) <log, h + X 9@ (X);7 —1,2) , 0 <x< + 00.(24.5)

Par ailleurs, d’aprés le Théoréme 9, ¢(Il;q, x) équivaut, soit a
r-x%q! avec r =1, soit & s-2271(g — 1)! avec s> 1 (le cas c) du
Théoreme 9 étant écarté par ’hypothése II ® Z, +# 0), alors que les
@(r;(X);¢ — 1, x) sont majorés par A-z*1(i — 1)!, ou 4 est une
constante. Comme ¢<gq, il s’ensuit que le second membre de 24.5 est
majoré par B-x22-2, ol B est une constante, et est donc un infiniment

grand strictement inférieur au premier membre. Cette contradiction
achéve notre démonstration.

Explicitons un cas particulier du Théoréme 10 :

Corollaire. Pour tout entier n > 2 1l existe une infinité d’entiers ¢ tels
que 7;(S,) contienne un sous-groupe isomorphe a Z,.

En effet, on sait que x,(S,) ne contient de sous-groupe isomorphe &
Z que pour un nombre fini de valeurs de ¢, & savoir ¢ = n si n est im-
pair, ¢t =n et © = 2n — 1 sin est pair.

2b. Remarques

1) Soit X un espace vérifiant les hypothéses du Théoréme 10. Il
y a trois possibilités :
«) 7;(X) contient Z, pour une infinité de valeurs de ¢, et Z pour une

infinité de valeurs de ¢,

B) n,(X) contient Z, pour une infinité de valeurs de 7, et Z pour un
nombre fini de valeurs de ¢,

y) @;(X) contient Z pour’ une infinité de valeurs de ¢, et Z, pour un
nombre fini de valeurs de ¢.

Une sphére, un groupe de Lie, donnent des exemples de ). On peut
montrer qu'un «joint» de sphéres X = Slv...vSF, n>2, k> 2,
vérifie «). Par contre, je ne connais aucun exemple du cas ), et je con-
jecture qu’il n’en existe pas, tout au moins parmi les polyedres finis.

2) Posons G; =z, ;(S,), n>t+ 1. On sait que les G; sont des
groupes finis (si ¢>0), indépendants de la valeur de » choisie. Il est
naturel de conjecturer que G, contient Z, pour une infinité de valeurs de ¢,
mais cela ne semble pas résulter de la méthode suivie plus haut.
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§ 4. Opérations cohomologiques
26. Définition des opérations cohomologiques

Soient ¢ et » deux entiers >0, A et B deux groupes abéliens. Une
opération cohomologique, relative & {q,n, A, B}, est une application :

C:H«(X,A) > H" (X, B) ,

définie pour tout complexe simplicial X, et vérifiant la condition sui-
vante :

26.1. Pour toute application continue f d’un complexe X dans un
complexe Y, on a Cof* = f*o (.

Remarque. Nous nous sommes placés dans la catégorie des complexes
simpliciaux pour des raisons de commodité. On pourrait aussi bien se
placer dans la catégorie de tous les espaces topologiques (la cohomologie
étant la cohomologie singuliére). Cela ne changerait rien, puisque 'on
peut remplacer tout espace topologique par le complexe simplicial «réali-
sation géométrique» de son complexe singulier, et que cette opération ne
modifie pas les groupes de cohomologie.

27. Exemples

27.1. Supposons que n = ¢, et donnons-nous un homomorphisme
de A dans B. Cela définit un homomorphisme de H?(X, 4) dans
He(X, B) qui vérifie 26.1.

27.2. Supposons que n» = ¢ + 1, et donnons-nous une suite exacte :

0O0—>B—-L-—-4-—-0.

Cette suite définit une opération cobord: H?(X, A) - H** (X, B) qui
vérifie 26.1.

27.3. Supposons que n = 2¢q, et donnons-nous une application bili-
néaire de 4 dans B. Au moyen de cette application, on peut définir le
cup-carré d’un élément de H?(X, A), qui est un élément de H?¢(X, B),
et cette opération vérifie 26.1.

27.4. Les S¢', les S¢’, les puissances réduites de Steenrod (voir [13]),
sont des opérations cohomologiques.

28. Caractérisation des opérations cohomologiques

Théoréme 1. Les opérations cohomologiques relatives a {q,n, A, B}
correspondent biunivoquement aux éléments du groupe H"(A ; q, B).
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Soit 7' un complexe simplicial qui soit un espace K(4, q). Comme nous
lavons vu au n® 3, H%(T, A) posséde une classe fondamentale v qui
correspond dans Hom (4, 4) & l'application identique de A sur 4. Si
C est une opération cohomologique relative & {g,n, 4, B}, C(u) est
un élément bien défini de H*(T, B) = H"(4 ;q, B), élément que nous
noterons ¢(C).

Inversement, soit ¢ un élément de H*(7, B), et soit x ¢ H2(X,A4) une
classe de cohomologie d’un complexe simplicial arbitraire X . D’apres 5.3,
il existe une application g, : X — T telle que g (u) = x, et cette ap-
plication g, est unique, & une homotopie pres. L’élément ¢ (c) e H* (X, B)
est donc défini sans ambiguité, et il est immédiat que l’application
x — g¥(c) vérifie 26.1. C’est donc une opération cohomologique relative
a {q,n, A, B}, que nous noterons p(c).

On a gop=1. Soit en effet ceH"(4;q, B). Par définition,
@pow(c) est égal & g)X(c), ou ¢, :T — T est une application telle que
gy (w) = . On peut donc prendre pour g, 'application identique, ce qui
donne goy(c) = g)(c) = c.

Il nous reste & montrer que ypo@ = 1. Pour cela, soit C une opéra-
tion cohomologique, et posons ¢ = @(C) = C(u). Pour tout élément
zeHI(X, 4), on a p(o)(2) = g}(0) =g} (CW) = C(g}(w) = C(a).
Ceci signifie bien que y(c) = po¢(C) est identique a C.

Corollaire. Soient C, et C, deux opérations cohomologiques relatives au
méme systéme {q,n, A, B}, et soit u la classe fondamentale de H2(A ;q,A4).
Sv O, (u) = Cy(u), alors C, = C,.

Remarques. 1) On aurait aussi bien pu définir les opérations cohomolo-
giques pour la cohomologie relative (des complexes simpliciaux, ou bien
de tous les espaces topologiques, ce qui revient au méme). La démonstra-
tion précédente reste valable.

2) On pourrait également définir les opérations cohomologiques
C(xy,...,x,) de plusieurs variables =z, e H*(X, 4,), & valeurs dans
H»(X, B). Ces opérations correspondent biunivoquement aux éléments
de H"(K(d4,,q,)x--- xK(4,,q,), B), comme on le voit par le méme
raisonnement que plus haut. Lorsque les 4, sont de type fini et que B est
un corps, il résulte de la formule de Kiinneth que ces opérations se ré-
duisent & des cup-produits d’opérations cohomologiques & une seule
variable.
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29. Premiéres applications

Nous allons appliquer le Théoreme 1 & divers cas simples. Nous désigne-
rons par C une opération cohomologique relative & {g,n, 4, B}.

29.1. St 0<n<gq, C est identiquement nulle. En effet, H*(A ;q, B)
est alors réduit a 0.

29.2. St n=gq, C est associé a un homomorphisme de A dans B (au
sens de 27.1). En effet, H4(4 ;q, B) = Hom (4, B).

20.3. St gq=1, A=27Z, n>1, C est identiquement nulle. En effet
H"(Z;1,B)=0 si n>1, puisq’un cercle est un espace K(Z, 1).

29.4. 8¢ q=2, A=2Z, n impair, C est identiquement nulle. St n
est pair, et si B=2Z ouZ,, ona C(x) =k -2"'2, ke B. En effet, on
peut prendre pour espace K(Z, 2) un espace projectif complexe & une
infinité de dimensions.

29.5. Sv q est impair, A =7, B = (corps des rationnels), n>gq,
C est identiquement nulle. En effet, on a H"(Z;q,Q)=0 si n>gq,
d’apres [8], p. 501.

29.6. Siqestpair, A =272, B=CQ, el sinn’est pas divisible par q,
C est identiquement nulle ; st n est divisible par q, on a C(x) = k-4,
k eQ. En effet, d’aprés [8], loc. cit., H*(Z ; ¢, Q) est I'algebre de poly-
nomes sur ¢ qui admet « pour unique générateur.

On peut donner bien d’autres applications du Théoréme 1. Par exemple
lorsque B est un corps, établir une formule de produit :

Clz-y) =20 (2)-C;(y) ;

lorsque 7 <2¢, montrer que C est un homomorphisme. Etc.

30. Caractérisation des i-carrés

Soit ¢ un entier > 0, et supposons donné, pour tout couple (X, Y)
de complexes simpliciaux, et tout entier n > 0, des applications

At :H(X,Y ;Z,) > H*(X,Y ; Z,)

vérifiant les propriétés 2.1, 2.2 et 2.4, c’est-a-dire telles que A?o f* =
f¥o At Ato § = o A%, A (x) = 2? sidim. x = 1, A%(x) = 0sidim. z<¢.
Nous allons montrer que les A¢ coincide avec les S¢¢ 8).

D’aprés le Théoreme 1 (qui est valable dans le cas de la cohomologie
relative, comme nous I’avons remarqué), il suffit de prouver que A*(u,)
= 8¢*(u,), u, désignant le générateur de H?(Z,; q, Z,). Ceci est clair si

8) R. Thom a obtenu antérieurement une caractérisation analogue.
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q <, a cause de 2.4; pour ¢>i¢, raisonnons par récurrence sur q.
D’apres le raisonnement de [8], p. 457 (qui n’utilise que les propriétés
2.1 et 2.2), A* commute & la transgression v. On a donc

Ai(uq) = AZ(T uq-—l) = T(Ai uq—l) = T(Sqiuq——l) = Sqluq ’
c.q.f.d.

Note. Comme nous I’avons indiqué au n° 26, on peut étendre les 4% &
tous les couples (X, Y) d’espaces topologiques, & condition d’utiliser la
cohomologie singuliére, et les propriétés 2.1, 2.2, 2.4 sont encore véri-
fiées. C’est ce qui nous a permis d’utiliser les 4¢ dans la cohomologie de
Pespace fibré 5.1, qui relie K(Z,,q — 1) & K(Z,, q), espace fibré qui
n’est pas un complexe simplicial.

On pourrait d’ailleurs remplacer, dans la démonstration précédente,
le complexe K(Z,,q) parle joint de K(Z,,q — 1) avec deux points, et
Pon pourrait ainsi demeurer entiérement & I'intérieur de la catégorie des
complexes simpliciaux.

31. Opérations ecohomologiques en caractéristique 2

Posons 4 = B=Z,. En combinant le Théoréme 1 avec le Théo-
réme 2 du § 2, on obtient :

Théoréme 2. Toute opération cohomologique C: HYX,Z,) - HYX,Z,)
est de la forme :

C(x) = P(Sq"(a), ..., S¢™*(z)) ,

ow P désigne un polynéme (par rapport au cup-produit), et ou Sq™, . ..,Sq'* -
désignent les i-carrés itérés correspondant aux suites admissibles d’excés
<q. En outre, deux polynémes distincts P et P’ définissent des opérations
C et C' distinctes.

Lorsque 4 = Z,, (m = 2*), on a un résultat analogue en remplagant
les Sq' par les Sql; lorsque A =Z, on ne doit considérer que des
suites I dont le dernier terme est >1.

Corollaire. Si n << 2q, les i-carrés itérés Sq', ou I parcourt Iensemble
des suttes admissibles de degré n — q, forment une base de 'espace vecto-
riel des opérations cohomologiques relatives & {q, n, Z,, Z,} .

32. Relations entre i-carrés itérés

Le Corollaire précédent montre que tout ¢-carré itéré est combinaison
linéaire de S¢’, ou I est admissible. Il est naturel de chercher une mé-
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thode permettant d’écrire explicitement une telle décomposition. Cette
question a été résolue par J. Adem [1], qui a démontré la formule sui-
vante (conjecturée par Wu-Wen-Tsiin) :

Sl a<2b, Sanqb = Zogcsa/z(b‘c—l) Sqa+b—-csqc ’ (321)

a—2c

ot (¥) désigne le coefficient bindémial % !/j!(k — j)!, avec la conven-
tion usuelle: (¥) =0 si j>k.

On voit facilement que cette formule permet de ramener, par des ré-
ductions successives, tout ¢-carré itéré & une somme de Sq’ ou I est ad-
missible. Elle répond donc bien & la question posée.

Citons quelques cas particuliers de 32.1 dont nous ferons usage au § 5 :

32.2. 8¢*Sq" =0 st n est tmpair, Sq*Sq" = Sqn+! si n est pair.

32.3. Sq28Sq¢®=8¢>Sq*; 8¢*Sq¢®> = 8¢® 4+ S¢*Sq.

33. Méthode permettant d’obtenir les relations entre i-carrés itérés

La démonstration donnée par J. Adem de la formule 32.1 est basée
sur une étude directe des ¢-carrés itérés. Nous allons esquisser une mé-
thode plus indirecte, mais qui conduit plus aisément au résultat?).

Soit X l’espace projectif réel & une infinité de dimensions, ¥ = X? le
produit direct de g espaces homéomorphes & X . L’algébre de cohomologie
H*(Y, Z,) est donc l'algebre de polynémes a q générateurs «,,..., z,,
de degrés 1. Nous noterons W, le produit z,...z, de ces générateurs :
ona W, eH4(Y,Z,).

Lemme 1. Sott C une somme de i-carrés itérés, tous de degrés < q.
St C(W,)) =0, alors C est identiquement nulle.

Compte tenu du Corollaire au Théoréme 2, il suffit de vérifier que les
Sq'(W,) sont linéairement indépendants lorsque I parcourt ’ensemble
des suites admissibles de degré < q. Or, il est trés facile de déterminer
explicitement les opérations Sq dans H* (Y, Z,), en utilisant les pro-
priétés 2.3, 2.4, 2.5; le résultat cherché s’ensuit par un calcul que nous
ne ferons pas ici (voir un article en préparation de R. Thom).

Théoréme 3. Soit C' une somme de t-carrés itérés. Supposons que, pour
tout espace T, la relation C(y) =0, ye H*(T, Z,), entraine C(x-y) = 0
pour tout x € HY(T, Z,). Alors C est identiquement nulle.

Prenons pour 7' l'espace Y défini plus haut (¢ étant égal au degré
maximum des ¢-carrés itérés qui figurent dans (). On a évidemment

%) Cette méthode est d’ailleurs trés proche de celle qui avait amené Wu-Wen-Tsiin &
conjecturer la formule 32.1.
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C(l)=0, dou C(x,...x;) = 0 par récurrence sur ¢, et en particulier
C(W,)=0, dot ¢ =0 d’aprés le Lemme 1.

A titre d’exemple, vérifions I’hypothése du Théoréme 3 pour C =
Sq28q® + Sq¢®Sq*. En utilisant 2.3, 2.4, 2.5, on obtient :

S¢*8¢*(x-y) = x*-Sq¢'y + 2*-(Sq28q'y + S¢*Sq%y) + x-8¢*Sq?y ,
SePS8q*(x-y) = x*-Sq'y + 2% (Sq®y + Sq¢*8Sq'y) + - S¢*Sq'y .
Comme Sq¢® = Sq'8q? on tire de la:

C(x-y) = x-Cly) ,

ce qui montre bien que C(y) = 0 entraine C(xz-y) = 0. D’aprés le
Théoréme 3, on a donc S¢%28¢2 + S¢3Sq* = 0, d’oun S¢28¢2 = S¢*S¢*,
et nous avons démontré la premiére des relations 32.3.

On démontrerait de la méme fagon la formule 32.1 dans le cas général,

en raisonnant par récurrence sur a -+ b. Nous laissons le détail du cal-
cul au lecteur.

§ 5. Application aux groupes d’homotopie des sphéres
34. Méthode

Nous allons combiner les résultats du § 2 et ceux de la note [3], I pour
obtenir un certain nombre de renseignements sur les groupes m,(S;)
et m,(S,;). En confrontant ces renseignements avec les résultats déja
obtenus par ailleurs, nous en déduirons le calcul des groupes =, ,(S,)
et n, ,(S,) pour tout n.

Nous supposons connus les faits suivants (démontrés notamment
dans [11], Chapitre IV ; voir aussi [7]):

4(S;3) =Z, , 75(S;) =12, , 7(S;) a 12 éléments,
7, (S;) est un 2-groupe.
3b6. Les espaces (S;, q)

Conformément aux notations de [3], I, nous notons (S;, q) la sphére

S, dont on a tué les ¢ — 1 premiers groupes d’homotopie. Par définition,
on a donc:

7(Sy, q) = 0 si i<q et m,(Ss,q) =m(Sy) si i>q . (35.1)
En appliquant le Théoréme d’Hurewicz, on en tire :

Hq(sa: Q) = 'nq(s3) . (352)
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Dans les numéros qui suivent, nous calculerons les premiers groupes
de cohomologie des espaces (S,,q), & valeurs dans Z,. Ces groupes
seront notés H*(S,, q). Nous utiliserons pour cela les suites spectrales
attachées aux fibrations (I) et (II) de [3]. Rappelons que:

35.3. Dans la fibration (I) ’espace fibré est (S,,q + 1), la base est
(S5, g), et la fibre est un espace K(7,(S,), ¢ — 1).

35.4. Dans la fibration (II) 'espace fibré a méme type d’homotopie
que (S;,9) (nous l'identifierons & (S,, ¢) afin de simplifier les nota-
tions), la base est un espace K(=,(S;), ¢), et la fibre est (S;,q + 1).

Si x est un d,-cocycle de E, (£, désignant I’une des suites spectrales
précédentes), nous noterons encore = I’élément de E, , qu’il définit.

36. Cohomologie de 1’espace (S;, 4)

Lemme 1. En dimensions < 11, H*(S;,4) posséde une base
{1,a,b,c,d} ou dim.a =4, dim.b=5, dim.c= 8,dimd =9, el
ou b= Sq'a, c=a? d=a-b.

On sait (voir [3], 11, Proposition 5, ainsi que [11], Chap. IV, Lemme 3)
que les groupes d’homologie & coefficients entiers de (S;, 4) sont:

Z,0,0,0,%,,0,%,,0,2,,0,%;,0,... ,

d’oli, en utilisant la formule des coefficients universels, ’existence de la
base {1,a,b,c,d}. En outre il résulte de 2.6 que I'on a Sqla 5% 0,
d’oit Sq'a =b. Il nous reste & déterminer les cup-produits dans
H*(S;, 4), pour prouver que a®?=c et que a-b =d.

Pour cela, nous utiliserons la fibration (I). D’aprés 35.3, ’espace fibré
est (S,,4), la base est S; et la fibre est un espace K(Z, 2). Soit u, le
générateur de H2*(Z; 2), v celui de H3(S,). Le terme E, de la suite
spectrale de cohomologie modulo 2 de cette fibration admet pour base
les éléments (u,)" et v ®(u,)?, n entier > 0. On a évidemment dg(u,)
= v, d’olt dy((u,)") = 0 sin est pair et dy((u,)") = v ® (up)" ' si n est
impair. Comme les différentielles d,, >3, sont identiquement nulles, il
s’ensuit que £, admet pour base les éléments (u,)** et v ® (u,)*+L. Si
Pon pose a’ = (u,)?, b’ = v ® u,, on voit que E_ admet pour base les
éléments a’” et b’-a’m. Les éléments {a,b,c,d} de H*(S,,4) cor-
respondent done dans E_ aux éléments {a’, b’,a’? a’-b'}, et comme E
est lalgébre graduée associé a H*(S;, 4), cela donne bien a? =c, et
a-b=d.
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37. Cohomologie de I’espace (S,, 5)

Lemme 2. En dimensions < 8, H*(S,,5) posséde une base
{1,e,f,9,h,2} ou dim.e=5, dim.f=dim.g=6, dim.h=171,
dim.1 =8, et ou f= Sq'e, h = 8q'g = Sq%, t = S8¢*f, Sq%¢ = 0.

Utilisons la fibration (II). D’aprés 35.4, I'espace fibré est (S,, 4), la
base est un espace K(Z,, 4), et la fibre est (S;, 5).

D’apres le Théoreme 2 du § 2, H*(Z,; 4) posséde la base suivante (en
dimensions < 9):

{1, u4a Sqlu-h quuu Sq3u4: Sq28q1u4a 'll,i, Sqasqluli:
S¢S uy, uy-Sqtugd .

L’homomorphisme H*(Z,; 4) - H*(S;, 4) applique évidemment wu,
sur a. Il applique donc Sq¢'u, sur Sq¢'a =b, Sq*u,, Sq3u, et
Sq*Sqluy sur 0, u} sur a®=-c, S¢*Sqlu, sur S¢3Sqla = Sq>Sqta
=0, 8¢'Sq*u, sur S¢*Sq'a = 8¢*S¢*a + S¢°a = 0, u,-Sq'u, sur
a-b=d. On voit en particulier que cet homomorphisme applique
HY(Z,; 4) sur H(S,,4) pour ¢ <11 (en fait, cela vaut pour tout 7).
Nous désignerons le noyau de cet homomorphisme par N*,

Comme H*(S,,5)=0 si 0<k<5, et H¥(Z,;4) =0 si 0<t<4,
on peut appliquer la suite exacte de [8], p. 469 (en cohomologie). Compte
tenu de ce qui précéde, cette suite exacte montre que la transgression
est un tsomorphisme de H(8;, 5) sur N+ pour © > 1.

Or N a pour base Sq%u,, N7 a pour base Sq3u, et Sq2Sq'u,, N®a
pour base S¢*Sq'u,. Donc, en dimensions <7, H*(S,, 5) posséde
une base {l,e,f,g,h}, caractérisée par:

1(e) = Sq%uy, 7(f) =8¢%u,, 7(9) = 8S¢*8q*u,, 7(h) = 8¢S u, .

Comme r commute aux Sgq¢, on a:

t(8q'e) = Sq'v(e) = S¢*S¢*u, = S¢Puy = (f) , d’ou f = Sq'e ,
7(Sq%e) = S¢2Sq*u, = S¢*Sqlu, = v(h) , d’ou h = Sq?e ,
1(Sq'9) = S¢*S8¢*Sqluy, = S@BSq u, = t(h) , d’ou h = Sqlg .

Montrons maintenant que z est encore un isomorphisme de H8(S;, 5)
sur N°, Il faut d’abord vérifier qu’aucun élément non nul de H?®(Z,; 4)
n’est un d,-cobord, avec r<9: cela résulte de la nullité de E?'? pour
P + q = 8, ¢>0. Il faut ensuite vérifier que tout élément x= ¢ H8(S,, 5)
est transgressif, autrement dit, que 'on a d,.(x) = 0 pour r<9. Or d,
applique E?*® dans E!®~"; ce dernier groupe est évidemment nul si
r<<9, sauf pour r = 4, ou il admet pour base I'élément u, @ e. Nous
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devons donc montrer qu’on ne peut pas avoir dy(z) = u, ® e. Or, si
cela était, u, ® e définirait un élément nul dans Z;, E,, ..., et en par-
ticulier on aurait dg(u, ® €) = 0; comme d4(e) = 7(e) = Sq?u,, on
a do(uy ®e) = u,-Sq?u, e B*° .

Mais on a E*° = EI*° = ... = E}*° = H'(Z,; 4), et l'on sait
(§ 2, Théoréme 2) que wu,-Sq?u, est un élément non nul de H° (Z,; 4).
On a donc dg(u; ® e) # 0, et cette contradiction prouve bien que z est
transgressif.

Comme N? a pour base 1’élément Sq*Sq'u,, H®(S,, 5) a pour base
un élément ¢ caractérisé par 7(¢) = S¢*Sq'u,. On a en outre :

1(8q%9) = 84?8 ¢*Sq*uy = S¢*8¢*Sq*u, = 0, dou Sq?g =0 .
7(Sq?f) = 8¢®SPu, = SqPu, + S¢*Sqtu, = 7(3), dou ¢ = Sq¢?*f .

Ceci achéve la démonstration du Lemme 2.

38. Cohomologie de 1’espace (S;, 6)

Lemme 3. En dimensions <7, H*(S;, 6) posséde une base {1, 7, k}
o dim.j =26, dim.k="17, et ou Sq'j=0, Sq% = 0.

Utilisons la fibration (II). D’aprés 35.4, ’espace fibré est (S,, 5), la
base est un espace K(Z,, 5), et la fibre est (S,, 6).

En dimensions < 8, H*(Z,;5) possede la base suivante :

{1’ u5: Sql'll/5, quufi’ Sq3u5a Sq2Sq1u5} .

L’homomorphisme H*(Z,; 5) - H*(S;, 5) applique évidemment wu,
sur ¢, donc Sq'u; sur Sqle=f, Sq?u; sur Sq’¢ =h, Sq®u; sur
Sq*e = 8Sq¢*h = 8S¢*Sq*g = 0, Sq¢®Sq*u, sur Sq¢*Sqle = Sq¢?*f ==+.

D’apres [8], loc. cit., on a une suite exacte (valable en tout cas pour
1 < 8):

. — Hi(Zy; 5) — H(S,, 5) — Hi(S,, 6) - Hi+1(Z,; 5) — - - - .

En combinant cette suite exacte avec les résultats précédents, on voit
que HS(S,, 6) posséde une base formée d’un élément j, image de 1’é1é-
ment ¢ e H%(S,,5), et que H?(S;,6) posséde une base formée d’un
élément k tel que (k) = Sq*u; e H3(Z,; 5). En outre Sgq'j est image
de Sq'g =~h; mais h est image de Sq?u; dans I’homomorphisme
H'(Z,; 5) — H"(8;, 5), donc & donne 0 dans H7(S;, 6), et Sq¢'j = 0.
De méme Sg¢?j est image de Sq%g = 0, donc S¢?j = 0, ce qui achéve
la démonstration.
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Corollaire. 74(S;) = Z,,19).

Puisque 74(S;) a 12 éléments, il est isomorphe soit & Z,,, soit &
Zy, + Zg. Dans le second cas on aurait H®(S;, 6) = Hom (H,(S;, 6), Z,)
= Hom (74(S,), Z,) = Zy 4 Z,, en contradiction avec le Lemme 3.

39. Cohomologie de 1’espace (S,, 7)

Lemme 4. H7(S;, 7) posséde une base formée d’un seul élément m, et
Pona Sq¢*m # 0.
On utilise comme précédemment la suite exacte :

T

- > HY(Z,,; 6) > H'(S;, 6) > H¥(S;,7) > H*(Z,,; 6) - - -+

D’aprés le Théoreme 5 du § 2, H*(Z,,; 6) est isomorphe & H*(Z,; 6).
En dimensions <8, H*(Z,,; 6) possede donc la base suivante :

{1, ug, Sq; ug, SqPug} .

L’image de us dans H®(S;, 6) est évidemment j; celle de Sqju,
est k, car sinon on aurait H®(S;,7) £ 0, ce qui est aburde; celle de
Sq*ug est Sq?j = 0. La suite exacte précédente montre alors que
H7(S,,7) posséde une base formée d’un seul élément m tel que v (m) =
Sq*ug. On a en outre Sqg'm %0, car 7(S¢'m) = S¢*Sq?us =
Sq3ug % 0.

Corollaire. =, (S;) = Z,.

Le Lemme 4 montre que Hom (7,(S;),Z,) = Z,. Cela signifie que
le 2-composant de =,(S;), donc =,(S;) lui-méme, est isomorphe & Z,,,
avec m =2k h>1. Si h > 2, I’homomorphisme de =,(S;) sur Z,
pourrait étre factorisé en n,(S;) - Z, - Z,, et 'on aurait Sq¢'m =0
d’aprées 2.7. Ceci étant exclu d’aprés le Lemme 4,ona A =1 (on
aurait pu également invoquer le Lemme 2 du § 2).

40. Les groupes x,.4(S,)

Dans ce numéro et le suivant, nous noterons £ la suspension de Freu-
denthal, v, le générateur de =,.,(S,), », 'élément de x,(S,) défini par
la fibration de Hopf: S, - S,, o I'’élément de x4(S;) introduit par
Blakers-Massey.

10) Ce Corollaire résulte aussi du fait (annoncé par Barratt-Paechter, Proc. Nat. Acad.
Sci. U. S. A. 88, 1952, p. 119—121) que m4(S;) contient un sous-groupe isomorphe & Z,.
Signalons également que V. A. Rokhlin (Doklady 84, 1952, p. 221—224) a annoncé des
résultats équivalents & ceux du n° 40.
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Sachant que 4(S;) = Z,,, on peut montrer que w en est un généra-
teur (cf. A. Borel et J.-P. Serre, Groupes de Lie et puissances réduites de
Steenrod, Prop. 19. 1).

Le groupe =,(S,) = #,(S;) + Eng(S,;) est isomorphe & Z + Z,,, le
facteur Z étant engendré par v, et le facteur Z,, par Ew.

On sait que E applique x,(S,) sur m4(S;), le noyau étant engendré
par [i4,%,], ol ¢, désigne le générateur canonique de =,(S,) et ou le
crochet désigne le produit de Whitehead. En outre, on a:

[ig,%] =2vi — e E o ,

ol ¢ = 41 dépend des conventions d’orientation utilisées (cette for-
mule résulte, par exemple, du Théoréme 23.6 du livre de N. E. Steenrod
sur les espaces fibrés). Il s’ensuit que dans =4(S;) on a:

E2w=2éEv; ,

ce qui montre que m,(S;) est isomorphe & Z,,, et admet E »; pour géné-
rateur11),

Par suspension, on a 7,,,(S,) = Z,, si n > 5, et E"4y; en est un
générateur.

41. Les groupes =, ,(S,).

On a vu que =,(S,) = Z,. D’aprés P. Hilton [6] les éléments w o v,
et 7,07, sont des éléments non nuls de ce groupe. Ils sont donc égaux
(ce qui n’était pas évident a prior:), et en constituent 1'unique généra-
teur.

On a ng(S,) = n3(S;) + E n,(S;) = Z, + Z,, le premier facteur Z,
étant engendré par w»;ov,, le second par E(wovy) = E wow, .

D’aprés un théoréme de Freudenthal, £ applique 75(S,) sur m,(S;).
Par ailleurs, comme il n’existe pas d’application d’invariant de Hopf
unité de S,, sur S4 (voir [1] pour une démonstration simple), ’élément
[45, 95] de 7,(S;) est non nul. Le noyau de £ : 74(S,) — 7, (S;) a donc
au plus 2 éléments (il est d’ailleurs facile de retrouver ce fait directement,
cf. [10]). D’autre part, on a:

E(E wov)) =B wovy = (2e Ev))ovg = e(Evy)02v =0 .

Ceci montre que Ewov, appartient au noyau de E, qui est donc

11) Voir également les articles cités plus haut de V. A. Rokhlin et de A. Borel et 'auteur.
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exactement Z,. Il s’ensuit que x,(S;) = Z, et que son unique généra-
teur est [i5, i5] = E(vy0v,) = E v 0 g12).

Comme E applique m,(S;) sur m,0(Ss) et que E([i5,175]) =0, on a
710(Sg) = 0, d’out 7, 4(S,) = 0 pour » > 6.

Récapitulons les résultats obtenus :

Théﬂl‘éme. WG(S:;) — Z12, 71:7(34) = Z + Z12, 7'5”+3(S,n) = Z24 87:

n=5. m(S;) =24, 7(Sy) =2, + Z,, 759(55) = 2, ”n+4(Sn) =0
st n=>86.

42. Remarques

1) On peut calculer les groupes stables =, ,(S,) et =, .(S,) sans
passer par l'intermédiaire des =;(S;), par des calculs tout analogues a
ceux des numéros 36, 37, 38, 39 (et légérement plus simples, du fait que
la suite spectrale 8’y réduit & une suite exacte). *

2) On peut pousser les calculs des numéros 36, 37, 38, 39 sensiblement
plus loin que nous ne I’avons fait ici, et déterminer les 2-composants des
groupes 7, (S;) et 7, (S,). On trouve ainsi 74(S;) = Z, et 7,y (S;) = Z;.
Nous ne donnerons pas ici le détail de ces calculs, parce qu’ils sont trop
fastidieux, et parce que 1’on peut calculer 74(S;) et 7,(S;) par la mé-
thode, plus rapide, de la Note [10].

12) Evfovy % 0 résulte aussi du Théoréme 5.1 de [1], ou l'on fait m =4, n =2,
» = 1. On notera que E(Ev]ov,) = 0, ce qui montre I'impossibilité d’étendre le théo-
réme en question au cas p = n.
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