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Cohomologie modulo 2 des complexes
d'Eilenberg-MacLane
Par Jean-Pierre Serbe, Paris

Introduction

On sait que les complexes K (II, q) introduits par Eilenberg-MacLane
dans [4] jouent un rôle essentiel dans un grand nombre de questions de

topologie algébrique. Le présent article est une contribution à leur étude.
En nous appuyant sur un théorème démontré par A. Borel dans sa

thèse [2], nous déterminons les algèbres de cohomologie modulo 2 de

ces complexes, tout au moins lorsque le groupe 77 possède un nombre
fini de générateurs. Ceci fait l'objet du § 2. Dans le § 3 nous étudions le

comportement asymptotique des séries de Poincaré des algèbres de
cohomologie précédentes ; nous en déduisons que, lorsqu'un espace X vérifie des

conditions très larges (par exemple, lorsque X est un polyèdre fini,
simplement connexe, d'homologie modulo 2 non triviale), il existe une
infinité d'entiers i tels que le groupe d'homotopie n^X) contienne un
sous-groupe isomorphe à Z ou à i?2. Dans le § 4 nous précisons les
relations qui lient les complexes if (77, q) et les diverses «opérations coho-

mologiques»; ceci nous fournit notamment une méthode permettant
d'étudier les relations entre i-carrés itérés. Le § 5 contient le calcul des

groupes nn+z(Sn) et 7tn+A(Sn) ; ce calcul est effectué en combinant les

résultats des §§ 2 et 4 avec ceux d'une Note de H. Cartan et l'auteur
([3], voir aussi [14]). Les §§ 4 et 5 sont indépendants du § 3.

Les principaux résultats de cet article ont été résumés dans une Note
aux Comptes Rendus [9].

§ 1. Préliminaires
1. Notations

Si X est un espace topologique et G un groupe abélien, nous notons
Ht (X, G) le i-ème groupe d'homologie singulière de X à coefficients
dans G ; nous posons H^(X,G) £%L0 Ht(X, G), le signe £ représentant

une $omme directe.
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De façon analogue, nous notons ^(X, les groupes de cohomologie
de X, et nous posons H*(X,G) Z7=0 H^X, O).

Les groupes d'homologie et de cohomologie relatifs d'un couple (X, Y)
sont notés £T,(X,F;(?) et #*(X,7;<?).

Nous notons Z le groupe additif des entiers et Zn le groupe additif des
entiers modulo n.

2. Les î-carrés de Steenrod

N. E. Steenrod a défini dans [12] (voir aussi [13]) des homomorphis-
mes :

8qi : Hn(X, Y;Z2)-> Hn^(X, Y ; Z2) (i entier > 0)

où (X, Y) désigne un couple d'espaces topologiques, avec Fcl. Ces

opérations ont les propriétés suivantes *) :

2.1. 8qi o /* /* o SqiJ lorsque / est une application continue d'un
couple (X, Y) dans un couple (Xf, Y!).

2.2. 8qioô= ôoSqi, ô désignant le cobord de la suite exacte de

cohomologie.

2.3. 8qi(x* y) £j+k==i Sqî (x) • 8qk (y),x-y désignant le cup-produit.

2.4. 8qi(x) x2 si dim. x i, 8qi(x) 0 si dim. x<i.
2.5. 8q°(x) x.
On sait que toute suite exacte 0 -> A ->J3->(7->0 définit un

opérateur cobord ô : Hn(X, Y ; C) -> Hn+1(X, Y ; A). En particulier :

2.6. Sq1 coïncide avec l'opérateur cobord attaché à la suite exacte

0 -> Z2 -> Z4 -> Z2 -> 0

On a donc une suite exacte :

2.7. -> H*(X, Y;ZA)-+ H"(X, Y ; Z2) % H»*(X, Y ; Z2)

->H»+HX,Y;Z€)-+...
3. Les î-carrés itérés

On peut composer entre elles les opérations Sqi. On obtient ainsi les
i-carrés itérés Sq*1 o Sq*2 o o Sq%r qui appliquent Hn(X,Z2) dans le

groupe Hn+il+'"+ir(X,Z2). Une telle opération sera notée Sq1, /
désignant la suite d'entiers {ix,..., ir}. Nous supposerons toujours que

x) Ces propriétés sont démontrées dans [12], à l'exception de 2.3, dont on trouvera la
démonstration dans une Note de H. Cartan aux Comptes Rendus 230, 1950, p. 425.
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les entiers i1,..., ir sont > 0 (ceci ne restreint pas la généralité, à

cause de 2.5).

Les définitions suivantes joueront un rôle essentiel par la suite :

3.1. L'entier n(I) ix + • • • + ir est appelé le degré de /.
3.2. Une suite / est dite admissible si l'on a :

ix > 2ia, i2 > 2iB,..., ir_x > 2ir

3.3. Si une suite / est admissible, on définit son excès e(I) par :

e(I) (h - 2i2) + (i2 - 2i3) + • • • + (ir_i - 2ir) + ir

Par définition, e(I) est un entier ^ 0, et si e(I) 0 la suite / est
vide (l'opération Sq1 correspondante est donc l'identité).

4. Les complexes d'Eilenberg-MacLane

Soient q un entier, 77 un groupe (abélien si q > 2). Nous dirons qu'un
espace X est un espace /C(/7, q) si n^X) 0 pour i ^= q, et si

nq(X) 77. On sait (cf. [4]) que les groupes d'homologie et de cohomo-
logie de X sont isomorphes à ceux du complexe K (77, q) défini de façon
purement algébrique par Eilenberg-MacLane. Nous noterons ces groupes
-£^(77; q,O) et H*(II; q, G), G étant le groupe de coefficients.

Pour tout couple (77, q) il existe un espace X qui est un espace
K(II,q) (cf. J. H. C. Whitehead, Ann. Math. 50, 1949, p. 261—263).
Soit Xr le complexe cellulaire obtenu en «réalisant géométriquement»
le complexe singulier de X2); on sait que n^X') n^X) pour tout
i > 0, donc Xf est un espace K(77, q). Comme d'autre part on peut
subdiviser simplicialement X\ on obtient finalement :

4.1. Pour tout couple (77, q) il existe un espace K(77, q) qui est un
complexe simplicial.

(Ici, comme dans toute la suite, nous entendons par complexe simplicial
un complexe K qui peut avoir une infinité de simplexes et qui est muni
de la topologie faible : une partie de K est fermée si ses intersections avec
les sous-complexes finis de K sont fermées.)

2) L'espace X' est défini et étudié dans les articles suivants: 1) J. B. Giever, On the
équivalence of two singular homology theory, Ann. Math. 51, 1950, p. 178—191;
2) J.H.C. Whitehead, A certain exact séquence, Ann. Math. 52, 1950, p. 51—110
(voir notamment les n<>s 19, 20, 21).
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5. Propriétés élémentaires des espaces K(77, q)

5.1. Pour tout couple (77, q) il existe un espace fibre contractile dont la
base est un espace K(U, q) et dont la fibre est un espace K(II, q — 1).

Rappelons ([8], p. 499) que Ton obtient un tel espace fibre en prenant
l'espace des chemins d'origine fixée sur un espace K(II, q).
L'énoncé suivant est évident :

5.2. Si X est un espace K(IT, q) et si X' est un espace K(nf, q), le

produit direct XxXf est un espace K(77 + 77', q).
Soit maintenant X un espace K(77, q), le groupe 77 étant abélien (ce

n'est une restriction que si q 1). On a alors Hq(X,Z) 77, d'où
H*(X,II) Hom(77,77). Le groupe 77«(X,77) contient donc une
«classe fondamentale» u qui correspond dans Hom (77,77) à l'application

identique de 77 sur 77. Soit alors / : Y -> X une application continue
d'un espace Y dans l'espace X ; l'élément /* (u) est un élément bien
défini de Hq Y, 77) et il résulte de la théorie classique des obstructions
(cf. S. Eilenberg, Lectures in Topology, Michigan 1941, p. 57 — 100) que
Ton a :

5.3. Si Y est un complexe simplicial, f -> f*(u) met en correspondance
biunivoque les classes d'homotopie des applications de Y dans X et les

éléments de 7T«(r,77).
(On trouvera dans [5], IV un résultat très proche du précédent.)

Si Y est un espace /C(77', q), on a W(Y, 77) Hom (77', 77), d'où :

5.4. Si un complexe simplicial Y est un espace K(IJf, q), les classes

d9homotopie des applications de Y dans un espace K(II, q) correspondent
biunivoquement aux homomorphismes de II' dans 77.

6. Fibrations des espaces /C(77, q)3)

Donnons-nous un entier q, et une suite exacte de groupes abéliens :

0 ->A ->B ->C ->0
6.1. Il existe un espace fibre E, de fibre F et base X, où F est un espace

K(A, q), E un espace K(B, q), X un espace K(C, q), et dont la suite
exacte d'homotopie (en dimension: q) est la suite exacte donnée.

Soient Y un complexe simplicial qui soit un espace K(B,q), X un
espace K(C, q) et / : Y -> X une application continue telle que

soit l'homomorphisme donné de B sur C (cf. 5.4).

3) Ces fibrations m'ont été signalées par H. Cartan.
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On prend pour espace E l'espace des couples (y, <x(t)), où y € F, et
où a(t) est un chemin de X tel que a(0) f(y). L'espace E est rétrac-
tile sur Y, c'est donc un espace K(B,q). L'application (t/, <x(t)) -> a(l)
fait de E un espace fibre de base X (c'est une généralisation immédiate
de la Proposition 6 de [8], Chapitre IV). La suite exacte d'homotopie
montre alors que la fibre F de cette fibration est un espace K(C, q);
plus précisément, la suite :

est identique à la suite exacte 0 -> A -> B ->C -> 0 donnée.

On montre de façon tout analogue l'existence d'un espace fibre où :

6.2. L'espace fibre est un espace K(A,q), la fibre est un espace

K(C, q — 1) et la base est un espace K(B, q).

De même, il existe un espace fibre où :

6.3. L'espace fibre est un espace K(C, q — 1), la fibre est un espace

K(B, q — 1) et la base est un espace K(A, q).

§ 2, Détermination de F algèbre S* (77; q, Z2)

7. Un théorème de A. Borel

Soient X un espace et A H* (X, Z2) l'algèbre de cohomologie de X
à coefficients dans Z2. On dit ([2], Définition 6.3) qu'une famille (xt)
(i 1,...), d'éléments de A est un système simple de générateurs de A
si:

7.1. Les xt sont des éléments homogènes de A,
1.2. Les produits xH.x%%... x%r (it < i2 < • • • < ir, r > 0

quelconque) forment une base de A, considéré comme espace vectoriel sur Z2.
Nous pouvons maintenant rappeler le théorème de A. Borel ([2],

Proposition 16.1) qui est à la base des résultats de ce paragraphe :

Théorème 1. Soit E un espace fibre de fibre F et base B connexes par
arcs, vérifiant les hypothèses suivantes :

a) Le terme E2 de la suite spectrale de cohomologie de E (à coefficients
dans Z2) est H*(B,Z2) ® H*(F,Z2) (c'est le cas, comme on sait, si

7tt(B) 0 et si les groupes d'homologie de B ou de F sont de type fini).
fi) #*(£,&,) 0 pour tout i>0.
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y) H*(F,Z2) possède un système simple de générateurs (x{) qui sont
transgressifs.

Alors, si les y{ sont des éléments homogènes de H*(B,Z2) qui
correspondent aux Zt par transgression, H*(B,Z2) est Valgèbre de polynômes
ayant les y{ pour générateurs.

(En d'autres termes, les yi engendrent H*(B,Z2) et ne vérifient
aucune relation non triviale.)

Nous utiliserons ce théorème principalement dans le cas particulier où

H*(F,Z2) est elle-même une algèbre de polynômes ayant pour générateurs

des éléments transgressifs zif de degrés n{. Il est immédiat que
H* (F ,ZZ) admet alors pour système simple de générateurs les puissances
(2f)-èmes des zt (i 1,..., ; r 0, 1 ,...)• Si a et r sont deux
entiers, désignons par L(a,r) la suite {2r-1 a,..., 2a, a} ; d'après 2.4
on a z|2r) Sq^'^iZf), les notations étant celles du n° 3. Soient
alors ti€Hni+1(B,Z2) des éléments qui correspondent par
transgression aux zi ; puisque les Sql commutent à la transgression ([8], p. 457),
les éléments z\*r) sont transgressifs et leurs images par transgression
sont les /Sg£(n*'r)(^). Appliquant le Théorème 1, on obtient donc :

7.3. Sous les hypothèses précédentes, H*(B, Z2) est Valgèbre de

polynômes ayant pour générateurs les Sq1***'^^ (i 1,... ; r 0, 1,...).

8, Détermination de l'algèbre H*(Z2 ; q, Z2)

On a Hi(Z2;q,Z2) 0 pour 0<i<q, et Hq(Z2; q,Z2) Z2. Nous

désignerons par uQ l'unique générateur de ce dernier groupe.

Théorème 2. L'algèbre H*(Z2 ; q,Z2) est Valgèbre de polynômes ayant
pour générateurs les éléments Sq1 (uq), où I parcourt Vensemble des suites
admissibles d'excès <q (au sens du n° 3).

On sait que l'espace projectif réel à une infinité de dimensions est un
espace K(Z2, 1) ; H*(Z2 ; 1, Z2) est donc l'algèbre de polynômes ayant
% pour unique générateur ; comme d'autre part e (I) < 1 entraîne que /
soit vide, le théorème est vérifié pour q 1.

Supposons-le vérifié pour q — 1 et démontrons-le pour q. Considérons
la fibration 5.1. Par hypothèse, H*(Z2 ; q — 1, Z2) est l'algèbre de

polynômes ayant pour générateurs les éléments Zj SqJ(uq^1)9 où J
parcourt l'ensemble des suites admissibles d'excès e(J)<q — 1. Nous
noterons Sj le degré de l'élément Zj ; on a Sj q — 1 + n(J). Il est
clair que uq_t est transgressif et que son image par la transgression r
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est uq. D'après [8], loc. cit., Zj est donc aussi transgressif et r(zj)
BqJ(uQ). Il s'ensuit que l'on peut appliquer 7.3 à la fibration 5.1, ce

qui montre que H* (Z2;q, Z2) est l'algèbre de polynômes ayant pour
générateurs les éléments BqL(*J'r) o 8qJ(uq), où r parcourt l'ensemble des

entiers ^ 0, et J l'ensemble des suites admissibles d'excès < q — 1.
La démonstration du Théorème 2 sera donc achevée si nous prouvons le
Lemme suivant :

Lemme 1. Si à tout entier r > 0, et à toute suite admissible J
0*i> • • •> jk} d'excès <q — 1, on fait correspondre la suite:

I {2r~1-sj,..., 2^, Sj, jl9 ...,?*}, où Sj q - 1 + n(J)

on obtient toutes les suites admissibles d'excès <q une fois et une seule.

Notons d'abord que sJ — 2j1 — n(J) — 2?1+g—1 g—1—e(J)>0,
donc / est une suite admissible. Si r 0, on a / J, d'où e(I)
e(J)<q — 1 ; si r >0, on a e(/) e(J) -\- Sj — 2j1 q — l. Ainsi,
en prenant r 0 on trouve toutes les suites admissibles d'excès
e (/) < q — 1, et en prenant r > 0 on trouve des suites admissibles
d'excès g — 1.

Inversement, si l'on se donne une suite admissible / {ix,..., ip}
d'excès q — 1, r et J sont déterminés sans ambiguïté :

r est le plus grand entier tel que ix 2i2,..., ir_x 2ir

La suite associée au couple (r, J) est bien / car l'on a :

q — 1 e(I) ir - 2ir+1 + e(J) ir - 2ir+1 + 2ir+1 - n(J)
d'où ir n(J) + q — 1 sJ} et tr-i 2^> • • • > h W^Sj-

Le Lemme 1 est donc démontré.

9, Exemples

1/* (Z2 ; 1, i?2) est l'algèbre de polynômes engendrée par ux.
H*(Z2 ; 2, Z2) est l'algèbre de polynômes engendrée par :

u2, Sq1^, SqtSq1^,. Sq^Sq**'1. Sq^Sq1^,

H*(Z2 ; 3, Z2) est l'algèbre de polynômes engendrée par :

u3, 8q*u3, Sq*Sq*us, Sqt'Sq*'1. ..Sq*^,
Sq1^, Sq^Sq1^, Sq^Sq^Sq1^,. Sq^Sq^1"1... Sq^Sq1^,

**"1.. .Sq2Sq1u39...,
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10, Détermination de l'algèbre H*(Z ;q,Z2)

Le cercle St est un espace K(Z, 1) ; ceci détermine H*(Z; l,Z2).
Nous pouvons donc nous borner au cas où q > 2. Nous désignerons
encore par uq Tunique générateur de HQ(Z ; q, Z?).

Théorème 3. Si q > 2, Valgèbre H*(Z ;q,Z2) est Valgèbre de
polynômes ayant pour générateurs les éléments Sq1^) où I parcourt
Vensemble des suites admissibles {ix...., ir}, d'excès <q, et telles que

ir>l.
On sait que l'espace projectif complexe à une infinité de dimensions

est un espace K(Z, 2) ; H*(Z ; 2, Z2) est donc l'algèbre de polynômes
ayant u2 pour unique générateur ; comme d'autre part e (I) < 2 et
ir > 1 entraînent que / soit vide, le théorème est vérifié pour q 2.

A partir de là on raisonne par récurrence sur q, exactement comme
dans la démonstration du Théorème 2. Il faut simplement observer que,
si q ^ 3, les suites / dont le dernier terme est > 1 correspondent, par
la correspondance du Lemme 1, aux couples (r, J) où le dernier terme
de J est > 1.

Corollaire. Si q > 2, l'algèbre H*(Z ; q,Z2) est isomorphe au
quotient de l'algèbre H*(Z2 ; q, Z2) par l'idéal engendré par les Sq1^) où I
est admissible, d'excès <q. et de dernier élément égal à 1.

De façon plus précise, l'homomorphisme canonique Z -+Z2 définit
(grâce à 5.4) un homomorphisme de H*(Z2 ; q,Z2) dans H*(Z ; q, Z2),

et les théorèmes 2 et 3 montrent que cet homomorphisme applique la
première algèbre sur la seconde, le noyau étant l'idéal défini dans l'énoncé
du corollaire.

11. Détermination de l'algèbre H*(Zm ;q,Z2) lorsque m 2h. h^2
L'algèbre fiT* (Zm ; 1, Z2) n'est pas autre chose que l'algèbre de coho-

mologie modulo 2 du groupe Zm, au sens de Hopf. Sa structure est bien
connue (on peut la déterminer soit algébriquement, soit en utilisant les

espaces lenticulaires) :

C'est le produit tensoriel d'une algèbre extérieure de générateur ux et
d'une algèbre de polynômes de générateur un élément v2 de degré 2.
L'élément v2 peut être défini ainsi :

Soit ôh l'opérateur cobord attaché à la suite exacte de coefficients
0 ->Z2 ->Z2h+i -*Z2n -> 0. Soit u[ le générateur canonique de

W(Zm ; 1, Zm) ; on a alors v ôh (u[).
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Si h était égal à 1, on aurait dh Sq1, d'après 2.6; mais comme
nous avons supposé h ^ 2, ôh diffère de Sq1 (on a d'ailleurs Bq1^)
u\ 0), Nous écrirons : t>2 Sq^u^, lorsque cette écriture ne pourra
pas prêter à confusion.

Le raisonnement de [8], p. 457, montrant que les Bq* commutent à la
transgression, se laisse adapter sans difficulté à l'opération ôk, et montre
ainsi que v2 est un élément transgressif de H%(Zm ; 1, Z2) dans la fibra-
tion qui a K(Zm) 1) pour fibre et K(Zm, 2) pour base. Comme
JET* (Zm ; 1, Z2) a pour système simple de générateurs le système :

qtSqKuJ,. ..,8q**. S

le théorème 1 montre que H*(Zm; 2,Z2) est l'algèbre de polynômes
ayant pour générateurs les éléments :

**2, Sq\(u2)9. ..,8q*k Sq*Sq\(u2),..

Ceci nous conduit à la notation suivante : si I {i1,..., ir} est une
suite admissible, on définit Sql(uq) comme étant égal à Sq1^) si

tr>l, et à Bq*1... Bq*'-1 Bq\(uq) si ir 1 (8q\(uq) a le même sens

que plus haut, autrement dit Sq\(uq) ôh(uq), ufq désignant le générateur

canonique de H^(Zm ; q,Zm)).
La détermination de H*(Zm; q,Z2) se poursuit alors par récurrence

sur q, exactement comme celle de H*(Z2; q,Z2), à cela près que les

Sql remplacent les Bq1. On obtient finalement :

Théorème 4. Si q > 2, Valgèbre H*(Zm;q,Z2), où m 2h avec
h ^ 2, est Valgèbre de polynômes ayant pour générateurs les éléments

Sql(uq) où I parcourt Vensemble des suites admissibles d'excès <q.
Comme les Sql correspondent biunivoquement aux Bq1, on a :

Corollaire. H*(Zm;q,Z2) et H*(Z2;q,Z2) sont isomorphes en tant
qu'espaces vectoriels sur le corps Z2.

Le résultat précédent est valable même si q 1.

12. Détermination de Falgèbre H*(II; q,Z2) lorsque II est un groupe
abélien de type fini

Le résultat suivant peut être considéré comme classique :

Théorème 5. Soient II et II' deux groupes abéliens, II étant de type fini,
et soit h un corps commutatif. L'algèbre H*(II + II' ;q,k) est isomorphe
au produit tensoriel sur Je des algèbres H*(II;q,h) et H*(II' \q,k).
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Rappelons la démonstration : Soient X un espace K(IIyq) et X7 un
espace K(IIf,q). L'espace XxXr est un espace /C(77 + 77', g), comme
nous l'avons déjà signalé (5.2). Puisque 77 est de type fini, les groupes
d'homologie de X sont de type fini en toute dimension d'après [8], p. 500

(voir aussi [11], Chapitre II, Proposition 8). Appliquant alors un cas

particulier de la formule de Kiinneth4), on a :

H*(X xX', k) H*(X, k) ® H*(X', k)

ce qui démontre le Théorème 5.

Comme tout groupe abélien de type fini est somme directe de groupes
isomorphes à Z et de groupes cycliques d'ordre une puissance d'un
nombre premier, le Théorème 5 ramène le calcul de H* (77 ; q, Z2) aux trois
cas particuliers : 77 Z, 77 Z2h, 77 Z h avec p premier =£ %.

Les deux premiers cas ont été traités dans les nos précédents et l'on sait

par ailleurs (cf. [8] et [11], loc. cit.) que Hn(Zm ; q,Z2) 0 pour n>0,
si m est un entier impair ; le troisième cas conduit donc à une algèbre de

cohomologie triviale, et la détermination de H*(II;q,Z2) est ainsi
achevée, pour tout groupe 77 de type fini.

13. Relations entre les diverses algèbres H*(II; q, Z2)

Dans ce qui précède nous avons traité indépendamment les cas 77 Z,
77 Z2, 77 Z2h. Il y a cependant des relations entre ces trois cas,

qui proviennent des fibrations du n° 6. Nous allons en donner un exemple :

Posons m 2h, avec h ^ 1. Considérons la suite exacte

où le premier homomorphisme est la multiplication par m. En appliquant

6.3 on en déduit l'existence d'une fibration où l'espace fibre est

un espace K(Zm, q — 1), où la fibre est un espace K(Z, q — 1) et la
base un espace K(Z,q). Soit uq__x l'unique générateur du groupe
Ha-i(Z ;q,Z2) ; l'image de uq_x par la transgression t est nulle, car sinon
Hq~1(Zm ; q — l,Z2) serait nul, ce qui n'est pas ; puisque les Sq1
commutent à la transgression, on a r(8qIuq_1) 0 pour toute suite 7, et
comme H*(Z ; q — 1, Z2) est engendré par les SqIuq_1, il s'ensuit que
toutes les différentielles dr (r ^ 2) de la suite spectrale de cohomologie
modulo 2 de la fibration précédente sont identiquement nulles. Le terme
E^ de cette suite spectrale est donc isomorphe au terme E2, ce qui donne :

4) Ce cas particulier est démontré dans [8], p. 473.
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13.1. L'algèbre graduée associée à H*(Zm;q — l,Z2), convenablement

filtrée, est isomorphe à H*(Z ;q,Z2) ® H*(Z ; q — 1, Z2).

En particulier *.

13.2. £T*(Zm;g-l,Za) et H*(Z ; q, Z2) ® H*(Z ; q - I,Z2) sont
isomorphes en tant qu'espaces vectoriels sur le corps Z2.

On notera que 13.2 fournit une nouvelle démonstration du Corollaire
au Théorème 4. D'un autre côté, il serait facile de tirer 13.2 des
Théorèmes 2, 3, 4.

14. Les groupes stables; cas de la cohomologie

'II et G étant deux groupes abéliens, nous poserons5) :

14.1. An(n,G) Hn+q(II;q,G), avec q>n.
On sait (cf. [5] ainsi que [8J, p. 500) que ces groupes ne dépendent pas

de la valeur de q choisie, mais seulement de II, G et n. Ce sont les «groupes
stables».

Le raisonnement du Théorème 5 montre immédiatement que l'on a la
formule suivante (voir aussi [5] :

14.2. An{II + nf,G) An(II,G) + An(nf,G) pour tout n > 0.

On définit de façon analogue les groupes An(II, G) Hn+q(II; q, G),
avec q>n. Les Théorèmes 2, 3, 4 permettent de déterminer ces groupes
lorsque G Z2, et lorsque II Z, Z2, ou Zm avec m 2h :

Théorème 6. L'espace vectoriel An(Z2,Z2) {resp. An(Zm,Z2), avec

m 2h) admet pour base l'ensemble des éléments Sq*(u) (resp. 8ql(u)),
où I parcourt l'ensemble des suites admissibles de degré n.

(Nous avons noté u l'unique générateur de A°(Zm, Z2)).

Par exemple, A10(Z2, Z2) admet pour base les six éléments :

Sqlou, Sq^Sq^u, Sq*Sq*u, Sq'Sq^u, Sq'Sq^Sq^, S

Théorème 7. L'espace vectoriel An(Z,Z2) admet pour base l'ensemble
des éléments SqTu, où I parcourt l'ensemble des suites admissibles dont le

dernier terme est > 1 et dont le degré est n.
Par exemple, A10(Z, Z?) admet pour base les trois éléments : 8q10u,

8q8Sq2u, 8q7Sq*u.

5) La notation adoptée ici diffère d'une unité de celle de [5],

208



15. Les groupes stables; cas de l'homologie

Pour passer des groupes de cohomologie modulo 2 aux groupes d'homo-
logie nous aurons besoin du Lemme suivant :

Lemme 2. Soient X un espace, n un entier >0. Supposons que
Hn (X, Z) ait un nombre fini de générateurs, et que la suite :

H™-1 (X, Z2) %Hn(X, Z2) % H^1 {X, Z2)

soit exacte. Posons N dim. [Hn{X,Z2)lSq1{Hn-1{X,Z2))].
Le groupe Hn(X,Z) est alors somme directe d'un groupe fini d'ordre

impair et de N groupes isomorphes à Z2.
Pour simplifier les notations, nous poserons Lt Ht(X,Z). D'après

la formule des coefficients universels6), on a, pour tout groupe abélien G,
une suite exacte :

0 -> Ext (Ln_ltG) -> Hn(X,G) -> Hom (Ln,G)->0
En appliquant ceci à G Z4 et à G Z2, on obtient le diagramme :

0 -> Ext (Ln_x, Z4) -> Hn(X, Z4) -> Hom (Ln, Z4) -> 0

0 -^ExtlL^,^) -+H»(X,Zt) ->Hom(Ln,Z2) -* 0

D'après la suite exacte 2.7, le noyau Qn de

Sq1 :Hn(X, Z2) -> ^n+1 (X, Z2)

est égal à l'image de ^. Comme l'application ç? est sur (d'après une
propriété générale du foncteur Ext), il s'ensuit que Qn contient Ext {Ln_x ,Z2).

Soit d'autre part Rn l'image de S q1 : Hn~1(X, Z2) -> Hn(X, Z2). On
voit facilement (par calcul direct, par exemple) que toute classe de

cohomologie / € Rn donne 0 dans Hom(£w, Z2). Donc Rn est contenu dans

Ext(Ln_x,Z2).
Vu l'hypothèse faite dans le Lemme, on a donc :

Ainsi l'image de ip est égale à Ext(Lw_1? Z2). Il s'ensuit que l'homo-
morphisme % est nul ; compte tenu de la structure des groupes abéliens
à un nombre fini de générateurs, ceci montre que Ln est somme directe
d'un groupe fini d'ordre impair et d'un certain nombre de groupes Z2.

6) Voir par exemple S. Eilenberg and N. E. Steenrod, Foundations ofAlgebraic
Topology, L, Princeton 1952, p. 161.
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Il est clair que le nombre de ces derniers est égal à la dimension de
Hom (Ln, Z2) c'est-à-dire à N.

Théorème 8. Le groupe An(Z2,Z) est somme directe de groupes Z2 en
nombre égal au nombre des suites admissibles I {il9..., ik} où ix est

pair et où n (I) ix -f- • • • + i* est égal à n.
Nous allons déterminer l'opération Sq1 dans A*(Z2,Z2), de façon à

pouvoir appliquer le Lemme 2.

Rappelons que l'on a 8q1Sqn 8qn+1 si n est pair, et Sq1Sqn 0

si n est impair. On tire de là :

8q1(8qH...8qlku) { o +1 o ih fa /Sg*1+1.. ,8q%ku si ^ est pair
Soit alors JB71 (resp. (7n) le sous-espace vectoriel de An(Z2,Z2) engendré

parles Sq*(u) où ix est pair (resp. impair). An(Z2,Z2) est somme directe
de B71 et de Cn ; d'après la formule écrite plus haut, 8 q1 est nul sur Cn et
applique isomorphiquement Bn sur Cn+1. La suite :

5g1 Sq%

A**(ZZ) A"(ZZ)
est donc exacte, et Bn est isomorphe à An(Z2, Z2)j8q1An-1{Z2, Z2).

Le théorème résulte alors du Lemme 2, et du fait (démontré dans [8],
p. 500), que An(Z2,Z) est un groupe fini d'ordre une puissance de 2.

On démontre de même ;

Théorème 9. Le groupe An(Zm,Z), n>0, est isomorphe à An(Z2,Z)
lorsque m est une puissance de 2.

Théorème 10. Le groupe An(Z,Z), n>0> est un groupe fini dont le

^-composant est somme directe de groupes Z2 en nombre égal au nombre des

suites admissibles I {i1,..., ik} où ix est pair, ik>l} et où n(/)
ix -j-... -j. ik ^t égal à n.

Remarque, En comparant les Théorèmes 7 et 8, on peut montrer que
An(Z2,Z) est isomorphe à An(Z,Z2). De façon générale, on conjecture
que An(II,G) est isomorphe à An(O,II) quels que soient les groupes
abéliens G et II; il suffirait d'ailleurs de démontrer le cas particulier
II — Z pour avoir le cas général (compte tenu des résultats annoncés

par Eilenberg-MacLane dans [5], II, ceci vérifie la conjecture en question

pour n 0, 1, 2, 3).

Théorème 11. Pour tout groupe abélien II, le groupe An(II, Z), n>0,
est un groupe de torsion dont le ^composant est somme directe de groupes
isomorphes à Z2.
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Soient 77a les sous-groupes de type fini de 77 ; puisque 77 est limite in-
ductive des 77aJ le complexe 7?(77, g) est limite inductive des complexes
7f(77a,g), et on en conclut que An(II,Z) est limite inductive des

j4w(77a, Z) ce qui réduit la question au cas où 77 est de type fini.
En utilisant la formule 14.2, on est alors ramené au cas des groupes

cycliques, qui est traité dans les Théorèmes 8, 9, 10.

Remarque, Le fait que An(II,Z) soit un groupe de torsion résulte
aussi de [8], p. 500—501.

§ 3. Séries de Poincaré des algèbres H*(II;q, Z2)

16. Définition des séries de Poincaré

Soit L un espace vectoriel, somme directe de sous-espaces Ln de dimension

finie ; la série de Poincaré de L est :

L(t) ZZ==odim(Ln).t" (16.1)

Lorsque L est de dimension finie, la série formelle précédente se réduit
à un polynôme, le polynôme de Poincaré de L.

Soit 77 un groupe abélien de type fini, et prenons pour L l'algèbre
H*(II;q,Z2) 2]Hn(n;q,Z2). La série de Poincaré correspondante
sera notée #(77; q, t). On a donc par définition :

(77;g,Z2)).^ (16.2)

De même, nous noterons #(77, t) la série de Poincaré de A*(II,Z2).
D'après le Théorème 5 du § 2, on a :

ê(II + II' ;q,t) &(n;q,t).ê(nf ;q,t) (16.3)

D'après la formule 14.2, on a :

#(77 + n\ t) #(77, t) + #(77', t) (16.4)

On pourrait d'ailleurs déduire 16.4 de 16.3 au moyen de la formule
suivante (qui ne fait qu'exprimer la définition des groupes stables) :

-1 (16.5)

17. La série ê(Z2;q,t)
Soit d'abord L une algèbre de polynômes dont les générateurs ont

pour degrés les entiers mx,..., m{,. La série de Poincaré de L est
évidemment :
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Compte tenu du Théorème 2 du § 2, ceci donne :

=r^. (17.2)

Pour transformer cette expression, il nous faut calculer le nombre de
suites admissibles /, d'excès <q, telles que q + n(I) n, où n est

un entier donné. Or, soit / {ix,..., ir} une telle suite, et posons :

(xx== ix — 2i2,. ar_1 ir_t — 2ir, ocr ir. Par hypothèse les oct sont

> 0, Ton a 2Jrl=1 oct < q — 1, et il est clair que les <xt déterminent sans
ambiguïté la suite /. La condition q ~\- n(I) n équivaut à

rî_0«.(2*- l) n-q
Posons oc0 q — 1 — ZT=i a* • On a alors J£T=o a» # ~ * e^ :

^= l + ZUo^*21 • (17.3)

On voit ainsi que les suites / vérifiant les conditions écrites plus haut
correspondent biunivoquement aux suites d'entiers > 0 : {oc0,.. ocr},

de somme q — 1, qui vérifient 17.3.
Nous pouvons écrire 17.3 sous la forme suivante :

n= 1 + 2° H h 2° + 21 H h 2H h 2r H h 2r (17.4)

où 2* figure at fois. Comme 2^=0 ai # ~ *
> ^ y aura en ^ou^ ^ — 1

puissances de 2. Ceci montre que le nombre de suites / vérifiant les
conditions écrites plus haut est égal au nombre de décompositions de n de la
forme :

n 1 + 2hl + 2^2 H h 2^-* avec ^ > h2 >• • • > /i^ > 0 (17.5)

D'où:

Théorème 1. i?(Z2;g,0= TT 1
»1+*

+aVl+1

Pour g 1, la famille des ht est vide, et le Théorème redonne la
série de Poincaré de H*(Z2 ; 1, Z2) :

17.6. &(Z2; 1,«) 1/(1-0-
Le Théorème 1 donne également la valeur de &(Zm; q, t) lorsque m

est une puissance de 2. En effet, d'après le Corollaire au Théorème 4 du
§ 2, on a •

â(Zm;q,t)=â(Zt;q,t) si m 2» (17.7)
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18. La série #(Z;q,t)
Si q l? on a évidemment #(Z;g,£)=l + £. Nous pouvons donc

supposer g > 2.
On raisonne alors comme au numéro précédent. La condition ir > 1 du

Théorème 3 du § 2 équivaut à ocr > 1, ou encore à hx h2. La condition

17.5 doit donc être remplacée par la suivante :

n 1 + 2*i + 27'1 + 2*8 H h 2**-1 (18.1)
ou encore :

n 1 + 2*1 + 1 + 2*3 H h 2;^-1 (18.2)

d'où, en renumérotant les ht, le résultat suivant (valable si q ^ 2,
rappelons-le) :

Théorème 2. ê(Z;q,t) TT â—* « •

En comparant les Théorèmes 1 et 2 on voit que &(Z; q, t) ne diffère
de #(Z2; g — 1, t) que par l'omission des termes correspondants à hx =h2.
Or ces derniers définissent justement ê(Z; q — 1, t), comme on l'a vu
plus haut. On a donc:

Corollaire 1. ê(Z;q,t) Û(Z2 ; q - 1, t)l&{Z ; q - 1, t)

En itérant, on obtient :

Corollaire 2. *(*;*.«) ^;g ' M)-^;g - 3,1),.,
'* &(Z2;q-2,t)-ê(Z2;q-4,t)...

Remarque. On peut retrouver les résultats précédents d'une autre
façon : en utilisant 13.2, on démontre d'abord le Corollaire 1, puis on en
tire par récurrence sur q le Théorème 2.

19. Les séries &(Z2, t) et &(Z, t)

D'après le n° 17, la dimension de An(Z2, Z2) est égale au nombre des

suites d'entiers ^ 0 : {o^,.. ar} telles que :

n Zrl==1oct-{V-l) (19.1)

En comparant avec 17.1, on obtient :

Théorème 3. 0(Za, 0 =TTZijZIi2^ •

D'après 17.7, on a :

ê(Zm,t)=&(Z2,t) si m 2h. (19.2)

Le Corollaire 1 du Théorème 2, joint à la formule 16.5, donne l'identité
suivante : ê(Z, t) <&(Z2, t)/(l + t) (19.3)
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D'où:

Théorème 4. 0 (Z ,t) -j-^i"TT-. fZ^II •

20. Exemples

; 2, *) 1/(1 - t*)(l - *3)(1 - *5)(1 - t»)(l - W)...
1 + t* + t3 + t* + 2f5 + 2t« + 2f + 3*8 + U9 + U10 + 6tu

(Z ; 3, t) 1/(1 -
1 + t* + t5 + t« + t* + 2t9 + t10 + t11 + 2*12 +

(Z2, t) 1/(1 - 0(1 -
1 + t + t2 + 2t3 + 2t* + 2t5 + 3t« + àf + 4t8

(Z, t) 1/(1 - t»)(l - ^)(1 - f)(l - t™)...
1 + t2 + t3 + t* + t5 + 2t« + 2f + 2t8 +

+ U12 + U™ + 5tu + m15 H

21. Convergence des séries #(77; q, t)

Théorème 6. Lorsque II est un groupe abélien de type fini, la série
entière fi(II;q,t) converge dans le disque | t | < 1.

D'après les formules des numéros précédents, il suffit d'établir ce

résultat pour II Z2. Dans ce cas, il nous faut voir que la série :

y f2hl + ...+2*0-1+1

converge dans le disque 11 \ < 1, ce qui résulte immédiatement du fait
qu'elle est majorée par la série t • (27n=i t71)*-1.

La singularité «dominante» de #(77 ', q,t) sur le cercle | 11 1 est

t 1 ; nous allons étudier le comportement de #(77; g, t) au voisinage
de cette singularité. Il est commode pour cela de prendre comme nouvelle
variable x — log2 (1 —- £)> e^ comme nouvelle fonction Iog2#, log2

désignant comme d'ordinaire le logarithme à base 2. En d'autres termes,
nous posons :

z,l -2-*) 0<*<+oo (21.1)

et nous sommes ramenés à étudier la croissance de <p(77; g, x) lorsque
x tend vers + °° • Nous envisagerons d'abord le cas 77 Z2.
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22. Croissance de la fonction cp(Z2 ; q, x)

Théorème 6. Lorsque x tend vers + °°> on a q>(Z2;q, x)
(Rappelons que f(x) ~g(x) signifie que lira. f(x)lg(x) 1.)
Nous démontrerons ce théorème par récurrence sur g. Lorsque g=l,
on a ê{Z2 ; q, t) 1/(1 - t), d'où <p(Z2 ;q,x) x.

Supposons le théorème démontré pour q — 1 et démontrons-le pour q.
Pour simplifier les notations, nous écrirons êq(t) au lieu de &(Z2; q, t)
et (pq(x) au lieu de (p(Z2 ; g, x).

Nous introduirons les fonctions auxiliaires suivantes :

qo /j\ "] T
f

Les inégalités évidentes :

2/*i+1 .)-.... _|_ 2^-i+1 ^ 2hl + - • • + 2hv-1 + 1 > 2hl + • • • + 2ft«-1

entraînent les inégalités :

*i(0<*«(0<*ÎW pow 0<«<l. (22.1)

Mais par ailleurs êrq (t) ne diffère de #° (^) que par les facteurs correspondants

à fy^ 0, c'est-à-dire par iï^it). On a donc :

*£(*)= WViW (22.2)

En comparant 22.1 et 22.2, on obtient :

KW/#H(0 < #a W < ^ W Vour 0 <« < 1 (22.3)

d'où, en prenant les logarithmes :

<p\(x) - (pq^(x) < ya(a?) < 9>;(s) pcmr 0 < a:< +oo. (22.4)

Si l'on savait que <p°q(x) ^> xPjq on aurait (p°q(x) — (f^xix) ~ ofljq

(car, d'après l'hypothèse de récurrence, (p^^x) ~ x^~xl{q — 1) d'où
q>q(x) ~<p°q{x) ~&lq\

Nous sommes donc ramenés à prouver que (f\{x)~ ofijq Pour cela,
substituons t2 à t dans 0J|($). On obtient visiblement iï°q(t2) =êq{t)

&l(t)l'd'q-.1{t), d'où, en prenant les logarithmes:

ç>;(s) %-!(x) + <p°q(x - 1 - Iog2(l - 2-^-i)) (22.5)
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Lorsque x tend vers + oo, log2 (1 — 2~x~1) tend vers 0 par valeurs
inférieures. Pour tout e>0, on a donc, pour x assez grand :

<p°t(x - 1) + tp^iz) < fi(x) < <p°q(x - 1 + e) + <pq^{x) (22.6)

D'après l'hypothèse de récurrence <pa-x{x) ~ «9~1/(? ~~ *) '
> donc, pour

tout e' > 0, on a, pour x assez grand :

(1 _ e')-a<r-V(ï - 1) < 9>a-i(*) < (1 + e')-x^l(q - 1) (22.7)

En combinant 22.6 et 22.7 on obtient :

ç£(* - 1) + (1 - e')-*-il(q - 1) < ?» < ^(z - 1 + e)

+ (l + e')-*ir-1/(î- 1)!

Or, il est bien connu que l'équation aux différences finies :

f(x) f(x - l) +A-x«-*l(q- 1)1

admet une solution de la forme F(x) A-ofl/q + R(x), où R(x) est

un polynôme de degré <q. En outre, si une fonction continue g vérifie

g(x) ^g(x - 1) + A.&-1l(q - 1)

il est clair qu'il existe une constante K telle que g(x) ^.F(x) -\- K. On
a un résultat analogue en remplaçant < par ^.

Appliquant ceci à la fonction qPq{x), on conclut à l'existence de deux
polynômes Rf et R/f, de degrés <q, tels que l'on ait, pour x assez grand :

+ B' (x) ^ <p°q(x) < -j-±-^. ««/g + R" {x)

Comme e et e sont arbitraires, les inégalités précédentes entraînent
que lim. (p°q(x)l(x?lq 1, ce qui achève la démonstration, d'après ce

qui a été dit plus haut.

23. Croissance de la fonction <p(II;q, x) lorsque IJ est de type fini

Théorème 7. <p(Zm;q, x) ~ ofi/q si m est une puissance de 2.
En effet <p(Zm; q, x) y(Z2 ; q, x) d'après 17.7.

Théorème 8. <p(Z ; q, x) ~ ofl-^iq — 1)

Pour q 1 on vérifie directement que <p (Z ; q, x) tend vers 1 lorsque
x tend vers + oo. Pour q ^ 2, on a
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d'où <p(Z ; q, x) <p(Z2 ; q — 1, x) — cp(Z ; q — 1, x) et le Théorème 8

résulte de là, par récurrence sur q.
En combinant les Théorèmes 6, 7, 8 on obtient :

Théorème 9. Soit 77 un groupe abélien de type fini, somme directe d'un
groupe fini d'ordre impair, de r groupes cycliques d'ordre une puissance de

2, et de s groupes cycliques infinis.

a) Si r > 1, on a cp(II; q, x) ~ r •otfljq

b) Si r 0 et s > 1, on a <p(II;q9 x) ^s-ofl-^q — 1)

c) Si r 0 et s 0, on a y(II; q, x) 0.

Remarque. A côté des cp(II; q, x) on peut définir

-2-*)
On montre facilement que ç?(22, #) ~ y(Z2 ; 2, #) ~ #2/2, d'où également

ç?(Z, #) *—* x2j2. Mais j'ignore si ces résultats ont une application
topologique analogue au Théorème 10.

24. Application topologique

Nous nous proposons de démontrer le théorème suivant :

Théorème 10. Soit X un espace topologique connexe par arcs, simplement

connexe, et vérifiant les conditions suivantes :
1 Hl(X, Z) est un groupe abélien de type fini pour tout i>0,
2) Ht (X, Z2) 0 pour i assez grand,
3) Ht (X, Z2) =fc 0 pour au moins un i ^ 0.

Il existe alors une infinité d'entiers i tels que le groupe d'homotopie
nt(X) contienne un sous-groupe isomorphe à Z ou à Z2.

(On notera que les conditions 1 et 2 sont vérifiées d'elles-mêmes si X
est un polyèdre fini.)

Remarquons tout d'abord que d'après [8], p. 491 (voir aussi [11],
Chapitre III, Théorème 1) la condition 1 entraîne que nt(X) soit un
groupe de type fini pour tout i. La propriété «nt(X) contient un sous-

groupe isomorphe à Z ou à Z2» équivaut donc à la suivante «jrt(X) <S> Z2

7^ 0». Soit j le plus petit entier >0 tel que H3(X,Z2) ^ 0. D'après
[8], [11], loc. cit., no(X) ®Z2 H3(X,Z2) ^ 0. En outre, on a y > 2

puisque n^X) 0.
Raisonnons alors par l'absurde, et supposons qu'il existe un plus grand

entier q tel que ng(X) ®Z2 ^ 0. On a évidemment q > j > 2. Nous

poserons II tzq(X).
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Nous allons obtenir une contradiction en étudiant les propriétés des

espaces (X,i) obtenus en tuant les i — 1 premiers groupes d'homo-
topie de X (au sens de [3], I, voir aussi [11] et [14]). Rappelons que par
définition on a nr(X, i) 0 pour r <i, nr(X, i) nr{X) pour
r ^i.

Considérons d'abord l'espace T (X, q + !)• D'après les hypothèses
faites, on a nr(T) ® Z2 0 pour tout r, d'où Hr(T, Z2) 0 pour tout
r>0 d'après [8], [11], loc. cit.

Venons-en à l'espace Xq (X, q). D'après [3], I, Xq a même type
d'homotopie qu'un espace fibre Xfq de fibre T et de base un espace
K(nq(X),q) K(II,q). En appliquant alors un résultat connu ([8],
p. 470), on obtient :

f pour tout i > 0. (24.1)

Si l'on désigne par Xq (t) la série de Poincaré de H* (Xq, Z2), on a donc :

q9t) (24.2)

De façon analogue, soit Xt(t) la série de Poincaré de H*(Xi,Z2)1),
avec X{ (X, i). On sait (cf. [3]) que Xq est un espace fibre de base

Xq_x et de fibre un espace /((^^(X), q — 2). Les séries de Poincaré des

algèbres de cohomologie modulo 2 de ces trois espaces vérifient donc la
relation :

XQ(t) < IHW.#(^H(I) ; q - 2, t) (24.3)

où le signe <( signifie que tous les coefficients de la série formelle écrite
à gauche sont inférieurs aux coefficients correspondants de la série
formelle écrite à droite. De même :

; q - 3, t)
(24.4)

On a évidemment X2(t) X(t), série de Poincaré de H*(X,Z2), qui
se réduit d'ailleurs à un polynôme, vu les hypothèses 1 et 2. Multipliant
les inégalités précédentes, on obtient :

ê(II;q,t) Xq(t)< X(t).TT#(nt(X);i-l,t)
Ki<q

A fortiori, la même inégalité vaut pour les fonctions définies par les

7) On a le droit de parler de ces séries de Poincaré parce que les groupes d'homologie
des X€ sont de type fini (puisqu'il en est ainsi des groupes d'homotopie, d'après l'hypothèse

1).
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séries précédentes dans l'intervalle [0, 1], Comme X(t) est un polynôme,
X(t) est borné sur [0, 1] par une constante h, et Ton a :

Ki<q
En passant aux fonctions <p(II;q, x), l'inégalité précédente devient:

(p(II', q, x) < log2 h + ZlZlvMX) ; i - 1, x) 0 < x < + oo (24.5)

Par ailleurs, d'après le Théorème 9, cp(II\q,x) équivaut, soit à

r-ofljq avec r ^ 1, soit à s-ofi^^q — 1) avec s ^ 1 (le cas c) du
Théorème 9 étant écarté par l'hypothèse 77 ® Z2 ^ 0), alors que les

(p(nt(X);i — 1, x) sont majorés par A-x1'1/^ — 1) où A est une
constante. Comme i<q, il s'ensuit que le second membre de 24.5 est

majoré par Bx?~2, où B est une constante, et est donc un infiniment
grand strictement inférieur au premier membre. Cette contradiction
achève notre démonstration.

Explicitons un cas particulier du Théorème 10 :

Corollaire. Pour tout entier n^2 il existe une infinité d'entiers i tels

que 7ii{Sn) contienne un sous-groupe isomorphe à Z2.
En effet, on sait que nt(Sn) ne contient de sous-groupe isomorphe à

Z que pour un nombre fini de valeurs de i, à savoir i n si n est
impair, i n et i 2n — 1 si n est pair.

25. Remarques

1) Soit X un espace vérifiant les hypothèses du Théorème 10. Il
y a trois possibilités ;

a) nt(X) contient Z2 pour une infinité de valeurs de i, et Z pour une
infinité de valeurs de i,

(5) nt(X) contient Z2 pour une infinité de valeurs de i, et Z pour un
nombre fini de valeurs de i,

y) 7tt(X) contient Z pour une infinité de valeurs de i, et Z2 pour un
nombre fini de valeurs de i.

Une sphère, un groupe de Lie, donnent des exemples de (}). On peut
montrer qu'un «joint» de sphères X S^v.. .v-S*, n ^ 2, k > 2,
vérifie a). Par contre, je ne connais aucun exemple du cas y), et je
conjecture qu'il n'en existe pas, tout au moins parmi les polyèdres finis.

2) Posons Ot nn+t(Sn), n>i + 1- On sait que les Ot sont des

groupes finis (si i>0), indépendants de la valeur de n choisie. Il est
naturel de conjecturer que Ot contient Z2 pour une infinité de valeurs de i,
mais cela ne semble pas résulter de la méthode suivie plus haut.
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§ 4. Opérations cohomo logiques

26. Définition des opérations cohomologiques

Soient q et n deux entiers >0, A et B deux groupes abéliens. Une
opération cohomologique, relative à {q, n9 A, B) est une application:

C :Hq(X,A)->Hn{X, B)

définie pour tout complexe simplicial X, et vérifiant la condition
suivante :

26.1. Pour toute application continue / d'un complexe X dans un
complexe F, on a C o /* /* o C.

Remarque. Nous nous sommes placés dans la catégorie des complexes
simpliciaux pour des raisons de commodité. On pourrait aussi bien se

placer dans la catégorie de tous les espaces topologiques (la cohomologie
étant la cohomologie singulière). Cela ne changerait rien, puisque l'on
peut remplacer tout espace topologique par le complexe simplicial «réalisation

géométrique» de son complexe singulier, et que cette opération ne
modifie pas les groupes de cohomologie.

27. Exemples

27.1. Supposons que n q, et donnons-nous un homomorphisme
de A dans B. Cela définit un homomorphisme de Hq(X,A) dans

Hq(X, B) qui vérifie 26.1.
27.2. Supposons que n q + 1, et donnons-nous une suite exacte :

0 -» B-+L-+A ->0

Cette suite définit une opération cobord : Hq(X, A) -> Hq+1(X, B) qui
vérifie 26.1.

27.3. Supposons que n ~ 2q, et donnons-nous une application bili-
néaire de A dans B. Au moyen de cette application, on peut définir le

cup-carré d'un élément de Hq(X, A), qui est un élément de H2q(X, B),
et cette opération vérifie 26.1.

27.4. Les Sq1, les Sq1, les puissances réduites de Steenrod (voir [13]),
sont des opérations cohomologiques.

28. Caractérisation des opérations cohomologiques

Théorème 1. Les opérations cohomologiques relatives à {q,n, A, B}
correspondent biunivoquement aux éléments du groupe Hn(A ; q, B).
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Soit T un complexe simplicial qui soit un espace K{A,q). Comme nous
l'avons vu au n° 3, Hq(T, A) possède une classe fondamentale u qui
correspond dans Hom (A, A) à l'application identique de A sur A. Si
G est une opération cohomologique relative à {q, n, A, B} C(u) est

un élément bien défini de Hn(T, B) Hn(A q, B), élément que nous
noterons <p(C).

Inversement, soit c un élément de Hn(T, B), et soit x eHq(X,A) une
classe de cohomologie d'un complexe simplicial arbitraire X. D'après 5.3,
il existe une application gx : X -> T telle que g

* (u) x, et cette
application gx est unique, à une homotopie près. L'élément g*(c) € Hn (X, jB)
est donc défini sans ambiguïté, et il est immédiat que l'application
x -> <?*(c) vérifie 26.1. C'est donc une opération cohomologique relative
à {q, n, A, B} que nous noterons ip(c).

On a <p o ip 1. Soit en effet c eHn(A ;q, B). Par définition,
(poy>(c) est égal à ^*(c), où gu : T -> T est une application telle que
g*(u) u. On peut donc prendre pour gu l'application identique, ce qui
donne cp o \p(c) g*(c) c.

Il nous reste à montrer que tp o çp 1. Pour cela, soit C une opération

cohomologique, et posons c cp(C) C(u). Pour tout élément
x €H*(X9 A), on a v(c)(x) fl£(c) - fir*(C(*O) G(g*(u)) C(x).
Ceci signifie bien que yj(c) ipo <p(C) est identique à C.

Corollaire. Soient C1 et C2 deux opérations cohomologiques relatives au
même système {q, n, A, B}, et soit u la classe fondamentale de HQ (A ;q,A).
Si Cx(u) C2{u), alors C1 C2.

Remarques. 1) On aurait aussi bien pu définir les opérations cohomologiques

pour la cohomologie relative (des complexes simpliciaux, ou bien
de tous les espaces topologiques, ce qui revient au même). La démonstration

précédente reste valable.

2) On pourrait également définir les opérations cohomologiques
C(zl9...,xr) de plusieurs variables xt eHqt(X, At), à valeurs dans

Hn(X, B). Ces opérations correspondent biunivoquement aux éléments
de Hn(K(Al9 qt) X • • • X K(Ar, qr), JS), comme on le voit par le même
raisonnement que plus haut. Lorsque les At sont de type fini et que B est

un corps, il résulte de la formule de Kunneth que ces opérations se

réduisent à des cup-produits d'opérations cohomologiques à une seule

variable.
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29. Premières applications

Nous allons appliquer le Théorème 1 à divers cas simples. Nous désignerons

par C une opération cohomologique relative à {q, n, A, B}
29.1. Si 0<n<q, C est identiquement nulle. En effet, Hn(A ;q, B)

est alors réduit à 0.
29.2. Si n q, C est associé à un homo?norphisme de A dans B (au

sens de 27.1). En effet, H*(A ; q, B) Hom (A, B).
29.3. Si q 1, A Z, n>l, C est identiquement nulle. En effet

Hn(Z; 1, B) 0 si n>\, puisq'un cercle est un espace K(Z, 1).
29.4. Si q 2, A Z, n impair, C est identiquement nulle. Si n

est pair, et si B Z ou Zm, on a G(x) k-xnl2, Je e B. En effet, on
peut prendre pour espace K(Z, 2) un espace projectif complexe à une
infinité de dimensions.

29.5. Si q est impair, A — Z, B Q (corps des rationnels), n>q,
C est identiquement nulle. En effet, on a Hn(Z ; q, Q) 0 si n>q,
d'après [8], p. 501.

29.6. Si q est pair, A Z, B Q, et si n n'est pas divisible par q,
C est identiquement nulle ; si n est divisible par q, on a C(x) k• xnlq,

keQ. En effet, d'après [8], loc. cit., H*(Z;q,Q) est l'algèbre de
polynômes sur Q qui admet u pour unique générateur.

On peut donner bien d'autres applications du Théorème 1. Par exemple
lorsque B est un corps, établir une formule de produit :

C(x.y) i;Ct(x)'Cj(y) ;

lorsque n<2q, montrer que C est un homomorphisme. Etc.

30. Caractérisation des £-carrés

Soit i un entier ^0, et supposons donné, pour tout couple (X, Y)
de complexes simpliciaux, et tout entier n > 0, des applications

A* : H«(X,Y ;Za) -> H^(X,Y ;Z2)

vérifiant les propriétés 2.1, 2.2 et 2.4, c'est-à-dire telles que A{ o f*
/* o A1, Ai o ô do Ai,Ai(x) x2 sidim. x i, Ai(x) Osidim. x<i.
Nous allons montrer que les A1 coïncide avec les Sqi8).

D'après le Théorème 1 (qui est valable dans le cas de la cohomologie
relative, comme nous l'avons remarqué), il suffit de prouver que Ai(uq)

8qi(uq), uq désignant le générateur de Hq(Z2 \q,Z%). Ceci est clair si

8) R. Thom a obtenu antérieurement une caractérisation analogue.
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q ^i, à cause de 2.4; pour q>i, raisonnons par récurrence sur q.
D'après le raisonnement de [8], p. 457 (qui n'utilise que les propriétés
2.1 et 2.2), A1 commute à la transgression r. On a donc

A*(uq) A*(ruq^) r(Ai uq_t)

c. q. f. d.

Note. Comme nous l'avons indiqué au n° 26, on peut étendre les A1 à
tous les couples (X, Y) d'espaces topologiques, à condition d'utiliser la
cohomologie singulière, et les propriétés 2.1, 2.2, 2.4 sont encore
vérifiées. C'est ce qui nous a permis d'utiliser les Ai dans la cohomologie de
l'espace fibre 5.1, qui relie K(Z2, q — 1) à K(Z2,q), espace fibre qui
n'est pas un complexe simplicial.

On pourrait d'ailleurs remplacer, dans la démonstration précédente,
le complexe K(Z2> q) par le joint de K(Z2, q — 1) avec deux points, et
l'on pourrait ainsi demeurer entièrement à l'intérieur de la catégorie des

complexes simpliciaux.

31. Opérations cohomologiques en caractéristique 2

Posons A B Z2. En combinant le Théorème 1 avec le Théorème

2 du § 2, on obtient :

Théorème 2. Toute opération cohomologique C : H«(X,Z2) ->Hn(X,Z2)
est de la forme :

où P désigne un polynôme (par rapport au cup-produit), et où Sq*1,.. .,8qIk
désignent les i-carrés itérés correspondant aux suites admissibles d'excès

<q. En outre, deux polynômes distincts P et Pr définissent des opérations
C et Cf distinctes.

Lorsque A Zm (m 2h), on a un résultat analogue en remplaçant
les 8q1 par les Sql ; lorsque A=Z, on ne doit considérer que des
suites / dont le dernier terme est > 1.

Corollaire. Si n ^ 2q, les i-carrés itérés 8qz, où I parcourt Vensemble
des suites admissibles de degré n — q, forment une base de Vespace vectoriel

des opérations cohomologiques relatives à {q,n, Z2,Z2}

32. Relations entre i-carrés itérés

Le Corollaire précédent montre que tout i-carré itéré est combinaison
linéaire de Sq1, où / est admissible. Il est naturel de chercher une mé-
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thode permettant d'écrire explicitement une telle décomposition. Cette
question a été résolue par J. Adem [1], qui a démontré la formule
suivante (conjecturée par Wu-Wen-Tsûn) :

Si a<2b, SfS? Z^^e.Z'û1) 8q~»-8<f (32.1)

où (*) désigne le coefficient binômial k \/j l(k — j) \, avec la convention

usuelle : (*) 0 si j>k.
On voit facilement que cette formule permet de ramener, par des

réductions successives, tout i-carré itéré à une somme de Sq1 où / est
admissible. Elle répond donc bien à la question posée.

Citons quelques cas particuliers de 32.1 dont nous ferons usage au § 5 :

32.2. Sq^^Sq71 0 si n est impair, Sq^^Sq71 Sq71*1 si n est pair.
32.3. Sq*Sq2 Sq^Sq1; Sq2Sq* Sq5 + Sq*SqK

33. Méthode permettant d'obtenir les relations entre î-carrés itérés

La démonstration donnée par J. Adem de la formule 32.1 est basée

sur une étude directe des i-carrés itérés. Nous allons esquisser une
méthode plus indirecte, mais qui conduit plus aisément au résultat9).

Soit X l'espace projectif réel à une infinité de dimensions, Y Xq le
produit direct de q espaces homéomorphes à X. L'algèbre de cohomologie
H* (Y, Z2) est donc l'algèbre de polynômes à q générateurs xl9..., xq,
de degrés 1. Nous noterons Wq le produit xx... xq de ces générateurs :

on a Wq€&(Y,Z2).

Lemme 1. Soit C une somme de i-carrés itérés, tous de degrés ^ q.
Si C(Wq) 0, alors C est identiquement nulle.

Compte tenu du Corollaire au Théorème 2, il suffit de vérifier que les

SqI{Wq) sont linéairement indépendants lorsque / parcourt l'ensemble
des suites admissibles de degré < q. Or, il est très facile de déterminer
explicitement les opérations Sq{ dans H * (F, Z2), en utilisant les

propriétés 2.3, 2.4, 2.5 ; le résultat cherché s'ensuit par un calcul que nous
ne ferons pas ici (voir un article en préparation de R. Thom).

Théorème 3, Soit C une somme de i-carrés itérés. Supposons que, pour
tout espace T, la relation C(y) 0, y eH*(T, Z2), entraîne C(x-y) 0

pour tout x eH1{T,Z2). Alors C est identiquement nulle.
Prenons pour T l'espace Y défini plus haut (q étant égal au degré

maximum des i-carrés itérés qui figurent dans C). On a évidemment

9) Cette méthode est d'ailleurs très proche de celle qui avait amené Wu-Wen-Tsùn à

conjecturer la formule 32.1.

224



C(l) 0, d'où C(xt... x%) 0 par récurrence sur i, et en particulier
C(Wq) 0, d'où (7 0 d'après le Lemme 1.

A titre d'exemple, vérifions l'hypothèse du Théorème 3 pour C
Sq28q2 + SqzSq1. En utilisant 2.3, 2.4, 2.5, on obtient:

8q28q2{x-y) at-Sqiy + x2-(Sq2Sq1y + 8q18q2y) + x-Sq2Sq2y
Sq^Sq^x-y) x^8qxy + x2-{8q*y + Sq28q1y) +
Comme 8q3 S q18 g2, on tire de là :

ce qui montre bien que C(y) 0 entraîne C(x-y) 0. D'après le
Théorème 3, on a donc Sq2Sq2 + Sq^Sq1 0, d'où 8q28q2 8qz8q1,
et nous avons démontré la première des relations 32.3.

On démontrerait de la même façon la formule 32.1 dans le cas général,
en raisonnant par récurrence sur a + b. Nous laissons le détail du calcul

au lecteur.

§ 5. Application aux groupes d'homotopie des sphères

34, Méthode

Nous allons combiner les résultats du § 2 et ceux de la note [3], I pour
obtenir un certain nombre de renseignements sur les groupes 7t6(S3)

et tz7(S3). En confrontant ces renseignements avec les résultats déjà
obtenus par ailleurs, nous en déduirons le calcul des groupes nn+s(Sn)
e^ Mn+tiSn) pour tout n.

Nous supposons connus les faits suivants (démontrés notamment
dans [11], Chapitre IV ; voir aussi [7]) :

7t4(S3) Z2 nB(S3) Z2 7t,(Sz) a 12 éléments,
tc7(S3) est un 2-groupe.

35. Les espaces (S3, q)

Conformément aux notations de [3], I, nous notons (S3, q) la sphère
S3 dont on a tué les q — 1 premiers groupes d'homotopie. Par définition,
on a donc :

™i(Sz,q) O si i<q et nt(Sz, q) tt,(S3) si i^q (35.1)

En appliquant le Théorème d'Hurewicz, on en tire :

Hq(Ss,q) nq(S3) (35.2)
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Bans les numéros qui suivent, nous calculerons les premiers groupes
de cohomologie des espaces (Sz,q), à valeurs dans Z2. Ces groupes
seront notés H€(SZ, q). Nous utiliserons pour cela les suites spectrales
attachées aux fibrations (I) et (II) de [3]. Rappelons que:

35.3. Dans la fibration (I) l'espace fibre est (S3, q + 1), la base est
(S3, q), et la fibre est un espace K(nq(Sz), q — 1).

35.4. Dans la fibration (II) l'espace fibre a même type d'homotopie
que (SZ9q) (nous l'identifierons à (Sz,q) afin de simplifier les
notations), la base est un espace K(nq(Sz), q), et la fibre est (S3, q + 1).

Si x est un dr-cocycle de Er (Er désignant l'une des suites spectrales
précédentes), nous noterons encore x l'élément de Er+1 qu'il définit.

36. Cohomologie de F espace (S3, 4)

Lemme 1. En dimensions <11, 17*(S3,4) possède une base

{l,a,b,c,d} où dim.a é, dim.b 5, dim. c 8,dim.d 9, et

où b — 8q*a, c a2, d ab.
On sait (voir [3], II, Proposition 5, ainsi que [11], Chap. IV, Lemme 3)

que les groupes d'homologie à coefficients entiers de (S3, 4) sont :

Z,0,0,0,Zt,0,Z8,0,Z4,0,Z5,0,...

d'où, en utilisant la formule des coefficients universels, l'existence de la
base {1, a, b, c, d} En outre il résulte de 2.6 que l'on a Sqxa ^ 0,
d'où Sqxa 6. Il nous reste à déterminer les eup-produits dans

H*(SZ, 4), pour prouver que a2 c et que a-b d.
Pour cela, nous utiliserons la fibration (I). D'après 35.3, l'espace fibre

est (Sz, 4), la base est S3 et la fibre est un espace K(Z, 2). Soit u2 le

générateur de H2(Z\ 2), v celui de HB(SZ). Le terme E2 de la suite
spectrale de cohomologie modulo 2 de cette fibration admet pour base
les éléments (u^f1 et t?<8K%)w, n entier ^ 0. On a évidemment dz(uz)

v, d'où d3((^)w) 0 si n est pair et dz((u2)n) v ® W1"1 si n est

impair. Comme les différentielles dr, r>3, sont identiquement nulles, il
s'ensuit que Ew admet pour base les éléments (u2)2n et v ® (u2)2n+1. Si

l'on pose ar (u2)2, br v ®u2, on voit que E^ admet pour base les

éléments a'n et 6;a/n. Les éléments {a,b,c,d} de JÏ*(S3,4)
correspondent donc dans E^ aux éléments {af, bf, a/2, af -br) et comme E^
est Valgèbre graduée associé à H*(SZ, 4), cela donne bien a2 c, et
a*b d.
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37. Cohomologie de l'espace (S3,5)

Lemme 2. En dimensions < 8, H*(S3i5) possède une base

{1, e, /, g, h, ï) où dim. e 5, dim. f dim. g 6, dim. h 7,
dim. i 8, e* oti / tf^e, h /Sg^ £g%, i £g2/, #?20 0.

Utilisons la fibration (II). D'après 35.4, l'espace fibre est (S3, 4), la
base est un espace K(-Z2, 4), et la fibre est (S3, 5).

D'après le Théorème 2 du § 2, H* (Z2 ; 4) possède la base suivante (en
dimensions < 9) :

{1, ué, Sqlu^ 8q2u4, 8q*ué9 Sq2Sqlu,,

L'homomorphisme H*(Z2 ; 4) -^ H*(S3, 4) applique évidemment w4

sur a. Il applique donc Bq1uA sur Bq1a b, Sq2ué, 8qsuà et
8q28q1u4t sur 0, uj sur a2 c, 8q38q1u4t sur 8q*8q1a 8q28q2a

0, Sq^Sq1^ sur 8q*8q1a 8q28q*a + 8q5a 0, u^Sq1^ sur
ab d. On voit en particulier que cet homomorphisme applique
^(Zg; 4) «^r ^(Sa, 4) pour i ^ 11 (en fait, cela vaut pour tout i).
Nous désignerons le noyau de cet homomorphisme par iV\

Comme Hk(Sz, 5) 0 si 0<&<5, et #*(Za ; 4) 0 si 0<i<4,
on peut appliquer la suite exacte de [8], p. 469 (en cohomologie). Compte
tenu de ce qui précède, cette suite exacte montre que la transgression r
est un isomorphisme de Hi(83, 5) sur Ni+1 pour i > 7.

Or N* a pour base 8q2ué, N7 a pour base 8qzuA et 8q28q1uA, N8 a

pour base Sqz8q1ué. Donc, en dimensions < 7, jff*(S3, 5) possède
une base {1, e, f, g, h}, caractérisée par :

T(e) Sq2uài r(f) Sq*^, r(g) Sq2Sq1uA, x(h)

Comme x commute aux 8q*, on a :

x(8qH) 8qlx(e) 8q18qtué Sq*uA x(f) d'où / Sq*e

r(Sq2e) Sq2Sq2ué Sq^Sq1^ r(fe) d'où h /Sg2c

Sq1Sq2Sq1Ut Sq^Sq1^ x{h) d'où fe S^g

Montrons maintenant que t est encore un isomorphisme de HS(SS, 5)

s^r JV9. Il faut d'abord vérifier qu'aucun élément non nul de H9(Z2 ; 4)
n'est un dr-cobord, avec r<9 : cela résulte de la nullité de i?fyQ pour
2?-f-g 8, g>0. Il faut ensuite vérifier que tout élément x c H8 (S3, 5)
est transgressif, autrement dit, que l'on a dr(x) 0 pour r<9. Or dr
applique E^8 dans Err^~r ; ce dernier groupe est évidemment nul si
r < 9, sauf pour r 4, où il admet pour base l'élément % <g) e. Nous
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devons donc montrer qu'on ne peut pas avoir dA(x) uA ® e. Or, si
cela était, % (g) e définirait un élément nul dans E5, E%,..., et en
particulier on aurait d6(u± & e) 0; comme de(e) r(e) Sq2ué, on
a ds(ué ® e) u^8q2u^Ex^Q

Mais on a J0J°'° ^J°«° E2°>° #10(Z2 ; 4), et Ton sait
(§2, Théorème 2) que u^-8q2ué est un élément non nul de H10 (Z2 ; 4).
On a donc ds(ué ® e) ^ 0, et cette contradiction prouve bien que x est
transgressif.

Comme N9 a pour base l'élément Sq^Sq1^, H8(SS, 5) a pour base

un élément i caractérisé par r(i) 8q^8q1ué. On a en outre :

r(flfgaflr) Sq2Sq28q1uà Sq^Sq^q1^ 0, d'où iSg2^ 0

t £g5^4 + Sq^Sq1^ r(t), d'où t /Sg2/

Ceci achève la démonstration du Lemme 2.

38. Cohomologie de l5 espace (S3, 6)

Lemme 3. En dimensions < 7, jBT*(S3, 6) possède une base {1, j, k}
où dim. j 6, dim. & 7, e£ oA /Sg1? 0, /Sfg2/ 0.

Utilisons la fibration (II). D'après 35.4, l'espace fibre est (S3, 5), la
base est un espace K(Z2, 5), et la fibre est (Ss,6).

En dimensions ^ 8, H*(Z2 ; 5) possède la base suivante :

{1, u5, Sq^Us, Sq*ub, Sq*u,, Sq^Sq1^}

L'homomorphisme H*(Z% ; 5) -» JHr*(S3, 5) applique évidemment u5

sure, donc 8qxu5 sur 8q1e f, 8q2u5 sur 8q2e — h, SqBu5 sur
8qze 8q1h Sq1Sq1g 0, 8q2Sq1u5 sur 8q2Sqxe 8q2f i.

D'après [8], loc. cit., on a une suite exacte (valable en tout cas pour
J < 8) :

>HHZ2;5) -+H*{SS, 5) ->^(S3, 6) ^H**(Z%;6) ->•-..
En combinant cette suite exacte avec les résultats précédents, on voit

que H6(SZ, 6) possède une base formée d'un élément?*, image de
l'élément g €H6(S3, 5), et que H1(S3, 6) possède une base formée d'un
élément k tel que r(k) 8qzu5 eH9(Z2 ; 5). En outre 8qxj est image
de Sqxg h; mais A est image de 8q2uh dans l'homomorphisme
H'J(Z2 ; 5) ->2Ï7(S3, 5), donc A donne 0 dans #7(S3, 6), et tfg1?' 0.
De même 8q2j est image de 8q2g 0, donc 8q2j — 0, ce qui achève
la démonstration.
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Corollaire. jt6(S3) Z1210).

Puisque rce(S3) a 12 éléments, il est isomorphe soit à Z12, soit à
Z2 + Z6. Dans le second cas on aurait H«(S3, 6) Hom (#6(S3, 6), Z2)

Hom (ne(Sz), Z2) Z2 + Z2, en contradiction avec le Lemme 3.

39. Cohomologie de l'espace (S3, 7)

Lemme 4. jff7(S3, 7) possède une base formée d'un seul élément m, et
Von a Sq1 m ^ 0.

On utilise comme précédemment la suite exacte :

; 6) -> #<(S,, 6) -* H*{SS, 7) ^> H^(Z12 ; 6) -*
D'après le Théorème 5 du § 2, H*(Z12 ; 6) est isomorphe à H*(ZA ; 6).

En dimensions < 8, H*(Z12 ; 6) possède donc la base suivante :

L'image de u6 dans B6(SZ, 6) est évidemment ?"; celle de
est &, car sinon on aurait H6(SS, 7) ^ 0, ce qui est aburde ; celle de
Sq2u6 est Sq2j 0. La suite exacte précédente montre alors que
H7(S3, 7) possède une base formée d'un seul élément m tel que r(m)
Sq2uQ. On a en outre 8q1m ^ 0, car r(Sq1m) Sq18q2uQ
8q*u% 9*0.

Corollaire. ?r7 (S3) Z2.

Le Lemme 4 montre que Hom (^7(S3), Z2) — Z2. Cela signifie que
le 2-composant de n7(Sz), donc tz7(S3) lui-même, est isomorphe à Zm,
avec m 2h, h ^ 1. Si fe ^ 2, l'homomorphisme de 7t7(S^) sur Z2

pourrait être factorisé en 7t7(S3) -> Zé -> Z2, et l'on aurait 8q1m 0

d'après 2.7. Ceci étant exclu d'après le Lemme 4, on a h= 1 (on
aurait pu également invoquer le Lemme 2 du § 2).

40. Les groupes nn+z(Sn)

Dans ce numéro et le suivant, nous noterons E la suspension de Freu-
denthal, v€ le générateur de ^+i(St), v[ l'élément de 7r7(S4) défini par
la fibration de Hopf : S7 ->S^, œ l'élément de nB(Ss) introduit par
Blakers-Massey.

10) Ce Corollaire résulte aussi du fait (annoncé par Barratt-Paechter, Proc. Nat. Acad.
Sci. U. S. A. 88, 1952, p. 119—121) que Jr6(«S3) contient un sous-groupe isomorphe à Z4.
Signalons également que V. A. Bokhlin (Doklady 84, 1952, p. 221—224) a annoncé des
résultats équivalents à ceux du n° 40.
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Sachant que jt6(S3) Zn, on peut montrer que co en est un générateur

(cf. A. Borel et J.-P. Serre, Groupes de Lie et puissances réduites de

Stemrod, Prop. 19.1).
Le groupe tt7(S4) n7(S7) + EnQ(Sz) est isomorphe à 2 + Zn, le

facteur Z étant engendré par v4, et le facteur Z12 par Eco.
On sait que E applique ft7(S4) sur 7i8(Sb), le noyau étant engendré

par [i4, ij, où in désigne le générateur canonique de nn(Sn) et où le
crochet désigne le produit de Whitehead. En outre, on a :

[ùfi*\ 2v'A- eEco

où e ± 1 dépend des conventions d'orientation utilisées (cette
formule résulte, par exemple, du Théorème 23.6 du livre de N. E. Steenrod
sur les espaces fibres). Il s'ensuit que dans n8(S5) on a:

ce qui montre que tt8(S5) est isomorphe à Z24, et admet E v[ pour
générateur11).

Par suspension, on a nn+z(Sn) Z24 si n ^ 5, et En~^vfà en est un
générateur.

41. Les groupes rcn+4(Sn).

On a vu que tz7(S3) Z2. D'après P. Hilton [6J les éléments co o vQ

et vz o v'i sont des éléments non nuls de ce groupe. Ils sont donc égaux
(ce qui n'était pas évident a priori), et en constituent l'unique générateur.

On a tt8(S4) 7t8(S7) + E%(S3) Z2 + Za, le premier facteur Z2

étant engendré par v4 o v7, le second par E(a)ovç) Ecoov7
D'après un théorème de Freudenthal, £ applique 7r8(S4) sur 7rô(S6).

Par ailleurs, comme il n'existe pas d'application d'invariant de Hopf
unité de Sn sur S6 (voir [1] pour une démonstration simple), l'élément
lh> h) de n9{S5) est non nul. Le noyau de E : jt8(S4) -> %(S5) a donc

au plus 2 éléments (il est d'ailleurs facile de retrouver ce fait directement,
cf. [10]). D'autre part, on a :

E(E o) o v7) E2 a) o v8 =s (2e E v[) o v8 e^ v4)*o 2 v8 0

Ceci montre que Ecoov7 appartient au noyau de E, qui est donc

11 Voir également les articles cités plus haut de V. A. Rokhlin et de A. Borel et l'auteur.
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exactement Z2. H s'ensuit que tz9(S5) Z2 et que son unique générateur

est [t6, i5] E{v'40 v7) E v[o v812).

Comme JE? applique n9(S5) sur 7tlo(SB) et que E([i5, i5]) 0, on a
^io(S6) 0, d'où ;7rw+4(Sn) 0 pour n > 6.

Récapitulons les résultats obtenus :

Théorème. w«(S8)=Zu, rc7(S4) Z + Z12, 7rn+3(Sn) Z24 m

»>5. jr7(S3)=Z2, %(S4)=Z2 + 22, rc9(S5)=Z2, ^n+4(Sn)==0
5t n ^ 6.

42. Remarques

1) On peut calculer les groupes stables 7vn+z(Sn) et jtw+4(Sw) sans

passer par l'intermédiaire des ^t(S3), par des calculs tout analogues à

ceux des numéros 36, 37, 38, 39 (et légèrement plus simples, du fait que
la suite spectrale s'y réduit à une suite exacte).

2) On peut pousser les calculs des numéros 36, 37, 38, 39 sensiblement
plus loin que nous ne l'avons fait ici, et déterminer les 2-composants des

groupes n8(Ss) et tt9(S3). On trouve ainsi ns(S3) Z2 et %(S3) =Z3.
Nous ne donnerons pas ici le détail de ces calculs, parce qu'ils sont trop
fastidieux, et parce que l'on peut calculer tz8(Sz) et tz9(Sz) par la
méthode, plus rapide, de la Note [10].

12) EvrAov9 ^ 0 résulte aussi du Théorème 5.1 de [1], où l'on fait m 4, n 2,

psi, On notera que E(Ev^qvs) 0, ce qui montre l'impossibilité d'étendre le théorème

en question au cas p n.
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