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La cohomologie mod 2

de certains espaces homogènes
Par A. Borel, Princeton N. J.

Introduction

Ce travail est consacré à l'étude de la cohomologie mod 2 de quelques
espaces homogènes ou fibres principaux des groupes orthogonaux, pour
la plupart classiques. Comme dans [2], nous utilisons systématiquement
les espaces classifiants et l'algèbre spectrale des espaces fibres ; cependant,

peu de résultats de [2] interviendront aussi, pour donner à ce travail

une certaine autonomie, avons-nous rappelé brièvement dans les
Nos 1 et 2 les principales notions et notations dont nous ferons usage.

Un des principaux buts de [2] est l'étude des espaces classifiants et des
relations que l'on peut établir entre leur cohomologie et celle des groupes
de Lie ; en ce qui concerne les groupes orthogonaux, le cas le plus intéressant

est, comme on sait, celui de la cohomologie mod 2, mais, si nous en
avons dit quelques mots pour le groupe orthogonal unimodulaire SO(n),
nous avons complètement laissé de côté le groupe orthogonal complet
O(n), et notre premier but dans I sera de combler cette lacune. On sait
que la variété de Stiefel Vn+1+ktH des ^-repères orthonormaux de l'espace
euclidien Mn+1+k est un espace universel E(k, O(n)) pour O(n) et pour
k ; sa base, qui est par définition un espace classifiant B(k, O(n)) pour
O(n) et pour &, est la grassmannienne Gn+1+k>n des sous-espaces à n
dimensions de Bn+1+k. Ainsi, étudier i/(2?O(w), Z2) jusqu'à k revient, si
l'on veut, à étudier H(Gn+1+ktn,Z2) jusqu'à k, ce qui a été fait à l'aide
de décompositions cellulaires notamment par Ehresmann [6], Chern
[4], [5], et Wu [12], [13]. Nous retrouverons leurs résultats dans les
Nos 5, 6, 7, mais en partant d'un point de vue différent : Soit en effet
Q(n) le sous-groupe des matrices diagonales de O(n), c'est donc un
groupe isomorphe au produit direct (Z2)n de n groupes cycliques d'ordre
deux et le produit direct de n espaces projectifs réels est un espace classifiant

pour Q(n), l'algèbre de cohomologie H(BQ^n),Z2) est donc iso-
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morphe à une algèbre de polynômes Z2[xly..., xn] à n générateurs de
degré 1. Nous montrerons au No 5 que l'homomorphisme

ff*«?(n), O(n)) : H(BO(n)yZ,) ->H(BQ(n),ZÈ)

défini par l'inclusion Q(n) c O(n), (voir No 1), est biunivoque, applique
H(BO(n),Z2) sur l'ensemble des fonctions symétriques en xlt...,xn
et que l'image de la i-ème classe de Stiefel-Whitney réduite mod 2 wi est
la i-ème fonction symétrique élémentaire en xx,..., xn ; pour y
parvenir, nous devons au préalable étudier la cohomologie de l'espace
homogène O(n)/Q(n), ce qui est fait au No 4. Nous retrouvons ainsi
le fait que les classes de Stiefel-Whitney réduites sont algébriquement
indépendantes et engendrent H(Gn+1+kn,Z%) pour les degrés < k,
([4], [5], [13]). L'interprétation des classes réduites comme fonctions
symétriques élémentaires permet de déduire d'une identité évidente
entre fonctions symétriques les formules de dualité mod 2 de Whitney ;

elle permet aussi de ramener à un problème de fonctions symétriques la
détermination des i-carrés des classes caractéristiques réduites et nous
donnons au No 7 une démonstration des formules de Wu Wen Tsiin
([13], [5]) qui résolvent cette question.

On passe aisément de là aux espaces classifiants pour les groupes
orthogonaux unimodulaires, que l'on peut représenter comme grassmanniennes
de sous-espaces orientés ; en effet, nous verrons au No 8 que

Q*(SO(n), O(n))

identifie H(Bso^n)yZ%) au quotient de H(Bo^n)yZ2) par l'idéal de w1.

C'est donc une algèbre de polynômes à n — 1 variables de degrés

2,..., n, résultat dû à Pontrjagin [9] que nous avions retrouvé d'une
autre manière dans [2], § 23 ; de plus les formules de Wu donnent évidemment

aussi les 8qi dans H(Bso^n),Z2) ; or nous avons montré dans [2]
que H{SO(n),Z2) a un système simple de générateurs hl9.. .,hn^t
universellement transgressifs, wi+1 étant une image de ht par transgression

; comme la transgression commute aux i-carrés ([10], No 9), on
obtient immédiatement les Sqi dans SO(n), On trouve

-118q% Kl hM (i + j g n - 1) ; 8q% 0 (i + j^n)
En fait, comme la sous-algèbre engendrée par hk, Afc+1,..., hn^x s'identifie

à H(Vnn_k,Z2)f ces formules décrivent plus généralement les

i-carrés dans la cohomologie des variétés de Stiefel, qui ont été déterminés

d'une tout autre manière par Miller [8].
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Dans I le sous-groupe Q(n), qui est visiblement un sous-groupe
abélien maximal de type (2, 2,..., 2), joue un rôle décisif, tout à fait
analogue à celui d'un tore maximal dans l'étude de la cohomologie réelle
des classifiants ([2], Chapitre VI) ; pour une discussion plus étendue nous
renvoyons au début de II, où cette analogie est poursuivie et conduit à

la détermination de la cohomologie mod 2 de certains espaces homogènes.

On sait que la cohomologie réelle d'un espace homogène GjH se

décrit aisément lorsque G et H ont même rang, c'est-à-dire ont un tore
maximal commun. Nous établirons ici en cohomologie mod 2, dans
certains cas particuliers oh G et H ont un sous-groupe abélien maximal
de type (2,..., 2) commun, des résultats qui s'écrivent et se démontrent
sensiblement de la même façon. Nous obtenons ainsi notamment
l'algèbre de cohomologie mod 2 des espaces O(n)jO(n^)x • • • xO(nk),
(n1 + • • • + nk ri), U(n)/O(n), G^SOià). Rappelons que les variétés
O(n)jO(n^) x x O(nk) ont été étudiées, au point de vue additif, par
Ehresmann [6] ; parmi elles figurent les grassmanniennes dont nous
déterminons ainsi l'algèbre de cohomologie complète, et non pas seulement
jusqu'à la dimension «critique» comme dans I. Dans tous les cas traités
ici, H(GjH ,Z2) est un quotient de H(BH,Z2) ; par conséquent, lorsque

H est un produit de groupes orthogonaux, les formules de Wu
déterminent aussi les i-carrés de G/H1).

1. Espaces universels, espaces classifiants

Tous les espaces fibres que nous rencontrerons dans ce travail seront
des variétés compactes, et même des espaces fibres différentiables ; ils
vérifieront donc a fortiori toutes les restrictions qu'il y a lieu d'imposer
à la notion générale d'espace fibre pour que les résultats rappelés ci-
dessous soient valables, aussi ne mentionnerons-nous pas ces conditions,
renvoyant à [2] pour plus de détails. Nous ne répétons pas la définition
d'espaces fibres et d'espaces fibres principaux (voir par exemple [2],
No 2) ; indiquons simplement que nous désignons le système formé par
un espace E fibre de base B et de fibres F par (EfB,F) ou (E, B,F,p)
si nous voulons mettre en évidence la projection de E sur B.

1) Nous avons renoncé à faire figurer dans ce travail les résultats concernant la
cohomologie de Spin (n), G2, F4 énoncés dans [1], contrairement à ce qui avait été annoncé
dans l'introduction de [2]; ils seront établis dans un Mémoire ultérieur, consacré à la
cohomologie de quelques groupes de Lie. Signalons encore à ce propos que la référence [2]
dans la bibliographie de [3] renvoie à ce Mémoire, et non au présent travail.
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G désignera toujours un groupe de Lie compact. On appelle espace
universel pour G et pour k un espace fibre principal compact connexe, noté
E(n9G) ou Eo, à cohomologie triviale jusqu'à k,

(i.e.H°(E(n,G),r)^r, Jî*(£(w,(ï), F) 0 (0<t^i)),

pour tout anneau de coefficients F). Sa base B(n,G) ou Bo est dite
espace classifiant pour G et pour k. Deux espaces classifiants pour G et

pour k ont des algèbres de cohomologie isomorphes jusqu'à k ([2],
Prop. 18.2) ce qui permet de définir une algèbre graduée H(B0, F) qui
pour tout k est isomorphe à H(B(k,G), F) jusqu'à k ([2], Déf. 18.2).
Quand G est discret, H(B0, F) n'est autre que l'algèbre de cohomologie
de G au sens de Hopf.

Si (E, B,G) est un espace fibre principal compact de fibre G, il existe
un homomorphisme a* : H(BG, F) -» H(B, F), l'homomorphisme
caractéristique, qui est un invariant de la fibration (E, B,G). Son image est
la sous-algèbre caractéristique. Si U est un sous-groupe fermé de G, nous
convenons d'appeler sous-algèbre caractéristique de H (G/U, F) la sous-
algèbre caractéristique de la fibration (G,G/U, U). Nous utiliserons
fréquemment le résultat suivant ([2], Corollaire à la Prop. 18.3) :

(1.1) Soient (X, Y, un espace fibre principal compact connexe, et U

un sous-groupe fermé de G. Si H(G/U, F) est égale à sa sous-algèbre
caractéristique, alors G/U est totalement non homologue à zéro, relativement à F,
dans la fibration (X/U,Y,G/U).

(En effet, l'homomorphisme caractéristique a* de (0,0/17, U) est le

composé i**a* de l'homomorphisme caractéristique de (X,X/U, U)

par le transposé de l'inclusion G/U c X/U ; si a* est sur, il doit en être
de même de i*.)

Soit toujours U un sous-groupe fermé de G ; un espace E(k,G)
universel pour G est évidemment universel pour U, d'où une projection
q(U,G): E(k,G)/U B(k,U) ~>B(k,G) E(k,G)/G qui permet de

définir un homomorphisme Qp(U,G): H(BQ,F) -> H(Bv, F) qui joue
un rôle fondamental dans [ 2]. Ici, nous désignerons cet homomorphisme

par q*(U,G) lorsque F^Z^.
(1.2) Remarquons encore que q(U,G) définit une fibration {Bv,

BQ,G/U\q(U,G)) et que l'homomorphisme i* transposé de l'inclusion
d'une fibre est l'homomorphisme caractéristique de (G9G/U, U), (voir
[2], Théorème 22.2).

168



2. Algèbre spectrale des espaces fibres

Pour nous conformer à un usage de plus en plus répandu, nous noterons
une algèbre spectrale (Er) au lieu de (Hr) comme dans [2], Dans le cas
d'un espace fibre on a, comme on sait

E2 H(B,H(F,F)) ElQ HJ>(B,H^(F,r))

et E^ est l'algèbre graduée associée à H(E, F) convenablement filtrée ;

H (B, H(F, F)) est l'algèbre de cohomologie de B à coefficients dans le
système local formé par les algèbres de cohomologie des différentes fibres ;

nous utiliserons sans commentaire le fait que ce système est simple lorsque

B est simplement connexe, ou lorsque E est fibre principal de groupe
structural G connexe, ou encore quotient d'un tel espace par un sous-

groupe fermé de G. Dans le cas du système simple et si F est isomorphe
à un corps K, on a donc E2 — H(B, K) (g) H (F, K), (produit tensoriel
«gauche» sur K).

Nous ne répétons pas ici la définition de l'algèbre spectrale des espaces
fibres et nous n'allons mentionner que certaines de ses propriétés, celles

qui interviendront le plus fréquemment dans la suite (pour plus de
détails, voir [7], [2] §2,4, [10]).

(2.1) Nous notons Dxle degré total d'un élément de Er, et {Er
l'ensemble des éléments de degré total i de Er, i. e.

Si l'algèbre spectrale est prise relativement à un corps K de coefficients
on désigne par PK (Er, t le polynôme de Poincaré de Er relativement
au degré total. On a donc

PK(Eo0,t) PK(E,t)

et, puisque Er+1 est l'algèbre de cohomologie de Er relativement à dT

PK(Er+1J) £PK(Er,t)

l'égalité valant si et seulement si dr 0, c'est-à-dire si Er ^ Er+1.

(2.2) E°^q s'identifie à un sous-module de E\A, l'ensemble des
éléments de E\A qui sont cocycles pour toutes les différentielles, et forme
l'image de l'homomorphisme i* : Hq(E, F) ->Hq(F, F) transposé de
l'inclusion.

(2.3) En fait, toutes les algèbres spectrales auxquelles nous aurons
affaire, sauf une, seront triviales (i. e. E2 E^ ou si l'on veut dr 0
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pour tout 7*2^ 2), aussi allons nous parler de ce cas plus en détails.
Rappelons tout d'abord un résultat connu ([7], Théorèmes 7.1, 7.3, [2]
Prop. 4.1).

Pour que Valgèbre spectrale de (E, B, F, p) sur un corps K soit triviale
et que Von ait dans E2 des coefficients ordinaires, il faut et il suffit que F
soit totalement non homologue à zéro dans E, relativement à K. Dans ce cas

p* est biunivoque, i* identifie H(F,K) au quotient de H(E,K) par
Vidéal qu'y engendrent les éléments de degrés >0 de p*(H(B, K)).

Il est clair que si les conditions précédentes sont réalisées on a

PK(E, t) PK{EW, t) PK(E,2i t) PK(BxF, t)

Cette condition est aussi suffisante ; en effet :

Proposition 3.1. Soit (E,B,F) un espace fibre compact, connexe, de

base localement connexe, à fibres connexes. Pour que F soit totalement non
homologue à zéro dans E, relativement à K, il faut et il suffit que PK(E, t)

PK(B,t)-PK(F,t).

Vu (2.3), nous pouvons nous borner à établir la suffisance de la condition

; montrons tout d'abord que le système des H (F, K) est simple.
Soit Cq(F,K) le plus grand sous-espace de Hq(F,K) sur lequel le

groupe fondamental de B agit trivialement, on a donc

E°2>« H°(B, m(F, K) C«(F, K)

et nous devons prouver que C*(F, K) Hq(F, K); c'est clair pour
q 0, supposons-le vrai pour q<k, (k>0), on a donc

d'où

dim. kE2 dim. Hk(B xF, K) - dim. Hk(F, K) + dim. Ck(F, K)

dim. kE2 dim. kEw - dim. Hk(F, K) + dim. Ck(F, K)

et puisque dim. kE2 ^ dim. kEw on obtient dim. Ck(F,K) ^ dim. H*
(F,K) donc Ck(F,K)=:Hk(F,K).

Ainsi le système des H{F,K) est simple et E2 H(B,K) <g> H (F ,K),
d'où

PK(E2, t) PK(B, t) PK(F, t) PK(E, t) PK{E^, t)

et l'algèbre spectrale est triviale d'après (2.1), F est totalement non
homologue à zéro d'après (2.3).
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3. Remarques auxiliaires

Pour ne pas devoir interrompre le cours de certaines démonstrations
de I, nous rassemblons ici quelques remarques à peu près évidentes sur le

groupe fondamental d'un espace.
Soit (E, B,n) un espace fibre principal, globalement et localement

connexe et simplement connexe par arcs, dont la fibre est un groupe
abélien discret. Le groupe nx(B) est donc isomorphe à n> de façon précise

on a un isomorphisme canonique f6 : n -> nx(B, b), (b e B) obtenu

ainsi: Soit ftcp""1^), on fait correspondre à xç.n la classe des lacets

qui sont projections d'arcs joignant b à b • x ; cela ne dépend pas de 6

puisque n est supposé abélien.
Supposons que E soit aussi fibre principal pour un surgroupe n de n,

dans lequel n est invariant ; n opère alors sur E en respectant la fibration
(E, B, n, p) et opère donc sur B par passage au quotient ; soit kb l'iso-
morphisme de 7tx(B,b) sur 7tx(B,k(b)) qui se déduit ainsi de l'homéo-
morphisme x -> x • k~x de E ; i} est immédiat que fj^ o kb o £& est

l'automorphisme Tk : x ->kxk~l, et ainsi le quotient S/rc opère sur
tt1(jB), donc sur le premier groupe d'homologie Ht(B, Z) ^ ^i(B) par
les automorphismes Tk.

Soient nr un sous-groupe de n, et / la projection de jEJ/tt' sur Ejn. Il est
clair que le diagramme suivant est commutatif

4- * (* inclusion de nr dans

On peut donc identifier canoniquement jz', resp. n, à H^Ejn^Z),
resp. Ex{E\n,Z), de manière à ce que /* : Ex(E\ri,Z) -*Rx(E\n,Z\
soit l'inclusion % ; si F est un groupe abélien, /* : Hx{EJ7if ,r)-^Hx{Ejn,r)
est Fhomomorphisme nr Ç§ F ->7iÇ& F défini par l'inclusion nr en et
par l'identité sur F; remarquons encore qu'il est biunivoque et que
nf (g) jT^.nr ; 7t ® F^7t quand F^zZ2 et quand rc est de type
(2,2,...,2).

Ca« particulier. Soient Q(n) le groupe des matrices diagonales de O(n),
et JVn le normalisateur de Q(n) dans O(^). Il est clair que Q(n)
(2?2)n et que NnIQ{n) s'identifie au groupe des permutations d'un
système convenable de générateurs de Q(n), soit %,..., un\ à ce

système correspond une base vx,..., vn de HX(B, Z2) ^.HX(B,Z) ® Z2.
Soit encore a?!,...,^ la base duale de jH^jB,^). Alors NJQ(n),
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considéré comme groupe d'opérateurs de H1(B,Z2) est le groupe des

permutations de x1,..., xn.
Si nr Q(i) est le sous-groupe engendré par un_i+1,..., un,

/* : H1(E/Q(i),Z2) ->fir1(JE/Ç(w),Z2) identifie H1(E/Q(i),Z2) au sous-

espace de Hx{EjQ(n), Z2) ayant vn_i+1,..., vn comme base. Désignons
enfin par yl9..., y4 la base de Hx(EIQ(i), Z2) qui est duale à la base
de H1(E/Q(i), Z2) définie par un_i+1,..., un ; l'homomorphisme
transposé/*: H1(EjQ{'n),Z2) -+W(EIQ{i),Z2) est défini par

I. Espaces classiflants pour les groupes orthogonaux;
variétés de Stiefel

Dorénavant, nous considérerons exclusivement la cohomologie mod 2,
aussi convenons-nous de désigner par H(X) l'algèbre de cohomologie de

X relativement au corps à deux éléments; de même P(X, t) sera le

polynôme de Poincaré de H(X), et une suite spectrale (Er) sera toujours
relative à Z2.

Nous notons Q(n), (resp. SQ(n)), le sous-groupe des matrices
diagonales de O(n), (resp. de SO(n)), donc

d'où

H(BQin),Z2) ^Z2[xx,..., xn]

H(BSQ{n)) &Z%[yl9...9 yn^] (Dy< 1)

P(BQ(n), t) (l- t)-» ; P(BSQ{n), t) (1 - «)-*+i

Fn désignera l'espace homogène

Fn= O(n)IQ(n)g±SO(n)ISQ(n)

4. Cohomologie de Fn

Nous avons surtout en vue l'étude de l'homomorphisme

Q*(Q(n),O(n))

mais ce dernier est le transposé de la projection dans la fibration
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et c'est pourquoi Pétude de Fn s'avérera utile ; remarquons que Ton peut
aussi l'envisager comme fibre dans la fibration (BSQ(n), BSO{n), Fn)
correspondant à l'inclusion SQ(n) c SO(n).

Leinme 4.1. La dimension de H1 (Fn) est ^ n — 1, (n 2, 3,..
Dans l'algèbre spectrale de (jBSÇ(n), Bso^n), Fn) on a

E2 H(BSO(n))®H(Fn) et E\'° 0

car BSO(n) est simplement connexe, d'où

W^EPS^HHFJ (4.1)
d'autre part

dim ^ dim HHBSQ{n)) n - 1 (4.2)

et le lemme résulte de l'inégalité dim XE2 ^ dim XEM

Proposition 4.1. H(Fn) est engendrée par ses éléments de degré ^ 1

et son polynôme de Poincaré est

P(Fni i) (1 - t*)(l - t*)... (1 - P)(l - t)i~* (n^2).
Démonstration par récurrence sur n. Pour n<> — 2, F2 SO(2)/Z2 est

un cercle, supposons la proposition vraie pour Fn__t, (n ^ 3), on a donc
en particulier dim H1(Fn_l) v — 2.

Soit Z2x O(n — 1) le sous-groupe de O(w) formé des matrices dont le

premier coefficient est ±1, il contient Q(n) Z2xQ(n — 1) et
comme le quotient O(n)jZ2xO(n — 1) est l'espace projectif réel à

n — 1 dimensions Pn__1? on a une fibration

(O(n)IQ(n),P^l9 O(n - 1 )/<?(* - 1), pn)

que l'on peut aussi écrire (Fn, Pw-1, Fn_l, pn) dont nous voulons étudier
l'algèbre spectrale. On a

dim E\>» dim Hl{Pn_x) 1

dim i^'1 dim iï°(Pw_1? iST^Fn-x)) dim Cx(Fn^) ^n-2
donc dim lE2 ^n — 1, ((71(Fn_1) est le sous espace maximum de

H1(Fn_l) sur lequel 7ri(Pw_i) agit trivialement). Mais

dim ^ dim

il faut donc que (71(Fn_1) fl^M^-x) et que les éléments de ^fl soient
cocycles pour toutes les différentielles dr ; par conséquent l'image de
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Phomomorphisme t* : H(Fn) -^H(Fn_1) transposé de l'inclusion
contient H1(Fn_1), donc aussi HiF^i) qui est engendré par ses éléments
de degrés ^ 1. Ainsi Fn_t est totalement non homologue à zéro dans

Fn, l'algèbre spectrale est triviale (voir (2.3)), et

P(Fn, t) P(P^191) P(Fn_lyt) (1

compte tenu de l'hypothèse d'induction. Enfin,

est engendré par ses éléments de degrés ^ 1, il en est donc de même

pour H(Fn), puisque E^ est l'algèbre graduée associée à H(Fn)
convenablement filtrée (voir [2], Prop. 8.1a).

Corollaire. H(SO(n)/SQ(n)) est égale à sa sous-algèbre caractéristique ;

la série de Poincaré de H(BSOin)) est

P(BSOin), «) (1 - fi)'*(l - fi)~K .(1 - I»)-1

Nous reprenons l'algèbre spectrale de (BSQ(n), Bso^n), Fn) considérée
dans le lemme 4.1 ; la proposition 4.1, jointe à (4.1) et (4.2), montre
que dim 1J?00 dim *E2 n — 1. Les différentielles doivent donc être
nulles sur les éléments de degré total 1, en particulier sur 1 (g) Hx(Fn),
donc aussi sur 1 (g) H (Fn) qui est engendré par ses éléments de degré

^ 1 ; ainsi Fn est totalement non homologue à zéro dans cette fibration,
dont l'algèbre spectrale est par suite triviale. Il en résulte que

H(SO(n)/SQ(n))

est égale à sa sous-algèbre caractéristique (No 2) et que

P(BSO{n)9t)-P(Fn,t) P(BSQ(n),t) (1 - *)-*+*

d'où l'égalité annoncée (compte tenu de la Proposition 4.1).

5. Cohomologie de BOin); classes caractéristiques réduites

Pour m<n, nous identifions O(m) au sous-groupe de O(n) formé
des matrices dont les n — m premiers termes diagonaux sont égaux à 1,
et Q*(O(m), O(w)) désigne l'homomorphisme de iï(JSO(m)) dans

correspondant à cette inclusion (voir 1).
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On sait que les premiers groupes de cohomologie (mod 2) de la variété
de Stiefel Ftt>n_t O(n))O(i) sont donnés par (voir par exemple [2],
Proposition 10.3) :

HJ(Vn,n-t) 0 (j<i) ; H*(Vn,n_t)=Z2 (5.1)

Lemme 5.1, La classe de Stiefel-Whitney réduite mod 2 de degré

i + 1 de J?o(n)j so^ wi+1> est Vunique élément non nul de degré i -f- 1

contenu dans le noyau de Q*(O(i), O(n)), (i 1, 2,..., n — 1).

Dans cet énoncé, BO(n) désigne un espace classifiant pour une dimension

assez grande, par exemple >n.
On sait (voir [11], p. 139) que wt+1 est l'image par transgression de

l'élément non nul de Hl(Vn n_t) dans la fibration

(EO{n)IO(i),EO{n)IO(n), Vntn_t,Q(O(i)IO(n)))

c'est-à-dire (BO{%V Bo{n),Vnn_t, q{O{i), O{n))) Dans son algèbre
spectrale on a d'après (5.1)

E*>Q 0 pour p + q^i, p>0, r^2 (5.2)
donc

£;+!'°S^+1^F+1(5O(fl)) (5.3)

et, puisque n>\{BO(n)) agit forcément trivialement sur Z2

B%% a E^ s • • • s &.& s H* (FWsW_,)

Soit vl l'élément non nul de Hl(Vnn__t), comme la transgression en
dimension i coincide avec l'homomorphisme ^^ -> J5J+Î'0 défini par dJ+1

([2], Proposition 5.1), on doit avoir

dm(l ® v%) w^1 ® 1

Ensuite, comme toujours dans une algèbre spectrale :

mais, vu (5.2), dt+1(lEt+1) ^ E%t^l>° est engendré par w;*+1, d'où le lemme.

Théorème 5.1. L'homomorphisme Q*(Q(n), O(n)) de H(BOin)) dans

H(Bç(n)) Z2[x1>..., xn], (Dxt=l), est biunivoque. Son image est

Valgèbre des fonctions symétriques en xx,..., xn ; il applique la classe

caractéristique réduite w{ sur la i-ème fonction symétrique élémentaire
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Dans la démonstration, divisée en trois parties, on écrira q*^ au lieu de

&*(Q(i), O(i)).

a) Nous montrerons tout d'abord que g*n) est biunivoque et que

P(B<Hn)> t) (1 ~ l)-*(l ~ fi)'1. • .(1 -^
Dans l'algèbre spectrale de (BQ(n), B0(n)iFn, ç{n)) on a

dim 102 dim E\>* + dim E^1

dim ^2 dim H^B^) + dim £T° (J5, jET^F»)) £ n

vu la Proposition 4.1 et le fait que ^(Bq^) ^ n0(O(nf) ^ Z2, (suite
d'homotopie dans (i?O(n)I?o(w), O(n)). D'autre part

dim ^ dim HHBQin)) n

ainsi, il faut que dim *2?2 w, donc que H°(BQ(n), Hl(Fn)) soit
isomorphe à H1 (Fn) et formé d'éléments qui sont cocycles pour toutes les

différentielles. Puisque H(Fn) est engendré par ses éléments de degré

^ 1, on voit que H°(BQ{n), Hk(Fn)) Hk(Fn) pour tout k et que ses

éléments sont cocycles pour toutes les différentielles. Ainsi

l'algèbre spectrale est triviale, q^ est biunivoque, (voir (2.3)), et

P(BO(n), t)-P(Fn, t) P(BQin)) (1 - *)-»

d'où, compte tenu de la Proposition 4.1,

P{BOin), 0 (1 - t)~Hl - fi)-K .(1 - ^J"1

b) Nous notons 8(xlf..., xn) l'algèbre des fonctions symétriques en

#i> • • • 9 xn- Nous voulons montrer que S(xx,..., xn) est Vimage de Q*n).

Le normalisateur Nn de Q(n) dans O(n) opère sur la fibration
fëo(n}> ^ç(n)' Q(n))- On peut appliquer les remarques du No 3 (cas
particulier) à E=:EO(n), B BOin); ainsi, le groupe Wn NnjQ{n)
opère sur H(Bq^) Z2[xt,..., #n] et est le groupe des permutations
de «!,..., a?n.

^Tn opère sur la fibration (EO(n), Bo^n), O(n)) et commute évidemment

avec la projection en laissant chaque fibre invariante il opère donc
trivialement sur Bo^n) et sur H(Bo^n)) ; il est clair que Nn commute à la
projection q^ : Bq^ -> BO(n), donc finalement Wn commute à g^ :
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H (BO(n))-+H (Bq(H)) et agit trivialement sur la première algèbre.
L'image de g*n) est certainement contenue dans la sous-algèbre de

H(Bç(n)) formée par les éléments sur lesquels Wn opère trivialement, et
qui est 8(xl9..., xn). Mais d'après a) g*n) est biunivoque, et la série de
Poincaré de H(BO(n)) est justement celle de 8(zl9..., xn); l'image de
g*n) est donc tout 8(xx,..., xn).

c) A montrer : q^(wj) o1 (j 1, 2,..., n). Pour j 1, c'est
évident car a1 est le seul élément non nul de degré 1 de 8(xl9..., xn) ;

soit donc ; i -f- 1 (i ^1), et considérons le diagramme commutatif

qui peut s'écrire

Mo

oc

~* BQ(n)

' BO(n)

d'où l'on déduit
a*

H (BQ (i)) *"" H (BQ(n))

j3*

où u*=Q*(Q(i), Q(n)) et 0* — ^*(O(i), O(n)) ; d'après (3.1) on a pour
un choix convenable de générateurs yl9..., yt de H(Bq(i))

oc*(xn_l+k) yk (k= l,...,t); «*(«») 0 (k ^n~i) (5.4)

Nous savons par ailleurs que £(*} et Q*n) sont biunivoques et ont comme
images respectives 8(yl9..., yt) et 8(xl9..., xn) ; de plus, d'après le
lemme 5.1:

«* o e(t)(^+1) e(t> o jS*^^1) 0

Par conséquent, ^)(^+1) es^ une fonction symétrique de degré i + 1,
non nulle, dont l'image par l'homomorphisme que définit (5.4) est nulle,
c'est forcément ol+1. C. Q. F. D.

Remarque. Dans la partie a) de la démonstration, nous avons vu que
l'algèbre spectrale de (BQ{n), BO{n), Fw, Q{n)) est triviale, par
conséquent, H(O(n)IQ(n)) est égale à sa sous-algèbre caractéristique.

12 Commentarii Mathematici Helvetici 177



Interprétation géométrique. Prenons comme espace universel pour O(n)
la variété de Stiefel Vmn (m grand), des n-repères orthonormaux de B™.

Il est clair que si (et,..., en) est un w-repère orthonormal, ses
transformés par Q(n) sont les repères (± el9 ± e2,..., ± en)> L'espace
^m,n ~ Vm,nlQ(n) es* donc te variété des systèmes ordonnés de n
droites non orientées de Rn, orthogonales deux à deux, passant par Vorigine.
Cet espace est par ailleurs le quotient d'un espace universel, c'est donc
un espace classifiant BQ(n) pour Q(n) (et pour m — n — l) donc H(V*n)

Z2\xly..., xn] pour D<m — n ; la fibration

(BQ(n), BO{n), O(n)IQ(n),Q(Q(n), O(n))

s'écrit ici (V*tH9 Gm>n, O(n)/Q(n)), g(Q(n), O(n)), Sous a) nous avons
en somme démontré que O(n)jQ{n) était totalement non homologue à

zéro (mod 2) dans V*n donc g* : H(Gmn) -+H{V*n) est biunivoque
en toute dimension, sous b) nous avons vu que l'image de q* est pour les

degrés <m — n l'ensemble des fonctions symétriques en xl9..., xn.
Soit encore (E, V*n, O(n),p) l'espace fibre image réciproque de

(Vm.n* Gmtn> O(n),q) par gin) («inducedbundle»dans [11] § 10), E est
donc un espace fibre principal, muni d'un homomorphisme q : E -> Vmn
qui induit @(n) par passage au quotient ; l'égalité £(*

>
{w1) •=¦ a1 signifie

que les classes caractéristiques réduites mod 2 de la fibration

sont les fonctions symétriques élémentaires en x19..., xn.

6. Les formules de dualité mod 2

A deux espaces fibres principaux de groupes structuraux O(nx) et
O(n2) ayant même base B, on fait correspondre, comme on sait, un
espace fibre principal de fibre O{nx)xO{n2), puis, par extension du

groupe structural, un espace fibre principal de fibre O(n) (n nx + ^2)5

tous deux de base B. Les formules de dualité mod 2 de H. Whitney
expriment des relations liant les classes caractéristiques réduites des
3 fibrations précédentes de groupes structuraux respectifs O(nx), O(n2)
et O(n).

Ces formules se déduisent directement de relations entre les classes

caractéristiques réduites de deux espaces fibres principaux

(Et,Bt,O(nt),Pi) (»=1,2),
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et de l'espace fibre (E ,BxxB2, O (n), p) obtenu par extension du groupe
structural à partir de (ExxE2, BxxB2, O(nx)xO(n2)) et qui sont dues
à Wu Wen Tsiin [12]. Quant à ces dernières, il suffit pour les obtenir de
considérer le cas des espaces universels, autrement dit où Et Ffn<>lli

(nii grand). Soit

h .* Gm n x Gm n —y Gm n {n =: nx —\- n2, m tïix -j- w»)

l'application qui associe au couple (Pl5 P2) le sous-espace de la somme
directe Rm K™1 + iT12 sous-tendu par Px et P2. Soient tufa la
y-ème classe réduite de Gm. m, et wj la j-ème classe réduite de Om

(on convient de poser w^ 0 (j>n{), w> 0 (j >nj). Le problème
consiste à exprimer l'image de wj par l'homomorphisme

à l'aide des classes wf^ ; la solution est donnée par la Proposition suivante
([12], Théorème I).

Proposition 6.1. Avec les notations précédentes on a

Nous admettrons provisoirement que pour D<Min(m1—nx,m2—n2)
A* s'identifie à l'homomorphisme Q*(O(nx) x O(n2), O(n)) qui correspond

à l'inclusion de O(nx)xO(n2) dans O(n).
Le diagramme commutatif (6.1), où les flèches désignent des projections,

la flèche verticale de gauche étant l'identité :

)xO{n2)

donne par passage à la cohomologie mod 2 un diagramme qui pour
Z)<Min(m1 — nl9 m2 — n2) coincide avec le diagramme (6.2) :

H (BQ (B1)) ® H (BQ (na)) CH (Bo (B1)) ® H (Bo (.f))

| a* | y* (6.2)

Si l'on pose

H(BQinl)) ZilVi, • • - 2/nJ ; B(BQin%)) Z2 [i/ni+1,...,
il est clair que pour un choix convenable des y{ on a (voir No 3)
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/?* n'est autre que Q*(Q(n1) X Q(n2), O(%) x O(n2j), c'est donc le
produit tensoriel des homomorphismes q^ et £(*z), d'où

/S*K)® l) or^® 1 (j= 1,2,...)

(on note a^}, resp. a^2), la ?-ème fonction symétrique élémentaire en

yl9..., yni, resp. en yni+1,..., yn et on convient que ofo 0 si est
strictement plus grand que le nombre des variables), y* est l'homomor-
phisme Q*(O(n1)xO(n2), O(n)) qui, comme nous l'avons admis, coin-
cide avec A* pour D<Min(m1 — nt, m2 — n2). Enfin (Théorème 5.1)

La proposition 6.1 résulte alors de la commutativité de (6.2) et de l'identité

évidente

«¦V) la+Ni <1) ® 4) 0' 1, 2,

Pour compléter cette démonstration, nous devons encore établir le

Lemme 6.1. Pour D<Min (ml — nXim2 — n2), on a

VmtnIO(n1)xO(n2) est l'espace des systèmes formés par un sous-

espace Px de dimension nx de K™1 et un sous-espace P2 de dimension n2

orthogonal à Px ; on a une inclusion évidente

telle que h y o i ; l'application i provient par passage au quotient
d'une inclusion de Vmi>Wl X Vm2,n2 dans Vmn qui est un homomorphisme
d'espaces fibres principaux (de groupes structuraux O(nx) x O(n2)). Ces

deux espaces étant universels pour O(^x) x O(n2) et pour

2)<Min (m1 — n1>m2 — n2)

il s'ensuit que i* est un isomorphisme sur pour ces valeurs de D, ([2],
Propositions 18.2 et 18.3), ainsi h* se ramène bien à

pour les degrés considérés.

Remarque. En fait ce lemme n'est qu'un cas particulier d'un résultat
général facile à établir concernant les extensions de groupes structuraux.
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Soient U un sous-groupe fermé du groupe de Lie compact G, (E, B, U, p)
un espace fibre principal, (Ef, B,G, p') un espace obtenu par extension
du groupe structural à partir de (E, B, U, p), 0% et 0% les homomor-
phismes caractéristiques de ces deux fibrations (au sens du No 1), alors
or* o* o q*(U, G) (voir à ce sujet un article ultérieur de J. P. Serre et
Fauteur). Plus haut nous avons considéré un cas où E est universel, donc
où o* est l'identité.

7. Les i-carrés des classes caractéristiques réduites

Pour compléter Nos 5, 6, nous donnons ici une démonstration des
formules de Wu Wen Tsiin ([13], [5]), qui du reste ne diffère pas essentiellement

de la sienne.
Nous désignons comme précédemment par wj (j 1, 2,... les

classes caractéristiques réduites de H(B0^), en convenant de poser wi—0
pour j>n.

Théorème 7.1. On a les formules

avec les conventions suivantes: coefficient binomial réduit mod 2

si a ^ b ; (.1=1 si 6 0; (,1 0 si a<b et 6^0.\b / \b /
Dans H(Bç(n)) Z2[xlf..., xn], les i-carrés sont déterminés par

et par la formule de H. Cartan

8ql(U'V) Ea+b=i8çau-Sqbv (7.2)

II en résulte visiblement que pour i <^j, it<i2< • • • <ii, :

(kx,..., k{) étant une partie de (it,..., ^) et (&m,..., k§) son
complément.

D'après le Théorème 5.1 on a Q*n)(wj) aj ; on tire donc de (7.3) que

S» S A A...^ **f1 •. • ** (< ^ j)

le deuxième membre désignant la fonction symétrique en x1,..., xn de
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terme typique x\x\.. .x\xi+1.. .#,.. Comme ^ est biunivoque, le Théorème

7.1 équivaut à la formule

avec les conventions du Théorème 7.1 pour les coefficients. Introduisons
la notation x*'(' — + <1) (7-6)

les coefficients c\^ vérifient donc les formules

c\'* cj"1'7"-1 (0 < t < i < (7.7)

La démonstration de (7.5) se fait par récurrence sur le nombre des

variables. Pour n=l, c'est immédiat, supposons (7.5) établie pour
n — 1 variables. Si i j, (7.5) devient

et est évidemment vraie, puisque nous calculons mod 2 ; il reste à
considérer le cas i<j. Nous noterons

une fonction symétrique en xx,..., icn-1 de terme typique

xl X2 ' • • Xi Xi+1 • • • Xi

et a\ sera le ?'-ème fonction symétrique élémentaire en xx,..., ^n-1.
Le premier membre de (7.5) s'écrit

le deuxième membre, soit Aiy\ se transforme de la manière suivante :

(en posant cl_'î 0) ; l'égalité des deux membres résulte alors de l'hypothèse

de récurrence et de (7.7).
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8. Cohomologie de BSO{n)

SO(n) étant invariant dans O{n), il existe une algèbre spectrale qui
mène de E2 H(BO(n)/SO(n), H(BSO(n)j) à H(BO(n)) (voir [2], Proposition

22.2) ; ici du reste, O(n)ISO(n) Z2 et BSO(n) est le revêtement
à deux feuillets simplement connexe de BO{n)i on peut aussi prendre la
suite spectrale des revêtements finis (Cartan-Leray, Colloque de Topo-
logie algébrique, Paris 1947, p. 83—85). Quelle que soit la manière dont
on envisage cette suite spectrale, il est facile de voir que les éléments de

E\q qui sont cocycles pour toutes les différentielles forment l'image de

@*(SO(??), O(n)) pour le degré q. (Dans [2], cela résulte du Théorème
22.1 et de la manière dont on obtient la Proposition 22.2 à partir de ce

théorème.)
Puisque O(n)JSO(n) Z2 on a

H(BO(n)ISO(n))^Z2[x] (Dx=l)
on en tire à l'aide du Théorème 5.1 et du corollaire à la Proposition 4.1:

d'où (Proposition 2.1):
E2 H(BO{n)ISO(n)) (g) H(BSO(n)) E^

et BSO(n) est totalement non homologue à zéro. Par conséquent, vu (2.3):

Proposition 8.1. Uhomomorphisme Q*(SO(n), O(n)) applique H(BO(n))
sur H(BSO(n)) ; son noyau est Vidéal engendré par w1.

Nous voyons ainsi que H(BSO{n)) est une algèbre de polynômes en
n—1 variables w2,..., wn de degrés 2, 3,... ,n, images de w2,..., wn

par Q*(SO(n), O(nj). La grassmannienne GQm
n des plans orientés est

classifiante pour SO(n) et pour m — n — 1, donc pour ces degrés,
H(G*mn) est une algèbre de polynômes en w2,..., wn, qui sont évidemment

les classes caractéristiques réduites de la fibration

(Vm>n,Gm,n,SO(n))

Remarquons encore que l'on déduit du Théorème 7.1 et de la Proposition

8.1, (en posant ^=0):

1)®-'®* <i<>,J 2,...,n). (8.1)

Proposition 8.2. a) Uhomomorphisme Q*(SQ(n), Q{nj) est sur, et

identifie H(BSQ(n)) au quotient de H(BQ(n)) Z2[xl9..., xn] par
l'idéal (#!+•••+ xn) qu'y engendre #!+•••+#»»•
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b) L'homomorphisme Q*(SQ(n), SO(n)) est biunivoque, son image est le

quotient de S(xly..., xn) par (xx +----{- xn).

a) On peut appliquer à la projection Q(SQ(n), Q(nj) : BSQ(n) -> Bq(11)

les remarques du No 3 : Q*(SQ(n), Q(n)) : H-^iBgç^) -> H^Bq^) est
biunivoque et se ramène à l'inclusion SQ(n) c Q(n). L'homomorphisme
transposé q* est par conséquent sur en dimension 1, donc en toute dimension

puisque H(BSQin)) est engendré par ses éléments de degré f£ 1.

Il est d'autre part visible que si xx,..., xn est une base convenable de

jBT1(JS<?(n))? le sous-espace H1(BSQ^n)) de Ht(BQ(n)) est précisément le

plus grand sous-espace sur lequel xx + • • • + xn, (envisagé comme forme
linéaire), s'annule ; ainsi l'idéal (#!+•••+ xn) fait partie du noyau de

Q*(SQ(n), Q(n)), il constitue tout le noyau car sa série de Poincaré est

J(l — t)~n, donc égale à la différence P(Bç^n), t) — P(BSQ(n), t).

b) Aux inclusions Oirw v jrk/SQ(n) -> Q(n)

SO{n) -> O(n)

correspond le diagramme commutatif

Q*(SQ(n), Q(n))

H(BSQ(n)) «- H(BQ(n))
A * A *I tf (SQ(n), SO(n)) I tf (<?(n), O(n))

H(BSO(n)) <- H(BO(n))

g*(SO(n), O(n)) est sur (proposition 8.1), l'image de Q*(SQ(n), SO(n))
est donc la même que celle de Q*(SQ(n), Q(nj) o Q*(Q(n), O(nj), qui
est justement 8(xl9..., xn)l(x1 +•••+#*) compte tenu de a) et du
Théorème 5.1. Enfin Q*(SQ(n),SO(nj) est biunivoque car H(BSO(n))
a même série de Poincaré que son image ; cela résulte aussi déjà de la
trivialité de l'algèbre spectrale de (BSQ^n), BSOin), Fn) (voir démonstration

du Corollaire à la Proposition 4.1).

Remarque. Soit SNn le normalisateur de SQ(n) dans SO(n) ; il est clair
que SNn/SQ(n) est isomorphe à Wn NJQ(n)} qu'il opère sur

S(BSQin)) Z%[xl9..., #J/(*i + • ' • + *n)

par les permutations de #x,..., xn. Ainsi, comme dans le cas de

Q*(Q(n),O(nj) nous voyons que Q*(SQ(n),SO{n)) identifie H(BSO(n))
aux invariants du normalisateur de SQ(n).
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9. Les î-carrés dans les variétés de Stiefel

Nous disons que hx,..., hm est un système simple de générateurs de

H(X) si les monômes

KK--h*k (H<H<"' <ik;k= 1, 2,..., m)

forment avec l'élément neutre une base d'espace vectoriel sur Z2 de

H(X) (voir [2], Définition 6.4) ; si X G est un groupe de Lie compact
connexe, H (X) a toujours un système simple de générateurs ([2],
Proposition 6. la). Dans le cas du groupe orthogonal, nous avons démontré
dans [2] (Proposition 10.3 et remarque 1 à cette proposition, Proposition

23.1):

Proposition 9.1. H(SO(nj) a un unique système simple de générateurs
universellement transgressifs ht,..., hn_1 de degrés 1, 2,..., n- — 1.

Uhomomorphisme p*_k transposé de la projection pn_k :

SO(n) ->SO(n)ISO(k) Fn,M_fc

applique H(Vnn_k) biunivoquement sur la sous-algèbre engendrée par
h>h+i>--->h-i (* 1, 2,...,ra — 1).

On sait que la transgression dans une espace fibre (E, B,F,p) applique
un sous-espace de HS(F), que nous noterons ici %s, dans un quotient de

H8+1(B) (s 0, 1,...) (voir par exemple [2], § 5). Dans le cas particulier

d'une fibration (2?SO(n), BSO{n), SO(n), p) où ESO{n) est universel

pour SO(n), cela se précise de la façon suivante ([2], fin du § 21, et
§ 23) :

Soient Z>3 le sous-espace des éléments décomposables de W(BSO(n))
et Qi Hi{BSO{n))jDi ; pour j 2, 3,..., n, Qi est de dimension 1

et a comme base la projection w^ de w1 ; d'autre part 3? est le sous-espace
de base h}. Alors la transgression t est un isomorphisme de %7 sur QJ+1

autrement dit :

Ù (j= l,...,n-l) (9.1)

On a évidemment Sqx{D^) c Dt+1 vu la formule du produit (7.2), et
Sql définit par passage au quotient un homomorphisme QJ ->Qm que
nous désignons aussi par 8ql. Dire que les i-carrés commutent à la
transgression ([10], No 9) signifie dans notre cas particulier exactement que
le diagramme suivant est commutatif :
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1% ±% (9.2)

De la formule (8.1), on tire

(i£j;j=2,3,...) (9.3)

Cette égalité, jointe à (9.1), (9.2) et à la Proposition 9.1, donne le :

Théorème 9.1. H(Vnn_k) a un système simple de générateurs

K > hk+i > • • > A«-i (Dfhi *) >

liés par les relations :

Ces formules ont été obtenues par Miller [8] à l'aide de décompositions
cellulaires. Dans la Note [1], nous nous étions bornés à indiquer les cup-
carrés 8qihi. Rappelons que l'on déduit aisément de cette formule le
théorème de Steenrod-Whitehead relatif aux champs de vecteurs sur les

sphères (voir [8]). Par la même méthode, on montre que si la fibration
(Fn)f+1, Vnr, Vn_rl) a une section et si r= 2ks (s impair), alors n—r—l
est divisible par 2k+1, ce qui contient des résultats de B. Eckmann
(Colloque de Topologie, Bruxelles 1950, p. 83—99, No 4.2).

II. Quelques espaces homogènes

10. Remarques générales

Dans l'introduction nous avons fait allusion à une analogie entre les

rôles de Q (n) en cohomologie mod 2 et des tores maximaux en cohomo-

logie réelle que nous allons maintenant expliciter ; pour les démonstrations

des théorèmes de cohomologie réelle rappelés ci-dessous nous
renvoyons à [2], § 19, 26, 27.

On sait que les tores maximaux d'un groupe de Lie compact connexe
sont conjugués et que leur dimension commune, le rang de G, a un sens

topologique: C'est la dimension d'un espace dont H (G, R) est l'algèbre
extérieure, ou encore la dimension de l'espace qu'engendrent les éléments
universellement transgressifs, ou enfin le nombre de générateurs de
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H(B0, R) (qui est une algèbre de polynômes). Soit Tn un tore maximal
de rhomomorphisme g^(Tn,G) applique H(B0,R) biunivoque-
ment dans H(BTn, R) ^ R[yXi..., yn] {Dyi ~ 2), sur l'algèbre des

invariants du groupe de Weyl 0(G) N{Tn)jTn, quotient par Tn de

son normalisateur dans G ; enfin H{GjTn, R) est égale à sa sous-algèbre
caractéristique, isomorphe au quotient de H(BTn, R) par l'idéal qu'y
engendrent les éléments de degrés >0 de l'image de q^ (Tn, G), et son
polynôme de Poincaré en caractéristique zéro est

P0(G/Tn, t) (1 - f*){l ~ T2)... (1 - r») (1 - t*)-n (10.1)

où ml9..., mn sont les degrés de générateurs de H (BQ, R) ou aussi les

degrés augmentés de 1 des éléments d'un système de générateurs de

H(G,R).
Si nous substituons Q(n), ou SQ(n), à Tn et O(n), ou SO(n), à G et la

cohomologie mod 2 à la cohomologie réelle, les résultats précédents se

traduisent aisément en propositions obtenues dans I. Le groupe Q(n)
est évidemment abélien maximal de type (2,..., 2) dans O(n) et tous
les sous-groupes de ce type lui sont conjugués ; comme il est isomorphe à

(Z2)n nous dirons que le 2-rang de O(n) est n. Ce 2-rang a aussi une
interprétation topologique, c'est le nombre de générateurs de H{BOi:n),Z^
(qui est une algèbre de polynômes, Théorème 5.1), c'est aussi si l'on
veut le nombre d'éléments d'un système simple de générateurs de

H{O(ri)) pour autant que l'on convienne d'ajouter aux générateurs de

H(SO{ri)} un générateur de degré zéro pour tenir compte du fait que
H«(O(n)) =Z2 + Z,»). De plus H(BQ(n}) ^Zt[xl9..., xn], (Dx€ 1),

l'homomorphisme Q*(Q(n), O(n)) est biunivoque, son image est
l'ensemble des invariants de Wn JSnjQ(n), l'algèbre H(O(n)jQ(n)) est

égale à sa sous-algèbre caractéristique, isomorphe au quotient deH(BQ(n))
par l'idéal qu'y engendrent les éléments de degrés >0 de l'image de

Q*(Q(n), O(nj) et son polynôme de Poincaré mod 2 est

P(O(n)IQ(n), 0 (1 - t)(l -p)...(l- P)(l - «)-» (10.2)

où les exposants sont les degrés de générateurs de H(Bo^n)), ou les

degrés augmentés de 1 d'éléments formant un système simple de générateurs

de j&(O(^)), formule dont l'analogie avec (10.1) est claire. Nous
avons également obtenu des résultats tout à fait semblables pour SQ(n),
SO(n) et SO(n)/SQ(n).

2) De même nous dirons que l'algèbre de cohomologie de Vespace Q(n), qui se réduit
évidemment à ses éléments de degré 0, a un système simple de n générateurs.
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Ces propositions sont très suggestives et il est naturel de se demander
si elles se généralisent. Nous verrons que les principales d'entre elles
s'étendent à U(n), S(7(n), Sp(n), G2, mais néanmoins elles ne sont pas
toutes générales. Par exemple on peut montrer que le 2-rang du quotient
SO(4k)IZ2 de SO(àk) par son centre est <4k — 1, alors que
H(SO(4tk)IZ2), a un système simple de 4& — 1 générateurs3). D'autre
part H(B0) n'est pas toujours une algèbre de polynômes, ni même le

produit tensoriel d'une algèbre de dimension finie par une algèbre de

polynômes3). L'analogie avec la cohomologie réelle n'est donc pas
parfaite, mais cependant ces exemples et contre-exemples n'élucident pas
complètement la question, qui nous paraît intéressante, de savoir jusqu'à
quel point les phénomènes décrits plus haut découlent de théorèmes généraux

4).

Revenons à la cohomologie réelle. On sait qu'une fois H(G/Tn, R)
connue, on détermine aisément l'algèbre de cohomologie H(G/U, R)
lorsque U est connexe, de même rang que G. Cette algèbre est égale à sa

sous-algèbre caractéristique, isomorphe au quotient de H(BV, R) par
l'idéal qu'y engendrent les éléments de degrés >0 de l'image de

Qr(U,G), qui est biunivoque, et son polynôme de Poincaré est donné

par la formule de Hirsch :

où m1,...,mB resp. q1,...,qn, sont les degrés des générateurs de

#(£„, J5) resp. H(BV,B).
En répétant presque mot pour mot les raisonnements qui font passer de

H(G/Tn, R) à H(GjU, R) nous obtiendrons ici la cohomologie mod. 2

de GjU lorsque G et U ont même 2-rang, dans quelques «bons cas» où

H(G/Q(n)) etH(U/Q(n)) ont les principales propriétés de H(O(n)/Q(n)).
Pour le polynôme de Poincaré (mod. 2) nous trouverons une expression
que nous appellerons la formule de Hirsch mod. 2 qui s'écrit exactement
comme (10.3) mais où»les exposants mt- et q{ sont les degrés augmentés
de 1 d'éléments formant des systèmes simples de générateurs de H (G)

et H(U) (ou aussi ici les degrés de générateurs de H(BG) et H(BV)).
Dans ce sens (10.2) apparaît déjà comme un cas particulier de la formule
de Hirsch mod. 2.

3) Cela sera démontré dans le travail cité dans la note 1, p. 4.
4) Pour d'autres considérations sur les relations qu'il y a entre la torsion de G et ses

sous-groupes abéliens maximaux de type (2, 2,..., 2) ou plus généralement de type
(p,p, ...,p), voir [3].
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Lemme 10.1. Soient U un sous-groupe fermé de G, ayant même 2-rang
que G, et Q(n) un sous-groupe abélien maximal de type (2, 2,..., 2)

commun.
Si H(GjQ(nj) et H(U/Q(n)) vérifient la formule de Hirsch mod 2 et si

H(U]Q(nj) est égale à sa sous-algèbre caractéristique, alors H(GjU) vérifie
la formule de Hirsch mod. 2.

En effet, d'après les hypothèses faites et (1.1), U/Q (n) est totalement
non homologue à zéro dans la fibration (G\Q(n), G/U, U/Q(n)), donc

P(GIQ(n}, t) P(GIU, t) P(UlQ{n), t)

et si P(GjQ(n),t) et P(UjQ(n),t) vérifient la formule de Hirsch mod. 2,
il en est alors évidemment de même pour P(GjU ,t).

11. Les espaces homogènes

O(w)/O(Wl) X X O(nk) (nx + • ¦ • + nk n)

Notations. (B) est l'idéal engendré dans une algèbre A par une partie B
de A.

Si A est une algèbre graduée par des degrés ^ 0, A+ désigne la
sous-algèbre formée par les éléments de A dont le degré est >0.

S(x1,..., xn) : algèbre des fonctions symétriques en xlf..., xn, à
coefficients dans Z2.

Enfin nous posons

G(nl9...,nk) O(w)/O(%)x ••• xO(nk) (nx H \-nk n)

Cet espace est la variété dont l'élément générateur est formé de k — 1

sous-espaces emboîtés de Rn, de dimensions respectives

n1,n1 + ni9...,% H h nk_x

En particulier G(n1,n2) Gn ni. Parmi ces variétés figurent aussi les

variétés de Stiefel de systèmes de droites non orientées dont il a été

question à la fin du No 5, en effet, O(l) est isomorphe à Z2 et

Théorème 11.1. ^*(O(^X) x « • • X O(nk), O(nj) est biunivoque,

H(G(nl9...,nk))
est égale à sa sous-algèbre caractéristique, est le quotient de H (Bo (ni) x...
par Vidéal qu'y engendrent les éléments de degrés >0 de Vimage de
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e*(O(n1)x..-xO(nfc),O(n))
donc est isomorphe au quotient de

8(xl9..., zni) ® S(xni+1,..., o;Wi+W2) ®... ® âf(a;

($+(#!,..., xn)). Son polynôme de Poincaré nwd 2 est

1,...,nk,

Ici groupe et sous-groupe ont un 2-rang égal à n, l'espace

O(nt)X'- xO(nk)IQ(n)

est le produit des espaces Fni O(wt)/Ç(wt). Son algèbre de cohomo-
logie mod2 et celle de Fn O(n)jQ{n) vérifient donc la formule de
Hirsch mod 2 et sont égales à leurs sous-algèbres caractéristiques
(Proposition 4.1 et remarque au Théorème 5.1), et le Lemme 10.1 donne le

polynôme de Poincaré annoncé. Utilisant ensuite le Théorème 5.1 on voit
que

P(G(nx,.. .,nk),t)-P(BO(n),t) P(BO{ni)x..%

par conséquent l'algèbre spectrale de la fibration

est triviale (Proposition 2.1), d'où les autres assertions du théorème,
compte tenu de (1.2) et de (2.3).

Le cas particulier des grassmanniennes. Nous voulons déduire du
Théorème 11.1 appliqué au cas particulier h 2 quelques propriétés
cohomologiques connues des grassmanniennes.

Les grassmanniennes Gmn et Gmm_n sont homéomorphes et H(Omn)
a deux systèmes de classes caractéristiques réduites w° 1, w1,..., wn
et w° 1, w1,..., tu171-™ suivant que l'on considère Omn comme base
de la fibration (Fwn, Gmn, O(n)) ou de la fibration

Nous convenons de poser v# 0 (j>n), wk 0 (k>m — n).

Proposition 11 .l.5) Les classes wi et w^ sont liées par les relations

X;+^*^^ 0 (4=1,2,...)
6) Cette proposition est due à S. S. Chern [4], [5], p. 90.
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chacun des systèmes w°,..., wn et w°,..., wm~n engendre multiplicative-
ment H(GmJ.

Soient o{x) le ?-ème fonction symétrique élémentaire en xl9..., xn,
avec la convention a^ 0 si j>n, et de même a(j\ resp. o*, la j-ème
fonction symétrique élémentaire en xn+1,..., xm, resp. en xl9..., xm.
Les classes w7' et wj sont les images de ofa ® 1 et 1 ® cr^2) par l'homo-
morphisme canonique de

8(xl9...,xn) ® S(xn+1,...,xJ

sur H(Gmn), qui n'est autre que l'homomorphisme caractéristique de
la fibration (O(m), GWfW, O(n) X O(m ~ n))9 (vu (1.2) et le Théorème
5.1). Comme $+(#1?..., xn) fait partie du noyau de cet homomorphisme
(Théorème 11.1), les relations annoncées résultent par passage au
quotient des identités

Les éléments o^ ® 1 et 1 <8> a(a) (j 1, 2,... engendrent évidemment

S(xl9..., xn) (g) S(xn+l9..., a?TO) leurs images (te;*) et (w*) engendrent

donc H(Gmn) ; mais les relations que nous venons d'établir entre
ces classes montrent que wj, resp. w*9 est un polynôme en w°,..., wm~n,

resp. en w°,..., wn (j 1, 2,... ; ainsi chacun des systèmes (w*) et
(5?) engendre H(Gmtn).

12. Les espaces homogènes U(n)IQ(n) et U(n)IO(n)

On sait que le groupe unitaire de l'espace de n variables complexes,
soit U(n), est sans torsion, que H(U(n)) est une algèbre extérieure à
générateurs de degrés 1,3,5,...,2^—1 (voir par exemple [2], Proposition

9.1), et que H(BU^) est une algèbre de polynômes à n variables de

degrés 2, 4, 6,..., 2n ([2], Théorème 19.1).
Les sous-groupes abéliens maximaux de type (2, 2,..., 2) de U(n)

sont visiblement conjugués au sous-groupe des matrices diagonales, ils
sont donc contenus dans des tores maximaux, le rang et le 2-rang de

U(n) sont égaux à n%).

Lemme 12.1. Q*(Q(n), U(nj) est biunivoque, son image est S(xl,...,a£).
Soit Tn un tore contenant Q(n), l'homomorphisme Q*(Q(n), Tn) est

6) Plus généralement, si G est sans 2-torsion, son 2-rang est égal à son rang au sens
usuel ([3], Théorème 2). Cependant nous ignorons si dans ce cas un sous-groupe abélien
de type (2, 2, 2) est toujours contenu dans un tore maximal.
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évidemment le produit tensoriel de n homomorphismes q*(Q(1), T1) ; ce

dernier se calcule aisément. Posons

HiB^) Zt[y] (Dy 2) H(BQm) Z2[x] (Dx 1)

(rappelons que l'on peut prendre comme espace classifiant pour T1 un
espace projectif complexe). L'espace 1*1(2(1) est un cercle, donc

P(BT1,t)-P(TilQ(l),t)

et l'algèbre spectrale de (BQ(1),BT1, 1*1(2(1), g(<?(l), T1) est triviale
(Proposition 2.1); ainsi ç*(Q(l),T1) est biunivoque et son image est
forcément Z2[x2], ce qui montre que Q*(Q(n), Tn) est biunivoque et a

Z2[xl,..., a£] comme image.
D'autre part on déduit des inclusions Ç(n) c Tn c 17 (w) que

<?*«?(*), ^W) <?*«?(*), T*) O g*(T* I7(w)) ;

l'homomorphisme £>*(Tn, 17(n)) est biunivoque et son image dans

JT(BIn) Za[y1,...,yn] (Dy, 2), est 8(yl9. ..,yn), ([2], Proposition

29.2, Exemple 1), d'où le lemme.

Remarques, 1) Plus généralement si Q(^) es£ contenu dans un tore
maximal Tn de G, et si O et GjTn sont sans 2-torsion, q*(Q(n), G) est biunivoque.

En effet, Q*(Q(n),G) q*(Q(n),Tn) -q*(T, G), et g*(Tn,G) est

biunivoque d'après la Proposition 29.2 de [2].

2) Ici le quotient N(Q(nj)/Q(n) par Q(n) du normalisateur de Q(n)
dans U(n) est de nouveau isomorphe au groupe des permutations de n
objets. L'image de Q*(Q(n), U(nj) ne contient donc pas tous les
invariants de N(Q(n))IQ(n), qui forment 8(xl9..., xn) ; sur ce point,
l'analogie avec la cohomologie réelle (cf. No 10) n'a plus lieu. Bien
entendu, dans tous les cas, l'image de Q*(Q(n), G) est contenue dans les

invariants de N(Q(n))jQ(n).

Proposition 12.1. H{U(n)jQ{n),Z2) est égale à sa sous-algèbre caractéristique

; elle est isomorphe au quotient de H(BQ^n),Z2) par Vidéal qu'y engendrent

les éléments de degrés >0 contenus dans l'image de Q*(Q(n), U(n))9
c'est à dire à Z2[xl9..., #w]/($+(#i,..., %n)) (D%i 1). Son polynôme
de Poincaré mod. 2 est

P(U(n)IQ(n), t) (1 - *2)(1 - t')... (1 - t*")(l - t)~*

Pour n 1, cela résulte du fait que TxfZ2 est un cercle et que
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l'algèbre spectrale de (Bz^ BTU TljZ2) est triviale, comme nous l'avons
remarqué dans la démonstration du lemme 12.1 ; supposons la proposition

établie pour n — 1 et considérons les inclusions

U(n) > Z2 x U(n - 1) > Q(n) où U(n)/Z2 X17(n - 1) S2n_JZ2 P2,_1

il existe donc une fibration {U(n)/Q(n), P2n_1, U(n — l)/Q(n — 1)) dans

laquelle la fibre est totalement non homologue à zéro mod 2, vu l'hypothèse

d'induction et (1.1), d'où

P(U(n)IQ(n), t) P(P2n_^ t) P(U(n - 1 )/<?(* - 1), t)

(i -t)-nnlzï(i ~t2i)
par conséquent

P(BQ(n),t) P(BUin),t)-P(U(n)IQ(n),t)

et l'algèbre spectrale sur Z2 de (l?ç(n), BU(n)i U(n)/Q(n)) est triviale ce

qui démontre la proposition.

Remarque. Cette démonstration présente une grande analogie avec celle
de la Proposition 1.1; nous n'avons pas utilisé mais démontré à nouveau
le fait que Q*(Q(n), U(n)) est biunivoque (lemme 12.1), mais ce lemme
nous a permis de donner explicitement l'image de cet homomorphisme.

Les groupes SU(n) et Sp(n) sont sans torsion, H(SU(n),Z2) et
H(Sp(n),Z2) ont des générateurs de degrés 3, 5,..., 2n-~ 1, resp.
3, 7,..., 4n — 1 (voir p. ex. [2], Proposition 9.1), H(BSU(n),Z2) et

H(BSp^,Z2) sont des algèbres de polynômes à générateurs de degrés

4,6,..., 2n, resp. 4, 8,..., 4% ([2] Théorème 19.1). Les sous-groupes
abéliens maximaux de SU(n) et Sp(n) sont conjugués aux sous-groupes
SQ(n) et Q(n) de leurs matrices diagonales, par une démonstration à

peu près identique à celle de la Proposition 12.1, et que nous ne
reproduirons pas, on obtient :

Proposition 12.2. Q*(SQ(n),SU{n)) et Q*(Q(n), U{nj) sont biuni-
voques. H(SU(n)/SQ(nj), resp. £T(Sp(n)/Ç(?i)), est égale à sa sous-algèbre

caractéristique, est le quotient de H(BSQ(n)), resp. H(Bç(n)), par l'idéal
qu'y engendrent les éléments de degré >0 de Vimage de Q*(SQ(n), SU(n))
resp. Q*(Q{n),Sp(n)). On a

P(SU(n)ISQ(n), t) (1

P(Sp(n)/Q(n), t) (1 - *4)(1 - t")... (1 -
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En fait ce résultat peut encore être précisé. En utilisant le fait que
n, Sp(n)) est biunivoque et a comme image dans

l'algèbre S(yl,..., y2n) ([2], Proposition 29.2, exemple 2), on montre que

H{Sp{n)IQ{n)) Z2[xlt..., *.]/(«+(a*,..., «*))

SU(n) est totalement non homologue à zéro dans U(n), donc

Q*(SU(n),U(n))

est sur ([2], Corollaire à la Proposition 21.3). Cela étant on voit très
aisément que si Tn~x est un tore maximal de SU(n), on peut écrire H(BTn-i)
sous la forme Z2[yt,..., 2/n]/(^i + • • * + yn) de manière à ce que l'image
de ^*(Tn"~1, SU(n)) dans ce quotient soit celle de S(yly..., yn). On en
déduit que

H(SU(n)ISQ(n)) Z2[xt,..., xn]/J
J désignant l'idéal engendré par S+(xl,..., x%n) et xx + • • • + xn.

Théorème 12.1. Q*(O(n), U(n)) est biunivoque; H(U(n)/O(n)) est

égale à sa sous-algèbre caractéristique, est le quotient de H(Bo<Jfi)) par
Vidéal qu'y engendrent les éléments de degré > 0 de Vimage de

Q*(O(n)9 U(n))

donc est isomorphe à S(xly..., %n)l(S+(xl,..., a£)). On a

t) n\zi (i - **)(i -1*)-1 n\znx (i + *)
On obtient le polynôme de Poincaré en appliquant le lemme 10.1, les

Propositions 4.1, 12.1 et la remarque au Théorème 5. On en déduit

P(Bo<n), t) P(BU(n), t) P(U(n)/O(n), t)

l'algèbre spectrale de (BO{n), BU(n)) U(n)jO(n), Q(O(n), U(n))) est donc
triviale (Proposition 2.1), ce qui établit les autres assertions du
théorème.

Remarque. Il est clair que la même démonstration permet de prouver
un théorème analogue, et en particulier la formule de Hirsch mod 2,
pour les quotients U'(w)/O(w1) x • • • x O(nk), (%+•••+ nk n) ou
même plus généralement pour les quotients

x • • • x l/(%) x O(ni+1) x • • • x O(nk) (nx-\

par exemple
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(a + b n)

Cela s'applique aussi à SU(n)jSO(n), quotient de deux groupes dont
le 2-rang est égal à n — 1.

13. Les espaces homogènes G2/<? (3) et G2jSO (4)

Nous parlerons ici de deux cas où la formule de Hirsch mod 2 est
valable, dont l'intérêt est surtout de mettre en jeu un groupe exceptionnel,

le groupe G2 des automorphismes des octaves de Cayley, qui est
simplement connexe, à 14 paramètres et de rang deux. Cependant, pour
ne pas trop allonger, nous nous permettrons d'énoncer plus bas sans
démonstration (et sans renvois) quelques propriétés de G2 qui du reste
s'obtiennent sans difficulté.

H(G2) a un système simple de générateurs universellement transgres-
sifs de degrés 3, 5, 62), par conséquent H(B02) est une algèbre de
polynômes à 3 générateurs de degrés 4,6,7 ([2], Proposition 19.2) et

JL \-L*Q j vf y A Vf y A Vf \JL Vf y±O * X f

G2 contient des sous-groupes isomorphes à SO(4)7), donc des sous-

groupes Q(3) (Z2)3 et son 2-rang est ^ 3. On peut de plus voir qu'il
est égal à trois8), et que les sous-groupes abéliens de type (2, 2, 2) de G2

sont conjugués.
G2 contient également un sous-groupe S 1/(3) tel que G2/SU(3) =S6,

fibration bien connue, obtenue en faisant agir G2 sur les nombres de Cayley

purement imaginaires de norme 1. On trouve de plus aisément un
sous-groupe Ç(3) abélien de type (2, 2, 2) faisant partie du norma-
lisateur de S 17(3) tel que <?(3) ^ S 17(3) g^SQ(3) q*Z2 + Z2 ; soit K
le sous-groupe engendré par (?(3) et S 17(3) ; ce dernier y est invariant
et K/SU(S) ^Z2\ K/Q(3) est homéomorphe à SI7(3)/SÇ(3).

Théorème 13.1. e*((?(3)> G2) et q*(SO (4), G2) sont biunivoques,
H(G2/Q(3)), resp. H(G2/SO(4:)) est égale à sa sous-algèbre caractéristique,
est le quotient de H(Bq^), resp. H(BSO^), par l'idéal qu'y engendrent
les éléments de degré >0 del'imagede g*(Q(3), G2), resp. ^*(SO(4),G2).
On a

7) A. Borel-J. de Siebenthal, Comment. Math. Helv. 23 (1949—1950) 200—221.
8) Le fait que le 2-rang de G2 est ^3 se déduit des résultats relatifs à H(OZ) précités

et du Corollaire à la Proposition 6 de [3], travail auquel nous renvoyons aussi pour un
exemple explicite de sous-groupe abélien de type (2,2, 2).
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P(G2/<?(3), t) (1 -

Nous étudions tout d'abord l'abord l'algèbre spectrale de la fîbration
(G2/Q(3), G2/K/Q(3)). L'espace G2/Il est le quotient de G2/Sl/(3)

S6 par jBl/SI/(3) Z2, sa cohomologie est donc celle de l'espace pro-
jectif Pe. L'espace K/Q(3) est homéomorphe à SÏ7(3)/S<?(3), donc, vu
la Proposition 12.2,

flri(K/G(3)) Z2 + Z2 et engendre H(K/Q(Z)) (13.2)
On en tire :

dim *Et dim H1{GJK) + dim H»(G2jK, H^KjQ^)) ^ 3

mais Q(3) est isomorphe au groupe fondamental de G2/Q(3), donc

dim ^ dim £T1(G2/<?(3)) 3 ;

puisque dim ^ ^ dim 1E2, il faut que H°(G2/K, H^K/Q^)) soit
isomorphe à Jff1(JC/Ç(3)) et formé d'éléments qui sont cocycles pour
toutes les différentielles. Ainsi, vu (2.2), l'image de i* :

£T(G2/Ç(3)) ->H(K/Q(3)) contient H^K/ÇiS))

donc tout H(K/Q(S)) d'après (13.2); K/Q(3) est totalement non
homologue à zéro, l'algèbre spectrale est triviale et

P(G2/<?(3), 0 P(G2/li:, 0 P(K/<?(3), 0

P(G2/<?(3), 0 P(P6) t) P(SU(B)/SQ(3), t)

P(G2/<?(3), 0 (1 -
ce qui est la formule annoncée ; le polynôme de Poincaré de G2/SO(4)
s'obtient alors en appliquant le lemme 10.1, compte tenu du No 4.

Cela étant, (13.1) et la Proposition 8.1 montrent que

P(G2/<?(3), t)P{BGi, t)

P(BSOW, t) P{GJSO{4,), t) .P(BGt, t)

les algèbres spectrales des fibrations

(BQ(3),BG2,G2/Q(3)) et (BSO(é), BG

sont donc triviales (Proposition 2.1), d'où le théorème.
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