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La cohomologie mod 2
de certains espaces homogenes

Par A. BoreL, Princeton N. J.

Introduction

Ce travail est consacré a I’étude de la cohomologie mod 2 de quelques
espaces homogenes ou fibrés principaux des groupes orthogonaux, pour
la plupart classiques. Comme dans [2], nous utilisons systématiquement
les espaces clagsifiants et I’algebre spectrale des espaces fibrés; cepen-
dant, peu de résultats de [2] interviendront aussi, pour donner & ce tra-
vail une certaine autonomie, avons-nous rappelé briévement dans les
Nos 1 et 2 les principales notions et notations dont nous ferons usage.

Un des principaux buts de [2] est ’étude des espaces classifiants et des
relations que ’on peut établir entre leur cohomologie et celle des groupes
de Lie ; en ce qui concerne les groupes orthogonaux, le cas le plus intéres-
sant est, comme on sait, celui de la cohomologie mod 2, mais, si nous en
avons dit quelques mots pour le groupe orthogonal unimodulaire SO (n),
nous avons complétement laissé de coté le groupe orthogonal complet
O(n), et notre premier but dans I sera de combler cette lacune. On sait
que la variété de Stiefel ¥, ,,,, , des n-repéres orthonormaux de I’espace
euclidien R*+1+% est un espace universel E(k, O(n)) pour O(n) et pour
k; sa base, qui est par définition un espace classifiant B(k, O(n)) pour
O(n) et pour k, est la grassmannienne G, .., , des sous-espaces & n
dimensions de R**+1+k. Ainsi, étudier H(Bgy,,,Z,) jusqu’a k revient, si
Yon veut, & étudier H(G, 1,1 ., Z,) jusqu’a k, ce qui a été fait & I'aide
de décompositions cellulaires notamment par Ehresmann [6], Chern
[4], [5], et Wu [12], [13]. Nous retrouverons leurs résultats dans les
Nos 5, 6, 7, mais en partant d’un point de vue différent : Soit en effet
Q(n) le sous-groupe des matrices diagonales de O(n), c’est donc un
groupe isomorphe au produit direct (Z,)” de n groupes cycliques d’ordre
deux et le produit direct de n espaces projectifs réels est un espace classi-
fiant pour Q(n), I'algébre de cohomologie H (B, ,Z,) est donc iso-
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morphe a une algébre de polynémes Z,[z,,...,z,] & n générateurs de
degré 1. Nous montrerons au No 5 que ’homomorphisme

Q*(Q(n)’ O(n)) : H(BO(n)7 Zz) -> H(Bo(n)’ Zz) ’

défini par l'inclusion Q(n) ¢ O(n), (voir No 1), est biunivoque, applique
H(Bgy 4y, Z,) sur l'ensemble des fonctions symétriques en «,,...,x,
et que I'image de la i-eme classe de Stiefel-Whitney réduite mod 2 w* est
la i-éme fonction symétrique élémentaire en «,,...,x,; pour y par-
venir, nous devons au préalable étudier la cohomologie de 1’espace
homogéne O(n)/Q(n), ce qui est fait au No 4. Nous retrouvons ainsi
le fait que les classes de Stiefel-Whitney réduites sont algébriquement
indépendantes et engendrent H (G, 4 ,,%;) pour les degrés <= F,
([4], [5], [13]). L’interprétation des classes réduites comme fonctions
symétriques élémentaires permet de déduire d’une identité évidente
entre fonctions symétriques les formules de dualité mod 2 de Whitney ;
elle permet aussi de ramener & un probléme de fonctions symétriques la
détermination des i-carrés des classes caractéristiques réduites et nous
donnons au No 7 une démonstration des formules de Wu Wen Tsiin
([13], [6]) qui résolvent cette question.

On passe aisément de 13 aux espaces classifiants pour les groupes ortho-
gonaux unimodulaires, que 1’on peut représenter comme grassmanniennes
de sous-espaces orientés ; en effet, nous verrons au No 8 que

0*(SO(n), O(n))

identifie H(Bsq ), 4,) au quotient de H(By,,, Z,) par l'idéal de w'.
C’est donc une algébre de polynémes & =» — 1 variables de degrés
2,...,n, résultat dii & Pontrjagin [9] que nous avions retrouvé d’une
autre maniére dans [2], § 23 ; de plus les formules de Wu donnent évidem-
ment aussi les S¢° dans H (Bgg(y), Z,); or nous avons montré dans [2]
que H(SO(n),Z;) a un systéme simple de générateurs h,,...,h, ,
universellement transgressifs, wi+! étant une image de h, par transgres-
sion ; comme la transgression commute aux ¢-carrés ([10], No 9), on ob-
tient immédiatement les S¢? dans SO(n), On trouve

Sy = () by G+iSn =15 Sgh =0 (+jzm) .

En fait, comme la sous-algébre engendrée par h,, hy.y,...,h,_, 8’iden-
tifie & H(V, ._x,%,), ces formules décrivent plus généralement les
t-carrés dans la cohomologie des variétés de Stiefel, qui ont été déter-
minés d’une tout autre maniére par Miller [8].
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Dans I le sous-groupe Q(n), qui est visiblement un sous-groupe
abélien maximal de type (2, 2,...,2), joue un réle décisif, tout a fait
analogue & celui d’un tore maximal dans ’étude de la cohomologie réelle
des classifiants ([2], Chapitre VI) ; pour une discussion plus étendue nous
renvoyons au début de II, ol cette analogie est poursuivie et conduit &
la détermination de la cohomologie mod 2 de certains espaces homo-
génes. On sait que la cohomologie réelle d'un espace homogéne G/H se
décrit aisément lorsque G' et H ont méme rang, c’est-a-dire ont un tore
maximal commun. Nous établirons ici en cohomologie mod 2, dans
certains cas particuliers ol G et H ont un sous-groupe abélien maximal
de type (2,...,2) commun, des résultats qui s’écrivent et se démontrent
sensiblement de la méme fagon. Nous obtenons ainsi notamment 1’al-
gébre de cohomologie mod 2 des espaces O(n)/O(n,) X - - - X O(ny),
(ny +- -+ n,=n), Un)O(n), G,/SO(4). Rappelons que les variétés
O(n)/O(n,) X ... x O(n,) ont été étudiées, au point de vue additif, par
Ehresmann [6]; parmi elles figurent les grassmanniennes dont nous dé-
terminons ainsi 1’algébre de cohomologie compléte, et non pas seulement
jusqu’a la dimension «critique» comme dans I. Dans tous les cas traités
ici, H(G/H,Z,) est un quotient de H(Bg,Z,); par conséquent, lors-
que H est un produit de groupes orthogonaux, les formules de Wu déter-
minent aussi les i-carrés de G/H?Y).

1. Espaces universels, espaces classifiants

Tous les espaces fibrés que nous rencontrerons dans ce travail seront
des variétés compactes, et méme des espaces fibrés différentiables ; ils
vérifieront donc a fortiori toutes les restrictions qu’il y a lieu d’imposer
a la notion générale d’espace fibré pour que les résultats rappelés ci-
dessous soient valables, aussi ne mentionnerons-nous pas ces conditions,
renvoyant & [2] pour plus de détails. Nous ne répétons pas la définition
d’espaces fibrés et d’espaces fibrés principaux (voir par exemple [2],
No 2); indiquons simplement que nous désignons le systéme formé par
un espace E fibré de base B et de fibres F par (E, B, F) ou (£, B, F, p)
si nous voulons mettre en évidence la projection de £ sur B.

1) Nous avons renoncé & faire figurer dans ce travail les résultats concernant la coho-
mologie de Spin (n), G4, F, énoncés dans [1], contrairement & ce qui avait été6 annoncé
dans Vintroduction de [2]; ils seront établis dans un Mémoire ultérieur, consacré & la
cohomologie de quelques groupes de Lie. Signalons encore & ce propos que la référence [2]
dans la bibliographie de [3] renvoie & ce Mémoire, et non au présent travail.
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G désignera toujours un groupe de Lie compact. On appelle espace uni-
versel pour G et pour k un espace fibré principal compact connexe, noté
E(n,@) ou Eg, a cohomologie triviale jusqu’a £,

G.e. H'(E(n,®),T) =T, H(E(®,G),T) =0, (0<i=<h),

pour tout anneau de coefficients I'). Sa base B(n,G) ou B, est dite
espace classifiant pour G et pour k. Deux espaces classifiants pour G et
pour k ont des algébres de cohomologie isomorphes jusqu’a &k ([2],
Prop. 18.2) ce qui permet de définir une algebre graduée H (B,, I') qui
pour tout %k est isomorphe & H(B(k,G), I') jusqu’a k ([2], Déf. 18.2).
Quand G est discret, H(B,, I') n’est autre que ’algebre de cohomologie
de G au sens de Hopf.

Si (E, B, ) est un espace fibré principal compact de fibre G, il existe
un homomorphisme ¢*: H (B, I') - H(B, I'), ’homomorphisme carac-
téristique, qui est un invariant de la fibration (£, B, ). Son image est
la sous-algébre caractéristique. Si U est un sous-groupe fermé de G, nous
convenons d’appeler sous-algébre caractéristique de H(G/U, I') la sous-
algébre caractéristique de la fibration (@, G/U, U). Nous utiliserons fré-
quemment le résultat suivant ([2], Corollaire & la Prop. 18.3):

(1.1) Soient (X, Y, G) un espace fibré principal compact connexe, et U
un sous-groupe fermé de G. St H(G/U, I') est égale a sa sous-algébre carac-
téristique, alors G|U est totalement non homologue a 2éro, relativement a I,
dans la fibration (X/U,Y,G|U).

(En effet, ’homomorphisme caractéristique o* de (G,G/U, U) est le
composé i*.g; de ’homomorphisme caractéristique de (X, X/U, U)
par le transposé de I'inclusion G/U ¢ X/U ; si o* est sur, il doit en étre
de méme de ¢*.)

Soit toujours U un sous-groupe fermé de G ; un espace K (k,G) uni-
versel pour G est évidemment universel pour U, d’ou une projection
o(U,G): Ek,Q)U = Bk,U) > B(k,Q) = E(k,GF)/G qui permet de
définir un homomorphisme of (U,Q): H(By, I') - H(By, I') qui joue
un réle fondamental dans [ 2]. Ici, nous désignerons cet homomorphisme
par o*(U, Q@) lorsque I'~2Z,.

(1.2) Remarquons encore que (U, @) définit une fibration (By,
By,G|U,o(U,@)) et que 'homomorphisme ¢* transposé de 'inclusion
d’une fibre est ’homomorphisme caractéristique de (@,G/U, U), (voir
[2], Théoréme 22.2).
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2. Algébre spectrale des espaces fibrés

Pour nous conformer & un usage de plus en plus répandu, nous noterons
une algébre spectrale (£,) au lieu de (H,) comme dans [2]. Dans le cas
d’un espace fibré on a, comme on sait

E,=—H(B,H({F,I)) , E'=H*(B,HyF,TI))

et B est I'algébre graduée associée a H (K, I') convenablement filtrée ;
H(B,H(F,I')) estl'algébre de cohomologie de B & coefficients dans le
systéme local formé par les algébres de cohomologie des différentes fibres ;
nous utiliserons sans commentaire le fait que ce systéme est simple lors-
que B est simplement connexe, ou lorsque E est fibré principal de groupe
structural ¢ connexe, ou encore quotient d’un tel espace par un sous-
groupe fermé de (. Dans le cas du systéme simple et si I est isomorphe
a un corps K, on adonc E,=H(B,K) ® H(F, K), (produit tensoriel
«gauche » sur K).

Nous ne répétons pas ici la définition de I’algébre spectrale des espaces
fibrés et nous n’allons mentionner que certaines de ses propriétés, celles
qui interviendront le plus fréquemment dans la suite (pour plus de dé-
tails, voir [7], [2] § 2, 4, [10]).

(2.1) Nous notons Dz le degré total d’un élément de E,, et ‘E, I’en-
semble des éléments de degré total © de X,, i. e.

3 — » 4
‘B, = X =i £V .

Si P’algébre spectrale est prise relativement & un corps K de coefficients
on désigne par Py (Z,,t) le polynéme de Poincaré de E, relativement
au degré total. On a donc

Py(E,,t)= Pg(l,1)

et, puisque £, , est 'algébre de cohomologie de E, relativement & d,
PK(Er+19 t) é PK(E1'7 t)

I'égalité valant si et seulement si d, =0, c’est-a-dire si £, ~ E, ,.

(2.2) E%? g’identifie 4 un sous-module de E3?, I’ensemble des élé-
ments de EJ? qui sont cocycles pour toutes les différentielles, et forme
I'image de I’homomorphisme i*: HY(E,I') —» H(F,I') transposé de
Pinclusion.

(2.3) En fait, toutes les algébres spectrales auxquelles nous aurons
affaire, sauf une, seront triviales (i.e. B, = E_, ousil’'on veut d, =0
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pour tout r=2), aussi allons nous parler de ce cas plus en détails. Rap-
pelons tout d’abord un résultat connu ([7], Théoremes 7.1, 7.3, [2]
Prop. 4.1).

Pour que Ualgébre spectrale de (E, B, F, p) sur un corps K soit triviale
et que Uon ait dans E, des coefficients ordinaires, il faut et il suffit que F
sott totalement non homologue d zéro dans E , relativement & K. Dans ce cas
p* est biunivoque, t* identifie H(F, K) au quotient de H(E, K) par
Pidéal qu’y engendrent les éléments de degrés >0 de p*(H (B, K)).

Il est clair que si les conditions précédentes sont réalisées on a

Cette condition est aussi suffisante ; en effet :

Proposition 2.1. Soit (E, B,F) un espace fibré compact, connexe, de
base localement connexe, a fibres connexes. Pour que F soit totalement non
homologue a zéro dans E , relativement a K , il faut et il suffit que Pg(E, 1)
= Pg(B,t)-Pg(F,1).

Vu (2.3), nous pouvons nous borner & établir la suffisance de la condi-
tion ; montrons tout d’abord que le systéme des H(F, K) est simple.
Soit Ce(F, K) le plus grand sous-espace de H4(F, K) sur lequel le
groupe fondamental de B agit trivialement, on a donc

E%? = Ho(B, HY(F, K) = C4(F, K)

et nous devons prouver que C?(F, K)= HY(F, K); c’est clair pour
q = 0, supposons-le vrai pour ¢<k, (k>0), on a donc
Ep* = H*(B, H(F,K)) = H*(B,K) @ HU(F, K)  (q<k)
d’our
dim. *E, = dim. H*(BxF, K) — dim. H*(F, K) + dim. C*(F, K)
dim. ¥, = dim. ¥E_, — dim. H*(F, K) + dim. C*(F, K)

et puisque dim. *E, = dim. ¥*E_, on obtient dim.C*(F,K) = dim. H*
(F,K) donc Ck(F,K)= H¥(F, K).
Ainsi le systéme des H (F,K) estsimpleet E, = H(B,K) ® H(F,K),
d’our
Py(E,,t) = Pg(B,t) Pg(F,t) = Pg(E,t) = Pg(E,,?)

et l’algébre spectrale est triviale d’aprés (2.1), F est totalement non
homologue & zéro d’apres (2.3).
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3. Remarques auxiliaires

Pour ne pas devoir interrompre le cours de certaines démonstrations
de I, nous rassemblons ici quelques remarques & peu prés évidentes sur le
groupe fondamental d’'un espace.

Soit (K, B,n) un espace fibré principal, globalement et localement
connexe et simplement connexe par arcs, dont la fibre est un groupe
abélien discret. Le groupe x,(B) est donc isomorphe & 7, de fagcon pré-
cise on a un isomorphisme canonique ¢,:x — n, (B, b), (b e B) obtenu
ainsi: Soit b e p~1(b), on fait correspondre & xz em la classe des lacets
qui sont projections d’arcs joignant ba b x; cela ne dépend pas de b
puisque x est supposé abélien.

Supposons que E soit aussi fibré principal pour un surgroupe n de =,
dans lequel z est invariant ; 7 opére alors sur £ en respectant la fibration
(£, B,n, p) et opére donc sur B par passage au quotient ; soit k, I'iso-
morphisme de =, (B, b) sur #,(B, k(b)) qui se déduit ainsi de I’homéo-
morphisme z —2x-k~! de E; i} est immédiat que (;; 0k, 0, est
lautomorphisme 7'.: « —kzk~l, et ainsi le quotient z/n opére sur
7,(B), donc sur le premier groupe d’homologie H,(B, Z) ~ =,(B), par
les automorphismes T',,.

Soient 7’ un sous-groupe de =, et f la projection de E/n’ sur E/x. Il est
clair que le diagramme suivant est commutatif

(Bl a) <

v f : y ¢ (¢ inclusion de n’ dans x)
(a)

ny(Eln, f(a)) < =

On peut donc identifier canoniquement =n’, resp. =, & H,(Ea', Z),
resp. H,(E|n,Z), de manitre & ce que f,: H,(E/n',Z)— H,(Eln,Z)
soit 'inclusion 4 ; si I" est un groupe abélien, f, : H,(E/nx', ")~ H,(E/n,I")
est ’homomorphisme n’ ® I' >n® I' défini par l'inclusion =’ ¢ n et
par lidentité sur I'; remarquons encore qu’il est biunivoque et que
# @IN~n"; n ®'~n quand I'>~Z, et quand = est de type
2,2,...,2).

Cas particulier. Soient Q(n) le groupe des matrices diagonales de O (n),
et N, le normalisateur de Q(n) dans O(n). Il est clair que Q(n) =
(Zy)» et que N,/Q(n) s’identifie au groupe des permutations d’un
systéme convenable de générateurs de Q(n), soit u,,...,u,; & ce
systéme correspond une base v,,...,v, de H,(B,Z,) >~ H,(B,Z) ® Z,.
Soit encore z,,...,x, la base duale de H'(B,Z,). Alors N,/Q(n),
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considéré comme groupe d’opérateurs de H!(B,Z,) est le groupe des
permutations de «,,..., z,.

Si o/ = Q@) est le sous-groupe engendré par w, ;.,,...,%,,
fx: H,(E|Q(3), Z,) - H,(E|Q(n), Z,) identifie H,(E/Q (), Z,) au sous-
espace de H,(E/Q(n), Z,) ayant v, ,,,,...,v, comme base. Désignons
enfin par y,,...,y; la base de HY(E/Q(i), Z,) qui est duale & la base
de H,(E/Q(3), Z,) définie par wu,,_, +1, <+, %, ; ’homomorphisme trans-
posé f*: H(E|/Q(n), Z,) - H(E/Q (), Z,) est défini par

@iy =4 G=1,2,...,0); ¥(x) =0 (1 =k =n—1). (3.1)

I. Espaces classifiants pour les groupes orthogonaux;
variétés de Stiefel

Dorénavant, nous considérerons exclusivement la cohomologie mod 2,
aussi convenons-nous de désigner par H (X) I’algébre de cohomologie de
X relativement au corps & deux éléments; de méme P (X,?) sera le
polynéme de Poincaré de H (X), et une suite spectrale (¥,) sera toujours
relative a Z,.

Nous notons Q(n), (resp. SQ(n)), le sous-groupe des matrices dia-
gonales de O (n), (resp de SO (n)), donc

Qn) = (Z,)* ;  SQ(n) = (Z,)"*
d’ou
H('BQ(n)’Z2)%Z2[x1"": xn] (Dxt = 1)
H(BSQ(n)) %Zz[yl""’ Yn-1] Dy, = 1)
P(BQ(ﬂ)’ t) = (1 - t)—'n ) P(BSQ(n)a t) = (1 "— t)——n+1 'A

F, désignera I’espace homogéne

F, = O(n)/Q(n) = SO(n)/SQ(n)

4. Cohomologie de F,

Nous avons surtout en vue 1’étude de I’homomorphisme

0*(Q(n), O(n))

mais ce dernier est le transposé de la projection dans la fibration
(BQ(n)a -BO(n)a Fn)
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et c’est pourquoi I’étude de F,, s’avérera utile ; remarquons que ’on peut
aussi I'envisager comme fibre dans la fibration (Bggy: Bsoys Fa)
correspondant & I'inclusion SQ(n) ¢ SO(n).

Lemme 4.1. La dimension de H'(F,) est =n—1, (n=2,3,...).
Dans l'algebre spectrale de (Bgg ), Bsow) Fn) ona

car Bg g, est simplement connexe, d’olt

\E, = By* ~ HY(F,) (4.1)
d’autre part
et le lemme résulte de 'inégalité dim'E, = dimZ_ .

Proposition 4.1. H (F,) est engendrée par ses éléments de degré <1
et son polynome de Poincaré est

PF, t)=@01—)@1—86)...(1 =1 —t" n=2).

Démonstration par récurrence sur n. Pour n = 2, F, = S0(2)/Z, est
un cercle, supposons la proposition vraie pour F,_,, (» = 3), on a donc
en particulier dim HY(F,_,) =» — 2.

Soit Z,x O(n — 1) le sous-groupe de O(n) formé des matrices dont le
premier coefficient est + 1, il contient Q(n) =Z,xQ(n — 1) et
comme le quotient O(n)/Z,x O(n — 1) est l'espace projectif réel a
n — 1 dimensions P,_,, on a une fibration

(O(n)/Q(n)’ Pn—l’ O(n - 1)/Q(n — 1)’ pn)

que l'on peut aussi écrire (F,, P,_,, F,_,, p,) dont nous voulons étudier
lalgebre spectrale. On a

dim B} = dim H'(P,_,) = 1
dim B3 = dim H(P,_,, H\(F,_,)) = dim C\(F,_,) <n — 2

donc dim'E, <n — 1, (C'(F,_,) est le sous espace maximum de
H'(F,_,) sur lequel =, (P,_,) agit trivialement). Mais

dim £, = dim HY(F,) =n» — 1
il faut donc que C'(F,_,) = H!(F,_,) et que les éléments de E)*' soient

cocycles pour toutes les différentielles d,; par conséquent l'image de
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Phomomorphisme +*: H(F,) - H(F,_,) transposé de l'inclusion con-
tient H(F,_,), donc aussi H(F,_,) qui est engendré par ses éléments
de degrés =< 1. Ainsi F,_, est totalement non homologue & zéro dans
F,, Talgébre spectrale est triviale (voir (2.3)), et

P(F,,t)= PP,_,,t) P(F,_,,t)=(1 —t)(1 —t3)...(1 —t")(1 — )™
compte tenu de I’hypothése d’induction. Enfin,
E,=E,=H(P,, ® H(F,_,)

est engendré par ses éléments de degrés < 1, il en est donc de méme
pour H(F,), puisque K _ est 'algébre graduée associée a H (F,) conve-
nablement filtrée (voir [2], Prop. 8.1a).

Corollaire. H(SO(n)/SQ(n)) est égale a sa sous-algébre caractéristique ;
la série de Poincaré de H (Bgg () est

P(Bsomy ) = (1 — #)71(1 — #8)~1.. (1 — tn)1 .

Nous reprenons ’algébre spectrale de (Bg gy, Bso) Fn) considérée
dans le lemme 4.1; la proposition 4.1, jointe & (4.1) et (4.2), montre
que dim 'K _ = dim £, = n — 1. Les différentielles doivent donc étre
nulles sur les éléments de degré total 1, en particulier sur 1 ® H(F,),
donc aussi sur 1 ® H(F,) qui est engendré par ses éléments de degré
< 1; ainsi F, est totalement non homologue & zéro dans cette fibration,
dont 'algébre spectrale est par suite triviale. Il en résulte que

H(SO(n)/SQ(n))
est égale i sa sous-algébre caractéristique (No 2) et que
P(Bggmy>t)-P(F,,t) = P(Bsgm,t) = (1 — t)="+

d’ou I’égalité annoncée (compte tenu de la Proposition 4.1).

5. Cohomologie de B, ; classes caractéristiques réduites

Pour m <n, nous identifions O(m) au sous-groupe de O(n) formé
des matrices dont les » — m premiers termes diagonaux sont égaux a 1,
et ¢*(O(m), O(n)) désigne I'homomorphisme de H(By,,) dans
H(Bgy(y), correspondant & cette inclusion (voir 1).
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On sait; que les premiers groupes de cohomologie (mod 2) de la variété
de Stiefel V, , , = O(n)/0O(:) sont donnés par (voir par exemple [2],
Proposition 10.3) :

Hj(Vn,n-—i) =0 (j<i) > Hi(Vn.n-i) = Zz . (5'1)

Lemme 5.1. La classe de Stiefel-Whitney réduite mod 2 de degré
1+ 1 de Bom)a 80it witl, est Punique élément mon nul de degré i + 1
contenu dans le noyau de o*(0(i), O(n)), (1 =1,2,...,n — 1).

Dans cet énoncé, B, désigne un espace classifiant pour une dimen-
sion assez grande, par exemple >n.

On sait (voir [11], p. 139) que wi+! est 'image par transgression de
I’élément non nul de H*(V, ,_;) dans la fibration

(EO(n)/O(i)9 EO(n)/O(n)a Vn,n—i: 0 (0(7’)/0(72’))) ’
c’'est-a-dire (B, Bomys Va,n-i> €(0(@), O(n))) . Dans son algébre
spectrale on a d’apreés (5.1)

E??=0 pour p+qg=:¢, p>0, r =2 (5.2)
donc ' ' _
Bt ~ Bit & H* (Bg ) (5.3)

et, puisque ,(Bg,,) agit forcément trivialement sur Z,

0,4 0,1 0,1 1
B ~Ey' '~ =By = H(V,, )

Soit v ’élément non nul de H*(V, ,_,); comme la transgression en di-
mension ¢ coincide avec 'homomorphisme EY:}; — E}11° défini par d,,
([2], Proposition 5.1), on doit avoir

dig(l @ v)) =w @1 .
Ensuite, comme toujours dans une algébre spectrale :

Ei+1,0 ~ Ei+1,0/di+1 (iEi+1) ~ Ei+1,0

142 i+1 t+1

1+1,0 i+1,0 ... 1+1,0 % i4+1
B =~ B, >~ B0~ o* (H (BO(n)))
mais, vu (5.2), di.,(EB,)~ EiT}° est engendré par wi+l, d’ou le lemme.

Théoréme 5.1. L’homomorphisme o*(Q (n), O(n)) de H(B,y,) dans
H(Byy) = Zy[zy,. .., 2,], (Dx;=1), est biunivogue. Son image est
Palgébre des fonctions symélriques en x,,...,x,; il applique la classe
caractéristique réduite w' sur la i-éme fonction syméirique élémentaire
ot (t=1,...,n).
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Dans la démonstration, divisée en trois parties, on écrira g, au lieu de
e*(Q (), 0()).

a) Nous montrerons tout d’abord que g(",‘,) est biunivoque et que
P(Bppy,t) = (1 —)71(1 —&)L...(1 — ¢,
Dans l'algébre spectrale de (By,, Bonys Fns 0m) on a
dim B, = dim E}° + dim EJ*
dim 'E, = dim H'(B,,,,) + dim H°(B, H\(F,)) <n

vu la Proposition 4.1 et le fait que n,(By,) = m,(0(n)) =~ Z,, (suite
d’homotopie dans (Eg,Bpy, O(n)). D’autre part

dim 'E,, = dim H'(B,,) = n

ainsi, il faut que dim 'K, = n, donc que H°(By,, H'(F,)) soit iso-
morphe & H!(F,) et formé d’éléments qui sont cocycles pour toutes les
différentielles. Puisque H (F,) est engendré par ses éléments de degré
=1, on voit que H°(By,, H*(F,)) = H*(F,) pour tout k et que ses
éléments sont cocycles pour toutes les différentielles. Ainsi

E,= H(By,) ® H(F,) =E,
I'algébre spectrale est triviale, g, est biunivoque, (voir (2.3)), et
P(Bgyny, t)- P(F,,t) = P(By,) = (1 — )™
d’ol1, compte tenu de la Proposition 4.1,
P(Bog,t) = (1 — 8)71(1 — 3)~1.. (1 — )1 .

b) Nous notons 8(z,,..., z,) lalgébre des fonctions symétriques en
Zy,..., ,. Nous voulons montrer que S(w,...,x,) est Vimage de g, .

Le normalisateur N, de Q(n) dans O(n) opére sur la fibration
(Zo@my» Bony» @(n)). On peut appliquer les remarques du No 3 (cas par-
ticulier) & E = E,,,, B = By, ; ainsi, le groupe ¥, = N,/Q(n)
opere sur H(Bgy,,) = Z,[#,,..., z,] et est le groupe des permutations
de z,,...,x,.

N, opére sur la fibration (Ey,, Bo, O(n)) et commute évidem-
ment avec la projection en laissant chaque fibre invariante il opére donc
trivialement sur By, et sur H(By,,); il est clair que N, commute & la

. s * x
projection gg,: By, = Bg,, donc finalement ¥, commute & g, :
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H(Bg,y) —~ H(By(,) et agit trivialement sur la premiére algébre.
L’image de g(";) est certainement contenue dans la sous-algébre de
H(Bg,) formée par les éléments sur lesquels ¥, opére trivialement, et
qui est S(z,,...,x,). Mais d’apres a) Q(’;) est biunivoque, et la série de
Poincaré de H(Bg,) est justement celle de S(x,,..., z,); I'image de
g(’;) est donc tout S(z,,..., x,).

c) A montrer: g(’;)(wf) =0¢ (j=1,2,...,n). Pour j=1, cest
évident car o! est le seul élément non nul de degré 1 de S(z,,..., z,);
soit donc j =1¢+ 1 (+ = 1), et considérons le diagramme commutatif

E o] Q(0) > By Q(n)

v v
. B
Eo @m0 @)~ Eg/O(n)
qui peut s’écrire

Bo @y~ Bom
v &) ] )
Bo iy~ Bow
d’olt 'on déduit .
X
H(BQ(i)) <“H(B()(n))
t g o om
ol a*=p*(Q(i), Q(n)) et f* = o*(0 (i), O(n)) ; d’aprés (3.1) on a pour
un choix convenable de générateurs y;,...,y; de H(Bg ;)
HK(@pipr) =Y k=1,...,1); o*@)=0 (k=n—1). (5.4)
Nous savons par ailleurs que g, et g, sont biunivoques et ont comme
images respectives S(yy,...,y;) et S(xy,...,x,); de plus, d’apreés le
lemme 5.1 :

o* O gy (W) = g3y © f*(wi+1) =0 .

Par conséquent, g(’;) (wi+l) est une fonction symétrique de degré + 4 1,
non nulle, dont 'image par ’homomorphisme que définit (5.4) est nulle,
c’est forcément ¢+, C. Q. F.D.

Remarque. Dans la partie a) de la démonstration, nous avons vu que
lalgeébre spectrale de (Bomys Bowys Fus 0my) €8t triviale, par consé-
quent, H(O(n)/Q(n)) est égale & sa sous-algébre caractéristique.
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Interprétation géométrique. Prenons comme espace universel pour O (n)
la variété de Stiefel ¥, , (m grand), des n-repéres orthonormaux de R™.

Il est clair que si (e;,...,e,) est un m-repére orthonormal, ses trans-
formés par Q(n) sont les repéres (4-e,, +e,,..., +¢,). L’espace
Von="Vn,/Q@n) est donc la variété des systémes ordonnés de n

droites non orientées de R™, orthogonales deux a deux, passant par U'origine.
Cet espace est par ailleurs le quotient d’un espace universel, c’est donc
un espace classifiant By, pour Q(n) (et pour m —n — 1) donc H (V,:‘,n)
= Zy[xy,...,2,] pour D<m — n; la fibration

(Bom» Bom: 0(n)/Q(n), e(Q(n), O(n))

g'écrit ici (V,y,, G, », O(n)/Q(n)), o(Q(n), O(n)). Sous a) nous avons
en somme démontré que O(n)/Q(n) était totalement non homologue &
zéro (mod 2) dans V,; , donc o*: H(G, ,) —H(V, ,) estbiunivoque
en toute dimension, sous b) nous avons vu que I’image de g* est pour les
degrés <m — n l’ensemble des fonctions symétriques en z,,..., z,.

Soit encore (E,V,,, O),p) lespace fibré image réciproque de
(Vin,n» Gm,n» O(n), q) par g4, («induced bundle» dans [11] § 10), E est
donc un espace fibré principal, muni d’un homomorphisme ¢: E - V,, ,
qui induit g, par passage au quotient ; I'égalité g(’:)(wi) = ¢ signifie
que les classes caractéristiques réduites mod 2 de la fibration

(£, mn,O(n P)

sont les fonctions symétriques élémentaires en Zy,..., %,

6. Les formules de dualité mod 2

A deux espaces fibrés principaux de groupes structuraux O(n,) et
O(n,) ayant méme base B, on fait correspondre, comme on sait, un
espace fibré principal de fibre O(n,) x O(n,), puis, par extension du
groupe structural, un espace fibré principal de fibre O(n) (n = n; + n,),
tous deux de base B. Les formules de dualité mod 2 de H. Whitney
expriment des relations ‘liant les classes caractéristiques réduites des
3 fibrations précédentes de groupes structuraux respectifs O(n,), O(n,)
et O(n).

Ces formules se déduisent directement de relations entre les classes
caractéristiques réduites de deux espaces fibrés principaux

(Ei’ Bi! O(nt)) pi) (i = la 2) ’
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et de ’espace fibré (E, B, X B,, O(n), p) obtenu par extension du groupe
structural & partir de (B, X E,, B, X B,, O(n,) X O(n,)) et quisont dues
4 Wu Wen Tsiin [12]. Quant & ces dernieres, il suffit pour les obtenir de
considérer le cas des espaces universels, autrement dit o H, =V, ..
(m; grand). Soit

h: Gml,nl Xsz,n2 - Gm,n (n = Ny + Ny, M= m; + m2)
Papplication qui associe au couple (P,, P,) le sous-espace de la somme

directe R™ = R™ + R™ sous-tendu par P, et P,. Soient w}, la

j-éme classe réduite de G,, ,;, et w’ la j-éme classe réduite de G,, ,,,

(on convient de poser wf;, =0 (j>n,;), w’ =0 (j>n)). Le probléme
consiste & exprimer I'image de w’ par ’homomorphisme

h*: H(Gm,n) - H(Gml,nl) ® H(sz,nz)

a I’aide des classes w{‘i) ; la solution est donnée par la Proposition suivante
([12], Théoreme I).

Proposition 6.1. Awvec les notations précédentes on a
X)) = X, why®@uh, (G=1,2,...).

Nous admettrons provisoirement que pour D <Min(m;—n,, m,—n,)
h* g’identifie & 'homomorphisme ¢*(0(n,)x O(n,), O(n)) qui corres-
pond a l'inclusion de O(n,) X O(n,) dans O(n).

Le diagramme commutatif (6.1), ou les fléches désignent des projec-
tions, la fleche verticale de gauche étant 1’identité :

Vm,n/Q(nl) X Q(ny) — Vm,’n/o(nl) X O (n,)
v vy (6.1)
Vm,n/Q(n) - Vm,n/o(n)

donne par passage & la cohomologie mod 2 un diagramme qui pour
D <Min(m, — n,, m, — n,) coincide avec le diagramme (6. 2) :

ﬂ*
H (Bg (n,) @ H (Bg n,)) < H (Bg (n,) ® H (Bg ()
A o A y* (6.2)

€n)
H(BQ(n)) - H (Byy,) -

Si ’on pose
'H(BQ (nl)) = Zz[yl’ e ynl] ; H(BQ(M)) = Zz [yn1+1> MR yn]

il est clair que pour un choix convenable des y, on a (voir No 3)

a¥(z,) =y, ® 1 C=m); o¥x)=1Qy; (>n).
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p* n’est autre que o*(Q(n,) X Q(ny), O(n,) X O(n,)), c’est donc le pro-
duit tensoriel des homomorphismes g, , et ., d’ot

ﬂ*(w{1)®1)=a’£l)®l Gh=1,2,...)
B*(1 @ wg) =1 @ o, k=1,2,...)

(on note ¢{”, resp. of,, la j-éme fonction symétrique élémentaire en
Y1r- > Yn,» TESp. €N Y, 1y, ..., Y, et on convient que o{i) = 0 s8ij est
strictement plus grand que le nombre des variables). y* est ’homomor-
phisme o*(0(n,) X O(n,), O(n)) qui, comme nous 'avons admis, coin-
cide avec A* pour D<Min(m, — n,, m, — n,). Enfin (Théoréeme 5.1)

9(:)(1”7'):0" G=1,2,...).

La proposition 6.1 résulte alors de la commutativité de (6.2) et de I'iden-
tité évidente

o*(07) = X ,appe; 0% ® of, G=1,2,...).
Pour compléter cette démonstration, nous devons encore établir le
Lemme 6.1. Pour D<Min (m, — n,, my — n,), on a
h* = 0*(0(n,) X O(n,), O(n)) .

Vir. o/ O(ny) X O(n,) est l'espace des systémes formés par un sous-
espace P, de dimension n, de B™ et un sous-espace P, de dimension 7,
orthogonal & P, ; on a une inclusion évidente

"’ Gml,nl X sz,nz C Vm,n/O(nl) X O(n2)

telle que h =y 04; Dapplication ¢ provient par passage au quotient
d’une inclusion de V,, , XV, , dansV, ,quiestun homomorphisme
d’espaces fibrés principaux (de groupes structuraux O(n,) x O(n,)). Ces
deux espaces étant universels pour O(n,) X O(n,) et pour

D <Min (m; — ny, my — n,) ,

il s’ensuit que +* est un isomorphisme sur pour ces valeurs de D, ([2],
Propositions 18.2 et 18.3), ainsi A* se ramene bien a

y* = 0*(0(ny) X O(n,), O(n))
pour les degrés considérés.
Remarque. En fait ce lemme n’est qu’un cas particulier d’un résultat

général facile a établir concernant les extensions de groupes structuraux.
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Soient U un sous-groupe fermé du groupe de Lie compact @, (E, B, U, p)
un espace fibré principal, (E/, B, G, p’) un espace obtenu par extension
du groupe structural & partir de (E, B, U, p), o5, et o5 les homomor-
phismes caractéristiques de ces deux fibrations (au sens du No 1), alors
oy = o 0 0*(U, Q) (voir & ce sujet un article ultérieur de J. P. Serre et
lauteur). Plus haut nous avons considéré un cas ou E est universel, donc
ol o}, est I'identité.

7. Les i-carrés des classes caractéristiques réduites

Pour compléter Nos 5, 6, nous donnons ici une démonstration des for-
mules de Wu Wen Tsiin ([13], [5]), qui du reste ne différe pas essentielle-
ment de la sienne.

Nous désignons comme précédemment par w/ (j=1,2,...) les
classes caractéristiques réduites de H (B,,,,), en convenant de poser w/=0
pour j>mn.

Théoréme 7.1. On a les formules

Sqiw! = Eogzgi(j—z—!t_thl) wi—t witt (1 < 9)

. . a . e . . ’ .
avec les conventions suivantes : (b) = coefficient binomial réduit mod 2

st a =b; (Z)=1 st b=20; (Z)zO st a<b et b#0.

Dans H(By,) = Z,[#,,...,x,], les i-carrés sont déterminés par
Sz, =2z, ; Sqz,=2; 8Sgiz,=0 (j>1) (7.1)
et par la formule de H. Cartan
Sgtu-v) = X, ., ;89"u-Sq°v . (7.2)

Il en résulte visiblement que pour ¢ < 7§, &, <t,<---<i;:

; - 2 2 2
Sqt(x; .. .xi,,) = X k<< bi Bhy Thye v Loy Tiggyy - - X9 (7.3)

(ky,..., k;) étant une partie de (¢y,...,%;) et (k;,,...,%;) son com-
plément.
D’aprés le Théoréme 5.1 on a g, (w') = o’ ; on tire done de (7.3) que

% : 9 B .
Sqie(n) (w?) = 2 x% xg. . .xi xi_*_l. . -xj ('l' é 7)
A

le deuxiéme membre désignant la fonction symétrique en z,,..., z, de
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terme typique x}2j...x}2,,,...7;. Comme g, est biunivoque, le Théo-
réme 7.1 équivaut & la formule

it —1\ .
2xixi...xﬁxiﬂ...x’.:Zogig_t(7 —}t- )o-‘“t ol +t (7.5)

avec les conventions du Théoréme 7.1 pour les coefficients. Introduisons
la notation

c';"f=(7"i“;'t"1), (7.6)
les coefficients ci'/ vérifient donc les formules
o’ =1 (¢ =79)
ey =it (0 <t <1 <y) (7.7)
cif = i1 b, o<t <j).

La démonstration de (7.5) se fait par récurrence sur le nombre des
variables. Pour n = 1, c’est immédiat, supposons (7.5) établie pour
n — 1 variables. Si ¢ = 4§, (7.5) devient

2 .2 2 . of j
XX %,...2; =00

et est évidemment vraie, puisque nous calculons mod 2; il reste & con-
sidérer le cas ¢ <<j. Nous noterons

X 2, a2 2
D RN SN i FER T
une fonction symétrique en z,,..., z,_, de terme typique
2 2 2
By By« n By By o o <y
et o/, sera le j-éme fonction symétrique élémentaire en z,,..., z,_,.
Le premier membre de (7.5) s’écrit

ptral, .2 k.., B0, e, .,
+ X*a2. . 2%z, . .2
le deuxiéme membre, soit A%’ se transforme de la maniére suivante :
AV = (@, ok T+ oW + Bogeci 6 (a0 T A 0% ) (@ 0% T 0¥
A =af Fooye it ok T T a, Soc,<i(eb T i) ok kT
+ Fociseoi’ o o}

(en posant ¢! = 0); 1'égalité des deux membres résulte alors de I'hypo-
theése de récurrence et de (7.7).
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8. Cohomologie de Bsom

SO (n) étant invariant dans O(n), il existe une algebre spectrale qui
méne de K, = H(By somy H(Bsom) & H(Bg,) (voir [2], Propo-
sition 22.2) ; ici du reste, O(n)/SO(n) = Z, et Bgg,, estlerevétement
& deux feuillets simplement connexe de B ,,, on peut aussi prendre la
suite spectrale des revétements finis (Cartan-Leray, Colloque de Topo-
logie algébrique, Paris 1947, p. 83—85). Quelle que soit la maniére dont
on envisage cette suite spectrale, il est facile de voir que les éléments de
E3? qui sont cocycles pour toutes les différentielles forment 'image de
0*(SO(n), O(n)) pour le degré ¢g. (Dans [2], cela résulte du Théoréme
22.1 et de la maniere dont on obtient la Proposition 22.2 & partir de ce
théoréme.)

Puisque O(n)/SO(n) = Z, on a

H(Bguysom) = Zs[x] (Dx=1)
on en tire a 1’aide du Théoréme 5.1 et du corollaire & la Proposition 4.1 :

P(BO(n)/SO(n)’ t)'P(Bsocn)’ t) = P(Bom), t)
d’olt (Proposition 2.1):
E, = H(Bguysom) ® H(Bsowm) = E,

et Bg gy €8t totalement non homologue & zéro. Par conséquent, vu (2.3):

Proposition 8.1. L’homomorphisme o*(SO(n), O(n )) applique H (By,,)
sur H(Bgg,); son noyau est Uidéal engendré par w.

Nous voyons ainsi que H(Bgg(,) est une algébre de polyndmes en
n—1 variables #2,...,%w" de degrés 2,3,...,n, images de w?,..., w"
par ¢*(SO(n), O(n)). La grassmannienne G, , des plans orientés est
classifiante pour SO(n) et pour m —n — 1, donc pour ces degrés,
H(GS, ,) est une algébre de polynémes en #2,...,w", qui sont évidem-
ment les classes caractéristiques réduites de la fibration

(Vin,ns Gin.ns SO(n)) .
Remarquons encore que l'on déduit du Théoréme 7.1 et de la Propo-

sition 8.1, (en posant #'=0):

j—i+t“1)@i—tz’bi+t
t

Proposition 8.2. ) L’homomorphisme o0*(SQ(n), Q(n)) est sur, et
identifie H(Bgg,)) ou quotient de H(Bg) = Z,[=,,...,%,] par
Pidéal (x, +---+ x,) qu'y engendre z, +---+ z,.

Sgi{bv‘—._—.zogg( (<j,j=2,...,m). (8.1)
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b) L’homomorphisme o*(SQ(n), SO(n)) est biunivoque, son image est le
quotient de S(xy,...,x,) par (x, +---+ z,).

a) On peut appliquer & la projection o(SQ(n), Q(n)) : Bsgm —> Bowm
les remarques du No 3: ,(SQ(n), Q(n)) : H,(Bsgw) = H1(By,) est
biunivoque et se raméne & l'inclusion SQ(n) ¢ Q(n). L’homomorphisme
transposé o* est par conséquent sur en dimension 1, donc en toute dimen-
sion puisque H(Bgg,(,) est engendré par ses éléments de degré =< 1.
Il est d’autre part visible que si «,,..., x, est une base convenable de
H'(Bg,), le sous-espace H,(Bgg(,) de H,(Bg) est précisément le
plus grand sous-espace sur lequel z, 4---+4 x,, (envisagé comme forme
linéaire), s’annule ; ainsi I'idéal (z, +-- -+ x,) fait partie du noyau de
0*(SQ(n), Q(n)), il constitue tout le noyau car sa série de Poincaré est
t(1 —¢)™, donc égale a la différence P (B, t) — P(Bsgm) b)-

b) Aux inclusions SQ ) - Q(n)

v v
SO(n) - O(n)

correspond le diagramme commutatif

¢*sem. ey
H(BSQ(n)) <~ H(BQ(n))
T e*som, somy T e*om, om
e*s0m).0m)
H(BSO(n)) o H (B, (n))
0*(SO0(n), O(n)) est sur (proposition 8.1), I'image de o*(SQ(n), SO(n))
est donc la méme que celle de p*(SQ(n), Q(n)) 0 0*(Q(n), O(n)), qui
est justement S(z,,...,=z,)/(x; +---+ %,) compte tenu de a) et du
Théoréme 5.1. Enfin o*(SQ(n), SO(n)) est biunivoque car H (Bgg )
a méme série de Poincaré que son image ; cela résulte aussi déja de la
trivialité de L’algebre spectrale de (Bgg ), Bsowy Fn) (voir démonstra-
tion du Corollaire & la Proposition 4.1).

Remarque. Soit SN,, le normalisateur de SQ (z) dans SO(n) ; il est clair
que SN, /SQ(n) est isomorphe & ¥, = N,/Q(n), qu’il opére sur

H(BSQ(n)) = Zy[ @y, s T )(®y + -+ @)

par les permutations de =,,...,z,. Ainsi, comme dans le cas de
0*(Q(n), O(n)) nous voyons que o*(SQ(n), SO(n)) identifie H (Bgg )
aux invariants du normalisateur de SQ(n).
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9. Les i-carrés dans les variétés de Stiefel

Nous disons que 4,,..., A, est un systéme simple de générateurs de
H (X) si les monémes

kilhi2...hik (?:1<1:2<"'<?:k;k:1,2,...,m)

forment avec 1’élément neutre une base d’espace vectoriel sur Z, de
H (X) (voir [2], Définition 6.4);si X = G est un groupe de Lie compact
connexe, H (X) a toujours un systéme simple de générateurs ([2], Pro-
position 6.1a). Dans le cas du groupe orthogonal, nous avons démontré

dans [2] (Proposition 10.3 et remarque 1 & cette proposition, Proposi-
tion 23.1):

Proposition 9.1. H(SO(n)) a un unique systéme simple de générateurs
universellement transgressifs hy,..., h, , de degrés 1,2, ...,n — 1.
L’homomorphisme p,;_, transposé de la projection p,_, :
SO(n) - SO(n)/SOk) =V, .

applique H(V, ,_,) biunivoquement sur la sous-algébre engendrée par
By bgyas oo s by (B=1,2,...,m— 1)

On sait que la transgression dans une espace fibré (£, B, F, p) applique
un sous-espace de H¢(F'), que nous noterons ici 3¢, dans un quotient de
H:+1(B) (s=0,1,...) (voir par exemple [2], § 5). Dans le cas parti-
culier d’une fibration (Egg ) Bsoy SO ), p) ou Egq,, est universel
pour SO(n), cela se précise de la facon suivante ([2], fin du § 21, et
§ 23):

Soient D’ le sous-espace des éléments décomposables de H7(Bg gy,
et @ = Hi(Bgg,)/Di; pour j=2,3,...,n, @ est de dimension 1
et a comme base la projection &, de %7 ; d’autre part I/ est le sous-espace
de base k,. Alors la transgression 7 est un isomorphisme de I’ sur @7+!
autrement dit :

Th) =" G=1,...,n—1). (9.1)

On a évidemment S¢q*(D?) ¢ Di+i vu la formule du produit (7.2), et
S ¢t définit par passage au quotient un homomorphisme @’ — @Qi+¢ que
nous désignons aussi par S¢. Dire que les ¢-carrés commutent & la trans-
gression ([10], No 9) signifie dans notre cas particulier exactement que
le diagramme suivant est commutatif :



i ST iy
U A (9.2)
Qi+ 6_;9‘ Qi+1+e

De la formule (8.1), on tire
Sqi@;=(7‘.‘1)@z‘:i (1 <5;7=2,3,...) . (9.3)
Cette égalité, jointe & (9.1), (9.2) et & la Proposition 9.1, donne le :

Théoréme 9.1. H(V, ,_.) a un systéme simple de générateurs

his Prgrs e os Py_y (Dh;, =1) ,
liés par les relations :

Seby = () by G=jiitisa—1; Seh =0 (+izm) .

Ces formules ont été obtenues par Miller [8] & 1’'aide de décompositions
cellulaires. Dans la Note [1], nous nous étions bornés & indiquer les cup-
carrés Sqth,. Rappelons que 'on déduit aisément de cette formule le
théoréme de Steenrod-Whitehead relatif aux champs de vecteurs sur les
sphéres (voir [8]). Par la méme méthode, on montre que s la fibration
(Va.ri1> Va,rs Vaor,1) @une section et si r = 2ks (s impair), alors n—r—1
est divisible par 2¥+1, ce qui contient des résultats de B. Eckmann (Col-
loque de Topologie, Bruxelles 1950, p. 83—99, No 4.2).

II. Quelques espaces homogénes

10. Remarques générales

Dans l'introduction nous avons fait allusion & une analogie entre les
roles de @ (n) en cohomologie mod 2 et des tores maximaux en cohomo-
logie réelle que nous allons maintenant expliciter ; pour les démonstra-
tions des théorémes de cohomologie réelle rappelés ci-dessous nous ren-
voyons a [2], § 19, 26, 27.

On sait que les tores maximaux d’un groupe de Lie compact connexe
sont conjugués et que leur dimension commune, le rang de G, a un sens
topologique : C’est la dimension d’un espace dont H (G, R) est I'algébre
extérieure, ou encore la dimension de 1’espace qu’engendrent les éléments
universellement transgressifs, ou enfin le nombre de générateurs de
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H(Bg, R) (qui est une algébre de polynémes). Soit 7™ un tore maximal
de @, ’homomorphisme ¢p (7", @) applique H(Bg, R) biunivoque-
ment dans H(B;,, R) >~ Rly,,...,y,] (Dy,=2), sur l'algébre des
invariants du groupe de Weyl & (G) = N(T")/T", quotient par T™ de
son normalisateur dans G ; enfin H (G/T", R) est égale & sa sous-algébre
caractéristique, isomorphe au quotient de H(B,n, R) par I'idéal qu’y
engendrent les éléments de degrés >0 de I'image de oy (7™, G), et son
polynéme de Poincaré en caractéristique zéro est

Po(Q)T7, 8) = (1 — ™)(1 — ¢me) ... (1 — ¢m) (1 — &) (10.1)

ou my,..., m, sont les degrés de générateurs de H(B,;, B) ou aussi les
degrés augmentés de 1 des éléments d’un systéme de générateurs de
H (G, R).

Si nous substituons Q(n), ou SQ(n), & T" et O(n), ou SO(n), a G et la
cohomologie mod 2 & la cohomologie réelle, les résultats précédents se
traduisent aisément en propositions obtenues dans I. Le groupe Q(n)
est évidemment abélien maximal de type (2,...,2) dans O(n) et tous
les sous-groupes de ce type lui sont conjugués ; comme il est isomorphe a
(Zy)™ nous dirons que le 2-rang de O(n) est n. Ce 2-rang a aussi uve inter-
prétation topologique, c’est le nombre de générateurs de H (Bg ,,Z,)
(qui est une algébre de polynémes, Théoréme 5.1), c’est aussi si 'on
veut le nombre d’éléments d'un systéme simple de générateurs de
H(O(n)) pour autant que 'on convienne d’ajouter aux générateurs de
H(SO(n)) un générateur de degré zéro pour tenir compte du fait que
H°(O(n)) = Z, + Z,?). De plus H(By,) == Z,[x,,...,x,], (Dz;=1),
I’homomorphisme p*(Q (n), O(n)) est biunivoque, son image est I’en-
semble des invariants de ¥, = N,/Q(n), Palgébre H(O(n)/Q(n)) est
égale & sa sous-algebre caractéristique, isomorphe au quotient de H (B ()
par I'idéal qu’y engendrent les éléments de degrés >0 de l'image de
0*(Q(n), O(n)) et son polynéme de Poincaré mod 2 est

POn)Qn),t) =1 —t)(1 —#)...(1 —t")(L — )™ (10.2)

ou les exposants sont les degrés de générateurs de H(By,), ou les
degrés augmentés de 1 d’éléments formant un systéme simple de généra-
teurs de H(O(n)), formule dont I’analogie avec (10.1) est claire. Nous
avons également obtenu des résultats tout & fait semblables pour SQ(n),
SO(n) et SO(n)/SQ(n).

) De méme nous dirons que ’algébre de cohomologie de ’espace Q(n), qui se réduit
évidemment & ses éléments de degré 0, a un systéme simple de n générateurs.
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Ces propositions sont trés suggestives et il est naturel de se demander
si elles se généralisent. Nous verrons que les principales d’entre elles
s’étendent & U(n), SU(n), Sp(n), G,, mais néanmoins elles ne sont pas
toutes générales. Par exemple on peut montrer que le 2-rang du quotient
SO(4k)/Z, de SO(4k) par son centre est <4k — 1, alors que
H(SO(4k)/Z,), a un systéme simple de 4k — 1 générateurs?). D’autre
part H(Bg) n’est pas toujours une algebre de polyndémes, ni méme le
produit tensoriel d’une algébre de dimension finie par une algebre de
polynémes3). L’analogie avec la cohomologie réelle n’est donc pas par-
faite, mais cependant ces exemples et contre-exemples n’élucident pas
completement la question, qui nous parait intéressante, de savoir jusqu’a
quel point les phénomeénes décrits plus haut découlent de théorémes géné-
raux 4).

Revenons & la cohomologie réelle. On sait qu’une fois H (G/T", R)
connue, on détermine aisément 1’algébre de cohomologie H (G/U, R)
lorsque U est connexe, de méme rang que G. Cette algébre est égale & sa
sous-algébre caractéristique, isomorphe au quotient de H(By, R) par
I'idéal qu’y engendrent les éléments de degrés >0 de I'image de
op (U, @), qui est biunivoque, et son polynéme de Poincaré est donné
par la formule de Hirsch :

(I —t"™) (1 —¢&")...(1—t")

Py (GIU, 1) = (1—t) (1 —t2). .. (1—tm) °

(10. 4)

ou my,...,m, resp. q¢,...,q,, sont les degrés des générateurs de
H(Bg, R) resp. H(By, R).

En répétant presque mot pour mot les raisonnements qui font passer de
H(@/T~, R) & H(G/U, R) nous obtiendrons ici la cohomologie mod. 2
de G/U lorsque G et U ont méme 2-rang, dans quelques «bons cas» ou
H(G/Q(n)) et H(U/Q (n)) ont les principales propriétés de H (O (n)/Q(n)).
Pour le polynéme de Poincaré (mod. 2) nous trouverons une expression
que nous appellerons la formule de Hirsch mod. 2 qui s’écrit exactement
comme (10.3) mais ol les exposants m,; et ¢, sont les degrés augmentés
de 1 d’éléments formant des systémes simples de générateurs de H (G)
et H(U) (ou aussi ici les degrés de générateurs de H(Bg) et H(By)).
Dans ce sens (10.2) apparait déja comme un cas particulier de la formule
de Hirsch mod. 2.

8) Cela sera démontré dans le travail cité dans la note 1, p. 4.

4) Pour d’autres considérations sur les relations qu’il y a entre la torsion de @ et ses
sous-groupes abéliens maximaux de type (2,2,...,2) ou plus généralement de type
(p, p,..., p), voir [3].
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Lemme 10.1. Sovent U un sous-groupe fermé de G, ayant méme 2-rang
que G, et Q(n) un sous-groupe abélien maximal de type (2,2,...,2)
commun.

Si H(G|Q(n)) et H(U/Q(n)) wvérifient la formule de Hirsch mod 2 et si
HU|Q (n)) est égale & sa sous-algébre caractéristique, alors H (G/U) vérifie
la formule de Hirsch mod. 2.

En effet, d’apreés les hypotheses faites et (1.1), U/Q (n) est totalement
non homologue & zéro dans la fibration (G/Q(n),¢/U, U/ Q(n)), donc

P(G/Q(n), t) = P(@U, t) P(U/Q(n), t)

et si P(G/Q(n),t) et P(U/Q(n),t) vérifient la formule de Hirsch mod. 2,
il en est alors évidemment de méme pour P(G/U, t).

11. Les espaces homogénes
On)Ony) X -+ xXO(ny) , (ny+--+ np=m) .

Notations. (B) est 1'idéal engendré dans une algebre 4 par une partie B
de 4.

Si A est une algebre graduée par des degrés =0, A+ désigne la
sous-algébre formée par les éléments de A dont le degré est >0.

S(xy,...,xz,): algebre des fonctions symétriques en z,,...,z,, a
coefficients dans Z,.

Enfin nous posons

C(ny,..,m) = O@Om)X - X Omy) , (ny +--+ ny=m) .

Cet espace est la variété dont 1’élément générateur est formé de £ — 1
sous-espaces emboités de R, de dimensions respectives

nl,n1+n2,...,nl +"'+nk_1 .

En particulier G(n,,n,) = G, , . Parmi ces variétés figurent aussi les
variétés de Stiefel de systémes de droites non orientées dont il a été
question & la fin du No 5, en effet, O(1) est isomorphe & Z, et

Van = Vaul(Zo)" = O(n+ m)[(O(1))" x O(m) .
Théoréme 11.1. o*(O(ny) X - - - X O(ny), O(n)) est biunivoque,
H(G(ny,...,ny)
est égale a sa sous-algébre caractéristique, estle quotient de H(Bg ¢,y ... x 0(np)
par Uidéal qu’y engendrent les éléments de degrés >0 de I'image de
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e*(O(ny) X - -- X O(ny), O(m) ,
donc est 1somorphe au quotient de
SB(Z1yeees @p) @ S(Tpyp1s s Tppyng) @0 @ S(Xp_pyias -+ +» Tn)
par (S+(,,...,x,)). Son polynéme de Poincaré mod 2 est

L—t)(1—)...(1—t1) (1 —tn)

P(G(nyg,...,ny,t)) = II=F (1 —t) (1 —¢2). .. (1 —t™)

Ici groupe et sous-groupe ont un 2-rang égal & n, I’espace
O(ny) X -+ - X O(ny)/Q(n)

est le produit des espaces F,, = O(n,)/Q(n,). Son algébre de cohomo-
logie mod 2 et celle de F, = O(n)/Q(n) vérifient donc la formule de
Hirsch mod 2 et sont égales & leurs sous-algébres caractéristiques (Pro-
position 4.1 et remarque au Théoréme 5.1), et le Lemme 10.1 donne le
polynéme de Poincaré annoncé. Utilisant ensuite le Théoréme 5.1 on voit
que

P(G(nl, oo sy nk), t) 'P(BO(”), t) —_ P(BO(N)_)X"'XO(”I(;)’ t) 8

par conséquent 1’algébre spectrale de la fibration

(BO(nl) XX O(ng)? BO(“), G(nl, ooy nk))

est triviale (Proposition 2.1), d’ou les autres assertions du théoréme,
compte tenu de (1.2) et de (2.3).

Le cas particulier des grassmanniennes. Nous voulons déduire du
Théoreme 11.1 appliqué au cas particulier & = 2 quelques propriétés
cohomologiques connues des grassmanniennes.

Les grassmanniennes G,, , et G,, ,,_, sont homéomorphes et H(&,, ,)
a deux systémes de classes caractéristiques réduites w® =1, w!,..., w"
et w®=1, wl,...,w™ ™" suivant que ’on considére @, , comme base
de la fibration (V,, ,, G,, ,, O(n)) ou de la fibration

(Vm,m—-n’ Gm,m—-n’ O(m —' n)) »
Nous convenons de poser w/ =0 (j>n), w*=0 (k>m — n).

Proposition 11.1.5) Les classes w' et wi sont lides par les relations

SijmpWw! =0 (k=1,2,...)

8) Cette proposition est due & 8. 8. Chern [4], [6], p. 90.
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chacun des systémes wP, ..., w" et w° ..., w"™ " engendre multiplicative-
ment H(G, ,).

Soient of;, le j -émf; fonction symétrique élémentaire en ,,...,z,,
avec la convention ¢}, = 0 si j>n, et de méme ¢, resp. o, la j-éme
fonction symétrique élémentaire en =z,.,,..., z,, resp.en z,,...,z,,.

Les classes w’ et w/ sont les images de o, ® 1 et 1 ® or{g) par ’homo-
morphisme canonique de

S(xy,...,%,) @ S(Tpiq,eeer Tpy)

sur H(G,, ,), qui n’est autre que ’homomorphisme caractéristique de
la fibration (O(m), G,, ,, O(n)xO(m — n)), (vu (1.2) et le Théoréme
5.1). Comme 8+(z,,..., z,) fait partie du noyau de cet homomorphisme
(Théoréme 11.1), les relations annoncées résultent par passage au quo-
tient des identités

0¥ =X, i=t ) @ 0 .

Les éléments o}, ® 1 et 1 ®of, (j=1,2,...) engendrent évidem-
ment S(z,,...,%,) ® 8(Z,11,.-., ,) leurs images (w?) et (w’) engen-
drent donc H (G, ,); mais les relations que nous venons d’établir entre
ces classes montrent que w’, resp. w?, est un polynéme en w?,..., wm ™",
resp. en w° ..., w" (j=1,2,...); ainsi chacun des systémes (w’) et
(w') engendre H(G,, ,).

12. Les espaces homogénes U (n)/Q (n) et U(n)/O (n)

On sait que le groupe unitaire de I’espace de » variables complexes,
soit U (n), est sans torsion, que H(U (n)) est une algébre extérieure & géné-
rateurs de degrés 1,3,5,...,2n—1 (voir par exemple [2], Proposi-
tion 9.1), et que H(By,,,) est une algébre de polynémes & n variables de
degrés 2,4,6,...,2n ([2], Théoréme 19.1).

Les sous-groupes abéliens maximaux de type (2,2,...,2) de U(n)
sont visiblement conjugués au sous-groupe des matrices diagonales, ils
sont donc contenus dans des tores maximaux, le rang et le 2-rang de
U(n) sont égaux a n®).

Lemme 12.1. o*(Q(n), U(n)) est biunivoque, son image est S (%, . ., ;).
Soit T™ un tore contenant Q(n), I’homomorphisme ¢*(Q(n), T") est

%) Plus généralement, si G est sans 2-torsion, son 2-rang est égal & son rang au sens
usuel ([3], Théoréme 2). Cependant nous ignorons si dans ce cas un sous-groupe abélien
de type (2, 2,...,2) est toujours contenu dans un tore maximal.
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évidemment le produit tensoriel de » homomorphismes ¢*(Q(1), T?) ; ce
dernier se calcule aisément. Posons

H(Bp) = Z,)ly] ([Dy=2), H(Bg ) = Z,[z] (Dx=1),

(rappelons que 1’on peut prendre comme espace classifiant pour 7' un
espace projectif complexe). L’espace T?/Q(1) est un cercle, donc

P(BTI: t)'P(TI/Q(l)’ t) = P(Q(l),t)

et l'algébre spectrale de (B, By, TYQ(1), o(Q(1), T?) est triviale
(Proposition 2.1); ainsi ¢*(Q(1), TY) est biunivoque et son image est
forcément Z,[x?], ce qui montre que o*(Q(n), T") est biunivoque et a
Z,[23,..., 23] comme image.

D’autre part on déduit des inclusions Q(n) ¢ T* c U(n) que

e*(Q(n), U(n)) = o*(Q(n), T") 0 o*(T", U(n)) ;

I’homomorphisme o*(T", U(n)) est biunivoque et son image dans

H(BT"') = Z2[yla wsmy yn] (Dyz = 2)7 eSt‘ S(yil? s ey yn): ([2]’ PI‘OPO'
sition 29.2, Exemple 1), d’ou le lemme.

Remarques. 1) Plus généralement si Q(n) est contenu dans un tore
maximal T de G, et si G et G|T'™ sont sans 2-torsion, o*(Q (n), Q) est biuni-
voque. En effet, o*(Q(n), @) = o*(@(n),T") -o*(T, @), et o*(T", G) est
biunivoque d’apres la Proposition 29.2 de [2].

2) Ici le quotient N(Q(n))/Q(n) par Q(n) du normalisateur de Q ()
dans U(n) est de nouveau isomorphe au groupe des permutations de »
objets. L’image de ¢*(Q(n), U(n)) ne contient donc pas tous les inva-
riants de N(Q(n))/Q(n), qui forment S(x,,...,2,); sur ce point,
Panalogie avec la cohomologie réelle (cf. No 10) n’a plus lieu. Bien en-
tendu, dans tous les cas, 'image de ¢*(Q(n), G) est contenue dans les
invariants de N(Q(n))/Q (n).

Proposition 12.1. H(U (n)/Q(n),Z,) est égale & sa sous-algébre caractéris-
tique ; elle est isomorphe au quotient de H (B (,y,Z,) par Uidéal qu’y engen-
drent les éléments de degrés >0 contenus dans Uimage de o*(Q(n), U(n)),
cest a dire & Zy[x,, ..., 2,]/(S*(2y,...,,)) (Dx;=1). Son polyndme
de Poincaré mod.2 est

P(Un)Q(n), t) = (1 — #)(1 — t4)... (1 — t2) (1 — )™ .

Pour n =1, cela résulte du fait que 7''/Z, est un cercle et que
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'algébre spectrale de (B, , Bp, T%/Z,) est triviale, comme nous I’avons
remarqué dans la démonstration du lemme 12.1 ; supposons la proposi-
tion établie pour » — 1 et considérons les inclusions

Un)>Z,xUn —1)> Q(n) oh Un)Z,xUn—1)=S,,_,/Z,= P,

n—1

il existe donc une fibration (U(n)/Q(n), P,,_,, U(n — 1)/Q(n — 1)) dans
laquelle la fibre est totalement non homologue & zéro mod 2, vu I’hypo-
these d’induction et (1.1), d’olr

P(U(’II;)/Q(TL), t) = P(Pzn—h t) P(U(n — 1)/Q(n — 1), t)
= (1 — )™ (1 — %)
par conséquent
P(BQ(n)! t) — P(BU(n)’ t)P(U(n)/Q(n)’ t)

et 'algebre spectrale sur Z, de (B (), By, Un)/Q(n)) est triviale ce
qui démontre la proposition.

Remarque. Cette démonstration présente une grande analogie avec celle
de la Proposition 1.1 ; nous n’avons pas utilisé mais démontré a nouveau
le fait que o, (Q(n), U(n)) est biunivoque (lemme 12.1), mais ce lemme
nous a permis de donner explicitement 'image de cet homomorphisme.

Les groupes SU(n) et Sp(n) sont sans torsion, H(SU(n), Z,) et
H(Sp(n),Z,) ont des générateurs de degrés 3,5,...,2n—1, resp.

3,7,...,4n — 1 (voir p. ex. [2], Proposition 9.1), H(Bgy,Z,) et
H (Bg sy, Z,) sont des algeébres de polynémes a générateurs de degrés
4,6,...,2n, resp. 4,8,...,4n ([2] Théoréme 19.1). Les sous-groupes

abéliens maximaux de SU(n) et Sp(n) sont conjugués aux sous-groupes
SQ(n) et Q(n) de leurs matrices diagonales, par une démonstration a
peu prés identique & celle de la Proposition 12.1, et que nous ne repro-
duirons pas, on obtient :

Proposition 12.2. o*(SQ(n), SU(n)) et o*(Q(n), U(n)) sont biuni-
voques. H(SU (n)/SQ(n)), resp. H(Sp(n)/Q(n)), est égale a sa sous-algébre
caractéristique, est le quotient de H(Bgg (), resp. H(By,), par Uidéal
qu’y engendrent les éléments de degré >0 de I'image de o*(SQ(n), SU(n))
resp. o*(Q(n), Sp(n)). On a

P(SUMm)SQ(m), t) = (1 — t4)(1 —18)... (1 — ) (1 — gy |
P(Sp(n)/Q(n),t) = (1 —t)(1 =)...(1 =1 —o)™
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En fait ce résultat peut encore étre précisé. En utilisant le fait que
o*(T", Sp(n)) est biunivoque et a comme image dans

H(Bygn) = Zy[yy;- - - Yn)
Palgébre S(y3,..., ) ([2], Proposition 29. 2, exemple 2), on montre que

H(Sp(n)/Q(n)) = Z,[x,, ..., z,]/(S*(z%, ..., 23) .
SU(n) est totalement non homologue & zéro dans U(n), donc
e*(SU(n), U(n))

est sur ([2], Corollaire & la Proposition 21.3). Cela étant on voit trés aisé-
ment que si T"~! est un tore maximal de SU(n), on peut écrire H (Bn -1)
sous la forme Z,[y,,...,¥,)/(y1 +- -+ y,) de maniére & ce que 'image
de o*(T»1,SU(n)) dans ce quotient soit celle de S(y,, ..., y,). Onen

déduit que
H(SU(T&)/SQ(’II)) = Z2[x19 ¢ 8w3 xn]/ J *

J désignant I'idéal engendré par S+(a?,...,22) et z, +- -+ z,.

Théordme 12.1. o*(O(n), U(n)) est biunivogue; H(U(n)/O(n)) est
égale a sa sous-algébre caractéristique, est le quotient de H(By,) par
lidéal qu’y engendrent les éléments de degré > 0 de l'image de

e*(0(n), U(n)) ,
donc est isomorphe & S (x4, ..., z,)/(8*(a},..., 2})). Ona
P(Um)/O(n), f) = ITi= (1 — £26)(1 — )1 = IT= (1 + #)

On obtient le polynéme de Poincaré en appliquant le lemme 10.1, les
Propositions 4.1, 12.1 et la remarque au Théoréme 5. On en déduit

P(BO(n): t) = P(BU(n)’ t) P(U(n)/O(n), )

’algébre spectrale de (B sy, By Un)/O(n), (O (n), U(n))) est donc
triviale (Proposition 2.1), ce qui établit les autres assertions du théo-
reme.

Remarque. 11 est clair que la méme démonstration permet de prouver
un théoréme analogue, et en particulier la formule de Hirsch mod 2,
pour les quotients U(n)/O(n,) X - - - X O(ny), (By +--+-+ n, =mn) ou
méme plus généralement pour les quotients

U)Umn) X+ xUm) XO(ngyy) X -- XO(ny)  (ny+--++n,=mn),

par exemple
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(1—8)(1—12)...(1—n)
1—8)...1—es)1—1¢t)...1—20) °
(@a+b=mn) .

Cela s’applique aussi & SU(n)/SO(n), quotient de deux groupes dont
le 2-rang est égal & » — 1.

P(Un)U(a)x0(b),t) =

13. Les espaces homogénes G,/Q (3) et G,/SO (4)

Nous parlerons ici de deux cas ou la formule de Hirsch mod 2 est
valable, dont I'intérét est surtout de mettre en jeu un groupe exception-
nel, le groupe G, des automorphismes des octaves de Cayley, qui est
simplement connexe, a 14 parameétres et de rang deux. Cependant, pour
ne pas trop allonger, nous nous permettrons d’énoncer plus bas sans
démonstration (et sans renvois) quelques propriétés de G, qui du reste
s’obtiennent sans difficulté.

H (G,) a un systéme simple de générateurs universellement transgres-
sifs de degrés 3, 5, 6%), par conséquent H (Bg,) est une algébre de poly-
némes & 3 générateurs de degrés 4, 6, 7 ([2], Proposition 19.2) et

P(Bg,, 1) = (1 — t41(1 — 18)-1(1 — 7)1 . (13.1)

G, contient des sous-groupes isomorphes & SO(4)?), donc des sous-
groupes @(3) = (Z,)® et son 2-rang est = 3. On peut de plus voir qu’il
est égal & trois®), et que les sous-groupes abéliens de type (2, 2, 2) de G,
sont conjugués.

G, contient également un sous-groupe SU(3) tel que G,/SU(3)=S,,
fibration bien connue, obtenue en faisant agir G, sur les nombres de Cay-
ley purement imaginaires de norme 1. On trouve de plus aisément un
sous-groupe Q(3) abélien de type (2, 2, 2) faisant partie du norma-
lisateur de SU(3) tel que Q(3) ~SUB3)x=SQ(3)~=Z,+2Z,; soit K
le sous-groupe engendré par Q(3) et SU(3); ce dernier y est invariant
et K/SU(3)=>~Z,; K/Q(3) est homéomorphe & SU(3)/SQ(3).

Théoréme 13.1. 0*(Q(3), G,) et p*(SO (4), G,) sont biunivoques,
H(G,/Q(3)), resp. H(G,/SO(4)) est égale a sa sous-algébre caractéristique,
est le quotient de H(By ), resp. H(Bgsg ), par Uidéal qu’y engendrent
les éléments de degré >0 de U'image de 9*(Q(3), G,), resp. 0*(S0(4),G,).
On a

7) A. Borel-J. de Siebenthal, Comment. Math. Helv. 28 (1949—1950) 200—221.

8) Le fait que le 2-rang de G, est < 3 se déduit des résultats relatifs & H (G,) précités
et du Corollaire & la Proposition 6 de [3], travail auquel nous renvoyons aussi pour un
exemple explicite de sous-groupe abélien de type (2, 2, 2).
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(1—14) (1 —8) (1 — &)

P(CISOM. )= s i —map — L HEHEHHEEE

Nous étudions tout d’abord I’abord ’algébre spectrale de la fibration
(G,/Q(3), Gy/K/Q(3)). L’espace G,/K est le quotient de G,/SU(3)
= §; par K/SU(3) = Z,, sa cohomologie est donc celle de 1’espace pro-
jectif Pg. L’espace K/Q(3) est homéomorphe & SU(3)/SQ(3), donc, vu
la Proposition 12.2,

HY(K|/G(3)) = Z,+ Z, et engendre H(K/Q(3)) . (13.2)
On en tire :

dim 'E, = dim H'(G,/K) + dim H(G,/K, H\(K/Q(3)) <3 ,

mais (3) est isomorphe au groupe fondamental de G,/Q(3), donc
dim B, = dim HY(G,/Q(3)) = 3 ;

puisque dim 'E_ < dim 'E,, il faut que H°(G,/K, H'(K/Q(3)) soit
isomorphe & HY(K/Q(3)) et formé d’éléments qui sont cocycles pour
toutes les différentielles. Ainsi, vu (2.2), 'image de ¢*:

H(G,/Q(3)) > H(K/Q(3)) contient H'(K/Q(3)) ,

donc tout H(K/Q(3)) d’aprés (13.2); K/Q(3) est totalement non
homologue & zéro, ’algébre spectrale est triviale et

P(G,/Q(3),t) = P(G,/K, t) P(K/Q(3), )
P(G,/Q(3),t) = P(P,, t) P(SU(3)/SQ(3), 1)
P(Gy/Q(3),t) = (1 — ) (1 — t)~1(1 — t4)(1 — 1) (1 — ¢)2

ce qui est la formule annoncée ; le polynéme de Poincaré de G,/SO(4)
s’obtient alors en appliquant le lemme 10.1, compte tenu du No 4.
Cela étant, (13.1) et la Proposition 8.1 montrent que

P(Bg@yt) = P(Gy/Q(3),t)-P(Bg,, t)
P(Bsgu,t) = P(G,/SO(4),t)-P(Bg_, 1)

les algebres spectrales des fibrations

(BQ(3)’ BGZa G2/Q(3)) et (BSO(4)5 BGza GZ/SO(4))

sont donc triviales (Proposition 2.1), d’ou le théoréme.
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