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liber einen verallgemeinerten
Ableitungsoperator

Von K.-F. Moppert, Basel

EINLEITUNG

Das Problem der Ableitung zu beliebigem Index ist fast so ait wie
dasjenige der Ableitung uberhaupt, hat sich doch schon Leibniz*) damit
beschaftigt. Die Tatsache, daB die besten Mathematiker sich jeweilen
dazu âuBerten und noch aufiern2), laBt fur einen neuen Versuch eme
besonders strenge Beurteilung erwarten. Wir hoffen, daB der hier vor-
gelegte Ansatz in den Ergebnissen seine Rechtfertigung findet.

Wir legen eine Définition zugrunde (S. 141), die wohl zum erstenmal
von Grunwald 1867 angegeben wurde3). Das Hauptziel unserer Arbeit
ist der Beweis von Satz 1. In diesem wird unter anderm gezeigt, daB

unser Operator fur spezielle Wahl des ,,Ableitungsexponenten" einmal
die ihm unterworfene Funktion selbst enthalt, dann ihre ganzzahligen
Ableitungen, das bestimmte Intégral und das Riemann-Liouvillesche
verallgemeinerte Intégral.

Unser Ableitungsoperator verhalt sich durchaus verschieden, je nach-
dem ob der Ableitungsexponent gleich 0,1,2,... oder von diesen
Werten verschieden ist. Im ersten Fall gibt er das Verhalten der ihm
unterworfenen Funktion in einem Punkt, im zweiten dasjenige in einem
Intervall an. Da er sich im allgemeinen also wie ein bestimmtes Intégral
verhalt, haben wir das Symbol fur ihn demjenigen des bestimmten Intégrais

moglichst angenahert.

Enzyklopadie der math Wiss. II A 2, Nr. 48/49, II A 11, Nr. 7. Vgl. auch die aus-
fuhrhche Bibliographie bei H. Davis, The Theory of Lmear Operators, Prmcipia Press,
Bloommgton 1936.

2) B. Riemann, Ges. Werke, 2. Bd., p. 331. — J. Liouville, J. Ecole Polytech. 13,
1832. — H. Weyl, Vierteljschr. Naturforsch. Ges. Zurich 62, 1917, p. 246. — Hardy-
Littlewood, Math. Z. 27, 1928, p. 565, 34, 1932, p. 403. — M. Riesz, Acta Math. 81, 1949,

p.l.
8) A. K. Grunwald, Z. Math. Phys. 12, 1867, p. 441. — K. Bochow, Dissert. Halle 1885.

— vgl auch N. Stulofï, Math. Ann. 122, 1951, p. 400.
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Der Beweis von Satz 1 wird dadurch gehôrig erschwert, da6 er, wenn
der Ableitungsexponent < 1 ist, auch auf Punktionen anwendbar ist,
die im unteren Endpunkt des Ableitungsintervalls einen Pol haben ;

dies ist wohl auch das wesentlich Neue an unserer Arbeit. DaB wir uns so

eingehend mit einer scheinbar so abseits liegenden Verallgemeinerung
beschâftigt haben, bedarf aber einer Begrundung.

Der Grund dafur, da8 iiberhaupt das Bedurfnis besteht, Differential-
und Integralrechnung unter demselben Gesichtspunkt zu betrachten,
oder also, sie als Spezialfâlle eines und desselben Operators zu betrachten,
liegt doch im Bestehen des Hauptsatzes der Integralrechnung, also darin,
daB das Produkt dieser beiden Operatoren die Identitât ergibt. Von
einer Verallgemeinerung des Ableitungsoperators wird man also wesentlich

verlangen, daB sie iterierbar ist, und daB die Regel fur das Produkt
zweier solcher Operatoren den obigen Satz als Spezialfall enthâlt. AuBer-
dem wird man zum Beispiel erwarten dûrfen, daB auf eine im abge-
schlossenen Ableitungsintervall stetig differenzierbare Funktion der Ab-
leitungsoperator zum Exponenten \ zweimal hintereinander anwendbar
ist und die gewôhnliche Ableitung der Funktion herauskommt.

Nun zeigt sich aber, daB bereits die Ableitung einer Konstanten zu
positivem Ableitungsexponenten eine Funktion ergibt, die am linken
Endpunkt des Ableitungsintervalls einen Pol aufweist (Satz 2). Soll also
die Ableitung iteriert werden kônnen, so muB der Ableitungsoperator auf
eine solche Funktion anwendbar sein.

Im zweiten Teil der vorliegenden Arbeit behandeln wir die Ableitung
einer Konstanten (Satz 2) und einer Potenz (Satz 3) und beschreiben das
Verhalten der Ableitung einer im abgeschlossenen Intervall stetig diffe-
renzierbaren Funktion als Funktion der oberen Grenze (Satz 4). Im letz-
ten Paragraphen geben wir noch einige Eigenschaften der Ableitung als

Operator an (Satz 5 und 6).
Die Arbeit beschâftigt sich im wesentlichen mit den Fragestellungen

des Heaviside-Kalkuls ; wir gehen hier auf diesen Standpunkt aber nicht
ein.

Définition. Die réelle Funktion /(£) sei im reellen Intervall %0<£ < xx
definiert, oc sei eine réelle Zahl. Wir setzen

(I) (2)
xQ n->o
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wobei in der Potenz in (1) der Hauptwert genommen werden soll. Den
Ausdruek (2) bezeichnen wir, sofern dieser Grenzwert existiert, als die
,,D-Ableitung der Funktion f zum Exponenten a von x0 bis a^" 4).

Satz 1. A. Es ist

(3)

B. Ist a 1, 2,... und ist /(a) (f in der Umgebung von xx stetig,
so ist

C. Ist a<0, ist /(|) fur xo<Ç < xt differenzierbar und ist /(£)
O ((f — #o)~^) f^1 £ l' xo m^ P < 1

y so konvergiert der Ausdruek (2)
und es ist

Insbesondere ist dann

¦O-'/B)
X

(5)

(6)

D. Ist «>0, a#l,2, 3,..., ist /(|) fur xo<$ < x1 ([«] + 1).
mal stetig differenzierbar und ist fa<a+v(Ç) O((£ — x^-P-1) fur

it /?< 1, so konvergiert der Ausdruek (2) und es ist

1+M

4) Es ist von Interesse, mit unserm Ansatz und Ergebnis jene von Stuloff8) zu verglei-
chen. Stuloff definiert die a-malige Ableitung diirch den Grenzwert

h + 0 rv~ v==0 ^'
und beweist : ist / monoton abnehmend, fur aile x > 0 erklârt, positiv, und existiert dieser
Grenzwert fur ein —1 < a < 0, so ist

Ist / positiv, monoton abnehmend, existiert jenes Intégral fur ein —1 <Ç a < 0, so
existiert die y-malige Ableitung fur jedes oc<,y < 0. Endlich: eine ,,total monotone*'
Funktion ist zu jedem a > 0 ableitbar.
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I. TEIL: BEWEIS VON SATZ 1.

Die Aussagen A und B folgen direkt aus der Définition, da in diesen
Fâllen die Binomialreihe abbricht.

Im Falle C folgt die Aussage fur oc — 1 unmittelbar daraus, daB

jetzt fur aile v gilt :
x

<-¦>'(:)-' ¦

Fur den allgemeinen Fall C und Fall D ist zum Beweis zunâchst zu
bemerken, daB unter den gemachten Voraussetzungen die rechte Seite

von (5) bzw. (7) tatsâchlich konvergiert (vgl. S. 148).
Um die Schreibweise zu vereinfachen, fûhren wir den Beweis von

Satz 1 fur den Fall x0 0, xx x. Damit ist natiirlich der Satz auch
in seinem eigentlichen Wortlaut bewiesen.

Wir benôtigen im Beweis hâufig die folgenden Beziehungen, die wir
hier anfuhren :

a) Fur aile n 0, 1, 2,... und aile a gilt

i <-.)-(:) (-.)¦(•;¦). (s)

b) Fur a ^ 0, 1, 2,... gilt fur v ->oo

c) Ist die Funktion f(x) in einer Umgebung von x — a stetig diffe-
renzierbar (auBer eventuell in diesem Punkt selbst) und ist f'(x)
0 ((x — a)y) fur x -> a, wo y eine réelle Zahl bedeutet, so ist fur x -> a

§ 1. Zerlegung
Wir setzen

Dann geht (1) ûber in

(|) S^nQ, n) + $2(wo> n) (12)
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Hier sollen fur n ->oo gleichzeitig die folgenden Beziehungen gelten :

^0 0

Setzen wir

so mufi der Exponent fx gleichzeitig den Ungleichungen

(13)

(14)

(15)

genugen. Man sieht leicht ein, daB dièse Ungleichungen bei jedem gege-
benen oc miteinander vereinbar sind.

§ 2. Abschâtzung von St (n0? n) îûr <x < 0.

In diesem Fall ist (— l)v y | >0 fur aile v. Ist jetzt / (x — ^
derjenige der Werte von / Ix 1 (v 0, 1,..., n0 — 1) mit dem

grôBten Betrag, so ist ^ '

Wegen der Stetigkeit der Funktion / in einer linksseitigen Umgebung
von x folgt somit wegen (9) und (13) fur n ->-oo

(17)

§3. Abschâtzung von St(n%9n) fur oc > 0.

Wir setzen
A°f(cx)

f(cx) Jy f(cx)
n n n

Dann folgt aus (10) durch [a] + 1-malige partielle Summation beziig-
lich der Binomialkoeffizienten :
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>0 fur aile v. Die erste SummeHier ist jetzt (- lf{* ^ l\
in (19) kann auf dieselbe Weise wie oben abgeschàtzt werden, und zwar
sieht man leicht, da8 sie unter den Bedingungen (13) gegen 0 geht, wenn
man die Stetigkeit der [a] + 1-ten Ableitung von / in der linksseitigen
Umgebung von x berûcksichtigt. Die zweite Summe in (19), die ja aus
einer beschrânkten Zahl von Summanden besteht, kann aber mit Hilfe
von (9) approximiert werden.
Es folgt also fur n-^oo mit (13)

<x-k+1
• (20)

§ 4. Integraldarstellung von S%(n%9 n)•

Aus (9) und (11) folgt, daB wir setzen kônnen

wo

(™
\ oc n — \ 1

ist. Nun ist aber nach Voraussetzung (vgl. c, S. 143)

(22)

Hieraus folgert man leicht, daB unter den Bedingungen (13) fur n ->oo
gilt : R(n0, n) o(l). Dann ist also

a n~"1 1

(24)

Auf dièse Summe wenden wir die Eulersche Summenformel an in der
Form

Z Fn(v) Fn(n0) + ] (£ - [f ]) F'n(|) dÇ + J ^.(f) d£ (25)

indem wir setzen

jFw(|) ^fL-ilA (26)

Hier ist nun

(27)

H510 Commentarii Mathematid Helvetici



Dieser Ausdruck geht also wegen (13) und der Stetigkeit von / in der
linksseitigen Umgebung von x gegen 0 fur w~>oo.

Weiter ist
n-l

x^
n

S

OL-

n

n

(1 - [*])

«0
1

n

,-,),

< 1

»)

—Y r

a+1
n-l

n

"0
n

n0

dt (28)

Man sieht leicht ein, daB dieser Ausdruck fur n -»oo gegen 0 geht (Be-
dingung 13, Voraussetzung c).

Es folgt also endlich : fur n ->oo gilt, wenn die Beziehungen (13) er-
fullt sind / no\X V n~)

==T^ f (29)

§ 5. Umformung des Integralausdrucks fur S2(n0, n).

Ist a < 0, so belassen wir den Ausdruck fur S2 (n0, n) in der Form (29).
f(t)Ist 0<a< 1, so ist, da nach Voraussetzung die Funktion ~—-^~L-~

fur

stetig ist :

d 1 f
~dx T(l - a) J

x
w

/(0

— e<t<x (-¦?)

dt
1 f /_(

T(-«) J (ar-
H*) dt

-a) n
(30)
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Man sieht leicht, daB die beiden letzten Summanden fur n ->oo gegen
0 gehen.

Ebenso folgt allgemein fur 0 < [a]<a< [a] + 1, n ->oo

¦(»-¦?)

(J \[a]+l 1 n j(t\s) 1XM+.-.) / TT%F**

-a) n

§ 6. AbschluB des Beweises.

Aus den Formeln (12), (17), (29) folgt fur a<0, n ->oo

<32>

und aus (12), (21), (32) fur a>0, ex ^ 1, 2,... ; n ->oo

1 T f{t)<U
I nfl)[«]-«) J (a, _ «)«-W "•-° ^ •

Somit gilt fur a < 0
(33)

se

- l C— pi V I Tx

Im Falle a>0 miissen wir noch beweisen, daB der in (33) rechts
stehende Ausdruck in einer Umgebung von x gleichmâBig konvergiert.
Wegen

>0 x\l -I -> x
n \ n J

genugt es, zu diesem Zweck die gleichmâBige Konvergenz von
X

a I I J\l) Jt /QK\
ri/y 1 1 //y» /\Cït— [Ot] X 'Vf/JL' J «/ 1 JU ~~~~ Vf

zu beweisen. °

Wir substituieren t x £. Dann ist
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Sei zunâchst 0 < a < 1. Dann ist also

0 0 0

sofern das zweite Intégral gleiehmâBig konvergiert6). Nach Voraus-
setzung ist aber p

C
somit ist in der Umgebung von x : f | /' (a? f | < --—-, und damit ist

die gleichmàBige Konvergenz des zweiten Intégrais bewiesen. Analog
beweist man die gleichmàBige Konvergenz des ersten Intégrais. Ist
0 < [a] < a < [a] + 1, so verfâhrt man entsprechend. Es gilt also fur
jedes a > 0

t I A \1-Ha] ] /• f(t\11\ 11 I ' V* * Jlh /oû\(f) 1-7— I p, 1 -l r T I 1 £\a-[oti ^f > (•*°)

0

und damit ist der Satz bewiesen.

2. TEIL: FOLGERUNGEN

§ 7. Beispiele

/. D-Ableitung einer Konstanten
Aus

folgt nach (8) und (9) unmittelbar

Satz 2. Fur jedes a gilt

D*(l)

//. D-Ableitung einer Potenz von x

Aus dem Beweis von Satz 1 und diesem Satz selbst folgt unmittelbar

Satz 3. Seien a und y réelle Zahlen, a ^ 0, 1, 2,... Ist y>— 1,
so gilt

6) Ch. de la Vallée-Poussin, Cours d'Analyse, 7. éd., t. 2, p. 30.
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1)

fur jedes a mit [a] <y -f 1.

Ist y < — 1, so divergiert der Ausdruck

(|) fur jedes a =£ 0, 1, 2,... «)

(41)

§ 8. Eigenschaften der D-Ableitung als Operator

Satz 4, Ist die Funktion / (£) im abgeschlossenen Intervall x0 < f < x
stetig differenzierbar, so konvergiert die Z>-Ableitung zum Exponenten a
fur 0 < ot < 1, ist als Funktion von x aufgefaBt, stetig und hat fur x ^ x0

einen Pol der Ordnung ot.

Beweis. Die Konvergenz folgt daraus, dafi jetzt die Voraussetzungen
fur Satz 1 erst recht erfullt sind. Das Verhalten in Abhângigkeit von x
folgt aus der Formel (vgl. 37)

(I) P(l ^\ y. ~ I /~1 \1 QL) A *0 J r '

1 1 f- x<> J
(f-»,

1 T(l - a) x

Aus der Définition folgt direkt :

Satz 5. Sind cx und c2 Konstante, so gilt

i

ko

(42)

(I) • («)

•) Es ist intéressant, dièses Ergebnis mit folgendem Sachverhalt zu vergleichen: Defi-
niert man die a-malige Ableitung von |V als die Funktion <p (t) in der Integralgleichung

J
so ist

Dièse Formel stimmt formai mit unserer Formel (41) ûberein, sie gilt aber nur fur y> — 1,
0 < a < y -f-1, wâhrend bei uns der Gûltigkeitsbereich von (41) weiter ist (Vgl. O, Doetech,
Théorie und Anwendung der Laplace-Transformation, Grundlehren, Bd. XLVII, Berlin,
Springer, 1937, p. 302).
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Im folgenden setzen wir abkurzend

\i) n>> (44)

(f |\) D*DP .- (45)

Dann gilt fur ex < 0, £ < 07)

Doc Dp Dp 2>x 2)«4fl (46)

Der Hauptsatz der Integralrechnung kann in der Form geschrieben
werden

D1 D-1 D° (47)

Die Operatoren D1 und D~x sind aber i. A. nicht vertauschbar, denn es

ist ja
D~1D1== D° - f(x0) (48)

Unser Satz 1 besagt, daB (46) gilt fur oc 0, 1, 2,... ; - 1

Man sieht leicht ein, da8 er auch gilt fur a 0,l,2,...; j8<0.
Wir beweisen zum SchluB

6. Ist f(£) fur x0 < i < x1 stetig dififerenzierbar und ist
f(x0) 0, so gilt fur a<l, /8<1

Z>«^ (49)

Beweis. Es ist jetzt
D«-i D1 D1 D0'-1 (50)

Denn wegen /(#0) 0 kônnen wir setzen

Dann ist aber x°

2)ijr)a-i^ D1D0L-1D~1D1 D1D~1D0L-xDl
Nun ist

w. z. b. w.

(Eingegangen den 22. September 1952.)

7) E. Goursat, Cours d'Analyse, 1917, t. 1, p. 309.
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