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Uber einen verallgemeinerten
Ableitungsoperator

Von K.-F. MorrPERT, Basel

EINLEITUNG

Das Problem der Ableitung zu beliebigem Index ist fast so alt wie
dasjenige der Ableitung iiberhaupt, hat sich doch schon Leibniz!) damit
beschiftigt. Die Tatsache, dafl die besten Mathematiker sich jeweilen
dazu duBerten und noch dullern2), liflt fiir einen neuen Versuch eine
besonders strenge Beurteilung erwarten. Wir hoffen, dal der hier vor-
gelegte Ansatz in den Ergebnissen seine Rechtfertigung findet.

Wir legen eine Definition zugrunde (S. 141), die wohl zum erstenmal
von Griinwald 1867 angegeben wurde?). Das Hauptziel unserer Arbeit
ist der Beweis von Satz 1. In diesem wird unter anderm gezeigt, daf(3
unser Operator fiir spezielle Wahl des ,,Ableitungsexponenten‘ einmal
die ihm unterworfene Funktion selbst enthdlt, dann ihre ganzzahligen
Ableitungen, das bestimmte Integral und das Riemann-Liouvillesche
verallgemeinerte Integral.

Unser Ableitungsoperator verhilt sich durchaus verschieden, je nach-
dem ob der Ableitungsexponent gleich 0,1,2,... oder von diesen
Werten verschieden ist. Im ersten Fall gibt er das Verhalten der ihm
unterworfenen Funktion in einem Punkt, im zweiten dasjenige in einem
Intervall an. Da er sich im allgemeinen also wie ein bestimmtes Integral
verhilt, haben wir das Symbol fiir ihn demjenigen des bestimmten Inte-
grals moglichst angenéhert.

1) Enzyklopédie der math. Wiss. IT A 2, Nr. 48/49; II A 11, Nr. 7. Vgl. auch die aus-
fithrliche Bibliographie bei H. Davis, The Theory of Linear Operators, Principia Press,
Bloomington 1936.

2) B. Riemann, Ges. Werke, 2. Bd., p. 331. — J. Liouville, J. Ecole Polytech. 13,
1832. — H. Weyl, Vierteljschr. Naturforsch. Ges. Zirich 62, 1917, p. 246, — Hardy-
Littlewood, Math. Z. 27, 1928, p. 565 ; 34, 1932, p. 403. — M. Riesz, Acta Math. 81, 1949,
p. L.

3) A. K. Griinwald, Z. Math. Phys. 12, 1867, p. 441. — K. Bochow, Dissert. Halle 1885.
— vgl. auch N. Stuloff, Math. Ann, 122, 1951, p. 400.
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Der Beweis von Satz 1 wird dadurch gehorig erschwert, dal er, wenn
der Ableitungsexponent <1 ist, auch auf Funktionen anwendbar ist,
die im unteren Endpunkt des Ableitungsintervalls einen Pol haben ;
dies ist wohl auch das wesentlich Neue an unserer Arbeit. Dafl wir uns so
eingehend mit einer scheinbar so abseits liegenden Verallgemeinerung
beschéftigt haben, bedarf aber einer Begriindung.

Der Grund dafiir, daB iiberhaupt das Bediirfnis besteht, Differential-
und Integralrechnung unter demselben Gesichtspunkt zu betrachten,
oder also, sie als Spezialfille eines und desselben Operators zu betrachten,
liegt doch im Bestehen des Hauptsatzes der Integralrechnung, also darin,
dafl das Produkt dieser beiden Operatoren die Identitdt ergibt. Von
einer Verallgemeinerung des Ableitungsoperators wird man also wesent-
lich verlangen, da@3 sie iterierbar ist, und daB die Regel fiir das Produkt
zweiler solcher Operatoren den obigen Satz als Spezialfall enthélt. AuBer-
dem wird man zum Beispiel erwarten diirfen, daBl auf eine im abge-
schlossenen Ableitungsintervall stetig differenzierbare Funktion der Ab-
leitungsoperator zum Exponenten 3 zweimal hintereinander anwendbar
ist und die gewohnliche Ableitung der Funktion herauskommt.

Nun zeigt sich aber, daf3 bereits die Ableitung einer Konstanten zu
positivem Ableitungsexponenten eine Funktion ergibt, die am linken
Endpunkt des Ableitungsintervalls einen Pol aufweist (Satz 2). Soll also
die Ableitung iteriert werden kénnen, so muf} der Ableitungsoperator auf
eine solche Funktion anwendbar sein.

Im zweiten Teil der vorliegenden Arbeit behandeln wir die Ableitung
einer Konstanten (Satz 2) und einer Potenz (Satz 3) und beschreiben das
Verhalten der Ableitung einer im abgeschlossenen Intervall stetig diffe-
renzierbaren Funktion als Funktion der oberen Grenze (Satz 4). Im letz-
ten Paragraphen geben wir noch einige Eigenschaften der Ableitung als
Operator an (Satz 5 und 6).

Die Arbeit beschéftigt sich im wesentlichen mit den Fragestellungen
des Heaviside-Kalkiils ; wir gehen hier auf diesen Standpunkt aber nicht
ein.

Definition. Die reelle Funktion f(&) sei im reellen Intervall z, <& < z,
definiert, o sei eine reelle Zahl. Wir setzen

e O=(GE25) T () (= -2 o
D)€ = lim DY/)| ') Q
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wobei in der Potenz in (1) der Hauptwert genommen werden soll. Den
Ausdruck (2) bezeichnen wir, sofern dieser Grenzwert existiert, als die
., D-Ableitung der Funktion f zum Exponenten « von x, bis x,“4).

Satz1. A. Es ist
(&) = f(zy) . (3)

Zo

DO f(£)

B. Ist a=1,2,... undist f*(£) in der Umgebung von z, stetig,
8o ist

) = [0 (z) . (4)

Zo

D= f(é)

C. Ist a<0, ist f(&) fir zy<& <z, differenzierbar und ist f(&)
=0 ((& — ) F) fiir £} x, mit <1, so konvergiert der Ausdruck (2)

und es ist 2

>t @[ 0 =g [l )
Insbesondere ist dann ”

D16 O 1o ®)

D. Ist a>0, a£1,2,3,..., ist f(&) fir m<& <o, ([a]+ 1)-

mal stetig differenzierbar und ist fUd+V(£) = O((& — z,)F-1) fiir
£} xy mit <1, so konvergiert der Ausdruck (2) und es ist

_("&%T)w I +[a]~—a>f gm0

4) Es ist von Interesse, mit unserm Ansatz und Ergebnis jene von Stuloff?) zu verglei-
chen. Stuloff definiert die a-malige Ableitung durch den Grenzwert

12
1 (@) = lim 5o 35 (=1 (%)t +vh

und beweist : ist f monoton abnehmend, fiir alle > 0 erklirt, positiv, und existiert dieser
Grenzwert fir ein —1 < a < 0, so ist

1 o
7(“)"’)="m1’(~a) f: a=1f(z + t)dt .
0

Ist f positiv, monoton abnehmend, existiert jenes Integral fiir ein —1 < a < 0, so exi-
stiert die y-malige Ableitung fiir jedes o <<y < 0. Endlich: eine ,,total monotone*
Funktion ist zu jedem « > 0 ableitbar.
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1. TEIL: BEWEIS VON SATZ 1.

Die Aussagen A und B folgen direkt aus der Definition, da in diesen
Fillen die Binomialreihe abbricht.

Im Falle C folgt die Aussage fiir « = — 1 unmittelbar daraus, daB
jetzt fiir alle » gilt : 5
(— 1)y (v) =1.

Fir den allgemeinen Fall C und Fall D ist zum Beweis zunichst zu
bemerken, dal unter den gemachten Voraussetzungen die rechte Seite
von (5) bzw. (7) tatsdchlich konvergiert (vgl. S. 148).

Um die Schreibweise zu vereinfachen, fithren wir den Beweis von
Satz 1 fiir den Fall 2, = 0, z;, = . Damit ist natiirlich der Satz auch
in seinem eigentlichen Wortlaut bewiesen.

Wir benotigen im Beweis hiufig die folgenden Beziehungen, die wir
hier anfiihren :

a) Fir alle » =0,1,2,... und alle « gilt
i (%Y o — 1
gov)-cnfT) e

b) Fir « 20,1,2,... gilt fir v >0

=1 (3) = ey 0 () @

c) Ist die Funktion f(x) in einer Umgebung von x = a stetig diffe-
renzierbar (auller eventuell in diesem Punkt selbst) und ist f'(x) =

O((x — a)?) fir x —a, wo y eine reelle Zahl bedeutet, so ist fir x —a
f(2) = O((w — ap™).

§ 1. Zerlegung

Wir setzen
= (i) oo
= Zew()if-) o
Dann geht (1) iiber in
DE1E)| ) = S, m) + Sy, m) . (12)
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Hier sollen fiir » —oco gleichzeitig die folgenden Beziehungen gelten :

Mg nx
Ny —>00 —?—z——>0, TS -0 . (13)
Setzen wir
Ny ~ NF (14)

so muf} der Exponent u gleichzeitig den Ungleichungen
O<u<l , a<<p(a+ 1) (15)
geniigen. Man sieht leicht ein, daBl diese Ungleichungen bei jedem gege-

benen « miteinander vereinbar sind.

§ 2. Abschiitzung von S, (ny, n) fir « <O0.

In diesem Fall ist (— 1)” (o;) >0 fiir alle ». Ist jetzt f(x — 1‘;::)
x

derjenige der Werte von f|x — rr (»=20,1,...,7y— 1) mit dem
n

grof3ten Betrag, so ist

= - (3)

[Sam0 ) < (2|1 (2= 22) S (— 0 3

n
_(7?\® LY TR 1
(3 ) e () - oo
Wegen der Stetigkeit der Funktion f in einer linksseitigen Umgebung
von x folgt somit wegen (9) und (13) fiir » —oo0

81(ng, m) = o(1) . (17)

§ 3. Abschitzung von S, (ny,n) fir « > 0.
Wir setzen
4° f(ex) = f(cx)
AV f(ex) = AY few) — A”f(cx —-%) .

Dann folgt aus (10) durch [«a] 4+ 1-malige partielle Summation beziig-
lich der Binomialkoeffizienten :

8, (g 1) — (_nw_)a no-gl—'z (— 1) (Ot — [«] — 1) ﬂ[alﬂf(x _ _"’_95_)

v=0 14 n

: (%)a [agl(_— 1yra—r ( o — x) Ani"‘lf(x My —k x) . (19)

K=1 no — K n

(18)
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Hier ist jetzt (— 1)¥ ((x N [(::] - l) >0 fiir alle ». Die erste Summe

in (19) kann auf dieselbe Weise wie oben abgeschitzt werden, und zwar
sieht man leicht, daB sie unter den Bedingungen (13) gegen 0 geht, wenn
man die Stetigkeit der [a] + 1-ten Ableitung von f in der linksseitigen
Umgebung von x beriicksichtigt. Die zweite Summe in (19), die ja aus
einer beschrinkten Zahl von Summanden besteht, kann aber mit Hilfe
von (9) approximiert werden.

Es folgt also fiir n—>oco mit (13)

Sitmem) = X g () 1w (2(1 = 22)) +on . (20)

§ 4. Integraldarstellung von S, (ny,n).

Aus (9) und (11) folgt, daBl wir setzen konnen

S, (ny, n) = ﬁ__l__;)_(g;_)ag W:H f (x _ .’%) + R(ng,m) , (21)
" | R(n,, n) '<K(%)av§o—ﬁ% j (x _ 17-&"—’-) (22)

ist. Nun ist aber nach Voraussetzung (vgl. ¢, S. 143)

,f(x—-lf-)|<0(nf‘_v)8, B<1 . (23)

Hieraus folgert man leicht, dafl unter den Bedingungen (13) fir n —oo
gilt : R(nmy, n) = 0(1). Dann ist also

Sz(no,n):ﬁ(%)avgz Wilf(x _—%“’-)+o(1) . (24)

Auf diese Summe wenden wir die Eulersche Summenformel an in der
Form

S F,0) = Fo(ng) + | (& — [EDFL(E)deE+ | Fo(6)dE ,  (25)

v=n,

indem wir setzen

1
Fo(€) = g | (x —%"’i) . (26)
Hier ist nun
nF, (ny) = —;@”j-—x ; (x — ”;:”) . (27)
0
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Dieser Ausdruck geht also wegen (13) und der Stetigkeit von f in der
linksseitigen Umgebung von z gegen 0 fiir n—oo.
Weiter ist

(%) f(E——[&])F,.(é <(2 )le(&)sde

n—1
n\*—1 1 , tx Ex
S(’E) ffaﬂ’(“’ n)‘“"”‘"+ (7 )fsa“ ("""’T) &
i
gt . 1 , a+l 8 1
= [ @ —an e+ fta+2|f(x—xt)|dt. (28)

Man sieht leicht ein, daB dieser Ausdruck fiir n —oco gegen 0 geht (Be-
dingung 13, Voraussetzung c).

Es folgt also endlich : fiir #» —oco gilt, wenn die Beziehungen (13) er-
fullt sind (1— n_)

Sato, m) = o7 f T sdtom . (@)

ﬂ

§ 6. Umformung des Integralausdrueks ftir S, (n,,n).

Ist a<0, so belassen wir den Ausdruck fiir S,(n,, #) in der Form (29).

Ist 0<a<1, soist, da nach Voraussetzung die Funktion - @ f(_) e
fiir
z _ _ T
stetig ist :
(1__ ) ) ______0.
d {Q)
dx 1’(1 — a) (x — t)“

_ e

(x — t)

dt

ﬂ

e (n?x)“f(w(l -—fi—f)) - m‘- o (5) 0= 2) =




Man sieht leicht, dafl die beiden letzten Summanden fiir » —oco gegen
0 gehen.
Ebenso folgt allgemein fir 0 < [a]l<a<[a] + 1, 7 —>o0

n
az(l————i
n

_ i fag+1 1 f(t)
Sy (Mo, ) = (dx) I'{a]+ 1 — ) f (x — g)x—To] dt
- (31)

n

B ljz: I'(x l~ a) (n:zx )"‘ -Kﬂﬂxul) (x <1 - %O—)) Tedd

§ 6. AbschluB des Beweises.
Aus den Formeln (12), (17), (29) folgt fir « <0, n —o0
z (1 - %"—)

D:f(s>’:(s)=—f~—‘»~7 [ lratom. @

(— (@

k4

”
und aus (12), (21), (32) fir «a>0, £ 1,2,...;n 00

n
x(l-——-—o—
n

NG d \1+ 1 F(t)dt
2210 [0 =(3)  rarnr=e J whpew oW
z 33
Somit gilt fiir a<0 " (=59
D100 = pmar [ ol b b (34)

0
Im Falle «>0 miissen wir noch beweisen, dafl der in (33) rechts
stehende Ausdruck in einer Umgebung von z gleichmiBig konvergiert.

Wegen
0 n

geniigt es, zu diesem Zweck die gleichmiflige Konvergenz von

7

d \}+l ()

() ) el (83)
zu beweisen. 0
Wir substituieren ¢ = x &. Dann ist
x 1
() _ o f(x§)
f ot it = v f L e (36)
0 0
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Sei zunichst 0 <a<<1. Dann ist also

d [ o . . x&) o [ EF (28)
xf(x_t)adt_(l Yo f(l _dE+ @ f —r

sofern das zweite Integral glelchmaﬁlg konvergiert 5). Nach Voraus-
setzung ist aber C

somit ist in der Umgebung von z: &|f (z&)]|< gﬁ , und damit ist
die gleichmiBige Konvergenz des zweiten Integrals bewiesen. Analog
beweist man die gleichmiflige Konvergenz des ersten Integrals. Ist
0 <[a]<a<[a] + 1, so verfihrt man entsprechend. Es gilt also fiir

jedes a>0

z . d 1+{a) 1 :f f(f)
D f(€) lo(g) = (dm) T ¥ [a] — &) oj @ — e % (38)

und damit ist der Satz bewiesen.

2. TEIL: FOLGERUNGEN
§ 7. Beispiele
I. D-Ableitung etner Konstanten

e = (25) T () (39)

Ty — Xy

folgt nach (8) und (9) unmittelbar

Satz 2. Fiir jedes a gilt

(1) | 1

W) = o = w1 — ) (40)

II. D-Ableitung einer Potenz von x

Aus dem Beweis von Satz 1 und diesem Satz selbst folgt unmittelbar

Satz 3. Seien « und y reelle Zahlen, o« 0,1, 2,.... Ist y>—1,
so gilt

5) Ch. de la Vallée-Poussin, Cours d’Analyse, 7. éd., t. 2, p. 30.
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o I'y + 1)
— ¥
. (&) = o7 T T)
fiir jedes o mit [a]<y + 1.
Ist y < — 1, so divergiert der Ausdruck
1(5) fiir jedes o« £ 0,1,2,...9)

0

D> gy

(41)

D> gy

§ 8. [Eigenschaften der D-Ableitung als Qperator

Satz 4. Ist die Funktion f(£) im abgeschlossenen Intervall z, < ¢ < «
stetig differenzierbar, so konvergiert die D-Ableitung zum Exponenten «
fir 0<a<1, ist als Funktion von x aufgefaB3t, stetig und hat fiir z | =,
einen Pol der Ordnung «.

Beweis. Die Konvergenz folgt daraus, dafl jetzt die Voraussetzungen
fiir Satz 1 erst recht erfiillt sind. Das Verhalten in Abhdngigkeit von x
folgt aus der Formel (vgl. 37)

x
” 1l —« 1 18
Da = - f d
OO =To—gz-2) @-r%
Zo
a

1 1 (& — ) (&) d&
+1n~w)x-%f' @& - *?

%o

Aus der Definition folgt direkt :

Satz 5. Sind ¢, und ¢, Konstante, so gilt

2% iy
|

D2 (e, (&) + 29 (8) | (§) = e, D*f(&) | (&) + c.D*g (&)

|z

o). 43

%) Es ist interessant, dieses Ergebnis mit folgendem Sachverhalt zu vergleichen: Defi-
niert man die a-malige Ableitung von &V als die Funktion ¢ (7) in der Integralgleichung

3
1 —1 —
TT&)“f‘P"’ (& —7)—1dr = £V
. ]
80 ist
'y+1

PR = I'y—oa+1) R

Diese Formel stimmt formal mit unserer Formel (41) iiberein, sie gilt aber nur fur y>—1,
0 < x<y-+1, withrend bei uns der Giiltigkeitsbereich von (41) weiter ist (Vgl. G. Doetsch,
Theorie und Anwendung der Laplace-Transformation, Grundlehren, Bd. XLVII, Berlin,
Springer, 1937, p. 302).
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Im folgenden setzen wir abkiirzend
z1

Dxf(&)| (&) = D~ (44)
(0210 (&) ! ‘) = D DE . (45)

Dann gilt fir « <0, g <07
D> DB = DB D* = Do+ | (46)

Der Hauptsatz der Integralrechnung kann in der Form geschrieben

werden
D*D-1 = Do . (47)

Die Operatoren D! und D-! sind aber i. A. nicht vertauschbar, denn es
ist ja

D1 Dt = D° — f(x,) . (48)
Unser Satz 1 besagt, daB (46) gilt fir « =0,1,2,...; — 1<§<0.
Man sieht leicht ein, daB er auch gilt fir « =0,1,2,...; $<0.

Wir beweisen zum SchlufB

Satz 6. Ist f(&) fir =z, <& <, stetig differenzierbar und ist
f(xy) = 0, sogilt fir a<1, <1

D> DB — DB D= = Do+B (49)

Beweis. Es ist jetzt
D1 Dt = D D1 | (50)

Denn wegen f(xz,) = 0 konnen wir setzen

f(z) = [f (&) dé = DDt .

Dann ist aber

D'D*-1f = DID*-1D-1 Dt = D1D-1Do-1Dt = De-1D1 |
Nun ist
DeDB — Dl De-1D1DB-1 — D1 D1 Da—1 DB-1

= D2Dx+B-2 —= Da+B
w.z. b. w.

(Eingegangen den 22. September 1952.)

7) E. Goursat, Cours d’Analyse, 1917, t. 1, p. 309.
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