Zeitschrift: Commentarii Mathematici Helvetici
Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 27 (1953)

Artikel: Sur certains sous-groupes des groupes de Lie compacts.
Autor: Borel, A. / Serre, J.-P.

DOl: https://doi.org/10.5169/seals-21890

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 22.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-21890
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Sur certains sous-groupes des groupes
de Lie compacts

Par A. BoreL, Genéve, et J.-P. SERRE, Paris

1. Introduetion

On sait que tout sous-groupe abélien connexe H d’un groupe de Lie
compact G est contenu dans un tore maximal de G; par contre cette
propriété peut étre en défaut pour un sous-groupe H non connexe 1).
Cependant nous montrerons (théoréme 1) qu’un tel sous-groupe H est
contenu, sinon dans un tore maximal, du moins dans le normalisateur
N d’un tore maximal 7' de @. En fait ce résultat vaut pour une catégorie
de groupes H plus vaste que celle des groupes abéliens : celle des groupes
vérifiant la propriété (M P) du n° 2 qui comprend aussi les groupes nil-
potents finis. Appliqué au cas ol @ est le groupe unitaire U(n), le
théoréme 1 redonne un résultat classique sur les représentations mono-
miales (n° 5).

Ainsi, I’étude des sous-groupes abéliens de G est ramenée a 1’étude des
sous-groupes abéliens ‘de N ; cela nous permettra d’obtenir quelques
propriétés des sous-groupes de type (p,...,p) de G, sous-groupes qui
sont, & certains égards, ’analogue «modulo p» des tores contenus dans G.
Ces sous-groupes sont en rapport avec la p-torsion 2) des groupes d’homo-
logie de @' ; de fagon plus précise, nous montrerons (théoréme 2) que si G
est un groupe de Lie compact connexe de rang ! qui contient un sous-
groupe isomorphe & (Z,)!t!, alors @ a de la p-torsion. En particulier,
nous verrons que les groupes exceptionnels G,,F, et E; ont de la
2-torsion.

2. La propriété (M P)

C’est une propriété portant sur un groupe topologique G :
(M P) — @ posséde une suite finie de sous-groupes invariants fermés

1) 11 suffit de prendre pour G le groupe SO(3) des rotations de ’espace & trois dimen-
sions et pour H le groupe engendré par les rotations de 180° autour de trois axes rectangu-
laires.

%) On dit qu’'un espace a de la p-torsion (p premier) si l’'un de ses groupes d’homo-
logie & coefficients entiers a un coefficient de torsion divisible par p .
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{e} =GcG,c-- - CG G =G

telle que les quotients successifs Q,/G,_, soient isomorphes & un groupe
cyclique finy ou au tore & une dimension.

Nous dirons qu’une suite (G;) de sous-groupes vérifiant les conditions
précédentes est une sutte semi-principale de G.

Un groupe G possédant la propriété (M P) est un groupe de Lie compact
résoluble et sa composante connexe de 1’élément neutre est un tore. On
notera cependant qu’il existe des groupes résolubles finis ne vérifiant
pas (MP)3).

Tout groupe de Lie compact abélien vérifie (M P) car il est isomorphe
au produit direct d’un tore et d’un groupe abélien fini. I.’exemple donné
dans la Note 3) montre donc que si G/N et N vérifient (M P), il n’en
est pas nécessairement de méme pour G. Cependant, toute extension
centrale G d’un groupe /N vérifiant (M P) par un groupe de Lie compact
abélien N vérifie aussi (M P). En effet, N étant dans le centre de ¢, les
éléments d'une suite semi-principale (N,) de N sont des sous-groupes
invariants dans ¢/ et on obtient une suite semi-principale de G' en complé-
tant (V;) par l'image réciproque d'une suite semi-principale de G/N.
En particulier, nous voyons ainsi que tout groupe de Lie compact nil-
potent vérifie (M P). ‘

Proposition 1. Tout sous-groupe fermé et tout groupe quotient d’un
groupe vérifiant (M P) vérifie aussi (MP).

Soient G un groupe vérifiant (M P), H un sous-groupe fermé de ¢,
N un sous-groupe invariant fermé de G, et K =G/N . Si (G;) est une
suite semi-principale de ¢, nous poserons H,=H NG; et K, =N -G,/N ;
les H; et les K, sont des sous-groupes invariants fermés de H et de K
respectivement ; le groupe H,/H, , (resp. K;/K, ;) est isomorphe & un
sous-groupe fermé (resp. & un quotient par un sous-groupe fermé) du
groupe G,/Q,_,; il s’ensuit que H,/H, , et K,/K, , sont isomorphes
soit & un groupe cyclique fini, soit au tore & une dimension ce qui montre
que (H,) et (K,) sont des suites semi-principales de H et de K respec-
tivement.

Proposition 2. Un groupe topologique non réduit a Uélément neutre qui
vérifie (M P) contient un sous-groupe invariant cyclique d’ordre premier.

%) Citons par exemple le produit semi-direct de Z, + Z, par Z,, le groupe Z; opérant
sur les éléments non nuls de Z, 4 Z, par permutation circulaire (Z, désignant comme &
Pordinaire le groupe additif des entiers modulo n): on voit tout de suite que ce groupe,
bien que résoluble, n’admet pas de sous-groupe invariant cyclique = {e}; il ne vérifie
donc pas (MP). ‘
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Soit G; une suite semi-principale d’'un groupe G vérifiant (M P); on
peut supposer @, # {e} . Si G, est isomorphe au tore & une dimension,
G, contient pour tout entier # > 1 un unique sous-groupe cyclique
d’ordre 7 ; si G, est cyclique d’ordre & et si p est un nombre premier
divisant k, G, contient un unique sous-groupe cyclique d’ordre p. Dans
tous les cas nous obtenons au moins un sous-groupe cyclique d’ordre
premier invariant par tous les automorphismes de @,, donc en particulier
par les automorphismes intérieurs de @ ; ce sous-groupe est donc invariant
dans G, cqfd.

3. Le théoréme principal

Théoréme 1. Soient G un groupe de Lie compact et H un sous-groupe
de G vérifiant la propriété (M P). Il existe un tore maximal T de G dont
le normalisateur dans G contient H .

Dire que le normalisateur de 7' contient H équivaut & dire que 7' est
stable par les automorphismes intérieurs que définissent les éléments
de H. Soient alors g I’algébre de Lie de G, K le groupe d’automorphismes
de g défini par H ; le groupe K étant un groupe quotient de H vérifie
(M P) d’apres la prop. 1; il nous faut trouver une sous-algebre abélienne
maximale t de g telle que o(t) =t pour tout o ¢ K. Autrement dit,
il nous suffit d’établir le théoréme suivant (du reste équivalent au théo-
réme 1) :

Théoréme 1'. Sotent g une algébre de Lie de groupe compact et K un
groupe d’automorphismes de g qui vérifie la propriété (M P). Il existe alors
une sous-algébre abélienne maximale t de g qui est stable par les opéra-
tions de K.

Pour prouver le théoréme 1’ nous nous appuyerons sur la proposition
suivante qui sera démontrée dans le n° 4:

Proposition 3. Soient g une algébre de Lie de groupe compact et o un
automorphisme de g d’ordre égal a un nombre premier p. Si Uensemble des
points fixes de o est réduit @ {0}, @ est une algébre abélienne.

Admettons provisoirement cette proposition, et démontrons le théoréeme
1’ par récurrence sur la dimension de g, le cas ou celle-ci est égale & 0
étant trivial.

On sait que g est isomorphe au produit direct ¢ X g’ de son centre ¢
par son algébre dérivée g' et ces deux sous-algébres sont évidemment
stables par K. Si ¢ % {0}, I'hypothése de récurrence montre ’exis-
tence d’une sous-algébre abélienne maximale t' de g’ stable par K, et
¢ X t' est une sous-algébre abélienne maximale de g stable par K .
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Il nous reste donc & examiner le cas o ¢ = {0}, donc ou g est sems-
simple. Le théoréme est évidemment vrai si K = {e}; sinon, d’aprés
la proposition 2, K posséde un sous-groupe invariant L cyclique d’ordre
premier ; si ¢ désigne un générateur de L, ’ensemble a des points fixes
de o est une sous-algebre de g qui est % {0} d’aprés la Prop. 3, et qui
est 7 g puisque ¢ n’est pas I'automorphisme identique ; puisque L est
invariant dans K, cette sous-algébre a est stable par K, et ce dernier
définit un groupe K' d’automorphismes de a qui est un quotient de K,
donc qui vérifie aussi (M P). Comme, d’aprés un résultat bien connu,
a est une algébre de Lie de groupe compact, on peut appliquer au couple
(a, K') I'hypothese de récurrence et il existe une sous-algébre abélienne
maximale u de a stable par K’, donc par K. Soit alors b la sous-algébre
de g formée des éléments b tels que [u,b] = 0 pour tout u eu. Elle
contient évidemment toute sous-algébre abélienne maximale de g conte-
nant u et elle a donc méme rang que g. Puisque u est stable par K,
b l'est aussi; en outre, puisque u 7 {0} et que le centre de g est {0},
on a b#g. On peut donc appliquer ’hypothése de récurrence au
couple (b, K"), ou K" est le groupe d’automorphismes de b défini par
K, et I'on obtient une sous-algébre abélienne maximale { de b qui est
stable par les opérations de K”, donc de K. Comme b et g ont méme
rang, t est aussi une sous-algébre abélienne maximale de g, ce qui achéve
la démonstration.

4. Sur les automorphismes d’ordre premier d’une algébre de Lie

Pour achever la démonstration du théoréme 1’, nous devons encore
établir la proposition 3. Or, on sait qu'une algebre de Lie de groupe
compact qui est nilpotente est de ce fait abélienne ; la proposition 3 est
donc une conséquence de la proposition suivante, que nous allons mainte-
nant démontrer :

Proposition 4. Soient g une algébre de Lie et o un automorphisme de
g d’ordre égal & un nombre premier p. St Uensemble des points fixes de o
est réduit & {0}, @ est une algébre nilpotente.

Soit go = g ® C l’algébre de Lie complexe déduite de g par passage
du réel au complexe ; tout élément de g, s’écrit d’une seule fagon sous
la forme z =« + 1t - y(x,y eg). Nous prolongerons ¢ & g, en posant
o(x + ty) = o(x) + ¢ - o(y); si I'ensemble des points fixes de ¢ dans g
est réduit & {0}, il en est de méme dans g, .

Soit & % 1 une racine p-iéme de I'unité ; les valeurs propres de ¢ sont
de la forme &7, j €Z, (groupe des entiers mod. p), et nous noterons ¥V, le
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sous-espace propre de g, relatif & la valeur propre & ; g, est somme
directe des V; et l'on a:

Vo= {0} (4.1)
Vi, Vil €V 1, keZ,. (4.2)

(La formule 4.1 signifie que ’ensemble des points fixes de o est réduit
a {0} et la formule 4.2 résulte de o( [z, y]) = [¢(x), a(y)]) .

Désignons par ad. z I’endomorphisme y— [z, y] de g, . Nous allons
montrer que ad. x est nilpotent lorsque = est contenu dans I'un des
sous-espaces V,. D’apres 4.1, on peut supposer j == 0 mod. p, et d’apreés
4.2, on a ad.x (V)< V,.,, dou (ad. 2)4(V,) € Vyir» quel que soit
Pentier q. Choisissons en particulier pour ¢ un entier positif, < p, et
tel que ¢j + £ = 0 mod. p, ce qui est possible, puisque j £ 0 mod. p.
On a alors (ad. z) 9(V,) © V, = {0}, d’ol a fortior: (ad. z) ?(V,) = {0},
et ceci ayant lieu pour tout £ on en conclut que (ad.x)? = 0, ce qui
montre bien que ad. x est nilpotent.

Soit f(x, y) = Tr(ad. x o ad. y) la forme de Killing de g, ; elle est
invariante par tout automorphisme de g, donc en particulier par o et
la formule f(x,y) = f(o(x), o(y)) entraine immédiatement :

f(x,y) = e+k. f(x, y) si zeV; et yeV,. (4.3)

Montrons maintenant que f(x, y) est identiquement nulle ; il suffit
évidemment de prouver que f(x, y) =0 si xeV,, yeV;, quels que soient
j.keZ,. Si j+ k%0 mod.p, cela résulte de 4.3;si j+Lb=0
mod. p, alors [x,y]=0 d’aprés 4.1 et 4.2 et les endomorphismes
ad. x et ad. y commutent. Comme ils sont tous deux nilpotents, leur
produit ad. # o ad. ¥y est aussi nilpotent et sa trace f(x,y) est nulle.
Ainsi la forme de Killing de g, est nulle. D’aprés un critére classique
d’Elie Cartan, ceci entraine que g, est une algébre résoluble. Si n est la
dimension de g, on sait qu’il existe alors »n formes linéaires sur
8o ®y,..., o, telles que les racines de I’équation caractéristique de ad. z
soient les » nombres w,(x),..., w,(x) (les w, sont les poids de la repré-
sentation adjointe de g .) Puisque ad. x est nilpotent pour tout z eV, ,
on a w,(x)= -+ = w,(x) =0 pour tout zeV,, et comme g, est
somme directe des V, ceci entraine w,(x) = --- = w,(x) = 0 pour tout
Z €gy - L’endomorphisme ad. z est donc nilpotent pour tout xegg .
ce qui signifie que g, est une algébre de Lie nilpotente. Il en est donc de
méme de g, cqfd.

Remarque. La derniére partie de la démonstration précédente est inu-
tile pour démontrer la proposition 3; il est en effet immédiat qu’une
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algébre de Lie de groupe compact dont la forme de Killing est nulle est
abélienne.

b. Représentations monomiales

Soit h—> M, une représentation linéaire d’un groupe H dans un
espace vectoriel complexe E de dimension finie n; on dit que M est
monomiale s’il est possible de trouver une base (e;) de £ telle que, pour
tout h e H et tout ¢, le vecteur M, (e,) soit colinéaire & 'un des vecteurs
e, . Un théoréme classique ([6], 1, § 8) affirme que toutes les représen-
tations linéaires d’'un p-groupe sont monomiales. Ce théoréme est un cas
particulier de la proposition suivante :

Proposition b. Toute représentation linéaire d’un groupe H qui vérifie
la propriétée (M P) est monomiale.

Soit M la représentation, que I'on peut supposer unitaire, H étant
compact ; M est donc un homomorphisme de H dans le groupe unitaire
U(n) et 'image K de H par M vérifie (M P) d’apres la prop. 1. Le théo-
reme 1 montre alors I’existence d’un tore maximal 7' de U (n) dont le
normalisateur N contient K. Mais tout tore maximal de U (n) s’obtient
évidemment en prenant les matrices diagonales par rapport & une base
orthonormée (e,) de K. Le normalisateur N de ce tore est I’ensemble
des matrices unitaires qui transforment chaque e, en un multiple scalaire
d’un e, ; il s’ensuit que N, et a fortiori K, sont des groupes monomiaux,
cqfd.

Remarque. Il existe des groupes qui vérifient la prop. 5 sans vérifier
le théoréme 1 (ni & plus forte raison (M P)). Le groupe cité dans la Note 3)
en est un exemple : toutes ses représentations sont monomiales puisque
son groupe des commutateurs est abélien (cf. [6], loc. cit.) et on peut le
plonger dans SO(3) de telle sorte qu’il ne soit contenu dans le normali-
sateur d’aucun tore maximal.

6. Le p-rang d’un groupe de Lie compact

Soient G un groupe de Lie compact, 7' un tore maximal de G, N le
normalisateur de 7' dans G, @ (G) = N/T le groupe de Weyl de G %), qui
est un groupe fini. Le théoréme 1 montre que, pour qu'un groupe abélien
H puisse étre plongé biunivoquement dans (F, il est nécessaire qu’il
admette un sous-groupe H, isomorphe a un sous-groupe de 7', le quo-
tient H/H, étant isomorphe & un sous-groupe de @ (@) .

4) On trouvera un exposé des propriétés classiques de N, T, D (G) dans [5].
Nous écrirons fréquemment @ au lieu de @(G) lorsqu’aucune confusion ne sera &
craindre.
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Nous nous intéresserons spécialement aux sous-groupes H de G qui
sont abéliens finis de type (p, ..., p), autrement dit qui sont isomorphes
& Z,+ .-+ +Z,, p premier. Nous poserons la définition suivante :

Définition. Le p-rang d’un groupe de Lie compact G est le plus grand
entier h tel que G contienne un sous-groupe isomorphe & (Z,)* .

Nous désignerons le p-rang par [,(¢), ou simplement I, si aucune
confusion n’est & craindre, et nous désignerons le rang au sens usuel
(dimension de T') par I(G) oul.

Le p-rang d’un tore est égal & la dimension du tore quel que soit p;
comme [ (G) =1,(N) d’aprés le théoréme 1, et que

L(T) < L,(N) <U,(T) + 1,(®),
on en conclut :

1<L,6) <1+ 1,(®). (6.1)

Les inégalités 6.1 montrent notamment que [ (&) est fini. Lorsque
G est connexe on a le résultat plus précis suivant :

Proposition 6. Si G est un groupe de Lie compact connexe,ona | <l, <21,
1<, <3l/2 s p#£2, et l=1, si p ne divise pas Vordre du groupe
(@) .

G étant connexe, on sait [5] que @ opére fidélement sur I'algebre de
Lie du tore maximal 7'. Tout sous-groupe de @ isomorphe & (Z,)* admet
donc une représentation linéaire réelle fidéle de dimension . Il s’ensuit
comme on sait que 2 < si p=2 et que A <1l/2 si p#2; ceci
signifie que 1,(®) <! et que 1, (P) <1/2 si p # 2; d’autre part il
est évident que I,(®P) = 0 si p ne divise pas ’ordre de @ . Notre propo-
sition est alors une conséquence des inégalités 6. 1.

Exemples

1. Groupe unitaire U (n) . Comme tout sous-groupe abélien du groupe
unitaire peut étre mis sous forme diagonale, c’est-a-dire plongé dans un
tore maximal, on a [, =l = n pour tout nombre premier p.

2. Qroupe orthogonal unimodulaire SO(n). Ici on a | = [n/2] (nous
notons [z] la partie entiére du nombre z). D’autre part, si H est un
sous-groupe abélien de SO(n), on sait qu’on peut décomposer I’espace
R" en somme directe de sous-espaces & deux dimensions (augmentée
d’un sous-espace & une dimension si n est impair) qui sont stables par
H. On en déduit que I, =2n — 1-et que I, = [n/2]=1 si p # 2;
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en particulier si » =2k + 1 ona [ =k et I, =2k, ce qui montre
que l'inégalité I, << 2] ne peut étre améliorée en général.

3. Groupe exceptionnel G,. C’est le groupe des automorphismes de
l’algebre des octaves de Cayley, son rang est égal & 2. On peut y définir
un sous-groupe isomorphe & Z, + Z, 4+ Z, comme suit : soit {1,e;},
t €Z,, une base des octaves ou les systémes quaternioniens sont les
triplets (e;, e,.;, €;,3); soit S, la transformation définie par S;(1) =1,
Si(e;) = —e¢; si j=1,0+2,1+3,t+4 et S;(e;) =¢,; sinon; on
vérifie immédiatement que §; est un automorphisme pour tout ¢ eZ,,
et que les sept transformations §; forment avec I'identité un groupe
isomorphe & Z, + Z, + Z, .

On a donc [(G,) = 3, inégalité que nous retrouverons par une autre
voie au n° 8; nous verrons au n° 7 qu’en fait [,(G,) = 3.

7. Relations du p-rang avee la torsion

On sait que les nombres de Betti d’un groupe de Lie compact connexe
G sont completement déterminés par la connaissance du groupe de
Weyl @, considéré comme groupe d’automorphismes de 1’algébre de Lie
d’un tore maximal 7' de G %); ils sont en particulier égaux pour deux
groupes G, et G, localement isomorphes. Cependant, alors que G, et G,
ont méme homologie réelle, ils se distinguent en général par leurs coeffi-
cients de torsion ; et d’autre part les normalisateurs des tores maximaux
de G, et G, sont en général des extensions différentes de @ par 7'. Ceci
suggére assez naturellement que les propriétés de ’extension de @ par T
sont en quelque maniére liées & la torsion. C’est dans ce sens que I’on
peut interpréter le théoréme 2, car il met en rapport la torsion avec le
p-rang, notion qui dépend visiblement de I’extension de @ par T'.

Théoréme 2. Soient G un groupe de Lie compact connexe, p un nombre
premier. St 1,(G) > 1(G), le groupe G a de la p-torsion.

Raisonnant par I’absurde, nous supposerons ¢ sans p-torsion et nous
démontrerons qu’on a alors 7, <1.

Soit By un espace classifiant pour G ¢). D’aprés [1],§ 19 [Palgébre
de cohomologie modulo p H*(Bg, Z,) est une algébre de polynomes & [
générateurs de degrés p,,..., ;.

5) Ce résultat est dd & Cartan-Chevalley-Koszul-Weil ainsi qu’a Leray. Voir & ce
sujet les articles de Cartan, Koszul et Leray du Colloque de Topologie de Bruxelles (1950),
ainsi que [1], Chap. VI.

) Pour tout ce qui concerne la notion d’espace classifiant, la notation Bg , voir [1],
Chap. V.
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Soit d’autre part H un sous-groupe de ¢ isomorphe & (Z,)*; nous
devons montrer que k£ <!. Soit B, un espace classifiant pour le groupe
Z,; Palgébre H*(B,,Z,) est bien connue?): si p = 2 c’est une algébre
de polynomes a un générateur de degré 1 et si p #% 2 c’est le produit
tensoriel d’une algebre extérieure & un générateur de degré 1 par une
algébre de polynomes & un générateur de degré 2. On peut prendre pour
espace classifiant By pour H le produit direct de k espaces homéomorphes
a B,; il s’ensuit, d’apres la formule de Kiinneth, que H*(By,Z,) est
isomorphe au produit tensoriel de k algebres isomorphes & H*(B,,Z,),
donc est isomorphe au produit tensoriel d’'une algébre de dimension finie
par une algébre de polynomes a k générateurs. L’inégalité k <<l que
nous avons en vue est donc un cas particulier de la proposition suivante :

Proposition 7. Soient G un groupe de Lie compact connexe, H un sous-
groupe fermé de G (non nécessarrement connexe) et p un nombre premier.
On suppose que H* (B, Z,) (resp. H*(By, Z,)) est isomorphe au produsit
tensoriel d’une algeébre de dimension finie par une algébre de polynomes a
r générateurs (resp. a s générateurs). On a alors Uinégalité s < r.

(Dans I’application au théoréme 2ona s =k, r =1, et on en tire bien
E<l).

Avant de donner la démonstration de la proposition 7, fixons quelques
notations :

H*(By,Z,) =L @ U, ou dim. L = a < + oo, et ou U est une algebre

de polynomes & r générateurs de degrés p,,..., p,;
H*(By,Z,) =M @ V, ol dim. M = b < +4 oo, et ol V est une algébre
de polynomes & s générateurs de degrés ¢,,...,q,;

H*(G/H,Z,) = P est une algebre de dimension finie (puisque G'/H est
une variété compacte) que nous désignerons par c .

Enfin, si 4 est une algebre graduée par des sous-espaces 4, de dimen-
sion finie, on désignera par A (¢) la série formelle de Poincaré de A :

A@) =2, (dim. 4,) - t".

Démontrons maintenant la proposition 7. D’aprés [1], § 22, Pespace
By peut étre fibré de base B, et de fibre G/H . Cette fibration donne
naissance & une suite spectrale dont le second terme est isomorphe &

H*(Bgy,Z,) @ H*(G/H,Z,) =L @ P @ U, et dont le terme final est

7) Lorsque H est un groupe fini, la cohomologie de By n’est autre que la cohomologie
du groupe H, au sens de Hopf. Ici, nous utilisons la détermination de la cohomologie
des groupes cycliques que ’on trouvera par exemple dans S. Eilenberg, Bull, Amer. Math.
Soc., 55 (1949), 3—27.
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isomorphe & l'algébre graduée associée & H*(By,Z,) =M V. 1l
s’ensuit que 'on a dim. (L ® P ® U), = dim. (M &® V), pour tout n ,
ce qui se traduit par :

(L®P QU)W =M QV) () + R(@), (7.1)

ou R(t) est une série formelle a coefficients tous positifs.
Explicitons 7.1. On a U(¢) = IT:=7 1/(1—¢7%) , V(1) = ITi=8 1/(1—%)
d’ou:
L(t) - P(?) M) .
=y ~ M-ty 0 (7-2)
Le premier membre de 7.2 est une série entiere qui converge pour
|t] < 1; il en est donc de méme du second membre, et R(t) peut étre
considérée comme une fonction de ¢, définie pour |¢| < 1. Puisque tous
les coefficients de la série de Taylor de R(t) sont positifs, ona R(¢) > 0
pour 0 <t <1, ce qui donne:

L(t)- P(t) > M)
ITI(1—tré) = [I(1—19)

pour 0<t<1. (7.3)

Posons ¢t =1 — 1/N . Lorsque N tend vers -+ co, on voit tout de
suite que le premier membre de 7.3 équivaut & a.c. N'/p, --- p,, et
que le second membre équivaut & b. N*/q, - -- ¢, . Pour que le premier
membre reste supérieur au second lorsque N tend vers - co il est donc
nécessaire que r >s, ce qui démontre la proposition. De plus nous
voyons que, si § =17, on a:

@.c.qy g =b.p . (7.4)

Corollaire. Si H* (G, Z,) posséde un systéme simple de r générateurs
universellement transgressifs (aw sens de[1],§19), on a les inégalités
<, <r.

D’aprés [1], prop. 19.2 , H*(B,, Z,) est une algébre de polynomes & r
générateurs ; la proposition 7 montre alors que [, <r. L’inégalité
I <1, a été démontrée dans la proposition 6.

Remarques. 1. Si @ = U(n), Sp(r) ou SO(n), on a I'égalité I, = r;
mais cette égalité n’est pas générale: on peut montrer qu’elle est en
défaut pour le groupe adjoint de SO(6) .

2. D’aprés [2], le groupe exceptionnel G, vérifie les hypotheéses du corol-
laire précédent avec r = 3. On a donc [,(G,) <3, d’ol, compte tenu
du n° 6, (G, = 3.
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8. Sur le 2-rang des groupes exceptionnels

Les cinq types exceptionnels de groupes de Lie simples compacts sont
notés usuellement @,,F,, By, E,, ;. Ces symboles désigneront égale-
ment ici les représentants simplement connexes de ces structures de
groupes de Lie. Leurs centres ont respectivement 1, 1, 3, 2, 1 éléments
(cf. [4]) et tous les automorphismes de G,, F,, K,, E; sont intérieurs
(cf. [3], ainsi que F.Gantmacher, Rec. Math. Moscou N. S., 5, 1939,
p. 101—144).

Lemme. Soient g une algébre de Lie de groupe semi-simple compact et
t une sous-algébre abélienne maximale de g. Il existe un automorphisme
o de g, d’ordre deux, et dont la restriction a t est donnée par o(t) = — ¢,
tet?).

Soient go = g ® C l'algébre de Lie complexe déduite de g par pas-
sage du réel au complexe, et t; =1t @ C . D’aprés H. Weyl [7], on peut
trouver une base h,,...,h;, €, €g,... de go, ol h; ety etoux, B,..
sont des formes linéaires sur t, (les racines de g.), qui vérifient les pro-
priétés suivantes :

o £ 0; st & est une racine, — o est ausst une racine. (8.1)
[k, ey,] = x(h)-e, pourtout hety. (8.2)

[ex, €] = 0 si & + B n’est pas une racine. (8.3)

leas €g] = Nog - €448 8t o + f est une racine. (8.4)
Ng=Ng=DN_,, 3. (8.5)

Les éléments de la forme Xa,-h, + 2by-e,, ol a;est imaginaire pur
et o b_, = b, , forment une sous-algébre de Lie (réelle) g, de g tsomorphe
ag. (8.6)

Comme les sous-algébres abéliennes maximales de g sont conjuguées par
les automorphismes de g (cf. [7] par exemple), on peut donc supposer
qu’il existe un isomorphisme ¢:g-—> g, qui applique t sur g,Nt,.

Soit maintenant g la transformation linéaire de g, définie par :

ph)=—h si hety, y(e) =c¢€_,.

En utilisant 8.1 et 8.5 on voit que y respecte les relations 8.2, 8.3 et
8.4; v est donc un automorphisme de g, ; en outre g, est stable par y .
En posant o =¢'oyo @ on obtient alors I'automorphisme de g
cherché.

8) Ce résultat est un cas particulier d’un résultat classique; pour étre complets, nous en
rappelons la démonstration.
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Corollaire. Soit G un groupe de Lie semi-simple compact de rang 1 et de
centre réduit @ {e}. Si tous les automorphismes de G sont intérieurs, G con-
tient un sous-groupe isomorphe a (Z,)'+t.

Soient g et t les algebres de Lie de G et d’'un tore maximal 7' de G ;
Pautomorphisme ¢ du lemme précédent définit un automorphisme de G,
laissant stable 7', qui vérifie o(x) = 2! pour tout x € 7. Vu les hypo-
théses faites sur G, on a o(x) =g -x-¢g1, avec geG, et g2=c¢.
L’élément g commute donc avec les éléments d’ordre 2 de 7', et engendre
avec eux un sous-groupe isomorphe & (Z,)t! .

Proposition 8. Les groupes G,, F,, Ad. £, et E; ont un 2-rang stricte-
ment plus grand que leur rang. Ils possédent donc de la 2-torsion.

(On a noté Ad. @ le groupe adjoint de G, quotient de G par son centre).

Cette proposition résulte immédiatement du corollaire précédent et
des résultats rappelés au début de ce numéro.

Remarques.

1. L’existence de la 2-torsion n’est nouvelle que pour E;. Elle est
en effet triviale pour Ad. E, ~ E,/Z,, et la cohomologie modulo 2 de
G, et de F, a déja été déterminée par 'un de nous [2] .

2. La proposition 8 montre & nouveau que 1,(G,) > 3.

3. Elle montre également que [,(¥,) > 5. Mais il résulte de [2] et du
corollaire & la proposition 7 que [,(¥,) <5. On a donc finalement
lL(Fy) = 5.

4. Nous ne savons pas si les groupes E, et E, vérifient la proposition 8.
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