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Sur certains sous-groupes des groupes
de lie compacts

Par A. Borel, Genève, et J.-P. Serre, Paris

1. Introduction

On sait que tout sous-groupe abélien connexe H d'un groupe de Lie
compact G est contenu dans un tore maximal de G ; par contre cette
propriété peut être en défaut pour un sous-groupe H non connexe 1).

Cependant nous montrerons (théorème 1) qu'un tel sous-groupe H est
contenu, sinon dans un tore maximal, du moins dans le normalisateur
N d'un tore maximal T de G. En fait ce résultat vaut pour une catégorie
de groupes H plus vaste que celle des groupes abéliens : celle des groupes
vérifiant la propriété (MP) du n° 2 qui comprend aussi les groupes nil-
potents finis. Appliqué au cas où G est le groupe unitaire U(n) le
théorème 1 redonne un résultat classique sur les représentations mono-
miales (n° 5).

Ainsi, l'étude des sous-groupes abéliens de G est ramenée à l'étude des

sous-groupes abéliens de N ; cela nous permettra d'obtenir quelques
propriétés des sous-groupes de type (p,..., p) de G, sous-groupes qui
sont, à certains égards, l'analogue «modulo p» des tores contenus dans G.
Ces sous-groupes sont en rapport avec la ^-torsion 2) des groupes d'homo-
logie de G ; de façon plus précise, nous montrerons (théorème 2) que si G

est un groupe de Lie compact connexe de rang l qui contient un sous-

groupe isomorphe à (Zp)l+1, alors G a de la p"^018*011- ^n particulier,
nous verrons que les groupes exceptionnels G2, F± et E8 ont de la
2-torsion.

2. La propriété (MP)

C'est une propriété portant sur un groupe topologique G :

(MP) — G possède une suite finie de sous-groupes invariants fermés

*) II suffit de prendre pour G le groupe #0(3) des rotations de l'espace à trois dimensions

et pour H le groupe engendré par les rotations de 180° autour de trois axes rectangulaires.

*) On dit qu'un espace a de la p-torsion (p premier) si l'un de ses groupes d'homo-
logie à coefficients entiers a un coefficient de torsion divisible par p
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telle que les quotients successifs Gt/Gl_1 soient isomorphes à un groupe
cyclique fini ou au tore à une dimension.

Nous dirons qu'une suite (Gt) de sous-groupes vérifiant les conditions
précédentes est une suite semi-principale de G.

Un groupe G possédant la propriété (MP) est un groupe de Lie compact
résoluble et sa composante connexe de l'élément neutre est un tore. On
notera cependant qu'il existe des groupes résolubles finis ne vérifiant
pas {MP) 3).

Tout groupe de Lie compact abélien vérifie {MP) car il est isomorphe
au produit direct d'un tore et d'un groupe abélien fini. L'exemple donné
dans la Note 3) montre donc que si G/N et JV vérifient {MP), il n'en
est pas nécessairement de même pour G. Cependant, toute extension
centrale G d'un groupe G/N vérifiant {MP) par un groupe de Lie compact
abélien N vérifie aussi {MP). En effet, N étant dans le centre de G, les
éléments d'une suite semi-principale (Nt) de N sont des sous-groupes
invariants dans G et on obtient une suite semi-principale de G en complétant

(N%) par l'image réciproque d'une suite semi-principale de G/N.
En particulier, nous voyons ainsi que tout groupe de Lie compact nil-
potent vérifie {MP).

Proposition 1. Tout sous-groupe fermé et tout groupe quotient d'un
groupe vérifiant {MP) vérifie aussi {MP).

Soient G un groupe vérifiant {MP), H un sous-groupe fermé de G,
N un sous-groupe invariant fermé de G, et K G/N Si {Gt) est une
suite semi-principale de G, nous poserons Ht H f] Gt et Kt= N • Ot/N ;

les Ht et les Kt sont des sous-groupes invariants fermés de H et de K
respectivement ; le groupe HJHl_1 (resp. Kx/Kx_^) est isomorphe à un
sous-groupe fermé (resp. à un quotient par un sous-groupe fermé) du

groupe 0t/Gt_x ; il s'ensuit que Ht/Hl_1 et KJKl_1 sont isomorphes
soit à un groupe cyclique fini, soit au tore à une dimension ce qui montre
que (H%) et {Kt) sont des suites semi-principales de H et de K
respectivement.

Proposition 2. Un groupe topologique non réduit à Vêlement neutre qui
vérifie {MP) contient un sous-groupe invariant cyclique d'ordre premier.

3) Citons par exemple le produit semi-direct de Z2 + Z2 par Z8, le groupe Z3 opérant
sur les éléments non nuls de Z2 + Z2 par permutation circulaire {Zn désignant comme à
l'ordinaire le groupe additif des entiers modulo n): on voit tout de suite que ce groupe,
bien que résoluble, n'admet pas de sous-groupe invariant cyclique ^ {e} ; il ne vérifie
donc pas (MP).
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Soit O{ une suite semi-principale d'un groupe G vérifiant (MP) ; on
peut supposer Gt =£ {e} Si Gx est isomorphe au tore à une dimension,
Gx contient pour tout entier n ^ 1 un unique sous-groupe cyclique
d'ordre n ; si Gx est cyclique d'ordre k et si p est un nombre premier
divisant k, Gt contient un unique sous-groupe cyclique d'ordre p. Dans
tous les cas nous obtenons au moins un sous-groupe cyclique d'ordre
premier invariant par tous les automorphismes de Gx, donc en particulier
par les automorphismes intérieurs de G ; ce sous-groupe est donc invariant
dans G, cqfd.

3. Le théorème principal

Théorème 1. Soient G un groupe de Lie compact et H un sous-groupe
de G vérifiant la propriété (MP). Il existe un tore maximal T de G dont
le normalisateur dans G contient H.

Dire que le normalisateur de T contient H équivaut à dire que T est
stable par les automorphismes intérieurs que définissent les éléments
de H. Soient alors g l'algèbre de Lie de G, K le groupe d'automorphismes
de g défini par H ; le groupe K étant un groupe quotient de H vérifie
(MP) d'après la prop. 1 ; il nous faut trouver une sous-algèbre abélienne
maximale t de g telle que <x(t) t pour tout a eK Autrement dit,
il nous suffit d'établir le théorème suivant (du reste équivalent au théorème

1) :

Théorème !'. Soient g une algèbre de Lie de groupe compact et K un
groupe d9automorphismes de g qui vérifie la propriété (MP). Il existe alors
une sous-algèbre abélienne maximale t de g qui est stable par les opérations

de K.
Pour prouver le théorème 1' nous nous appuyerons sur la proposition

suivante qui sera démontrée dans le n° 4 :

Proposition 3. Soient g une algèbre de Lie de groupe compact et a un
automorphisme de g d9ordre égal à un nombre premier p. Si Vensemble des

points fixes de a est réduit à {0} g est une algèbre abélienne.

Admettons provisoirement cette proposition, et démontrons le théorème
V par récurrence sur la dimension de g, le cas où celle-ci est égale à 0

étant trivial.
On sait que g est isomorphe au produit direct c x g' de son centre c

par son algèbre dérivée g' et ces deux sous-algèbres sont évidemment
stables par K. Si c^ {0} l'hypothèse de récurrence montre l'existence

d'une sous-algèbre abélienne maximale t; de g' stable par K, et
C X f est une sous-algèbre abélienne maximale de g stable par K
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Il nous reste donc à examiner le cas où c {0} donc où g est semi-
simple. Le théorème est évidemment vrai si K {e} ; sinon, d'après
la proposition 2, K possède un sous-groupe invariant L cyclique d'ordre
premier ; si a désigne un générateur de L, l'ensemble a des points fixes
de a est une sous-algèbre de g qui est ¦=£ {0} d'après la Prop. 3, et qui
est =£ g puisque g n'est pas l'automorphisme identique ; puisque L est
invariant dans K, cette sous-algèbre a est stable par K, et ce dernier
définit un groupe K1 d'automorphismes de a qui est un quotient de K,
donc qui vérifie aussi (MP) Comme, d'après un résultat bien connu,
a est une algèbre de Lie de groupe compact, on peut appliquer au couple
(a, Kf) l'hypothèse de récurrence et il existe une sous-algèbre abélienne
maximale u de a stable par K', donc par K. Soit alors b la sous-algèbre
de g formée des éléments b tels que [u, b] 0 pour tout u eu Elle
contient évidemment toute sous-algèbre abélienne maximale de g contenant

u et elle a donc même rang que g. Puisque u est stable par K,
b l'est aussi ; en outre, puisque u ^ {0} et que le centre de g est {0}
on a b^g. On peut donc appliquer l'hypothèse de récurrence au
couple (b, K"), où K" est le groupe d'automorphismes de b défini par
K, et l'on obtient une sous-algèbre abélienne maximale t de b qui est
stable par les opérations de K", donc de K. Comme b et g ont même

rang, t est aussi une sous-algèbre abélienne maximale de g, ce qui achève
la démonstration.

4. Sur les automorphismes d'ordre premier d'une algèbre de Lie

Pour achever la démonstration du théorème ]/, nous devons encore
établir la proposition 3. Or, on sait qu'une algèbre de Lie de groupe
compact qui est nilpotente est de ce fait abélienne ; la proposition 3 est
donc une conséquence de la proposition suivante, que nous allons maintenant

démontrer :

Proposition 4. Soient g une algèbre de Lie et g un automorphisme de

g d'ordre égal à un nombre premier p. Si Vensemble des points fixes de a
est réduit à {0}, g est une algèbre nilpotente.

Soit gc g ® C l'algèbre de Lie complexe déduite de g par passage
du réel au complexe ; tout élément de gc s'écrit d'une seule façon sous
la forme z x -f i • y (x, y cg). Nous prolongerons a à gc en posant
o(x -f iy) o(x) + i • a (y) ; si l'ensemble des points fixes de o dans g
est réduit à {0}, il en est de même dans go

Soit e ^ 1 une racine p-ième de l'unité ; les valeurs propres de g sont
de la forme e*, j €ZP (groupe des entiers mod. p), et nous noterons Vj le
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sous-espace propre de gc relatif à la valeur propre e» ; gc est somme
directe des V, et l'on a :

F0={0} (4.1)

[V,,Vk]<zV1+k j,keZP. (4.2)

(La formule 4.1 signifie que l'ensemble des points fixes de a est réduit
à {0} et la formule 4.2 résulte de a( [x, y]) [&(%), o{y)])

Désignons par ad. x Fendomorphisme y-+[x,y] de qc Nous allons
montrer que ad. x est nilpotent lorsque x est contenu dans l'un des

sous-espaces V3. D'après 4.1, on peut supposer j ^k 0 mod. p, et d'après
4.2, on a ad. x (Vk) c V3+k d'où (ad. %)q(Vk) c VQJ+k, quel que soit
l'entier q. Choisissons en particulier pour q un entier positif, < p et
tel que qj + Je 0 mod. p, ce qui est possible, puisque j ^k 0 mod. p.
On a alors (ad. s) «(Ffc) aV0= {0} d'où a fortiori (ad. a) *(Ffc) {0}
et ceci ayant lieu pour tout Je on en conclut que (ad. x) p 0 ce qui
montre bien que ad. x est nilpotent.

Soit f(x, y) — ÏV(ad. x o ad. y) la /orme de Killing de gc ; elle est
invariante par tout automorphisme de gc, donc en particulier par o et
la formule f(x, y) f(a(x), a (y)) entraîne immédiatement :

f(x,y) 8^k-f(x,y) si xeV3 et yeVk. (4.3)

Montrons maintenant que f(x, y) est identiquement nulle ; il suffit
évidemment de prouver que / (x, y) 0 si xeV3 «/ € Ffc quels que soient

j, Je eZp Si j -\~ Je ^k 0 mod. p, cela résulte de 4.3 ; si j + Je 0

mod. 2>, alors [x, «/] 0 d'après 4.1 et 4.2 et les endomorphismes
ad. x et ad. y commutent. Comme ils sont tous deux nilpotents, leur
produit ad. x o ad. y est aussi nilpotent et sa trace /(#, y) est nulle.
Ainsi la forme de Killing de qc est nulle. D'après un critère classique
d'Elie Cartan, ceci entraîne que qc est une algèbre résoluble. Si n est la
dimension de g, on sait qu'il existe alors n formes linéaires sur
Qc o)1,..., o)n telles que les racines de l'équation caractéristique de ad. x
soient les n nombres (x>x{x),..., con(x) (les oot sont les poids de la
représentation adjointe de qc Puisque ad. x est nilpotent pour tout x e V3.
on a œ1 (x) - - - con (x) 0 pour tout x € V3 et comme gc est

somme directe des V3 ceci entraîne a>1(x) • • con(x) 0 pour tout
x e Qc L'endomorphisme ad. x est donc nilpotent pour tout x e Qc

ce qui signifie que qc est une algèbre de Lie nilpotente. Il en est donc de

même de g, cqfd.
Remarque. La dernière partie de la démonstration précédente est inutile

pour démontrer la proposition 3 ; il est en effet immédiat qu'une
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algèbre de Lie de groupe compact dont la forme de Killing est nulle est
abélienne.

5. Représentations monomiales

Soit h -> Mh une représentation linéaire d'un groupe H dans un
espace vectoriel complexe E de dimension finie n ; on dit que M est
monomiah s'il est possible de trouver une base (et) de E telle que, pour
tout h € H et tout i, le vecteur Mh(et) soit colinéaire à l'un des vecteurs
e, Un théorème classique [6], I, § 8) affirme que toutes les représentations

linéaires d'un p-groupe sont monomiales. Ce théorème est un cas

particulier de la proposition suivante :

Proposition 5. Toute représentation linéaire d'un groupe H qui vérifie
la propriété (MP) est monomiale.

Soit M la représentation, que l'on peut supposer unitaire, H étant
compact ; M est donc un homomorphisme de H dans le groupe unitaire
U(n) et l'image K de H par M vérifie (MP) d'après la prop. 1. Le théorème

1 montre alors l'existence d'un tore maximal T de U(n) dont le
normalisateur N contient K. Mais tout tore maximal de U(n) s'obtient
évidemment en prenant les matrices diagonales par rapport à une base

orthonormée (et) de E. Le normalisateur N de ce tore est l'ensemble
des matrices unitaires qui transforment chaque e^ en un multiple scalaire
d'un e^ ; il s'ensuit que N, et a fortiori K, sont des groupes monomiaux,
cqfd.

Remarque. Il existe des groupes qui vérifient la prop. 5 sans vérifier
le théorème 1 (ni à plus forte raison (MP)). Le groupe cité dans la Note 3)

en est un exemple : toutes ses représentations sont monomiales puisque
son groupe des commutateurs est abélien (cf. [6], loc. cit.) et on peut le

plonger dans $0(3) de telle sorte qu'il ne soit contenu dans le normalisateur

d'aucun tore maximal.

6. Le p-rang d'un groupe de Lie compact

Soient G un groupe de Lie compact, T un tore maximal de G, N le
normalisateur de T dans G, <t>(G) N/T le groupe de Weyl de G 4), qui
est un groupe fini. Le théorème 1 montre que, pour qu'un groupe abélien
H puisse être plongé biunivoquement dans G, il est nécessaire qu'il
admette un sous-groupe Jï^ isomorphe à un sous-groupe de T, le
quotient H/H1 étant isomorphe à un sous-groupe de 0(G)

4) On trouvera un exposé des propriétés classiques de N, Tf&(G) dans [5].
Nous écrirons fréquemment 0 au lieu de <&{G) lorsqu'aucune confusion ne sera à

craindre.
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Nous nous intéresserons spécialement aux sous-groupes H de G qui
sont abéliens finis de type (p,..., p), autrement dit qui sont isomorphes
à Zp + • • • + Zp p premier. Nous poserons la définition suivante :

Définition. Le p-rang d'un groupe de Lie compact G est le plus grand
entier h tel que G contienne un sous-groupe isomorphe à (Zp)h

Nous désignerons le p-rang par lP(G), ou simplement lp si aucune
confusion n'est à craindre, et nous désignerons le rang au sens usuel
(dimension de T) par l(G) ou l.

Le p-rang d'un tore est égal à la dimension du tore quel que soit p ;

comme lP(G) lP(N) d'après le théorème 1, et que

lP{N)
on en conclut :

Les inégalités 6.1 montrent notamment que lp(G) est fini. Lorsque
G est connexe on a le résultat plus précis suivant :

Proposition 6. Si G est un groupe de Lie compact connexe, on a I^
l ^lP ^3 1/2 si p ^ 2 et l lp si p ne divise pas Vordre du groupe
0(G).

G étant connexe, on sait [5] que 0 opère fidèlement sur l'algèbre de

Lie du tore maximal T. Tout sous-groupe de 0 isomorphe à (Zp)h admet
donc une représentation linéaire réelle fidèle de dimension l. Il s'ensuit
comme on sait que h <J l si p 2 et que h < 1/2 si p =£ 2 ; ceci

signifie que 12(@) ^ l et que lp{<P) < 1/2 si p ^ 2 ; d'autre part il
est évident que lp(0) 0 si p ne divise pas l'ordre de 0 Notre proposition

est alors une conséquence des inégalités 6.1.

Exemples

1. Groupe unitaire U(n) Comme tout sous-groupe abélien du groupe
unitaire peut être mis sous forme diagonale, c'est-à-dire plongé dans un
tore maximal, on a lp l n pour tout nombre premier p.

2. Groupe orthogonal unimodulaire 80 (n) Ici on a l [n/2] (nous
notons [x] la partie entière du nombre #). D'autre part, si H est un
sous-groupe abélien de 80 (n), on sait qu'on peut décomposer l'espace
Rn en somme directe de sous-espaces à deux dimensions (augmentée
d'un sous-espace à une dimension si n est impair) qui sont stables par
H. On en déduit que l% 2n — 1* et que lp [n/2] 1 si p^2;
134



en particulier si n 2k + 1 on a l k et l2 2k ce qui montre
que l'inégalité l2 < 21 ne peut être améliorée en général.

3. Groupe exceptionnel G2. C'est le groupe des automorphismes de

l'algèbre des octaves de Cayley, son rang est égal à 2 On peut y définir
un sous-groupe isomorphe à Z2 + Z2 + Z2 comme suit : soit {1, ef}
i eZ7, une base des octaves où les systèmes quaternioniens sont les

triplets (e{9 ei+1, ei+z) ; soit Si la transformation définie par fi^(l) 1

S{ (e^ — ei si 7 i,i-|-2,i-f-3,* + 4 et S{ (e,) ei sinon ; on
vérifie immédiatement que Si est un automorphisme pour tout i eZ1,
et que les sept transformations S{ forment avec l'identité un groupe
isomorphe à Z2 + Z2-\- Z2.

On a donc ^(^2) ^ 3 inégalité que nous retrouverons par une autre
voie au n° 8 ; nous verrons au n° 7 qu'en fait 12(G2) 3

7. Relations du p-rang avec la torsion

On sait que les nombres de Betti d'un groupe de Lie compact connexe
G sont complètement déterminés par la connaissance du groupe de

Weyl 0, considéré comme groupe d'automorphismes de l'algèbre de Lie
d'un tore maximal T de G 5) ; ils sont en particulier égaux pour deux

groupes Gx et G2 localement isomorphes. Cependant, alors que Gx et G2

ont même homologie réelle, ils se distinguent en général par leurs coefficients

de torsion ; et d'autre part les normalisateurs des tores maximaux
de Gx et G2 sont en général des extensions différentes de 0 par T. Ceci

suggère assez naturellement que les propriétés de l'extension de 0 par T
sont en quelque manière liées à la torsion. C'est dans ce sens que l'on
peut interpréter le théorème 2, car il met en rapport la torsion avec le

p-rang, notion qui dépend visiblement de l'extension de 0 par T.

Théorème 2. Soient G un groupe de Lie compact connexe, p un nombre

premier. Si lP(G) >l(G) le groupe G a delà p-torsion.
Raisonnant par l'absurde, nous supposerons G sans p-torsion et nous

démontrerons qu'on a alors lj> ^l.
Soit BQ un espace classifiant pour (?6). D'après [1],§ 19 l'algèbre

de cohomologie modulo p H*(BQ, Z9) est une algèbre de polynômes à l
générateurs de degrés px,..., px.

6) Ce résultat est dû à Cartan-ChevaUey-Koszul-Weil ainsi qu'à Leray. Voir à ce
sujet les articles de Cartan, Koszul et Leray du Colloque de Topologie de Bruxelles (1950),
ainsi que [1], Chap. VI.

6) Pour tout ce qui concerne la notion d'espace classifiant, la notation Bq voir [1],
Chap. V.
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Soit d'autre part H un sous-groupe de G isomorphe à (Zp)k ; nous
devons montrer que Je ^ Z. Soit Bp un espace classifiant pour le groupe
Zp\ l'algèbre H*(BP,ZP) est bien connue7): si p 2 c'est une algèbre
de polynômes à un générateur de degré 1 et si p =fi 2 c'est le produit
tensoriel d'une algèbre extérieure à un générateur de degré 1 par une
algèbre de polynômes à un générateur de degré 2. On peut prendre pour
espace classifiant BH pour H le produit direct de Je espaces homéomorphes
à Bp ; il s'ensuit, d'après la formule de Kxinneth, que 17* (BH, Zp) est
isomorphe au produit tensoriel de Je algèbres isomorphes à H*(BP, Zp)
donc est isomorphe au produit tensoriel d'une algèbre de dimension finie
par une algèbre de polynômes à Je générateurs. L'inégalité Je ^l que
nous avons en vue est donc un cas particulier de la proposition suivante :

Proposition 7. Soient G un groupe de Lie compact connexe, H un sous-

groupe fermé de G (non nécessairement connexe) et p un nombre premier.
On suppose que H*(BG, Zp) (resp. H*(BH, Zp)) est isomorphe au produit
tensoriel d'une algèbre de dimension finie par une algèbre de polynômes à

r générateurs (resp. à s générateurs). On a alors l'inégalité s ^ r
(Dans l'application au théorème 2 on a s Je, r l, et on en tire bien

Jfe<Z).
Avant de donner la démonstration de la proposition 7, fixons quelques

notations :

H*(BO,ZP) L <g) U, où dim. L a < + °°> et où U est une algèbre
de polynômes à r générateurs de degrés px,. pr ;

H* (BH,Z9) M ® F, où dim. M b < + oo, et où F est une algèbre
de polynômes à s générateurs de degrés qx,..., qs ;

iï* (G/H, Zp) P est une algèbre de dimension finie (puisque G/H est
une variété compacte) que nous désignerons par c

Enfin, si A est une algèbre graduée par des sous-espaces An de dimension

finie, on désignera par A (t) la série formelle de Poincaré de A :

A(t) Zn(dim.An).t«.
Démontrons maintenant la proposition 7. D'après [1], § 22, l'espace

BH peut être fibre de base BG et de fibre G/H Cette fibration donne
naissance à une suite spectrale dont le second terme est isomorphe à

H*(BG,ZP) ® H*(G/H,ZP) =¦ L ® P ®TJ et dont le terme final est

7) Lorsque H est un groupe fini, la cohomologie de BH n'est autre que la cohomologie
du groupe H, au sens de Hopf. Ici, nous utilisons la détermination de la cohomologie
des groupes cycliques que l'on trouvera par exemple dans S. Eilenberg, Bull. Amer. Math.
Soc, 55 (1949), 3—27.
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isomorphe à l'algèbre graduée associée à H*(BH,ZP) M ® F Il
s'ensuit que l'on a dim. (L ® P ® C7)w ^ dim. (Jf ® F)n pour tout n
ce qui se traduit par :

(L ® P (g) [/) (0 (Jf ® F) (0 + 5(0 (7.1)

où R(t) est une série formelle à coefficients tous positifs.
Explicitons 7.1. On a U(t) n\l\ 1/(1—$*) V(t) II)2[ 1/(1 —

d'où:
L(t)-P(t) M(t)

(7-2)

Le premier membre de 7.2 est une série entière qui converge pour
| t | < 1 ; il en est donc de même du second membre, et R(t) peut être
considérée comme une fonction de t, définie pour | 11 < 1 Puisque tous
les coefficients de la série de Taylor de R(t) sont positifs, on a R(t) ^ 0

pour 0 < t < 1 ce qui donne :

\zra\
<1. (7.3)

Posons t 1 — l/N Lorsque N tend vers + oo, on voit tout de

suite que le premier membre de 7.3 équivaut à a. c. Nr/p± • • • pr, et
que le second membre équivaut à b. Ns/qx • • - qs Pour que le premier
membre reste supérieur au second lorsque N tend vers + °° il es^ donc
nécessaire que r ^ s ce qui démontre la proposition. De plus nous
voyons que, si s — r, on a :

Corollaire. Si H*(G,Z2) possède un système simple de r générateurs
universellement transgressifs (au sens de [1], § 19), on a les inégalités
l ^ h ^ r •

D'après [1], prop. 19.2 H*(BQ,Z2) est une algèbre de polynômes à r
générateurs ; la proposition 7 montre alors que l2 ^Lr. L'inégalité
l < l2 a été démontrée dans la proposition 6.

Remarques. 1. Si G ?7(w), Sp(n) ou SO(n) on a l'égalité ?2 r ;

mais cette égalité n'est pas générale : on peut montrer qu'elle est en
défaut pour le groupe adjoint de $0(6)

2. D'après [2], le groupe exceptionnel G2 vérifie les hypothèses du corollaire

précédent avec r 3 On a donc 12(G2) < 3 d'où, compte tenu
du n<>6, 12(G2) 3.
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8. Sur le 2-rang des groupes exceptionnels

Les cinq types exceptionnels de groupes de Lie simples compacts sont
notés usuellement G%, FA, i?6, E7, E8. Ces symboles désigneront également

ici les représentants simplement connexes de ces structures de

groupes de Lie. Leurs centres ont respectivement 1, 1, 3, 2, 1 éléments
(cf. [4]) et tous les automorphismes de G2,FA, E7, E8 sont intérieurs
(cf. [3], ainsi que F. Gantmacher, Rec. Math. Moscou N. S., 5, 1939,

p. 101-144).

Lemme. Soient g une algèbre de Lie de groupe semi-simple compact et

t une sous-algèbre abélienne maximale de g. Il existe un automorphisme
a de g, d'ordre deux, et dont la restriction àï est donnée par a(t) — t,
tet*).

Soient g^ g ® C l'algèbre de Lie complexe déduite de g par
passage du réel au complexe, et tc — t ® C D'après H. Weyl [7], on peut
trouver une base hl9..., ht, ea, ep,... de go, où hi etc et où<%, /?,...
sont des formes linéaires sur tc (les racines de gc), qui vérifient les

propriétés suivantes :

oc ^ 0 ; si oc est une racine, —a, est aussi une racine. (8.1)
[h, ea] (X (h) - ea pour tout h etc (8.2)

[ea> ep] 0 si oc + /S n'est pas une racine. (8.3)
[ea, ep] N^p - ea4.0 si oc + /? est une racine. (8.4)

Nctp N(Xp N_a,_p. (8.5)

Les éléments de la forme 2Ja{ • h{ + £ba • ea où a% est imaginaire pur
et où 6_a 6a forment une sous-algèbre de Lie {réelle) q^ de go isomorphe

àQ. (8.6)

Comme les sous-algèbres abéliennes maximales de g sont conjuguées par
les automorphismes de g (cf. [7] par exemple), on peut donc supposer
qu'il existe un isomorphisme <p : g -> go qui applique t sur go fl tc

Soit maintenant y) la transformation linéaire de qc définie par :

y)(h) — h si h e tc y(e«) ^-a •

En utilisant 8.1 et 8.5 on voit que \p respecte les relations 8.2, 8.3 et
8.4; ip est donc un automorphisme de go ; en outre go est stable par xp

En posant a <p~l o %p o y on obtient alors l'automorphisme de g
cherché.

8) Ce résultat est un cas particulier d'un résultat classique; pour être complets, nous en
rappelons la démonstration.
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Corollaire. Soit G un groupe de Lie semi-simple compact de rang l et de

centre réduit à {e}. 8i tous les automorphismes de G sont intérieurs, G
contient un sous-groupe isomorphe à (Z2)l+1.

Soient g et t les algèbres de Lie de G et d'un tore maximal T de G ;

Fautomorphisme a du lemme précédent définit un automorphisme de 6?,

laissant stable T, qui vérifie a(x) x~x pour tout x e T Vu les
hypothèses faites sur G, on a a(x) g • x • g*1, avec g eG et g2 e

L'élément g commute donc avec les éléments d'ordre 2 de T, et engendre
avec eux un sous-groupe isomorphe à (Z2)l+1.

Proposition 8. Les groupes G2,F^, Ad. E7 et E8 ont un 2-rang strictement

plus grand que leur rang. Ils possèdent donc de la 2-torsion.
(On a noté Ad. G le groupe adjoint de G, quotient de G par son centre).
Cette proposition résulte immédiatement du corollaire précédent et

des résultats rappelés au début de ce numéro.

Remarques.
1. L'existence de la 2-torsion n'est nouvelle que pour E8 Elle est

en effet triviale pour Ad. E7 œ E7/Z2, et la cohomologie modulo 2 de
G2 et de Fé a déjà été déterminée par l'un de nous [2]

2. La proposition 8 montre à nouveau que 12(G2) > 3

3. Elle montre également que 12(F±) ^ 5 Mais il résulte de [2] et du
corollaire à la proposition 7 que ^(^4) ^ 5 • On a donc finalement

4. Nous ne savons pas si les groupes EB et E7 vérifient la proposition 8.
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