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Vergleich und Kombination
zweier Methoden von Veblen und Finsler
zur Losung des Problems der ausgezeichneten

Folgen von Ordnungszahlen

Von H. BacamANN, Ziirich

1. Einleitung

Das beim Versuch der effektiven Wohlordnung iiberabzahlbarer Teil-
mengen des Kontinuums auftretende ,,Problem der ausgezeichneten Fol-
gen® von Ordnungszahlen, das darin besteht, jeder Limeszahl der zweiten
Zahlklasse eine aufsteigende Folge vom Typ w von Ordnungszahlen
eindeutig zuzuordnen, deren Limes die gegebene Limeszahl ist, ist sehr
schwierig und bisher ungelost. Man beschrinkt sich deshalb vorldufig
darauf, das Problem der ausgezeichneten Folgen, die Finsler [1] iibrigens
,»Hauptfolgen* nennt, fiir einen moglichst groflen Abschnitt der zweiten
Zahlklasse zu losen.

Dies wird u. a. von Veblen mit Hilfe einer transfiniten Folge von Nor-
malfunktionen [2] ausgefiihrt ; eine Verallgemeinerung und Weiterfiih-
rung dieser Methode stammt vom Verfasser, der eine Folge &, vom Typ
F,+1(1)+1 von Normalfunktionen ¢, (x) erster Klasse aufstellt
0=9n=F,, (1), wobei die F,(£§) Normalfunktionen zweiter Klasse
sind [3]. Die von Veblen aufgestellten Normalfunktionen bilden einen
Abschnitt F, vom Typ 2%+ 2 von §,.

Veblen 16st nun das Problem der ausgezeichneten Folgen fiir alle Limes-
zahlen <E(1) =gge,,(1). Durch die Verallgemeinerung des Ver-
fassers [3] gelingt die Losung fiir alle Limeszahlen < H (1) = @rgay+1(1).

Finsler dagegen 1ost das Problem der ausgezeichneten Folgen fiir einen
Abschnitt der zweiten Zahlklasse durch Aufstellung einer Folge vom
Typ @2 von arithmetischen Operationen, die durch Funktionen ¢, (&, %)
von zwei Variabeln &, » gegeben sind, wobei «, & und 7 alle Ordnungs-
zahlen < durchlaufen [1]. Dabei bilden die Zahlen p, = ¢,(0, w)
=w, 0, =@, (w, w) fir 2 < x<Q (also g, = w?, g, = W?, g4 = W®®,
o5 = €) eine Normalfunktion, die wir mit
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%(x) = Qg

bezeichnen wollen ; ihre Ableitung w,(x) werde mit ,(x) bezeich-
net [2].

Das Problem der ausgezeichneten Folgen wird nun durch die Methode
von Finsler allein fiir alle Limeszahlen gelost, die kleiner sind als die
erste kritische Zahl [2] von y,(x), das heilt die Zahl y,(1).

Diese beiden Methoden von Veblen und Finsler sollen jetzt miteinander
verglichen werden, wobei sich zeigen wird, daBl schon das unverallge-
meinerte Verfahren von Veblen die Losung des Problems der ausgezeich-
neten Folgen viel weiter fiihrt als die Methode von Finsler allein (die
zwar den Vorteil grofierer Einfachheit hat). Ferner soll gezeigt werden,
daBl man die beiden Methoden kombinieren kann. Endlich werden wir
sehen, dafB3 die Kombination der beiden Methoden das Problem der aus-
gezeichneten Folgen fiir denselben Abschnitt; der zweiten Zahlklasse 1ost,
wie das Verfahren von Veblen allein, auch wenn man nur einen (nicht zu
kleinen) Abschnitt des unverallgemeinerten Verfahrens von Veblen

nimmt, so da} man also durch die Kombination letzten Endes doch
nicht weiterkommt.

Beziiglich der Ordnungszahlen, der Operationen mit Ordnungszahlen
und der Normalfunktionen wollen wir wieder die Bezeichnungsweise von
§ 1in der Arbeit des Verfassers [3] wihlen. Die hier betrachteten Normal-
funktionen erster Klasse sind stets solche, deren Argumentmenge aus

allen Ordnungszahlen z mit 1 < x <2 besteht, und deren Wertmengen
aus lauter Limeszahlen bestehen.

Daneben verwenden wir einen allgemeineren Funktionsbegriff : Wir
betrachten nicht-abnehmende Funktionen f(x), deren Argumentmenge
auch wieder aus allen Ordnungszahlen # mit 1 < < besteht, und
deren Wertmengen Teilmengen der Argumentmenge sind, mit der Eigen-
schaft

fl@) Sfley) fir 1=22<2,<Q.

Allgemein sei die transfinite Iteration f¥(x) einer solchen Funktion so
definiert :

folx) =ux;

fri(x) =f(f* () fir 0=v<Q;

fMx) =Limjf*(x), wenn A eine Limeszahl < ist.
v<A

Damit ist f(z) fir alle » mit 0 < v<£ definiert.
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2. Einige Eigenschaften der Normalfunktionen

Vorerst miissen wir einige Eigenschaften der Normalfunktionen ¢, ()
von @, betrachten und einige weitere Sitze iiber Normalfunktionen
beweisen, mit deren Hilfe wir dann unsere oben aufgestellten Behaup-
tungen beweisen konnen. Fiir die Normalfunktionen ¢, (x) von &, gilt
folgendes [3]:

Jeder Limeszahl # < F, ,,(1) ist eine Folge {#,} von einem gewissen
Typ 7,, der eine Limeszahl < ist, zugeordnet, in Zeichen

7= Lim 5, ,

so daf3 F<™

Po (%) = 0% ;

Ppi1 (¥) = @, () ;
Vo,= D Vg, , wenn 5 zweiter Art und n—zLim 7P
<ty <1y
@, () =9, (1) , wenn 7 dritter Art und n;Lirg Ny -
z<

Wie aus den Ausfithrungen von (3], § 2, hervorgeht, gelten fiir alle x
der Argumentmenge die drei folgenden Beziehungen :
Wenn 7 erster Art und =1+ 1, so ist

g, (e + 1) =gl (g,(2) +p) fir 1=f<g(x+1); (1)
wenn 7 zweiter Art und #= Lim #,, so ist
y<my
¢, (x+ 1) =Lim g, (p,(x)+p) fir 1=f=<¢,(z+1) (2)
<t
und e .
Lim ¢, (2) < ¢, () - (3)
y<ty

Die erste und zweite Beziehung gilt auch fiir = 0, wenn fiir den un-
definierten Ausdruck ¢, (0) die Zahl 0 eingesetzt wird.

Einige weitere Eigenschaften der Normalfunktionen ¢,(x) konnen
wir leicht beweisen: Es ist

@0 (%) = ¢,(2) (4)

fiir alle x der Argumentmenge und fir 0 <5 < F, ,,(1). Denn diese
Behauptung gilt fiir # = 0; und fir >0 ist wegen ¢, (z) =2

9, (%) = @o(9,(2)) = @o() .
Ferner gilt fiir jede Normalfunktion ¢, aus §, mit 0 =y < F, (1)

@, (%) = @4.(1) fir 1=2<Q; (5)
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denn setzt man 7 = 2.« + f, wobei x =0, 0 < <02, so ist

Ppsx (l) = PQ.a+8+x (l) = /3 +rx=zx,
also

(pn+:v (1) = (pr] ((pn-i—x (l)) -—2— ¢n (.’17) *

Nun beweisen wir drei weitere Satze iiber Normalfunktionen :

Satz 1. Ist f(x) eine nicht-abnehmende Funktion und @(x) eine
Normalfunktion mit der Eigenschaft

flx) Spx+1) fir p=<zx<Q,
wobet u eime bestimmte Ordnungszahl mit 1 < u<Q ist, so gilt
fr@) Sev(e+v) fir p=<2<Q und 0=v<Q.

Beweis mit transfiniter Induktion nach »: Fiir v =0 und » =1 ist
die Behauptung erfiillt.

Ferner folgt aus der Behauptung f*(z) < ¢”(x + ») dieselbe Behaup-
tung fir » + 1, denn es wird fir u < 2x<Q

frit(a) =f(f (@) = f9"(x + ) S@(e”(@+9) + 1) S(9* (@ +v+1))
="z + v+ 1).

Ist A eine Limeszahl <2 und gilt die Behauptung fiir alle »<<4,
so gilt sie auch fir » = 1; denn fir u < 2x<Q ist

fMz) = Lim f*(x) < Lim ¢¥(z + ») < Lim ¢¥(z 4 A) = ¢*(x + 4) .

v<A v<A v<A

Satz 2. Ist f(x) eine nicht-abnehmende Funktion wnd ¢, (x) eine
Normalfunktion aus §, mit 0 <n<F, (1), mit der Eigenschaft

f@) Segx+1) fir p=x<Q,
wober u eine bestimmte Ordnungszahl mit 1 < u<Q ist, so gilt
@) sen@+1) fir pa<Q und 0=v<Q.

Bewess mit transfiniter Induktion nach »: Fiir » = 0 ist die Behaup-
tung erfiillt, denn nach Voraussetzung ist

fr@) =f(x) S g,z + 1) fur p=2<.
Ferner folgt aus

(@) Sg,@+1) fir pw=s2<Q
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die Beziehung

[t =f(f (@) Sf (@@ + 1) < ¢, (P (x + 1) + 1)
fir pu=s<.
Nun ist
(pn—{-v(x + 1) é (pn+v ((prl+v+1(x) + 1)<¢:)+v (¢n+v+1(x) + 1)

= ‘Pn+v+1(x + 1),
also

Pr®+ 1)+ 1= (pn+v+1(x + 1) ;
also folgt

() S o (P + 1) =@ @+ 1) fir p2<Q,

das heiflt die Behauptung fir » 4 1.
Ist 4 eine Limeszahl < £ und gilt die Behauptung fir alle »<A, so
gilt sie auch fiir » = 4; denn fir 4 < x<Q ist nach (3)

S (2) = Lim f1+ () < le Ppiv(®+ 1) =@z + 1) .

v<A

Satz 3. Sind @(x) und zp(x) zwei Normalfunktionen mit der Eigen-
schaft
p@) Sype+1) fir px<2,

wober u eime bestimmte Zahl mit 1 < u < w 18t, so st
¢'(x) =y'(x) fir 1=2<Q.
Beweis mit transfiniter Induktion nach z: Nach Satz 1 ist
@ () S yp?(z + o) fir p=2<Q.
Fir z =1 ist nach (1)

P'(1) = g2(l) S 9@ (u) = y?(u + o) S p?(w-2) =9y'(1),

denn die erste kritische Zahl von y ist grofler als -2, weil die Wert-
menge von y aus lauter Limeszahlen besteht.
Gilt die Behauptung fiir x, so gilt sie auch fiir « + 1: Nach (1) ist

¢' (@ + 1) = ¢ (¢' (@) + 1) =y (¢ (2) + ©) = p*(v'(2) + ©)
'@+ 1),
denn ¢'(z) = u.
Ist A eine Limeszahl <, und gilt die Behauptung fiir alle x<A4,
8o ist

@' (A) =Lim¢'(1 + z) < Limy'(1 + =) =9'(4) .

<A T<A
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3. Wie weit fiihrt das Verfahren von Finsler, verglichen mit
dem Verfahren von Veblen?
Wir betrachten nun die Funktionen ¢, (&, ), die Finsler [1] definiert.
Jede solche Funktion ist fir £ =1 und 5 =1 in beiden Variablen

eine nicht-abnehmende Funktion. Die Iteration wird dabei nur in der
zweiten Variablen ausgefiihrt, so daf

ge(&m) =mn;

ot (€ ) = @ (&, i(E, M) 5
eM(&é,n) = Lim ¢L(&,7), wenn A eine Limeszahl <0 ist.

v<A

Die Funktionen ¢, (&, ) sind so definiert :

®olé,m) =n+1;

p(&,m) =n+§;

p(E,m) =n-&

ps(&,m) =7t

Par1 () = @a(n,n) fir o =3

@r(&,7) =Lim g, (&, 1), wenn A eine Limeszahl <Q ist.

a<A
Wir setzen nun zur Abkiirzung

ful@) =g (x,2) fir 0=<a<®Q und 1=z<0.

Dann ist
Jolx) =z +1;
file) =x-2
fo(z) = a? ;
fs(x) =a® ;
forr () = gg(z, 2) fir o =3 ;
fa(xz) = Lim f,(z), wenn 4 eine Limeszahl <& ist.

a<A

Aus den Monotoniesitzen von Finsler [1] geht hervor, dal die Funk-
tionen f,(x) nicht-abnehmend sind, und dal f () = x fir 1 < z<Q.
Ist v eine bestimmte Ordnungszahl <, so wird in ¢} (&, n) die
Iteration nur in der zweiten Variablen ausgefiihrt ; fiihrt man diese in
beiden Variablen aus, so gelangt man offenbar zu hoheren Zahlen, das

heifit, es ist
pr(z, 2) =fi(x) fir 1=s2<@), (6)
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wie man mit transfiniter Induktion nach » leicht beweisen kann : Fiir
v = 1 ist die Behauptung erfiillt. Gilt sie fiir », so ist nach den Mono-
toniesidtzen von Finsler

v+1
P

(x’ IL‘) = (}90‘(33,(,‘0;(33, x)) = ‘Pa((P; (x’ x) s (P; (.’IJ, x)) ——'fa((}?;(x, x))
=fu(fe@)=Fft (=) .

Gilt die Behauptung fiir alle v<A, wobei A eine Limeszahl <Q ist,
80 ist
@y (2, %) = Lim ¢}, (z, ) < Lim f} (z) = f5 (2) .

v<A v<A

Eine weitere Eigenschaft der Funktionen f, () ist, dafl

Jot1(®) = @g(x, 2) ; (7)
denn es ist

@ (x,2) =2-2 = fi() ;
i (z, 2) = z-(1 + x) = fo(2) ;
@y (z, ) = 217 = fi(2) ;

Po(®, ) = fopa(®) fir o =3.
Aus (6) und (7) ergibt sich (fir » = z)

fa+1(x) = falz) . (8)
Hilfssatz 1. FEs ist

[o@)<@oom(®+1) fir 1=Z2<Q und 1=2a<f.
Bewets mit transfiniter Induktion nach «:

a) Fir « =1 ist die Behauptung erfiillt, denn

fl(x) — .2 g w® 2<% w = Tt :¢O(x+ 1) ,

also nach (4)
filx) <@g (x+1) fir 1=Z2<Q.

b) Gilt die Behauptung fiir «, so gilt sie auch fiir « + 1: Nach (8)

ist
a1 (@) = fo(2) ,

ferner nach der Induktionsvoraussetzung und nach Satz 2

[a(®) =@o.ai1iz(x+1),
ferner nach (5)

Po.04142 (T + 1) S Poasrizrenn (1) = Po 4y (¥ -2+ 1),
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ferner nach (4)

2 2410 24+ 1<0® 0=g(z+1) <@g g (@+1),

somit

Po.(a41) (-24+1)< Po.(a+1) (‘PQ-(a+1)+1 (z+ 1)) = @2.(a+1) +1 (x+1),

also
for1 (%) <@g qynuu(@+1) fir 1=S2z<Q.

c) Ist A eine Limeszahl < £, und gilt die Behauptung fiir alle x <4,
so gilt sie auch fir « = 1: Es ist

fi(z) = Lirilfa (x) = Lir;l Po.an(z+1).
a< a<
Nach (5) ist
Po.an(®+1)= Pe.at+1+z41 (1) = ‘PQ-(«H)(‘” +1),

somit nach (3)

Ja(2) gLiT Po. @ (T+1) = I;il;\l Po.(T+1) =g, (2+1) <@g (2+1) .
a< <

Satz 4. Es ist

Pi(2) = @ora(®) fir 1=2<Q2,
also speziell

vi(1) = @gaia(l)
Bewers. Es ist

0r = falw) ,
denn
01 = w<w-2 =f1(0)) ’

0e =ful0) fir @=2.
Nach Hilfssatz 1 wird somit

0, = Yo () < Po.z41 (w4 1)< Po.x+2 (1) = Po.(z+1) (1) = Po.a+z+1) (1)

= Qg2 (x + 1) ’
also nach Satz 3

P1(%) S @oapq(2) fir 1<z<Q.

Das Ergebnis ist also, daf3 die Zahl v,(1) beim Verfahren von Veblen
schon sehr bald @berschritten wird, so daf also das unverallgemeinerte Ver-
fahren von Veblen viel weiter fuhrt als das Verfahren von Finsler allein.
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4. Kombination der beiden Methoden

Es ist aber moglich, die beiden Methoden zu kombinieren. Da Finsler
mit Hilfe arithmetischer Operationen das Problem der ausgezeichneten
Folgen fiir eine beliebige Limeszahl 4 der zweiten Zahlklasse lost, unter
der Voraussetzung, dafl dieses Problem fiir alle Limeszahlen < 4 gelost
ist und daB 4 kein Wert der Normalfunktion w,(x) ist, liegt es auf der
Hand, zuerst die Methode von Finsler anzuwenden, und dann auf die
dadurch erhaltene Normalfunktion v,(z) die Methode von Veblen oder
das vom Verfasser verallgemeinerte Verfahren anzuwenden. Dabei nimmt
man diese Normalfunktion y,(x) an Stelle von ¢,(x) als Ausgangs-
funktion und bildet die zu §, genau analoge Folge &, von Normal-
funktionen v, (x), die genau gleich definiert sind wie die ¢, (x), wobei
nur ¢ durch y ersetzt ist (fiir #>0).

Wir stellen nun die Behauptung auf : Bei dieser Kombination des Ver-
fahrens von Finsler mit dem unverallgemeinerten Verfahren von Veblen er-
hilt man ausgezeichnete Folgen fir alle Limeszahlen <E'(1l) = yoo,,(1),
ber der Kombination des Verfahrens von Finsler mit dem vom Verfasser
verallgemeinerten Verfahren von Veblen fir alle Limeszahlen <H'(1)

= Yro@a)+1 (1).

Beweis : Man definiert
o = Lim (1 + »n) .

ngw
Ist fiir jede Limeszahl y’ <y eine ausgezeichnete Folge definiert, wobei

y eine Limeszahl <Z'(1) bzw. H’'(1), so laBt sich auch fiir y eine
solche definieren :

a) Liegt y nicht in Vy,, so definiert man mit Hilfe der ,,Hauptdar-
stellung“ von Finsler die ausgezeichnete Folge fiir y. Dies ist immer
moglich (siehe Abschnitt 6 der Arbeit von Finsler [1)).

b) Liegt ¥ in Vy,, so definiert man die ausgezeichnete Folge von y
mit Hilfe der Normalfunktionen y,; dann gibt es ndmlich ein 5 mit
0=n=F,(1), so daBl

=y, () >z .

Die Definition der ausgezeichneten Folge von y ist genau entsprechend
den §§ 3 und 4 der Arbeit des Verfassers [3], ausgenommen wenn 7 = 0
und zugleich * =2’ + 1, also y = yo(2’ + 1) = g,.4,. Dann ist im
Fall ' =0

Yy =0, = 0 ;
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im Fall 2’ =1 setze man

Yy =0, =0, 0) =w=Lmno-(1+n),
im Fall o' =2 e

Yy =03 =¢@3(w, w) = 0® = Lim w'+" ,
im Fall 2’ =3 e

Y = 0pr41 = P (®, w) = Lim ¢}, (0, w) .
n<w

b. Fiihrt die Kombination der beiden Methoden weiter
als das Verfahren von Veblen allein ?

Um zu sehen, ob man durch die Kombination der beiden Methoden
weiter kommt als durch das Verfahren von Veblen allein, miissen wir die
Eigenschaften der nach § 4 der Arbeit des Verfassers den Limeszahlen
n mit o <9 =F, (1) zugeordneten Folgen {7,} und Funktionen
@, (&) und ¥, (&) betrachten [3]. Es gilt immer

N, =¥, (1+2) 290,(1 + 2) .
Es sei nun

=2+,
und die 5 und ¢ zugeordneten Folgen seien
n = Lim 7,
und o<
¢=ZLim ¢, .

$<1§

Betrachtet man alle Fille, die fiir die Funktionen &, auftreten konnen,
so sieht man folgendes :

1) Ist n<Q% w (letztere Zahl ist die erste Zahl nach £2, die allen
ihren Resten gleich ist), so ist 7, = v, und

@4y, =t fir 1<sz<rw, . (9)

2) Ist n =2 w, soist { =19, also {, =17,; fermmer 7, =7, =

und
Q4+ n,=1C,, fir 1=52r<ow. (10)

3) Ist #>0% w, soist { =75, also {, =9, fir 1 =2 <7, =1
a) Ist in diesem Fall 7,>w, so ist

N = D,(0) 22% 0 ,
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so daB3 also
Rt =n,=( fir o=zz<7 . (11)

b) Ist 7, = w, so ist

n, =29,(3) =220,
also

R4, =n,=¢( fir 2Zr<ow. (12)
Hilfssatz 2. FKs st

p,(2) = <p§(x + 1) fir ow=z<Q wund 1=y =F, .1,

wober Q.

Beweis mit transfiniter Induktion nach 7:

1) Fir # =1 ist nach Satz 4
P1(T) = Qoo (@) <@gey (x4 1) fir 1 =22<f.
2) Aus y,(z) =g (x+ 1) fir o <2< folgt nach Satz 3
Vo1 (8) = 01 () = @02 00 (%) < Qoo (24 1) fiir 1< Q.

3) Nun sei y,(2) = @eay,r(x + 1) fir o <2< fir alle 5 <,
wobei n eine Limeszahl =F, (1) sei. Dann gilt die Behauptung
auch fir »' =#:

a) Ist  dritter Art, also 7, = 2, so ist wegen (9) und (11) fir v <=

<8
2 +n, =8¢, .,
also

Wn (x) = w’?x (l) < ’an ((l)) é (p92+’7:¢ (CU —l— 1) < (pﬁz—{—nx-l& (l) é (pﬁm—{—nx.g.l (l)
= @rpp, (D) =@ (x4 1) .
b) Ist 5 zweiter Art, also 7, <, so ist wegen (9) bis (12) allgemein

Lim ¢g.,, ()= Lim g, (x) fir 1=sz<@.
y<t 4 y<my Y

Also ist nach (2)
¥, (1) = Lim Y, (w) £ Lim P04, (w + 1) = Lim Pt (w -+ 1)

y<tp y<tmy y<ty
=g (1) <@ (2) -

Ist y,(%) < g@.(x + 1), so folgt nach (2) und der Induktionsvoraus-
setzung :
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¥, ( +1)=Lim y, (y,(2) + 1) < Lim @g, (v, @)+ 2)

y<1y <ty

= Lim g, (y,(2) +2) < Lim ¢, (g, (z + 1)+ 2) =g (z + 2) .

y<tp y<tp

Ist 4 eine Limeszahl < und y,(x) S @ (x + 1) fir 1 <2<, soist

p,()=Limy (1+2)sLimg(1+2+1)=¢ ()< (A1+1) .

<A <A

Im Falle b) ist also auch
() Sg(e+1) fir 1=s2<Q.
Hilfssatz 3. Ks st
@, () =y, () fir O0=n=F, (1) und 1=z<Q.

Bewets mit transfiniter Induktion nach #:

1) Fir =0 ist @o(x) =0®, (%) =¢, -

Ist 1 <2 <5, soist die Behauptung ¢,(z) < y,(x) offensichtlich
erfiillt. Ferner folgt aus o® <p, (und x = 5)

Cr+1 = 99‘:(“): w)>¢i(wa (D) = (px(w’ (Pa:(w’ w)) = (P.'c(w> Qw)
>@a(0, 0,) = 0,70 2 0™ .

Sodann folgt aus w® <, fir 1 <x<A4, wobei A eine Limeszahl
<0 ist,
ot <oy -
2) Gilt die Behauptung von Hilfssatz 3 fiir %, so gilt sie fiir » 4 1
(nach Satz 3).

3) Ist % von zweiter Art, %= Lim#, und gilt @y () =y, (x) fir
Z<1'7]

1 £ x< @ fir alle '<n, so gilt die Behauptung auch fiir #:

Es ist . _
¢,(1) = Lim ¢, (1) = Lim g, (1) =y,(1) .

w<1,7 a:<1,7

Ferner folgt aus ¢, (z) =< v, (x)
¢, (z + 1) = Lim ¢, (¢, (x) + 1) <Lim y, (¢, () + 1)

<ty y<ity
< Lim q),’y(q)n(x) +1)=9,(x+1) .
y<ip

Sodann folgt aus ¢, (x) < y,(x) fir 1 < x<<A, wobei 4 eine Limeszahl
<Q ist,
(Pn()“) g '/’n(z) ¢
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4) Ist # dritter Art, %= Limy, und gilt g, (x) <y, (2) fir
<8

1 < x< fir alle ' <n, so gilt die Behauptung auch fir #:

@, (2) =@, (1) =y, (1) =1y, (x) .

Satz 5. Es ist ¢ (x) =, (v) fir 1 =x<Q, u erster Art und
QPRo<nsF,. ).

Beweis: Aus Hilfssatz 2 und Satz 3 folgt

P41(2) S@ea(x) fir 1=2<Q uwnd 1=9p=F,(1).
Da fir = 2% w n = { ist, folgt daraus

PY41(2) S ga(x) fir 1=2<@Q und Lo=y=sF,,(1).
Daraus und aus Hilfssatz 3 folgt

@ (@) =y, (@) fir 1<2<Q uwd Po=y=F,, ().

Speziell wird
E(1) =E'(1) wund H()=H'(1).

Das Ergebnis ist also : Die Kombination der beiden Methoden lost das Pro-
blem der ausgezeichneten Folgen. fiir denselben Abschnitt der zweiten Zahl-
klasse wie das Verfahren von Veblen allevn, auch wenn man nur einen
(allerdings nicht zu kleinen) Abschnitt des unverallgemeinerten Ver-
fahrens von Veblen nimmt. Und zwar gilt dies schon, wenn man den Ab-
schnitt vom Typ 0% w 4 2 der Folge §, von Normalfunktionen ¢,
nimmt, mit dessen Hilfe das Problem der ausgezeichneten Folgen fiir alle
Limeszahlen <@g, ,.1(1) gelost wird.
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