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Une propriété des espaces osculateurs
des courbes normales

De J.-P. SYDLER, Zurich

A M. P. Scherrer, bibliothécaire en chef de 'E. P. F.

Une courbe normale de I’espace & » dimensions, & savoir une courbe
algébrique d’ordre n n’appartenant pas & un espace de dimension infé-
rieure, est donnée sous forme paramétrique par les équations:

Y () = At (¢e=20,...,m) . (1)

Pour simplifier les développements ultérieurs, opérons la transforma-
tion de coordonnées:

Yy, =X N x, (t,s=0,...,n) , (2)
Aor. .., A, étant m 4+ 1 valeurs différentes quelconques. La coube ré-
pond alors aux nouvelles équations:
IT (A — 24
. 8Z1 ' e
x; (A) = T, =7y (t,§=0,...,m) . (3)
821

L’hyperplan osculateur au point de parametre A* de la courbe (1) se
trouve facilement. En effet, pour que Xa,y, = 0 soit osculateur en Ai*,
il doit couper la courbe en n points confondus, c’est-a-dire que, puisque
y, = A*, Za,A* doit étre identique & (A — A*)*, donc

a, = (— 1) (".’)(a*)n—i .

?

On trouve des lors ’hyperplan osculateur X b,x;, = 0 au point A* de
la courbe (3):

stxs:Z'aa?/i=2“i)~§xs:2(“ l)i (7:) (A*)n—ilg xs ’

b= 3 (—1) (";) 7 Ay b, = (A% — )" .
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L’équation de I’hyperplan osculateur au point 4 de la courbe (3) est done

DA —A)x; =0 (4)

j=0

Nous dirons, comme il est d’usage, qu’un espace linéaire & &k dimen-
sions est osculateur a la courbe §’il la coupe en k + 1 points confondus.
Il est clair que le E*—* osculateur au point de parametre A sera déterminé
par 2(A — A,)" x,= 0 etles k£ — 1 premieres dérivées par rapport & 4,
donc par X(A — A)"" x;, =0, t=0,...,k— 1.

Les coordonnées pluckériennes tangentielles de ce E"—* sont dés lors :

) (}‘ _— A’zl)n d (A }’zk)n
Ptk (A) = e =
(A — A )"HHl. (A — A,
AL LAT
. Y _ adag | T
— [(A 2‘11) te (A Azk)] * Zz'l . lik
1..... 1

(Gyyevnsipg=20,...,m) .

Notons simplement que les E** osculateurs de la courbe normale
sont donc représentés sur la grassmannienne des E"~* dans l’espace a

(n}t 1) — 1 dimensions par une courbe d’ordre k(n — k -+ 1): son
ordre est égal a la dimension de la grassmannienne.

Considérons enfin les traces E°* des E™* osculateurs dans l’espace &
k 4+ s dimensions déterminé par les points de parameétres A,,..., 4;.,,
& SaVoIr %, .., =---= &, = 0. Il est clair que les coordonnées plucké-
riennes tangentielles de ces K* seront :

1.4.44 1
Pt () =[(A—A). . . (A— A,) "R+t }‘n A,k '
k—1 k-1
(Byyeeerbe=10,..., %+ s) . Ai e Ay

On pourra donc les représenter univoquement par les points P(4) d’une
kE+s+1
k

Nous prétendons que les points P(4,),..., P(4,,,) sont dépendants,
c’est-d-dire situés dans un E*+*-1. Pour démontrer cette proposition,
il suffit de prouver que les déterminants formés par k + s + 1 quel-
conques des composantes de ces k 4 s 4 1 points sont nuls

courbe de l’espace & ( ) — 1 dimensions.

Ipil.“ik(lv)lzo (i13'°'>ik>v—:‘0""’k+s)'
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Considérons en particulier les déterminants formés par les composantes

0,1,...,k—2,t t=k—1,...,k+3s) et £ — 1 composantes quel-
CONQUES %y, ..., iy.
Comme p»—*¥28(1)=0, si v=0,...,k — 2, le déterminant

considéré est égal au produit de deux sous-déterminants, dont 'un est :
[p% 28 (4,)]|=0 G,v=k—1,...,k+s) .

Si 'on simplifie chaque ligne de ce déterminant par

oooooooooooo

et chaque colonne par [(4, — 4;)...(4, — 4;_,)]* %+, il se réduit a
| (A, — A,)PF+1| (w,v=k—1,...,k4 3) .

Or ce déterminant est symétrique gauche si n — k 4 1 est impair, il
est de rang impair si s est impair; il est donc nul si s est impair et si
(n — k) est pair. Dans ce cas, tous les déterminants considérés sont nuls.

Rappelons une définition bien connue : (¢ + 1) £*® de E™ sont associés
si tout E" -1 qui en coupe ¢ quelconques coupe encore le (¢ + 1)Pme,
Nous pouvons dés lors énoncer le théoréme suivant :

Considérons k + s+ 1 E** osculateurs en %k -+ s+ 1 points
Py,..., P, , dune courbe normale de E". Les traces E° de ces En*
dans le E*+* déterminé par les points P forment un groupe de (k + s + 1)
E¢ associés dans le E¥+2 si (n — k) est pair et si s est impair.

Afin de généraliser une fois encore ce résultat, considérons les traces
de ces L* dans 'intersection des hyperplans osculateursen P,,..., P,_,.
Les En—k osculateurs en P,,..., P,_, étant contenus dans un de ces
hyperplans, leur trace sera un E*-'+1; les traces des E"* osculateurs en
P,, ..., P, seront des E*~*. Dans le E¥+-* d’intersection considéré,
on a donc ¢t E*-*tlet k+ s —t+ 1 E*-t Tout E¥! qui coupe k + s
quelconques de ces espaces coupe aussi le dernier. Or il coupe automati-
quement les ¢ E*—*+1; donc, 8’il coupe k + s — ¢ E*~?, il coupe le dernier ;
ces k+s—t+ 1 E** sont associés dans le E¥+*—¢ Nous arrivons
ainsi au théoréme général :
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Proposition 1. Considérons k + s + 1 E** osculateurs aux points
Py,..., Py, d'une courbe normale de E*. Soit E lespace & k -+ s —1t
dimensions, intersection de Uespace (P,,..., P,,,) et des hyperplans
osculateurs en Py, ..., P, ,. Cet espace E coupe les E"* osculateurs en
P, ...,P.., swvant k+ s —t -+ 1 E** qui sont associés st n — k est
pair, s itmpair, t =0,..., 8.

Enongons encore la propriété duale obtenue en coupant la configura-
tion réciproque par l'espace (P,,..., P,.,).

Proposition 2. Soient k + s + 1 E¥*1 osculateurs aux points P, . . .,
P, d’une courbe normale de E™. Soit E Uespace @ n —k — s+t — 1
dimensions déterminé par les points P, ..., P,_, et par Uintersection des
hyperplans osculateurs en P, ..., Py, .. Silon projette les E*1 oscu-
lateurs en P,,..., Py, a partir de E sur Uespace E*¥+5—t déterminé par
les points P,,..., P,,,, on obtient k+ s —t+ 1 E* ! associés dans
cet espace st n — k est pair, s impair, t=0,...,s.

Pour faire ressortir la généralité de ces propositions, considérons quel-
ques cas particuliers.

a) Proposition 1, ¢t =0, k=1, n»n impair. On a la propriété bien
connue :

Les E™' osculateurs en s -4 2 points d’'une courbe normale de E=»
coupent le E*+! des points de contact suivant s 4 2 E* concourants si s
est impair.

b) k=n—2p; s=2p—1; t=0.

n E? osculateurs d’une courbe normale de £ coupe le £7—! des points
de contact suivant n E? -1 associés.

c) t=s¢; k=n— 2p.

Considérons n — 2p + s + 1 E?% osculateurs en P,,..., P, ., ,..
Soit K = E"-2¢ Dintersection de lespace (P,,..., P, ,,) avec les
hyperplans osculateurs en P,,..., P,_,. L’espace E coupe les E?2r
osculateursen P,,..., P,., ,, selon n — 2p 4 1 points qui sont dans
un En—2p-1 gj g est impair.

d) t=0, s=1, k=n— 2p.

n — 2p + 2 E?P osculateurs coupent le E"—2P+1 déterminé par leurs
points de contact sutvant n — 2p + 2 droites assocides dans cet espace.
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Cette propriété était le but primitif de cet article et avait été pressentie
par M. A. Longhi.

e) Proposition 2, s=1, t=0, k=n — 2p — 2.

Soient n — 2p E"~#-3 osculateurs en P,,..., P, , ;. Soit E
Pespace & 2p dimensions, intersection des hyperplans osculateurs en
Py, ...,P, ,, ,. Les projections des E"~2P—3 osculateurs en P,,...,
P, ,, , & partir de E sur le E*»?P—1 déterminé par les points P sont

n — 2p E" -3 aggociés.
flt=0, k=2.

Si 'on projette s + 3 tangentes sur le E*+? des points de contact &
partir de l'intersection des hyperplans osculateurs en ces points, on ob-
tient s + 3 droites associées si n est pair et si s est impair.

g)t=0, k=2, s=1.

Si l'on projette 4 tangentes quelconques d’une courbe normale de E»
sur le E? des points de contact, & partir du E»—* d’intersection des hyper-
plans osculateurs en ces points, on obtient 4 droites associées si n est pair.

h) Dans la proposition 2, supposons ¢ = 0 (ce qui n’enléve rien a la
généralité de ce qui suit) et, au lieu de projeter sur 'espace P, ..., P;,,
comme nous ’avons fait par raison de symétrie, projetons maintenant
sur un espace & k -+ s dimensions quelconque & partir de I’espace &
(n — k — s — 1) dimensions E, intersection des hyperplans osculateurs
en Py,..., P,,,. La courbe normale est projetée suivant une nouvelle
courbe rationnelle I', d’ordre n. Cette courbe a aux points ¢),, projections
des points P,, des points d’hyperosculation, c’est-a-dire des points tels
que I’hyperplan (dans E*+%) osculateur & la courbe en un de ces points la
coupe en 7 points confondus. La courbe I" est dans E¥*+2 la courbe ration-
nelle d’ordre » la plus générale qui ait £ 4+ s + 1 points d’hyperoscula-
tion. Les E*-1 osculateurs aux points P, sont projetés suivant les E¥-1
osculateurs & I" en Q. Dés lors, si nous posons pour simplifier & + s = r,

§ =2p — 1, nous pouvons exprimer la proposition 2 sous la forme
suivante :

Proposition 3. Soit dans Er une courbe rationnelle d’ordre n dotée de
r -+ 1 points d’hyperosculation Q,. St n — r est impair, les E™=? oscula-
teurs a la courbe aux points Q, sont associés (p = 1,...,[r/2]).

Le cas particulier p =1 a été démontré par L. Berzolari (cf. Rendi-
conti del Circolo matem. di Palermo 22 (1906), pp. 214—219).
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Nous pouvons maintenant passer & la géométrie de la courbe, consi-
dérée comme variété algébrique rationnelle & une dimension, indépen-
damment de l’espace dans lequel elle est immergée.

Les hyperplans de E” coupent sur I" une série linéaire g}, d’ordre n
et de dimension r. Cette série a r + 1 points n-uples aux points @,. Les
E71 passant par un E?%-! fixe coupent sur I” une série linéaire ¢/ ~27,
contenue dans la g, . Si le 271 est incident & un E"—?° osculateur en @,,
la ¢"~% a en Q, un point (r — 2p + 1)-uple. Sile E?P-1 est incident & 7
Er—?v osculateurs en r points @,, il est incident au dernier. En combinant
ces deux propriétés, nous arrivons a la nouvelle propriété :

Proposition 4. Soit wune variété rationnelle ool possédant une série
linéaire g, dotée de r 4 1 éléments n-uples Qq4,...,Q,. St n —r est
impair, toute série lindaire g, %7 | contenue dans la ¢’ et ayant un élément
(r — 2p + 1)-uple en r des éléments Q,, a également un élément (r — 2p
4 1)-uple au (r + 1)¥™ élément Q,- (p=1,...,[r/2]).

Exemple : Toutes les coniques déterminent sur une cubique rationnelle
plane une série linéaire ¢ ayant 6 points sextuples S;,...,8; (points
d’hyperosculation des coniques). Si donc un faisceau de coniques con-
tient cinq coniques tangentes chacune a la cubique en un des points §,,
il contient une sixiéme conique tangente a la cubique au sixiéeme point S,.
Et aussi: Si un systéme linéaire oo® de coniques contient 5 coniques
surosculatrice (4 points de contact) & la cubique aux points sextuples
8,,...,8;, il en contient une sixieme surosculatrice & la cubique en S.

Notons enfin un cas particulier: » = 2p 4 1, n pair.

Soit une variété rationnelle co! possédant une ¢2?*! dotée de 2p + 2
éléments n-uples, @Q,,...,@,,.,. Sile groupe jacobien (groupe des élé-
ments doubles) d’'une g. contenue dans la ¢2?*! contient (2p + 1)

n
éléments @, il contient nécessairement le (2p -+ 2)*®e,

(Regu le 25 avril 1951.)
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