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Une propriété des espaces oscillateurs
des courbes normales

De J.-P. Sydler, Zurich

A M. P. Scherrer, bibliothécaire en chef de VE. P. F.

Une courbe normale de l'espace à n dimensions, à savoir une courbe
algébrique d'ordre n n'appartenant pas à un espace de dimension
inférieure, est donnée sous forme paramétrique par les équations:

y,W * (» 0,...,n) (1)

Pour simplifier les développements ultérieurs, opérons la transformation

de coordonnées:

y. 2Mî*. (i,« O,...,n) (2)

Ao,.. ln étant n ~\- 1 valeurs différentes quelconques. La coube
répond alors aux nouvelles équations:

n (X - xs)

*'^^nV=IJ M Of...,n). (3)

L'hyperplan osculateur au point de paramètre A* de la courbe (1) se

trouve facilement. En effet, pour que Sat y% 0 soit osculateur en A*,
il doit couper la courbe en n points confondus, c'est-à-dire que, puisque

yt A*, Za%X% doit être identique à (A — A*)n, donc

On trouve dès lors l'hyperplan osculateur Ebtxt 0 au point A* de

la courbe (3) :

1,8

2;(-i)M!?Ui
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L'équation de l'hyperplan oscillateur au point X de la courbe (3) est donc

j) (A-*,)**,=-0 • (4)
7=0

Nous dirons, comme il est d'usage, qu'un espace linéaire à k dimensions

est osculateur à la courbe s'il la coupe en k -f- 1 points confondus.
Il est clair que le En~k osculateur au point de paramètre X sera déterminé

par Z(X — X3)n x3 0 et les k — 1 premières dérivées par rapport à A,
donc par Z(X — A,)n~* x3 0, $ 0, fc — 1.

Les coordonnées pluckériennes tangentielles de ce En~k sont dès lors :

»*l (7\ —
(A-A,,)» ...(A-A,,)"

(il9...9ik O9...9n)

Kx • • • • K
1 1

Notons simplement que les En~~k osculateurs de la courbe normale
sont donc représentés sur la grassmannienne des En~k dans l'espace à

I T" j — 1 dimensions par une courbe d'ordre k(n — k -f- 1) : son

ordre est égal à la dimension de la grassmannienne.
Considérons enfin les traces Es des En~k osculateurs dans l'espace à

k + s dimensions déterminé par les points de paramètres Xo,..., Xk+S,

à savoir xk+s+1 • • xn 0. Il est clair que les coordonnées plucké-
riennes tangentielles de ces Es seront :

(il9..., ik 0,..., k + s)

On pourra donc les représenter univoquement par les points P(X) d'une

courbe de l'espace à I I — 1 dimensions.

Nous prétendons que les points P(X0),..., P(Xk+s) sont dépendants,
c'est-à-dire situés dans un Ek+S~l. Pour démontrer cette proposition,
il suffit de prouver que les déterminants formés par k -\- s -\- \
quelconques des composantes de ces k + s + 1 points sont nuls

\pH f*(AJ| =0 {il9...,ik9v O9...,k + 8)
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Considérons en particulier les déterminants formés par les composantes
0, 1 ,...,& — 29t (t k — 1 ,...,& + s) et h — 1 composantes
quelconques ix,..., ih.

Comme p°> •>*-*>* (X9) 0, si v 0,..., k — 2, le déterminant
considéré est égal au produit de deux sous-déterminants, dont l'un est :

| p*..».*-M (AJ | 0 (t, v k - 1,..., k + s)

Si Ton simplifie chaque ligne de ce déterminant par

1 1 1

ofc1 2*l ifc
"O • • • Aifc-2 ^

et chaque colonne par [(Xv — Ao)... {Xv — Afc__2)]n~~fc+1, il se réduit à

I iK - K)n~k+11 (u,v k - î,...,k+ s)

Or ce déterminant est symétrique gauche si n — k + 1 est impair, il
est de rang impair si s est impair ; il est donc nul si s est impair et si

(n — k) est pair. Dans ce cas, tous les déterminants considérés sont nuls.
Rappelons une définition bien connue : (t + 1) E8 de En sont associés

si tout En-S~x qui en coupe t quelconques coupe encore le (t + l)ième.

Nous pouvons dès lors énoncer le théorème suivant :

Considérons k + s + 1 En~~k osculateurs en k + s + 1 points
Po,..., Pk+8 d'une courbe normale de En. Les traces Es de ces En~k
dans le Ek+8 déterminé par les points P forment un groupe de (k -{- s + 1)

E8 associés dans le Ek+S si (n — k) est pair et si s est impair.

Afin de généraliser une fois encore ce résultat, considérons les traces
de ces E8 dans l'intersection des hyperplans osculateurs en Po,..., /%_i.
Les En-k osculateurs en Po,..., Pt__x étant contenus dans un de ces

hyperplans, leur trace sera un E8~t+1 ; les traces des En~k osculateurs en

Pt,..., Pk+8 seront des E8-1. Bans le Ek+8-f d'intersection considéré,
on a donc t E8-**1 et k + s — t + 1 E8-*. Tout Ek~x qui coupe k + s

quelconques de ces espaces coupe aussi le dernier. Or il coupe automatiquement

les 12J8~*+i ; donc, s'il coupe k + s — t Es~f, il coupe le dernier ;

ces k + s — t + 1 E8"* sont associés dans le 2?&+s~*. Nous arrivons
ainsi au théorème général :
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Proposition 1. Considérons k -f- s + 1 En~k oscillateurs aux points
Po,.. Pfc+g d'tme courbe normale de En. #oi£ £ Vespace à k -{- s — t
dimensions, intersection de Vespace (Po,..., Pfc+S) e£ des hyperplans
osculateurs en Po,..., Pt_t. <7e£ espace E coupe les En~k osculateurs en

Pt,. Pfc+S suivant k -\- s — t -{- l E8-* qui sont associés si n — k est

pair, s impair, t 0,..., s.

Enonçons encore la propriété duale obtenue en coupant la configuration

réciproque par l'espace (Pt,..., Pfc+S).

Proposition 2. Soient k + s + 1 jE*"1 osculateurs aux points Po,...,
P&+s d'une courbe normale de En. Soit E Vespace à n — k — «s + ^ — 1

dimensions déterminé par les points Po,..., Pt_x et par Vintersection des

hyperplans osculateurs en Po,. Pk+S. Si Von projette les Ek~x
osculateurs en Pt,.. Pk+S à partir de E sur Vespace JÇfe+s-* déterminé par
les points Pt,.. Pk+S, on obtient k + s — t + 1 2?*"""1 associés dans
cet espace si n -— k est pair, s impair, t 0 ,...,$.

Pour faire ressortir la généralité de ces propositions, considérons quelques

cas particuliers.

a) Proposition 1, t 0, k 1, n impair. On a la propriété bien
connue :

Les En~x osculateurs en s + 2 points d'une courbe normale de En

coupent le E8*1 des points de contact suivant s + 2 E8 concourants si s

est impair.

b) k n~ 2p\ s 2p—J; t 0.

n E2& osculateurs d'une courbe normale de En coupe le En~x des points
de contact suivant n E2p~x associés.

c) t s ; k n — 2p.
Considérons n — 2p + s + 1 E2? osculateurs en Po,..., Pn+S_2p.

Soit E U*1-2^ l'intersection de l'espace (Po,. Pw+S_23)) avec les

hyperplans osculateurs en Po,. Ps_x. L'espace E coupe les E2p

osculateurs en P8,..., Pw+S_23, selon n ~ 2p ~{- 1 points qui sont dans
un JE^-2p-i gj 8 eg^ ii

d) t 0, 5=1, k n — 2p.

n — 2p + 2 i?2^ osculateurs coupent le En~2p+1 déterminé par leurs
points de contact suivant n — 2p + 2 droites associées dans cet espace.
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Cette propriété était le but primitif de cet article et avait été pressentie
par M. A. Longhi.

e) Proposition 2, 5=1, 2 0, Je n — 2p ~ 2.

Soient n — 2p En~2p-Z oscillateurs en Po,. Pn_2p-i- Soit E
l'espace à 2p dimensions, intersection des hyperplans osculateurs en

Po,..., Pn_2v-i- Les projections des En~2p~3 osculateurs en Po,...,
Pw_2î,_1 à partir de E sur le E71-^-1 déterminé par les points P sont
n — 2p En~2P-3 associés.

/) t 0, k 2.

Si l'on projette 5 + 3 tangentes sur le i?s+2 des points de contact à

partir de l'intersection des hyperplans osculateurs en ces points, on
obtient 5 + 3 droites associées si n est pair et si s est impair.

g)* 0, k -2, 8=1.
Si l'on projette 4 tangentes quelconques d'une courbe normale de En

sur le E* des points de contact, à partir du En~* d'intersection des hyperplans

osculateurs en ces points, on obtient 4 droites associées si n est pair.

h) Dans la proposition 2, supposons t 0 (ce qui n'enlève rien à la
généralité de ce qui suit) et, au lieu de projeter sur l'espace Po,..., Pk+S

comme nous l'avons fait par raison de symétrie, projetons maintenant
sur un espace à k + s dimensions quelconque à partir de l'espace à

(n — k — s — 1) dimensions E, intersection des hyperplans osculateurs
en Po,..., Pfc+S. La courbe normale est projetée suivant une nouvelle
courbe rationnelle F, d'ordre n. Cette courbe a aux points Qt, projections
des points Pt, des points d'hyperosculation, c'est-à-dire des points tels

que l'hyperplan (dans Ek+8) osculateur à la courbe en un de ces points la
coupe en n points confondus. La courbe Pest dans Ek+S la courbe rationnelle

d'ordre n la plus générale qui ait k + s + 1 points d'hyperosculation.
Les Ek~1 osculateurs aux points P1 sont projetés suivant les Ek~l

osculateurs à P en Q%. Dès lors, si nous posons pour simplifier k + s r,
5 2p — 1, nous pouvons exprimer la proposition 2 sous la forme
suivante :

Proposition 3. Soit dans Er une courbe rationnelle d'ordre n dotée de

r + 1 points d'hyperosculation Qt. Si n — r est impair, les Er~2p osculateurs

à la courbe aux points Qt sont associés (p 1,. [r/2]).

Le cas particulier p 1 a été démontré par L. Berzolari (cf. Rendi-
conti del Circolo matem. di Palermo 22 (1906), pp. 214—219).
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Nous pouvons maintenant passer à la géométrie de la courbe, considérée

comme variété algébrique rationnelle à une dimension,
indépendamment de l'espace dans lequel elle est immergée.

Les hyperplans de Er coupent sur F une série linéaire grn, d'ordre n
et de dimension r. Cette série a r + 1 points w-uples aux points Qt. Les
Er~x passant par un E2p~1 fixe coupent sur F une série linéaire grn~2p,

contenue dans la grn. Si le E2p~x est incident à un Er~2p osculateur en Qt,
la gr~2p a en Qt un point (r — 2p + l)-uple. Si le E2^1 est incident à r
Er~2p osculateurs en r points Qt, il est incident au dernier. En combinant
ces deux propriétés, nous arrivons à la nouvelle propriété :

Proposition 4. Soit une variété rationnelle oo1 possédant une série

linéaire grn dotée de r -f- 1 éléments n-uples Qo,..., Qr. Si n — r est

impair, toute série linéaire grn~~2p, contenue dans la grn et ayant un élément

(r — 2p + l)-uple en r des éléments Ql9 a également un élément (r — 2p
+ l)-uple au (r + l)1^ élément Qt> (p 1,..., [>/2]

Exemple : Toutes les coniques déterminent sur une cubique rationnelle
plane une série linéaire g\ ayant 6 points sextuples St,..., $6 (points
d'hyperosculation des coniques). Si donc un faisceau de coniques
contient cinq coniques tangentes chacune à la cubique en un des points St,
il contient une sixième conique tangente à la cubique au sixième point St.
Et aussi : Si un système linéaire oo3 de coniques contient 5 coniques
surosculatrice (4 points de contact) à la cubique aux points sextuples

#!,..., /S6, il en contient une sixième surosculatrice à la cubique en S6.
Notons enfin un cas particulier : r 2p + 1, n pair.
Soit une variété rationnelle oo1 possédant une g2np+1 dotée de 2p + 2

éléments n-uples, Qo,. .,62p+1. Si le groupe jacobien (groupe des

éléments doubles) d'une g\ contenue dans la g2np+1 contient (2p + 1)

éléments Q, il contient nécessairement le (2p + 2)lème.

(Reçu le 25 avril 1951.)
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