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Hyperkomplexe
und pseudo-analytische Funktionen

Von Adolf Kriszten, Zurich

Einleitung

Die analytischen hyperkomplexen Funktionen stellen eine Verallge-
meinerung der klassischen analytischen Funktionen dar. Entsprechend
den verschiedenen Definitionsmoglichkeiten, die im klassischen Falle —

aber nicht mehr in beliebigen Algebren — âquivalent sind, wird die Be-

zeichnung analytische hyperkomplexe Funktion von den einzelnen Auto-
ren in ganz verschiedener Bedeutung verwendet. Es lassen sich dabei
dièse Autoren in zwei Gruppen einteilen, deren eine sich an Scheffers [17]l)
anschlieBt, wâhrend die zweite Gruppe die gânzlich anders geartete
Définition von Fueter [1] zugrunde legt. Es ist bemerkenswert, daB die Définition,

die Fueter fur den einfachsten Fall der Quaternionen gibt, ohne
weiteres auch fur beliebige Algebren verwendet werden kann. Die
hyperkomplexen Funktionen der ersten Gruppe werden wir, wo eine Unter-
scheidung nôtig ist, $-analytisch, die der zweiten Gruppe #-analytisch
nennen.

Die Définition der $-analytischen Funktionen besteht nun darin,daB
die hyperkomplexen Funktionen eine Ableitung besitzen sollen, die von
der Richtung unabhângig ist. Es zeigt sich, daB dies im wesentlichen nur
in kommutativen Algebren môglich ist, womit also dièse erste Définition
sehr rasch versagt. Hausdorff [16] hat dièse Définition verallgemeinert,
indem er nur noch verlangt, daB das Differential der hyperkomplexen
Funktion eine lineare Funktion des Difîerentials der hyperkomplexen
Variablen sein soll. So kann man sich in der Tat von der Bedingung der
Kommutativitât befreien ; aber die Môglichkeiten zur Entwicklung einer

allgemeinen Théorie scheinen recht klein zu sein, da zum Beispiel keine

Integralsatze existieren. Wir werden uns hier nicht mit dieser Hausdorff-
schen Définition befassen. Die Scheffersche Forderung der Existenz einer

1) Die Nummern in Klammern verweisen auf das Literaturverzeichnis am Schlusse der
Arbeit.



Ableitung erweist sich als âquivalent mit derjenigen nach der Existenz
einer Stammfunktion ; oder, was dasselbe bedeutet, einem vom Wege
unabhângigen Intégral.

Die Fueterache Définition verzichtet zum vorneherein auf die Existenz
einer Ableitung und fordert statt dessen das Bestehen eines Integral-
satzes fur Intégrale iiber Hyperflàchen. Dies fûhrt — wie auch im ersten
Fall — auf ein System von linearen partiellen Differentialgleichungen
erster Ordnung mit konstanten Koeffizienten. Damit ist auch umgekehrt
die Moglichkeit gegeben, solche Système von Differentialgleiehungen mit
funktionentheoretischen Hilfsmitteln zu untersuchen [5, 7, 9, 10, 11]. Es

zeigt sich, dafi dièse Définition in beliebigen Algebren sinnvoll ist und es

konnen — wie wir zeigen werden — eine Reihe von Sâtzen aufgestellt
werden, die ganz unabhângig sind von der Struktur der zugrunde gelegten
Algebra. Speziell findet man, daB fur Flâchen beliebiger Dimension
Integralsâtze aufgestellt werden konnen. Es sind dies Sâtze, die teilweise
bereits von Fueter und Staub [2, 13] fur die Algebra der Quaternionen
und gewisse Clifïordsche Algebren hergeleitet wurden.

Die Existenz von Integralsàtzen legt es nahe, die Théorie der âuBeren
Differentialformen [26, 27, 28] zu verwenden. In der Tat zeigt es sich,
daB dièse Théorie es nicht nur ermoglicht, dièse Sàtze auBerordentlich
élégant herzuleiten, sondern auch erklârt, warum die beiden Verallgemei-
nerungen der klassischen Funktionentheorie offenbar a priori gleich be-

rechtigt und gleich sinnvoll sind. Sei w(z) u -f~ iv eine Funktion der
komplexen Variablen z x + iy, dann kann man die Bedingung, daB
w (z) analytisch sein soll, folgendermaBen formulieren : Das âuBere Diffe-
rential der Differentialform co w(z)dz muB verschwinden

dco (i wx — wy)dx dy i(wx + i wy)dx dy 0

also

wx + i wy 0

Dies sind die Cauchy-Riemannschen Differentialgleichungen in kom-
plexer Schreibweise. Versteht man unter der adjungierten Differentialform

von oc a dx -\- b dy die Form <x* -— b dx -\- a dy und setzt
man doc (doc*)*, so erkennt man leicht, daB ôco — ô(wdz) 0 auf
dieselben Differentialgleichungen fuhrt. Die Bedingungen dco 0 und
do) 0 sind fur co w dz âquivalent [25],

Geht man zu beliebigen Algebren iiber und versteht man unter co die
entsprechende Differentialform, so sind die beiden Gleichungen dco 0

und ôo) 0 nicht mehr âquivalent ; die erste fuhrt zu den $-analyti~
schen, die zweite zu den .F-analytischen Funktionen. Wir werden in einem



ersten Abschnitt einen kurzen Ûberblick iiber die verwendete Théorie
der Differentialformen geben, wàhrend der zweite und dritte Abschnitt
die Théorie der S- respektiv .F-analytisehen Funktionen enthâlt. In
einem vierten Abschnitt untersuchen wir den Zusammenhang mit den
harmonischen Difïerentialen und zeigen, daB die Definitionen der $- und
der .F-analytisehen Funktionen nur in der Algebra der komplexen Zahlen
âquivalent sind.

Der fiinfte Abschnitt befaBt sich mit einer anderen Verallgemeinerung
der analytischen Funktionen, den pseudo-analytischen Funktionen oder
27-monogenen Funktionen, die speziell von Bers und Gelbart [20, 21, 22]
untersucht wurden. Dièse Verallgemeinerung besteht darin, daB die
Cauehy-Riemannsehen Differentialgleichungen durch ein anderes System
von partiellen Difïerentialgleichungen erster Ordnung mit variablen Koef-
fizienten ersetzt werden. Die iibliche Schreibweise als komplexe Funk-
tion ist rein formai und meines Erachtens mehr eine Komplizierung als
eine Vereinfachung, da doch sâmtliche — oft recht undurchsichtigen —

Rechnungen in Komponenten ausgefuhrt werden miissen. Weiter ent-
spricht die Metrik der komplexen Zahlen in keiner Weise der durch die
Difïerentialgleichungen induzierten Metrik. Wir werden deshalb die ganze
Théorie in Matrizenschreibweise durchfuhren, die offenbar angebracht
ist, da die vorher formalen Produkte in wirkliche Produkte von Matrizen
iïbergehen. Weiter werden die Bedingungen angegeben, unter welchen

man eine einfache Théorie erhâlt. Es ist dies entweder dann der Fall,
wenn die Matrizen vertauschbar sind, oder wenn die Metrik orthogonal
ist. Der erste Fall wurde von Lukomskaja [23], der zweite von Bers und
Gelbart eingehend untersucht. Wir werden hier weniger versuchen, neue
Resultate zu erzielen, als die bereits bekannten Sâtze in eine einfachere
und durchsichtigere Form zu bringen. Auch hier zeigt sich wieder die
groBe Allgemeinheit und Vielseitigkeit der Methoden, die Fueter ein-
fïihrte.

1. Funktionen in Algebren, hyperkomplexe Diflerentiale

Wir wollen in diesem Abschnitt diejenigen Begrifïe und Sâtze zusam-
menstellen, die im folgenden stândig verwendet werden. Es sei 31 eine
assoziative Algebra iiber dem Kôrper der reellen Zahlen mit Hauptein-
heit, die wir mit der Eins der reellen Zahlen identifizieren. Die Basis-
elemente von % seien c0 1, cx,...., cN. Wir definieren weiter zwei

Linearsysterne 2Z und Qw in A, deren erstes immer die Haupteinheit ent-
halten moge. Durch geeignete Wahl der Basis kann man erreichen, daB

8



fiz=(c0,...,cn_1) und Zw=(chl,...,chJ, wo n<N+l und m <
N -f- 1. £z und fl^ konnen unter sich oder auch mit 31 identisch sein.

#o > • • • > ^n-i seien w réelle Variable, die wir als Koordinaten im eukli-
dischen Rn deuten. Dièse Variablen fassen wir in 2Z zu der einen hyper-
komplexen Variablen n_1

zusammen. Sind analog ul9. um m réelle Funktionen der Variablen

x0,..., xn_x, so fassen wir dièse in Qw zu der einen hyperkomplexen
Funktion w(z) der hyperkomplexen Variablen z zusammen als

ZHkk=l
Wir werden — ohne das immer zu erwâhnen — stets voraussetzen, daB

die Funktionen uk genùgend oft stetig partiell difïerenzierbar sind. Es
sei weiter

n-1
Unter dem Differential der Variablen z verstehen wir dz £ cn ^xh •

h 0

Die Zusammenfassung der Funktionen uk zur Funktion w(z) ist vor-
lâufig rein formai; sie wird erst sinnvoll, wenn wir die Funktionen spe-
ziell auswahlen, was durch die Bedingung der Analytizitât erreicht wird.

Um die analytischen hyperkomplexen Funktionen definieren zu kôn-
nen, werden wir die Théorie der Difierentialformen verwenden. Wir halten
uns ganz an die Arbeit von de Rham und Bidal [27], wobei sieh natiirlich
groBe Vereinfachungen ergeben, da wir es nur mit euklidischen Râumen
zu tun haben. Die Funktionen Ahit hr (x0,..., xn_^) seien die Kom-
ponenten eines kovarianten antisymmetrischen Tensors ; hl9... hr
seien r beliebige, verschiedene der Zahlen 0,. n — 1. Wir betrachten
die Difïerentialform

wobei die Summe liber aile (j Kombinationen (h1,..., hr) erstreckt

werden soll, und die Multiplikation der dxt schief ist. Unter der adjun-
gierten Difïerentialform a* versteht man

wo
oc* Z A hi t hf [dxhi... dxhr]

\dxhl... dxhf]* [dxhf+i... dx



definiert ist, wenn die Reihe (hl9... ,hr, hr+1,..., hn) eine gerade
Permutation von (0... n — 1) bildet. Dièse Définition ist âquivalent mit
der folgenden :

[dxhl... dzhf] [dxH dx^]* dh ;

dh bedeutet das Volumenelement dxQ... dxn_x des Raumes. Es wird
sich die Schreibweise

[dxhl... dxhf]* dXhi^hr

als praktisch erweisen, damit schreiben wir endgiiltig

oc* ZAhltm,.t

Es gelten die folgenden Rechenregeln

dxHdXhi_hr (- If'*dXhi_hi_ihi+l^thr (t 1,..., r)

Es werden hauptsâchlich hyperkomplexe Differentiale der folgenden

Form auftreten : n_x
(dz)* 2JchdXh dZ

und allgemeiner h=0

n-l
[dxhl. dxhfdzY £ckdXhi hr1c^dZhi^hr

Das âufiere Differential einer Form oc ist definiert als

entsprechend hat der Operator ô die folgende Bedeutung

Wahrend also der Operator d den Grad der Form um eins vergrô'Bert,
verkleinert ô diesen um eins. Da das âuBere Differential eines âuBeren
Differentials verschwindet : d(doc) 0, so gilt auch ô(ôoc) 0. Einer
der wichtigsten Sâtze der Théorie der Differentialformen, den wir zu ver-
wenden haben, ist : Es sei Hr+1 ein (r+l)-dimensionales (geniigend regu-
làres) Flâchenstûck, C seine r-dimensionale Berandung. Dann gilt die
Formel von Stokes

Ja J doc

c Hr+1

wo oc die erwàhnte Differentialform r-ten Grades bedeutet.
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2. Die S-analytischen Funktionen

Définition. 8ei die Differentialform co gleich dzw(z), wo

n—l m

dz E chdxh > w(z) Echuhi
hQ ïl

bedeutet. Wir nennen die hyperkomplexe Funktion w(z) links-analytisch2),
faïls das âujiere Differential von co verschwindet

dw 0

und rechts-analytischy wenn
d(wdz) 0

ist.
Es ist

n-l
dw E [dxh dz] wih) E (ckW{h) — ch w{k)) \dxh dxk]

fc=O h<k
also mu6

ck w<h) — ch w(k) 0 (A, Jfc 0,..., n — 1) (2,1)

sein. Da c0 die Haupteinheit ist, gilt speziell

W(k) Ck w{0)

und es ist
dw dz w(0)

Die Bedingungen (2,1) sehreiben sich nun als

Ist w{0) nicht Nullteiler zu allen Ausdrûcken ckch — chck, so muB fîz
kommutativ sein. Ward [18] hat in einem etwas andern Zusammenhang
ein Beispiel gegeben, wo w{0) dièse Bedingung erftillt :

Cq 1 C^ C<% -j- C2 C^ =z U, Cj C2 :=::: C2 > C^ 1 C2 vF

w{0) muB die Bedingung

(^Cz ~ c2c1)^(0) 2c2w;(0) 0

erfullen, und nimmt deshalb die Form

2) Wir werden in diesem Abschnitt — wie auch im nâchsten — statt #-analytiseh
respektiv F-analytisch immer nur analytisch sehreiben, da nur eine der beiden Bezeich-
nungen auftritt.

11



w<o> u(\ — Cl) + v

an, wo u und v beliebige Funktionen von x0, xl9 x2 sind.
Lassen wir diesen Fall beiseite, so ergibt sich der

Satz: Die Bedingung fur die Existenz von links- oder rechts-analytischen
Funktionen in einer Algebra besteht im allgemeinen darin, da/3 das Linear-
system Qz der Variablen z kommutativ ist. Die Differentialgleichungen, de-

nen die Funktion w (z) genugen mu/3, sind

w{k) ck w[0) respektiv w{k) iv{0)ck (k l, ,n ~ 1)

Es existiert die linke respektiv redite Ableitung wi0\ da

dw dz w{0) respektiv dw w{0)dz

ist.

DaB unter diesen Bedingungen auch immer analytisehe Funktionen
existieren, erkennt man daraus, daB fur £w fiz die Variable z stets
links- und rechts-analytisch ist.

Aus dem Verschwinden von dcu d(dzw), wo w(z) links-analytisch
ist ; odei allgemeiner aus dem Verschwinden von

d(Vdzw)

wo V (z) rechts- und w (z) links-analytisch ist, folgt der

Integralsatz: Ist G eine geschlossene regulare Kurve, die ganz im Analy-
tizitdtsbereich von V(z) und w(z) liegt, so ist

$V(z)dzw(z) 0 (2,2)
c

In den von uns betrachteten Algebren erweist sich also — wie bekannt —

die Existenz einer Ableitung und die Existenz einer Stammfunktion

W(z) $dzw(z)3)

als aequivalent. Die Stammfunktion einer links-analytischen Funktion
ist selbst wieder links-analytisch, denn es gilt

dW dzw(z)

Das Intégral (2,2) tritt bei Degtereva auf und wird von ihm Di-lntegral
genannt [14, 15].

8) W(z) liegt im allgemeinen mcht m &w.

12



3. F-analytische Funktionen

Wir kommen nun zur Behandlung der zweiten MogJiehkeit zur Définition

von analytisehen hyperkomplexen Funktionen.
Définition. Sei eu die Difïerentialform dz-w(z), wo dz das Differential

der hyperkomplexen Variablen z aus £z und w(z) eine hyperkomplexe
Funktion aus £,w bedeutet. Die Funktion w(z) heiBt in einem Punkte z

des w-dimensionalen Raumes der x0,. xn_x links-analytisch, falls
dort

où) (dco*)* 0 (3,1)

gilt. Entsprechend heiBt w(z) rechts-analytisch, wenn die Difïerentialform

w(z)dz die Bedingung
ô(w(z)dz) 0

erfullt.
Es ist

n-l n-l
co 2J ck dxk w(z) co* jr ck dXk w(z) dZ w(z)

und also
w-l n-l

dco* £ dxh dZ w{h) dh £ ch wih)
h=-0 h=0

Damit ergibt sich der

Satz: Die Funktion w(z) ist in einem Punkte z des w-dimensionalen
Raumes links-analytisch, wenn sie dort den Differentialgleichungen

*Z ch wM 0 (3,2)

genugt, und rechts-analytiseh, falls
*

(3,2')

gilt. Die beiden Bedingungen sind im allgemeinen nieht âquivalent.
Eine Funktion heiBt in einem Bereiehe links-analytisch, wenn dies in

jedem Punkte des Bereiches gilt. Dièse zweite Définition fûhrt genau zu
der Funktionenklasse, die Fueter in seinen grundlegenden Arbeiten iiber
analytische Quaternionenfunktionen untersucht hat, und es sind in (3,1)
sàmtliche anderen Definitionen enthalten [6, 8].

Beispiele :

1. Quaternionenfunktionen: 2Z &w gleieh der Algebra der Qua-
ternionen.
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2. Diracsche Difïerentialgleichungen und andere Système von Diffe-
rentialgleichungen. ?ï vollstàndige Matrixalgebra der m-reihigen Matri-
zen. £z : Linearsystem von Matrizen. 2W : Linearsystem der Spalten-
matrizen

/10...0\ /0 0. ON

00.,,0\ / ;

/ 00...0
0. .0/ \l 0. .Oy

3. Analytiseh-regulàre Funktionen [12, 13] : 91 Cliffordsche Algebra

; — ii i { — il {h -£ ]c h Je 1 2 n 1

w-1
O • qn —^ y l

Zu einer — speziell fur den zweiten Integralsatz — wichtigen Verall-
gemeinerung fiihrt die Betraehtung der Differentialform

co V(z)dzw(z)

wo V und w hyperkomplexe Funktionen bedeuten. Die Bedingung
ôco 0 ergibt

w-1 \
0(w-1

\ /n-l
E F^cJ w+ FI Z

h=0 I \h=0

und ist also erfiillt, wenn V rechts- und w links-analytisch ist. Sei A eine

beliebige hyperkomplexe Konstante aus 31, so kann die Bedingung auch
als

V{h) ch - Và) w + v(*2 chw(h) + Xw) 0
0 / \A=0 /

geschrieben werden, was zu den Bedingungen
W-1 W-1

Z Vih) ch~ VÛ O £ch w{h> + X w 0

fuhrt. Derartige Funktionen wurden vom Verfasser [9, 10] untersucht
und inhomogen-analytisch genannt.

Integralsâtze : Es soilen hier die Integralsàtze der Fueterschen Théorie

[2] der Quaternionenfunktionen und gewisser Cliffordseher Funk-
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tionen fur beliebige assoziative Algebren hergeleitet werden. Der zweite
Integralsatz bildet dabei eine Ausnahme, da er, als einziger, von der
Struktur der zugrunde gelegten Algebra abhângt.

Die Regularitàtsbedingung (3,1) oder allgemeiner die Bedingung
ô(Vdzw) 0 erlaubt sofort die Aufstellung des Satzes :

Erster Integralsatz4). Sei H ein n-dimensionales Gebiet des z-Raumes,
sein Rand R eine geschlossene orientierbare Hyperflache mit stetigem Nor-
malenfeld. Die Funktionen F und w seien in H + R rechts- respektiv
links-analytisch 5). Dann ist

V(z)dZw(z) 0i
wenn man unter dZ (dz)* versteht.

Setzt man F (z) respektiv w(z) gleich eins, so erhàlt man fur links-
respektiv reehts-analytische Funktionen den Integralsatz

Z w(z) 0 respektiv J V(z) dZ 0

Die Intégralsâtze, die im folgenden bewiesen werden, sind teilweise fur
gewisse Cliffordsche Algebren (3,3) hergeleitet worden. Wie Staub [13]
gezeigt hat, lassen sich daraus leicht die Integralsâtze von Martinelli [29]
herleiten. Wir werden sehen, dafi in beliebigen Algebren, und auch fur
inhomogen-analytische Funktionen, fur Flâchen beliebiger Dimension
ein Integralsatz existiert.

Es sei Hn_r (r 1,.. w — 1) ein im Rn gelegenes, endliches, orien-
tierbares Flâchenstiick, das sich nirgends durchdringt und offen ist. Die
Dimension von Hn_r sei (n — r). Hn_r werde durch die geschlossene
Flàche R der Dimension n — (r + 1) berandet. Die zu betrachtenden
Gebilde seien stiickweise analytisch. w(z) und V(z) seien in einer n-di-
mensionalen Umgebung von Hn_r links- respektiv reehts-analytische
Funktionen. w(z) und F (z) diirfen auch inhomogen-analytisch sein, das
heiBt den Gleichungen

tt-l W-l

^=0 h=0

genûgen. Auf R betrachten wir die Difïerentialform
n

K1...Ar)* F(z)[dxfti. .dxhrdz]*w(z) V(z)ZdXhi...hrkckw(z)

V(z)dZhi_hrw(z)

4) Der Satz bleibt auch richtig fur inhomogen-analytische Funktionen.
5) y (^) liegt in einem beliebigen Linearsystem von %.
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wo hx...hr r beliebige, verschiedene Zahlen der Reihe 0, 1,..., n — 1

bedeuten. Das auBere Difïerential dieser Form ist

l X£i r z
8=0 «=O

Si + Z* ¦

Die Auswertung fuhren wir im Détail nur fur Zx durch

S V^ck[dx,dXhi hrk\w(z) + £ £ V<h» ck[dxhidXhi hrh]w{z)
hr &=O i=l

Es ist

Z Z V^ck[dxsdXhi hfk]= Z V^c8dXhi hr,
k=O B^zth\ hr 87*hi hr

und aus der Regularitatsbedingung fur F (z) folgt

Der zweite Summand von Ex ist bis auf den Faktor w (z) gleich

s v<h»ck(-iy-^dxhi hi_ihi+i hrk
h hr

denn es ist
(hOCi CiJx. t. r. i { XI ^ Q/JLX. i, i. -u L V •

Damit ist die endgultige Form von Ex gefunden

shl hl_lhl+1 hrki fk=0

dZhi hi_ihi+i hrw{z) + V(z)XdXhi hrw(z).
1=1

Analog fuhrt die Umformung von S2 auf

£.= i(-irï+lF(Z)dZJl hl_lhl+1 hrw^-V{z)UXhi hrw(z),
1=1

also gilt

Daraus folgt der

16



Integralsatz. Hn_r sei ein ganz im Endlichen gelegenes, orientierbares,
sich nirgends durchdringendes Flachenstùck der Dimension n — r (r 1,

n — 1), R sei seine n — (r -f- 1) dimensionale, regulare Berandung.
w(z) und V (z) seien in einer n-dimensionalen Umgebung von Hn_r links-
respektiv rechts-inhomogen analytisch

n-l
2J chw{h) + lw 0

27 V{h) ch ~ V À - 0

Dann gilt der folgende Integralsatz

$VdZki »rw=i(-ir^ J {V{z)dZhi hi_ilh+i hrw(z)Y»»
R t=l Hn-r

wo ht.. .hr r beliebige verschiedene Zahlen der Reihe 0, 1,.. n — 1

bedeuten. Ist Hn_r speziell geschlossen, so gilt

E (- irt+1 J {V(z)dzhi ,_iit+i hrw(z)yh'> o
t=«l Hn-r

Fur r 1 erhalt man einen Integralsatz fur geschlossene Hyper-
flachen Hn_1

J {V(z) dZ w(z)}W 0 (h 0,... n - 1)
fîn-i

wobei uber das Verhalten von w und F im Innern von Hn_1 nichts
vorausgesetzt ist. Aus diesem Integralsatz fur Quaternionenfunktionen
respektiv spezielle Cliffordsche Funktionen (3,3) haben Fueter und Frl.
Schaad [3, 4, 12] den Hartogsschen Satz hergeleitet.

4. Analytische Funktionen und harmonische Differentialformen

Eine Difïerentialform co heiBt naeh Hodge [28] harmonisch, falls
dm — 0 und ôo) 0 gleiehzeitig erfullt sind. Naeh de Rham [27] heiBt
eine Difïerentialform co harmoniseh, wenn

Aco (— l)n*>ôda) + (— l)nv+ndôa) 0

ist, wo n die Dimension des Raumes, p den Grad der Form co bedeutet.
Dièse beiden Definitionen sind in einem geschlossenen Raum aquivalent.
Da der von uns zugrunde gelegte euklidische Raum offen ist, sind die
beiden Definitionen im allgemeinen nicht équivalent, und wir werden sie

gesondert untersuehen. Der Einfaehheit halber sei hier stets
vorausgesetzt, dafi fi2 Qw ist.
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a) Die Définition von Hodge. Die Differentialform co dzw soll

gleichzeitig die Bedingung dm 0 und ôco 0 erfùllen, das heiBt die
Funktion w(z) soll gleichzeitig S- und .F-analytiseh sein. Da £z kommu-
tativ sein muB, sind die Funktionen immer beidseitig analytisch.

oc) Nun soll w $-analytiseh sein. In welchen Algebren ist w dann auto-
matisch auch .F-analytisch Es gilt

W(k) Ck w(0)
9

also
n-l n-l

Setzt man speziell die stets S-analytische Funktion w z ein, so findet
man n_x

Satz. Die S-analytischen Funktionen sind dann und nur dann stets

auch F-analytisch, wenn die Basiselemente des — Jcommutativen — Linear-
systems £z eine verschwindende Quadratsumme besitzen

Ist dièse Bedingung erfûllt, so ist die Differentialform co dzw, wo w
analytisch ist, nach Hodge harmonisch.

/}) w sei .F-analytisch, eine notwendige Bedingung fur die $-Analytizi-
tât besteht offenbar darin, daB 2Z kommutativ ist. Die Funktion w
xh — chx0 ist stets F-analytisch ; es ist

dw — ch dx0 + dxh
Dies soll gleich

n-l n-l
wi0)dz — ch £ ckdxk — 2J chckdxk

sein, damit w auch /S-analytisch ist. Man erhâlt

- c\ c0 1

chck =0 (*=É*;0)

Dièses Gleichungssystem muB fur aile h 1,..., n — 1 erfûllt sein.
Daraus folgt, daB n 2 und das Linearsystem £z mit der Algebra der

komplexen Zahlen identisch ist.
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Satz. Die F-analytischen Funktionen sind nur in der Algebra de. ge-
wôhnlichen komplexen Zahlen stets 8-analytisch.

Hauptsatz. Nur in der Algebra der komplexen Zahlen sind die Bedin-

gungen dco 0 und ôco 0 aquivalent ; das heijit nur in der Jclassischen

Funktioneniheorie besitzen die F-analytischen Funktionen eine Ableitung,
und ist die Differentialform co dzw, wo w F-analytisch ist, nach Hodge
harmonisch.

b) Die Définition von de Rham : Es ist p 1 und

Aco dôo) + (— l)nôdco

oc) Es sei w(z) $-analytisch, das heiôt dco d(wdz) 0, und
n-l

dann ist
dôœ ^\k=O

Setzt man w \ z2, so ist w{00) c0, und die notwendige und hin-
reichende Bedingung dafur, dafi co harmonisch ist lautet also wie im
Falle a, oc.

Satz. Damit die Differentialform co dzw, wo w 8-analytisch ist,
harmonisch ist nach de Rham, mufi

sein. Die Definitionen von Hodge und de Rham sind fur 8-analytische
Funktionen aquivalent.

p) E sei w(z) jF-analytisch, das heiBt ôco 0 :

dco

(dco)*

d (dco)*

Es ist

V chw{

£ (CkW{h) —
h<k

h<k

£ £ (ckwih)
S h<k

£ (cjcW{h) —

2"(CfcM>(ftfc)d.
h yZf k

n 1

hk)dXh=V

chwM)[dxhdxk]

chw^)dXhk

- chw^YHdx,dXhk\

chw^yk)dXh-2:(c]cw^-ch
h<k

Xh-chdXhw<^)

n — \

w<k))M dXk

dXh
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und somit
ô(dco) (— l)ndzAw

Das ergibt
Aco dzAw*)

Satz. Die Differentialform œ dzw, wo w eine F-analytische Funktion

bedeutet, ist dann und nur dann nach de Rham harmonisch, wenn die
Funktion w(z) der Differentialgleichung

genûgt, das heifit, wenn jede Komponente von w eine harmonische Funktion
ist.

Wir werden nun diejenigen Algebren bestimmen, in denen dièse Bedin-

gung stets erfùllt ist. Die Funktionen

| - ckx0) + (ck - ckx0)(xt - ctx0)]

wie iiberhaupt aile ^-Funktionen f 10] sind i^-analytiseh, und es ist

Awt co + c\ Awtk ctck + ckct (i =£ k)

Soll also fur jede jP-analytische Funktion w Aw 0 gelten, so muB

c2t= — c0 ctck + ckct 0 (i, k 1,..., n — 1, i # k)

sein. Es gilt somit der

Hauptsatz. Die zu den F-analytischen Funktionen gehôrenden Diffe-
rentialformen co dzw sind dann und nur dann harmonisch nach de

Rham, wenn das Linearsystem fi2 mit dem erzeugenden Linearsystem einer

elliptischen Cliffordschen Algebra zusammenfâllt, in diesem Faile sind die
Funktionen immer beidseitig analytisch. Aufier fur die gewôhnlichen kom-

plexen Zahlen sind die Definitionen von Hodge und de Rham fur F-analytische

Funktionen nicht âquivalent.

5. Pseudo-analytische Funktionen

Es wurden schon verschiedene Système von partiellen Difïerential-
gleichungen mit funktionentheoretischen Hilfsmitteln untersucht. Wir
werden zuerst einen kurzen Ûberblick iiber diejenigen Resultate geben,

6) Vergleiche [27], S. 22.
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die uns hauptsàchlich beschâftigen. Es sei immer vorausgesetzt, da6 die
betrachteten Funktionen die notigen Voraussetzungen beziiglich Ein-
deutigkeit, Difîerenzierbarkeit usw. erfiïllen.

a) Sei p(x,y) eine im betrachteten Bereich positive Funktion, dann
heiBt die Funktion f(z) u + iv der komplexen Variablen z x + iy
pseudo-analytisch, falls

p ux — vy 0 vx + Vuv — 0 • (5,1)

Solche Funktionen wurden von Bergman [19], Polozij [24] und Bers [22]
untersueht. Fur uns sind hier speziell die Resultate von Polozij wichtig :

Sind u*, v* beliebige Funktionen von x und y ; u -\- iv eine Losung von
(5,1), so gilt

J(^* v — v* up) dx + (u*up + v*v) dy
s

H M(PM*L + (?«*),] + v[v* - <]} dxdy
T

T : Gebiet der 2-Ebene, S : Rand von T. Aus diesem Integralsatz folgt
naeh einer làngeren Rechnung die Darstellungsformel

^ v dQ(z, Ç) + ivdQ(z, Ç)

wo der Punkt C im Innern von S liegt und Q und Q aus Fundamental-
lôsungen der Gleichungen

L(u) (pux)x+ {puy)y 0

(5,2)
Mu) M + M 0

\ V )x \V)v
gebildete, komplexe Funktionen sind.

b) Eine zweite Klasse von Funktionen wurde hauptsàchlich von Bers
und Gelbart [20, 21] untersueht. Eine Funktion f(z) u + iv heiBt
27-monogen, wenn ihr Real- und Imaginàrteil folgenden Differential
gleichungen geniigen :

ax(x) ux rx{y) vy o2{x) uy — r2(y) vx

ai(x)> °*2(x)> Ti(2/)> r2(y) werden als positiv vorausgesetzt. Genugen
u und v dem Gleichungssystem

~V2 Vy Tl ' "o^ "" % %% ' J ^
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so heiBt die Funktion f(z) u + iv Z'monogen. Das Intégral
z z z

l f{z)dz z l (uo2dx — vr2 dy) + i j (~-dx + ^~dy\ (5,3)

Z0 Z0 Zq

ist vom Wege unabhângig, wenn {(z) 27-monogen ist. Es ist eine Z'-mono-
gene Funktion der oberen Grenze. Die Z-Ableitung einer Z-monogenen
Funktion f(z) ist definiert als

__ ' ®x • ^v ir a\- 1 »- — - 1 ir — » V,

die Z*-Ableitung ist Z^-monogen. Die entsprechenden Opérâtionen sind
auch fur die Z^-monogenen Funktionen definiert. Eine wichtige Klasse
von E- respektiv Z^-monogenen Funktionen sind die formalen Potenz-
funktionen a-Z{n)(z0, z) (es handelt sich nicht um ein Produkt, sondern

um ein einziges Symbol) respektiv a-Z{n)(z0,z). Dièse sind durch die
folgenden Rekursionsformeln definiert

a-Z(0) a (a beliebige komplexe Zahl)
z ^

Jede Z'-monogene Funktion kann in eine konvergente Reihe nach den
a-Zin) entwickelt werden.

c) Lukomskaja [23] betrachtet ein System von Differentialgleichungen
der Form

cl ux + el vx al uv + blvv y

(5,6)
c2ux + e2vx — a2uy + b2vy

Er setzt voraus, daB

dct da% det dbt

dx dy
* dx dy

(5,7)

und daB gewisse Determinanten nicht verschwinden. Sind u und v
Lôsungen von (5,6), so heiBt auch f(z) u + iv Lôsung von (5,6) und
es kann das folgende, vom Wege unabhângige E-Intégral

§f(z) dsz $(a2u + b2v) dx + (c2u + e2v) dy

(axu + bxv) dx + {cxu + exv) dy (5,8)
z
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definiert werden. Dièses Intégral ist selbst wieder eine Lôsung von (5,6),
falls

e2ax b2c1 ax{ex — c2) c1(b1 — a2)
(5,9)

M^i — c2) e2(6x ~a2)

gilt, was vorausgesetzt wird. Die 27-Ableitung wird geschrieben als

/a» w _ »! «¦ ~ 6* '¦ + i a^--g'f- (5,10)
axb2 — a2b1 axb2 — a2bx

und eine lângere Rechnung zeigt, daB auch dièse Funktion wieder Lôsung
von (5,6) ist. Die formalen Potenzfunktionen werden entsprechend, wie
oben definiert

a.Z«»(zo,z) =a
»(zo,z)d2z (5,5')

Nach dieser knappen Zusammenstellung der Resultate der einzelnen
Autoren beabsichtigen wir zu zeigen, daB sich dièse Théorie viel einfacher
und ûbersichtlicher darstellen lâBt, wenn man von der komplexen
Schreibweise — die in keinem Zusammenhang steht mit der Metrik der
betrachteten Difïerentialgleichung — zur Matrizensehreibweise xibergeht.
Es sei gegeben ein System von Differentialgleichungen mit variablen
Koeffizienten at(x,y) und bt(x,y); statt des Zahlenpaares (x, y)
werden wir z schreiben :

ax ux + a2 vx — (bx uy + b2vy) 0
(5,11)

«3 ux + a^vx — (63 uy + b^Vy) 0

Wir fuhren die folgenden Matrizen ein

\a3 aj \b3 bj \v

dann kônnen die Gleichungen (5,11) geschrieben werden als

Die Spaltenmatrix w(z) werde auch Lôsung von (5,11) genannt. Die zu
dieser Gleichung gehôrige Differentialform ist

co (Bdx + A dy) w(z) ;
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a) ist eine Spaltenmatrix. Die Bedingung dco 0 ergibt

{(Ax — By)w -{- (Awx — B wy)} [dx dy] 0

und ist daher mit (5,11) nur âquivalent, falls

Ax Bv (5,12)

Dièse Bedingung ist bei Bers und Gelbart erfûllt, wenn man unter A und B
die Matrizen

0 -t8\ (a2 0

i •)
versteht, da die Funktionen r nur von y, a aber nur von x abhàngen.
Lukomshaja gibt dièse Bedingungen in Komponentenschreibweise : (5,7) ;

die Matrizen A und B sind in diesem Spezialfall natûrlich

a= r **\, b= t

Aus Ax By folgt die Existenz einer Matrix Z, die die Eigenschaft
hat : Zx — B, Zy A, das heiBt es ist das Differential

dZ B dx + A dy

ein vollstândiges Differential. Da also das âuBere Differential von co

dZ w(z) verschwindet, ist das Intégral

§dZw(z)

unabhângig vom Weg. Dièses Intégral fâllt in den beiden Spezialfâllen
mit dem i7-Integral (5,3) respektiv (5,8) zusammen, wie man durch Ein-
setzen leicht bestàtigt. Die formalen Produkte f(z)dyZ gehen in das
ûbliehe Produkt von zwei Matrizen iiber.

1. Integralsatz. Ist w(z) eine Lôsung von (5,11) im Innern und auf dem

regulâren Rand C eines endlichen Bereiches, so gilt

$dZw(z) 0

falls dZ B dx -\- A dy bedeutet, wo die Matrizen A und B die Bedingung

Ax By erfûllen.

Man kann sich von der Voraussetzung Ax By in der folgenden Art
befreien. Sei M(z) eine beliebige zweireihige, quadratische Matrix, dann
betraehte man die Differentialform
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cd M dZ w

wo jetzt dZ nur noch eine Schreibweise ist und kein totales Differential
mehr bedeutet : dZ B dx + A dy. Es ist

dco {[{MA)X - (MB)y] w(z) + M (A wx - Bwy)} [dxdy]

Soll do verschwinden, und ist w(z) Losung von (5,11), so muB

(MA)X ~ (MB)y 0

sein ; wir finden das genaue Analogon der rechts-analytischen Funktionen.
Spezialisiert man die Matrizen A und B auf

so erhàlt man die Difïerentialgleichungen von Polozij. Seine Integral-
sâtze sind die einfachsten Spezialfâlle der hier herzuleitenden.

Satz. Ist w(z) Losung von (5,11) und genugt die quadratische Matrix M
der Differentialgleichung (MA)X — (MB)y 0, so verschwindet das

Intégral
$MdZw{z)

falls C eine regulâre geschlossene Kurve bedeutet, auf der und in deren

Innern M und w die gestellten Bedingungen erfûllen.

Die Differentialgleichung (5,11) induziert eine Metrik, deren erste
Fundamentalform wir berechnen wollen. Ist T eine beliebige zweireihige

Matrix, so ist die adjungierte Matrix T dadurch definiert, daB

TT T T | T\ E

wo | T | die Déterminante von T und E die Einheitsmatrix bedeutet.

Man erhâlt T bekanntlich, indem man die Glieder der Hauptdiagonalen
vertauscht und bei den beiden Gliedern der Gegendiagonalen das Vor-
zeichen weehselt. Ist dZ B dx -f- Ady, so ist

dZ Bdx + Idy
Das Produkt der beiden ist die erste Fundamentalform unserer
Metrik, multipliziert mit E

ds2-E (Bdx + A dy) (Bdx + Idy)
BB dx2 + (AB + BÂ) dx dy + ÀÂ dy2
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Die Matrix AB + BA AB + 2L4 ist immer ein Vielfaches von E

A B + jBZ (ax 64 — 63 a2 + aé bx — b2 a3) E

Wir setzen fur das folgende immer voraus, daB die Metrik — und daher
auch das System (5,11) — eUiptisch ist; es ist leicht zu sehen, welehe
Sàtze auch fur beliebige Système giïltig bleiben. Wir schreiben zur Ab-
ktirzung

ai &4 ~ bza2 F1 a4 bx — b2a3 F2
und also

ds2 | B | dx2 + (Fx + F2)dxdy + \A\ dy2
Es sei nun

\m8 m4/

dann sehreibt sich die Gleichung (MA)X — (MB)y 0 als

)^— (m^i + m2bz)y {m1as+ m2a^)x~ {mxb2+ m264)

)=0.
x— (mzbx + m4b3)y (mza2 + m4a4)a;+ (m362+ m4è4)y/

Das Verschwinden der Glieder in der Gegendiagonalen ist Equivalent mit
den folgenden Gleichungen

(mxa2

{mxb2 + m2bi) <px (m^ + m463)

Wir drûcken die GrôBen mz durch q? und y) aus :

__"h-
m3-

wo JV"! a462 — a2bA und iV2 axbz — Uzb1. Wir setzen voraus, daB

weder Nt noeh N2 verschwindet. Damit auch die Glieder in der Haupt-
diagonalen verschwinden, mtissen cp und ip den folgenden Gleichungen
geniigen

(\A\Vm-FlV,\ (\B\<pv-F2<px\ _

\A\y,x-F2Vv\ (\B\V,-FlVa\ _
}

N )+[ N }-
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Dièse Gleichungen weisen eine groBe Âhnlichkeit mit der Beltramischen
Gleichung unserer Metrik auf. Aus (5,14) erhâlt man sofort die allgemeine
Form der Matrix M.

Satz. Ist die Matrix M Lôsung der Gleichung

(MA)X ~ (MB)y 0

dann kann M in der Form

M

geschrieben werden, wo <p und y Lôsungen von (5,15) sind. Jede so erzeugte
Matrix ist auch Lôsung dieser Gleicfmng.

Uni den zweiten Integralsatz zu erhalten, hat man offenbar als Funk-
tionen cp und \p entsprechend normierte Fundamentallosungen der
Gleichungen (5,15) einzusetzen und erhàlt w(z) als Funktion seiner Rand-
werte

Durch Spezialisieren auf die Matrizen (5,13) erhâlt man die Integraldar-
stellung von Polozij. Wir fûhren die Rechnung nur fur diesen Fall explizit
durch. Die Gleichungen (5,15) gehen in (5,2) iïber, es seien

<p(z, 0 9^i(z> C)logr + (p2(z, C)

y>(z9 C) Vi(z> C)logr + y)2(z, C)

deren Fundamentallosungen und r | z — C | (die Metrik ist hier eukli-
disch). Weiter sei die Normierungsbedingung

Es ist

(<Px
<Pv

y*.
V V

Es sei C ©in fester Punkt im Innern von C, wir umschlieBen diesen
durch einen kleinen Kreis k. Auf k fûhren wir Polarkoordinaten ein.
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Es ist
lim §MdZw(z) 2nw{£)
r->0 k

damit ist fur den Spezialfall die Formel explizit hergeleitet.
Jetzt kehren wir zur Betrachtung des 1. Integralsatzes zurûek, und

setzen von nun an immer voraus, daB Ax By. Durch das vom Wege
unabhângige Intégral z

\ V(z)

wird eine Funktion V (z) — als Spaltenmatrix — definiert, deren par-
tiellen Ableitungen

Vx B w Vy A w

sind. F (z) geniigt der Differentialgleichung

/p-i a —A-1
d \ V - 0

\ dx dy)

Es stellt sich die Frage, wann V(z) wieder Lôsung von (5,11) ist. Dies ist
offenbar nur dann der Fall, wenn eine Matrix T so existiert, daB

ist. Man erhâlt

und somit

*(
die

2*-i
a

A^ M-vJ-J — XX _ 1 X
dx dy

Gleichungen

TB-1 A T.

T AB BA

d

dx
d

dy

3

Satz. Das Z-Integral einer Lôsung von (5,11) is£ da?m und nur dann
wieder Lôsung von (5,11), wenn die beiden Matrizen B und A vertauschbar
sind'

AB BA

In Komponenten geschrieben ergibt dièse Bedingung das Gleichungs-
system (5,9) von Lukomskaja.

Wir kommen zur Définition der 27-Ableitung. Zu diesem Zwecke be-

trachten wir den Ausdruck

{dZ)~1dw
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und behaupten, daB dieser richtungsunabhângig ist. Setzt man ûberall

Wy B-1 Awx AB~lwx
so ergibt sich

(dZ)-1 dw -jj— (Bdx* + (I + B~lAB)dxdy + B^AA)wx B~1wx
(as)

In Komponenten ist dies identisch mit der Formel (5,10). Andere Um-
formungen ergeben

was im klassischen Fall der Beziehung

d _
1 / a a \

1z~"2\dx~ %~dy)

entspricht. Wir beweisen weiter, daB dièse Ableitung einer Lôsung von
(5,11) wieder Lôsung derselben Gleichung ist.

wx)x- B(B-lwx)v

da Ax By gilt, ist dies gleieh

(AB-*wx)x - {BB-*wx)y (AB-*wx)x - wxy 0 ;

denn die Matrizen A und B sind vertauschbar und es ist Awx Bwy.

Satz. Fur die Lôsungen der Gleichung (5,11) existiert eine Z-Ableitung,
die richtungsunabhângig und selbst wieder Lôsung von (5,11) ist

4— (dZ)~l dw JS-1 wx A-1 wx -i {B-1 wx + A-1 wy)

Es ist bemerkenswert, daB auch im Falle von variablen Koeffizienten,
die Bedingung fur die Existenz einer Integralfunktion und einer Ableitung

im wesentlichen die Vertauschbarkeit der beiden Matrizen A und B
ist.

Auch die Définition der Potenzfunktion (5,5;) wird durchsichtiger. Wir
betrachten die quadratische Matrix

Z j(Bdx + Ady)E ;

dièse genugt offenbar der Differentialgleiehung
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AZX - BZV 0

ebenso wie aile E-Intégrale von Z Z(1)

i"-1* (n 1,2,...)
«0

wobei wir unter Z(o) die Einheitsmatrix E verstehen. Es sei a oc + i P,
dann erhâlt man die formale Potenzfunktion a-Zin)(zOi z) in Matrizen-
schreibweise als

*-©•
Auch hier geht das formale Produkt in ein Produkt von zwei Matrizen
ûber.

Der zweite intéressante Spezialfall der Differentialgleichung (5,11) ist
nun der, wo _ _AB + BA 0

ist, das heiBt wo es sich um eine orthogonale Metrik handelt. Da die
Matrizen bei Bers und Gelbart dièse Bedingung erfullen, sind ihre Funk-
tionen in den von uns betrachteten enthalten. Die Differentialgleichung

B-*Vx~A-iVy 0

des E-Intégrales
V(z) $dZw(z)

geht nach Linksmultiplikation mit AB — BA uber in

Eine Funktion, die dieser Differentialgleichung geniigt, heiBt im Spezialfall

von Bers und Gelbart E'-monogen. Das ergibt den

Satz. Das E-Integral einer Lôsung von (5,11) ist Lôsung von (5,16),
wenn die Matrizen A und B die Bedingung

AB + BÂ=0
erfullen.

Die zu (5,16) gehôrige Differentialform ist

cof (- Bdx + Ady) V(z)
Esgilt

___

dcor {(B, + Am)V + (AVX + BVy)}[dxdy] ;
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soll do)' 0 eine Folge von (5,16) sein, so mûssen die Matrizen A und B
die Bedingung

__ _
By + Ax 0

oder, was dasselbe ist
By + Ax 0

erfûllen. Zusammen mit der Bedingung (5,12) ergibt sieh

das heiBt, die Matrix A darf nur von y, die Matrix B nur von x abhângig
sein. Dies setzen wir im folgenden voraus, dann ist das Intégral

w(z) jdZV(z)

wo F (z) Lôsung von (5,16) und

dZ — Bdx + Idy
ist, vom Wege unabhângig und als Funktion der oberen Grenze Lôsung
von (5,11): Es ist

_ _
wx - BV wy ÂV

also

B~xwx + I~lwy \ B\~1Bwx + \A\-1Awy O

Nach Multiplikation mit \AB \ erhâlt man

\A\Bwx + \B\Awy BÂA wx + AB B wy 0

und, da AB — BÂ

BÂ{A wx - B wy) 0

was mit (5,11) âquivalent ist. In Komponenten geschrieben erhàlt man
das E'-Intégral von Bers und Gelbart.

E- und 2"-Ableitung :

Satz, Der Quotient

wo w(z) Lôsung von (5,11) ist, ist unabhângig von der Richtung und
fâllt mit der 27-Ableitung von w zusammen. Man erhâlt

-1 dw 4^- - (ï*)-1^ (l)-1 w* ~ (- B~lwx + A-1 wv)
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Entsprechend sei V(z) Losung von (5,16), dann ist

also gleich der Z'-Ableitung von V (z).
Wir beweisen nur den ersten Teil des Satzes, da derjenige des zweiten

Teiles analog ist. Es ist

/ t^v 7 — B dx -j- A dy
{dZ) dw=—Uw

{— Bwx dx2 + (Awx — B wy) dxdy -\- A wvdy2}
(ds)

Der Koeffizient von dxdy versehwindet wegen (5,11), und es gilt

Awv A B~XA wx
Somit folgt

^ (BBdx2 - AB^ABdy2) (- B^w^
(as)

was wegen AB — BA gleich

- B^Ws
ist.

Da dZ und dZ nach Voraussetzung vollstândige Differentiale sind,
kann man wieder die formalen Potenzfunktionen definieren als

2<o> E

«0

jdZZ^n'1) (n= 1,2,3,...)
Zq

ist a <x -\- i fi eine beliebige komplexe ZahJ, so entsprechen den Funk-
tionen (5,5) a-Zin)(z0, z) respektiv a-Z{n)(zOi z) die Matrizen

Man kann die Differentialgleichung (5,11), falls

AB + BA 0

ist, auf die folgende Normalform transformieren. Da
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ds2 | B | dx2 + | A

ist, fuhre man die neuen Variablen

ein ; JB hângt nur von # und ^4 nur von y ab. Das ergibt

das heiBt die Differentialgleichung schreibt sich als

wo

A =*—£= B ^_1 V\A\ ' * ]/\B\
bedeutet. Die Matrizen Ax und Bx haben die Eigenschaften

Die neue Metrik ist

ds2 {Bxdx + Axdy){Bxdx + Axdy) dx2 + dy2

Im Falle der Matrizen von Bers und Gelbart ergibt sich

0 ~VrxrA Voie* O

Damit ist bewiesen, daB die 27-monogenen Funktionen ein Spezialfall
der von Polozij behandelten Funktionen sind. Zu den gewôhnlichen ana-
lytischen Funktionen kommt man ofïenbar fur

Wir stellen uns zum SchluB noch die Frage, zu welcher DiflEerential-

gleichung die zur Diflferentialform

o) (B dx -\- A dy) w

adjungierte Differentialform co* gehort. Da die Riemannsche Metrik

3 Commentarii Mathematid Helvetici &o



ds2 \ B \ dx2 + 2F dx dy + \ A \ dy2 F AB + BA

vorliegt, ist die zu oc b dx + a dy adjungierte Form definiert als

&* 6* dx + a* <fy
wo

l| | - .F2 ' V\ AB\ -F*
Es ist somit

e>*

BA-AB
2V\AB\-F~*

Satz. Die adjungierte Form co* ist bis auf einen Faktor mit m identisch

Bl-
i^ gehôren die Differentialformen co und ca* zu derselben Differential-

gleichung.
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