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Hyperkomplexe
und pseudo-analytische Funktionen

Von Apovr KRriszTEN, Ziirich

Einleitung

Die analytischen hyperkomplexen Funktionen stellen eine Verallge-
meinerung der klassischen analytischen Funktionen dar. Entsprechend
den verschiedenen Definitionsmoglichkeiten, die im klassischen Falle —
aber nicht mehr in beliebigen Algebren — &quivalent sind, wird die Be-
zeichnung analytische hyperkomplexe Funktion von den einzelnen Auto-
ren in ganz verschiedener Bedeutung verwendet. Es lassen sich dabei
diese Autoren in zwei Gruppen einteilen, deren eine sich an Scheffers [17]1)
anschlieBt, wihrend die zweite Gruppe die géinzlich anders geartete Defi-
nition von Fueter [1] zugrunde legt. Es ist bemerkenswert, daf die Defini-
tion, die Fueter fiir den einfachsten Fall der Quaternionen gibt, ohne
weiteres auch fiir beliebige Algebren verwendet werden kann. Die hyper-
komplexen Funktionen der ersten Gruppe werden wir, wo eine Unter-
scheidung notig ist, S-analytisch, die der zweiten Gruppe F-analytisch
nennen.

Die Definition der S-analytischen Funktionen besteht nun darin,dal
die hyperkomplexen Funktionen eine Ableitung besitzen sollen, die von
der Richtung unabhingig ist. Es zeigt sich, daf} dies im wesentlichen nur
in kommutativen Algebren méglich ist, womit also diese erste Definition
sehr rasch versagt. Hausdorff [16] hat diese Definition verallgemeinert,
indem er nur noch verlangt, dafl das Differential der hyperkomplexen
Funktion eine lineare Funktion des Differentials der hyperkomplexen
Variablen sein soll. So kann man sich in der Tat von der Bedingung der
Kommutativitit befreien ; aber die Moglichkeiten zur Entwicklung einer
allgemeinen Theorie scheinen recht klein zu sein, da zum Beispiel keine
Integralsitze existieren. Wir werden uns hier nicht mit dieser Hausdorff-
schen Definition befassen. Die Scheffersche Forderung der Existenz einer

1) Die Nummern in Klammern verweisen auf das Literaturverzeichnis am Schlusse der
Arbeit.
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Ableitung erweist sich als dquivalent mit derjenigen nach der Existenz
einer Stammfunktion; oder, was dasselbe bedeutet, einem vom Wege
unabhingigen Integral.

Die Fuetersche Definition verzichtet zum vorneherein auf die Existenz
einer Ableitung und fordert statt dessen das Bestehen eines Integral-
satzes fiir Integrale iiber Hyperflichen. Dies fithrt — wie auch im ersten
Fall — auf ein System von linearen partiellen Differentialgleichungen
erster Ordnung mit konstanten Koeffizienten. Damit ist auch umgekehrt
die Moglichkeit gegeben, solche Systeme von Differentialgleichungen mit
funktionentheoretischen Hilfsmitteln zu untersuchen [5, 7, 9, 10, 11]. Es
zeigt sich, daBl diese Definition in beliebigen Algebren sinnvoll ist und es
kénnen — wie wir zeigen werden — eine Reihe von Sitzen aufgestellt
werden, die ganz unabhéngig sind von der Struktur der zugrunde gelegten
Algebra. Speziell findet man, daf3 fiir Flichen beliebiger Dimension
Integralsidtze aufgestellt werden konnen. Es sind dies Satze, die teilweise
bereits von Fueter und Staub [2, 13] fir die Algebra der Quaternionen
und gewisse Cliffordsche Algebren hergeleitet wurden.

Die Existenz von Integralsitzen legt es nahe, die Theorie der dufleren
Differentialformen [26, 27, 28] zu verwenden. In der Tat zeigt es sich,
dafl diese Theorie es nicht nur ermoglicht, diese Satze auBerordentlich
elegant herzuleiten, sondern auch erkliart, warum die beiden Verallgemei-
nerungen der klassischen Funktionentheorie offenbar a priori gleich be-
rechtigt und gleich sinnvoll sind. Sei w(z) = % + iv eine Funktion der
komplexen Variablen z = z 4 7y, dann kann man die Bedingung, da3
w(z) analytisch sein soll, folgendermafien formulieren : Das duB3ere Diffe-
rential der Differentialform w = w(z)dz mull verschwinden

do = (tw, —wy)daedy =t(w, +1w,)dedy =0,
also
w, +tw, =0 .

Dies sind die Cauchy-Riemannschen Differentialgleichungen in kom-
plexer Schreibweise. Versteht man unter der adjungierten Differential-
form von &« = adx + bdy die Form o* = —bdx + ady und setzt
man Jx = (dx*)*, so erkennt man leicht, dal dw = d(wdz) = 0 auf
dieselben Differentialgleichungen fiihrt. Die Bedingungen dw = 0 und
0w = 0 sind fir w = wdz dquivalent [25].

Geht man zu beliebigen Algebren iiber und versteht man unter o die
entsprechende Differentialform, so sind die beiden Gleichungen dw = 0
und Jdw = 0 nicht mehr dquivalent ; die erste fiihrt zu den S-analyti-
schen, die zweite zu den F-analytischen Funktionen. Wir werden in einem

7



ersten Abschnitt einen kurzen Uberblick iiber die verwendete Theorie
der Differentialformen geben, wihrend der zweite und dritte Abschnitt
die Theorie der S- respektiv F-analytischen Funktionen enthilt. In
einem vierten Abschnitt untersuchen wir den Zusammenhang mit den
harmonischen Differentialen und zeigen, daf3 die Definitionen der S- und
der F-analytischen Funktionen nur in der Algebra der komplexen Zahlen
dquivalent sind.

Der fiinfte Abschnitt befafit sich mit einer anderen Verallgemeinerung
der analytischen Funktionen, den pseudo-analytischen Funktionen oder
2-monogenen Funktionen, die speziell von Bers und Gelbart [20, 21, 22]
untersucht wurden. Diese Verallgemeinerung besteht darin, daf die
Cauchy-Riemannschen Differentialgleichungen durch ein anderes System
von partiellen Differentialgleichungen erster Ordnung mit variablen Koef-
fizienten ersetzt werden. Die iibliche Schreibweise als komplexe Funk-
tion ist rein formal und meines Erachtens mehr eine Komplizierung als
eine Vereinfachung, da doch simtliche — oft recht undurchsichtigen —
Rechnungen in Komponenten ausgefithrt werden miissen. Weiter ent-
spricht die Metrik der komplexen Zahlen in keiner Weise der durch die
Differentialgleichungen induzierten Metrik. Wir werden deshalb die ganze
Theorie in Matrizenschreibweise durchfiihren, die offenbar angebracht
ist, da die vorher formalen Produkte in wirkliche Produkte von Matrizen
iibergehen. Weiter werden die Bedingungen angegeben, unter welchen
man eine einfache Theorie erhilt. Es ist dies entweder dann der Fall,
wenn die Matrizen vertauschbar sind, oder wenn die Metrik orthogonal
ist. Der erste Fall wurde von Lukomskaja [23], der zweite von Bers und
Gelbart eingehend untersucht. Wir werden hier weniger versuchen, neue
Resultate zu erzielen, als die bereits bekannten Sitze in eine einfachere
und durchsichtigere Form zu bringen. Auch hier zeigt sich wieder die
grofle Allgemeinheit und Vielseitigkeit der Methoden, die Fueter ein-
fiihrte.

1. Funktionen in Algebren, hyperkomplexe Differentiale

Wir wollen in diesem Abschnitt diejenigen Begriffe und Sitze zusam-
menstellen, die im folgenden stindig verwendet werden. Es sei U eine
assoziative Algebra iiber dem Korper der reellen Zahlen mit Hauptein-
heit, die wir mit der Eins der reellen Zahlen identifizieren. Die Basis-
elemente von U seien ¢, =1,¢,,....,cy. Wir definieren weiter zwei
Linearsysteme £, und £, in A4, deren erstes immer die Haupteinheit ent-
halten moge. Durch geeignete Wahl der Basis kann man erreichen, da
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Q,= (o, Cpq) und L,=1(Cs,.-.,¢,,), Wo n<N+1 und m <
N+ 1. £, und g, konnen unter sich oder auch mit %« identisch sein.

Xy, ..., X,_; seien n reelle Variable, die wir als Koordinaten im eukli-
dischen R" deuten. Diese Variablen fassen wir in £, zu der einen hyper-
komplexen Variablen

n—1
2= Cn%
r=0
zusammen. Sind analog u,,...,u, m reelle Funktionen der Variablen
Toy ..., X, 1, SO fassen wir diese in £, zu der einen hyperkomplexen

Funktion w(z) der hyperkomplexen Variablen z zusammen als

m

w(z) = Z’chk Uy -

k=1
Wir werden — ohne das immer zu erwdahnen — stets voraussetzen, dal

die Funktionen w, geniigend oft stetig partiell differenzierbar sind. Es
sei weiter

ow m ou ” ,
L 1 J— Tk __ ¥ (1)
w = ¥ 6, Uy -
ox; E Oni x; o MR
n—1
Unter dem Differential der Variablen z verstehen wir dz= X c,dx, .

h=0
Die Zusammenfassung der Funktionen w, zur Funktion w(z) ist vor-

laufig rein formal; sie wird erst sinnvoll, wenn wir die Funktionen spe-
ziell auswéhlen, was durch die Bedingung der Analytizitét erreicht wird.

Um die analytischen hyperkomplexen Funktionen definieren zu kon-
nen, werden wir die Theorie der Differentialformen verwenden. Wir halten
uns ganz an die Arbeit von de Rham und Bidal [27], wobei sich natiirlich
groBBe Vereinfachungen ergeben, da wir es nur mit euklidischen Réumen

zu tun haben. Die Funktionen 4, ., (%,,..., %, ;) seien die Kom-
ponenten eines kovarianten antisymmetrischen Tensors; #A,,...,#%,
seien r beliebige, verschiedene der Zahlen 0,...,7n — 1. Wir betrachten

die Differentialform
& = ZAhl,---,’lr[dxh .« s 0. dxhr] 3

wobei die Summe iiber alle (?) Kombinationen (k,,...,#k,) erstreckt

werden soll, und die Multiplikation der dz; schief ist. Unter der adjun-
gierten Differentialform «* versteht man

06* _ ZAhla---rhT [dxhl « e dxhr]* ’

wo
[dzy, ... dx, ]* = [da,, | ... d=,,]



definiert ist, wenn die Reihe (h,...,%,,A,,,,...,h,) eine gerade Per-
mutation von (0...n — 1) bildet. Diese Definition ist dquivalent mit

der folgenden :
[dy, ... dx, J[dx,, ... dx, ]* = dh ;

dh bedeutet das Volumenelement dz,... dz,_, des Raumes. Es wird
sich die Schreibweise
[dxhl o s dxhr]* = dXhl---hf‘

als praktisch erweisen, damit schreiben wir endgiiltig

,,,,,

Es gelten die folgenden Rechenregeln
d(l}k dXhl...hr=O k _f"'hz
dxni dXhl...kr = (—1)y-* dXhl..

hi—g higq.. Ry
Es werden hauptsichlich hyperkomplexe Differentiale der folgenden

Form auftreten : -

(d)* = Y ¢, dX, =dZ
und allgemeiner h=0

n—1
[dxhl' .. dazhr dz]* =k§06kdXh1...hrk = thl...h, .
Das duflere Differential einer Form « ist definiert als

d(x 22 “‘—‘—"“;‘:‘.‘,—{‘!‘[dxkdxhl ¢ e o dxhr] 3

entsprechend hat der Operator & die folgende Bedeutung
o = (do*)* .

Wihrend also der Operator d den Grad der Form um eins vergroflert,
verkleinert 6 diesen um eins. Da das duBere Differential eines dufleren
Differentials verschwindet: d(dx) = 0, so gilt auch §(dx) = 0. Einer
der wichtigsten Sitze der Theorie der Differentialformen, den wir zu ver-
wenden haben, ist : Es sei H, , ein (r+1)-dimensionales (geniigend regu-
lares) Fliachenstiick, C' seine r-dimensionale Berandung. Dann gilt die
Formel von Stokes
_fzx = f do

e Hyta

wo « die erwihnte Differentialform r-ten Grades bedeutet.
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2. Die S-analytischen Funktionen

Definition. Se: die Differentialform w gleich dzw(z), wo

n—1 m
dz = X ¢, dx, , w(z) = 3 €y, Uy,
h=0 i=1

=

bedeutet. Wir nennen die hyperkomplexe Funktion w(z) links-analytisch?),
falls das dufere Differential von w verschwindet

dw =0 ,
und rechts-analytisch, wenn
d(wdz) =0
18t.
Es ist
n—1
do = ¥ [dz, dz]w® = ¥ (¢, w? — ¢, w®) [da, dx,] ,

h=0 h<k

also mul
¢, W — ¢, wk) = 0 (h,k=0,...,n — 1) (2,1)

sein. Da ¢, die Haupteinheit ist, gilt speziell

k) — 0
wk = ¢, wo®

und es ist
dw = dz w'® .

Die Bedingungen (2,1) schreiben sich nun als
(cr € — €5 C) WO = 0 hykb=1,...,n—1).

Ist w'® nicht Nullteiler zu allen Ausdriicken ¢, ¢, — ¢, ¢;, so muf} £,
kommutativ sein. Ward [18] hat in einem etwas andern Zusammenhang
ein Beispiel gegeben, wo w'® diese Bedingung erfiillt :

—_— —_— —_ 2 __ 2
Co=1,¢c,¢3+ ¢3¢, =0,¢c,¢c5=2¢Cy,¢ci=1,¢;=0.
w'® muf} die Bedingung
(g — Ccae)W® = 2¢, w® =0

erfiillen, und nimmt deshalb die Form

%) Wir werden in diesem Abschnitt — wie auch im néchsten — statt S-analytisch
respektiv F-analytisch immer nur analytisch schreiben, da nur eine der beiden Bezeich-
nungen auftritt.
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w® =yu(l —¢)+v

an, wo % und v beliebige Funktionen von z,, x,, x, sind.
Lassen wir diesen Fall beiseite, so ergibt sich der

Satz: Die Bedingung fiir die Existenz von links- oder rechts-analytischen
Funktionen in einer Algebra besteht im allgemeinen darin, daf3 das Linear-
system L, der Variablen z kommutativ ist. Die Differentialgleichungen, de-
nen die Funktion w(z) geniigen muf, stnd

w® = ¢, w®  respektiv w® = wOc, k=1,...,n—1) .
Es existiert die linke respektiv rechte Ableitung w'®, da

dw = dz w'®  respektiv dw = w®dz
18¢.

Daf3 unter diesen Bedingungen auch immer analytische Funktionen
existieren, erkennt man daraus, dal fir g, = £, die Variable z stets
links- und rechts-analytisch ist.

Aus dem Verschwinden von dw = d(dzw), wo w(z) links-analytisch
ist ; oder allgemeiner aus dem Verschwinden von

d(Vdzw) ,
wo V (z) rechts- und w(2) links-analytisch ist, folgt der

Integralsatz: Ist C eine geschlossene regulire Kurve, die ganz vm Analy-
tizitatsbereich von V (z) und w(z) liegt, so st

_fV(z)dzw(z) =0 . (2,2)

In den von uns betrachteten Algebren erweist sich also — wie bekannt —
die Existenz einer Ableitung und die Existenz einer Stammfunktion

W(z) = fdz w(z) 3)

als aequivalent. Die Stammfunktion einer links-analytischen Funktion
ist selbst wieder links-analytisch, denn es gilt

AW =dzw(z) .

Das Integral (2,2) tritt bei Degtereva auf und wird von ihm Di-Integral
genannt [14, 15].

3) W (2) liegt im allgemeinen nicht in £, .
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3. F-analytische Funktionen

Wir kommen nun zur Behandlung der zweiten Moglichkeit zur Defini-
tion von analytischen hyperkomplexen Funktionen.

Definition. Sei w die Differentialform dz-w(z), wo dz das Differential
der hyperkomplexen Variablen z aus £, und w(z) eine hyperkomplexe
Funktion aus £, bedeutet. Die Funktion w(z) heilt in einem Punkte z
des n-dimensionalen Raumes der =z,,...,x,_; links-analytisch, falls
dort

dw = (dw*)* =0 (3,1)

gilt. Entsprechend hei3t w(z) rechts-analytisch, wenn die Differential-
form w(z)dz die Bedingung

o(w(z)dz) = 0

erfiillt.
Es ist . .
w=Yc dr,w(z) , w* = Yc, dX, w(z) =dZw(z) ,
k=0 k=0
und also

n—1 n—1

dw* = Y dx, dZ w = dh 3 ¢, w'™ .
h=:0 h=0

Damit ergibt sich der

Satz: Die Funktion w(z) ist in einem Punkte z des n-dimensionalen
Raumes links-analytisch, wenn sie dort den Differentialgleichungen

n—1
o, w® =0 (3,2)
r=0

geniigt, und rechts-analytisch, falls
n—1
JwMe, =0 (3,27)
h=0

gilt. Die beiden Bedingungen sind im allgemeinen nicht &quivalent.

Eine Funktion heiflt in einem Bereiche links-analytisch, wenn dies in
jedem Punkte des Bereiches gilt. Diese zweite Definition fithrt genau zu
der Funktionenklasse, die Fueter in seinen grundlegenden Arbeiten iiber
analytische Quaternionenfunktionen untersucht hat, und es sind in (3,1)
simtliche anderen Definitionen enthalten [6, 8].

Beisprele :
1. Quaternionenfunktionen: ¢, = g, gleich der Algebra der Qua-
ternionen.
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2. Diracsche Differentialgleichungen und andere Systeme von Diffe-
rentialgleichungen. A vollstindige Matrixalgebra der m-reihigen Matri-
zen. £,: Linearsystem von Matrizen. £,: Linearsystem der Spalten-
matrizen

10...0 00...0
00...0 :

: "7 Noo...0
00...0 10...0

3. Analytisch-regulire Funktionen [12, 13]: U Cliffordsche Algebra
(Po = 1,0, 81,0y bpyq, Bly, Gplp,...), 2= —1, 12 =—1 (k#0),

By = — 48, Gl = —148, (h#k, hk=1,2,...,n—1).
n—1

L 2=} 20 , Zp = Xgp + ¥ Topyy (3,3)
k=1
n—-1

Ly w=Y1,w , Wy = Ugy 1 ¥ Ugpyy
k=1

Zu einer — speziell fiir den zweiten Integralsatz — wichtigen Verall-
gemeinerung fiihrt die Betrachtung der Differentialform

w= V() dzw(z) ,

wo V und w hyperkomplexe Funktionen bedeuten. Die Bedingung
dw = 0 ergibt

n—1 n—1
(57ore)ws v (Teus) o
h=0 h=0

und ist also erfiillt, wenn V rechts- und w links-analytisch ist. Sei 4 eine
beliebige hyperkomplexe Konstante aus %, so kann die Bedingung auch
als )

n—1 n—1
(2V<h>c,,—m)w+ V(Zc,,wm>+zw) =0
h=0 h=0

geschrieben werden, was zu den Bedingungen

n—1 n—1
Ve, —Vi=0, Sewh 4+ Aw=0
=0 r=0

fithrt. Derartige Funktionen wurden vom Verfasser [9, 10] untersucht
und inhomogen-analytisch genannt.

Integralsitze : Es sollen hier die Integralsitze der Fueterschen Theo-
rie [2] der Quaternionenfunktionen und gewisser Cliffordscher Funk-
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tionen fiir beliebige assoziative Algebren hergeleitet werden. Der zweite
Integralsatz bildet dabei eine Ausnahme, da er, als einziger, von der
Struktur der zugrunde gelegten Algebra abhingt.

Die Regularititsbedingung (3,1) oder allgemeiner die Bedingung
0(Vdzw) = 0 erlaubt sofort die Aufstellung des Satzes :

Erster Integralsatz?). Se: H ein n-dimensionales Gebiet des z- Raumes,
sewn Rand R eine geschlossene orientierbare Hyperfliche mit stetigem Nor-
malenfeld. Die Funktionen V und w seien tn H + R rechts- respektiv
links-analytisch ®). Dann ist

fV()dZwE) =0,
R
wenn man unter dZ = (dz)* versteht.

Setzt man V (z) respektiv w(z) gleich eins, so erhdlt man fiir links-
respektiv rechts-analytische Funktionen den Integralsatz

fdZ w(z) =0 respektiv (V(z)dZ =0 .
R R

Die Integralsitze, die im folgenden bewiesen werden, sind teilweise fiir
gewisse Cliffordsche Algebren (3,3) hergeleitet worden. Wie Staub [13]
gezeigt hat, lassen sich daraus leicht die Integralsitze von Martinells [29]
herleiten. Wir werden sehen, dafl in beliebigen Algebren, und auch fiir
inhomogen-analytische Funktionen, fiir Fldchen beliebiger Dimension
ein Integralsatz existiert.

Essei H, , (r =1,...,n — 1) einim R" gelegenes, endliches, orien-
tierbares Flachenstiick, das sich nirgends durchdringt und offen ist. Die
Dimension von H,_, sei (n —r). H,_, werde durch die geschlossene
Fliche R der Dimension n — (r 4+ 1) berandet. Die zu betrachtenden
Gebilde seien stiickweise analytisch. w(z) und V() seien in einer n-di-
mensionalen Umgebung von H, , links- respektiv rechts-analytische
Funktionen. w(z) und V (z) diirfen auch inhomogen-analytisch sein, das
heiflt den Gleichungen

n—1 n—1
Sewh + Aw=0, > Ve, —VAi=0

h
geniigen. Auf R betrachten wir die Differentialform

(whl...h,-)* =V (2) [d-'”hl S dxh,- dz]" w (2) =V (2) kgodXh,. ke O W (2)
= V(2)dZ,,  ;,w(?),

%) Der Satz bleibt auch richtig fiir inhomogen-analytische Funktionen.
8) ¥ (2) liegt in einem beliebigen Linearsystem von .
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wo h,...h, r beliebige, verschiedene Zahlen der Reihe 0,1,..., 7 — 1
bedeuten. Das duBere Differential dieser Form ist

n—1 n—1
d(on,  4)" = Z VO [de,dZ,, ,]w(2)+ V() X [da,dZ,, ] w®
8=0 8=0
=1+ Xa -
Die Auswertung fithren wir im Detail nur fiir X, durch :
n—1 n-1 r
o ——kZ y Z V‘s’ cplda, dX, s dw()+ X 2 VD ¢ [day dX, p]w(2)
0 82h,.. k=0 i=
Es ist
n—1
2 2 Ve ¢ [d, de Ty = X Ve Csthl...hr )
k=0 8hy... by 8 ZR1.. by
und aus der Regularité,tsbedingung fir V (z) folgt
r
2 V(S) Cs dXhl...kr = 2 V(h%) C’!i d'Xhl..,h/r + ]7 AdXh]...hr

8Zhy...hy i=1
r
_— 2 V(hi) Chs (__ 1)r—i+1 dXh1

wong T VALK, 4,

---hi—l hi"l‘l-"

Der zweite Summand von X ist bis auf den Faktor w(z) gleich

’
(hs) _ 1\r—iHl
> ¥ V8 (—=1y"MdX, ok
1=1 kZhy...hy
denn es ist
— r—i+1
dxhidXhlhrk - (——‘- l) + d‘Xhl...hi..l hi-{-l...hrk ¢

Damit ist die endgiiltige Form von X, gefunden :

’ n—1

Zi=X Vi (— 1)"”‘EckdXh1 iy higre bk W(R) HV A, 5, w(2)
i=1

=y (= 1y- s ytadz, .

)

w(z)+ V() AdX, , w(2) .

1 hita.. . hy

il
et

Analog fiihrt die Umformung von X, auf
r
o= (— 1)~V (2) thl...hi_lhi.;.l...hrw(hi) -~V (2 ﬂ'dXhl...h,-w (2) »
i=1
also gilt
d(wp, )= 2 (=)= {V (2) dZy, .. niy higr...ne % (D)3

Daraus folgt der
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Integralsatz. H,_, sei ein ganz im Endlichen gelegenes, orientierbares,
sich nirgends durchdringendes Flichenstiick der Dimension n —r (r =1,
...,n —1), R sei setne n — (r + 1) dimensionale, requlire Berandung.
w(z) und V (2) seien in einer n-dimensionalen Umgebung von H,_, links-
respektiv rechts-inhomogen-analytisch

n—1
e w® + dw =0,
h=0
n—1
> VWe, —Vi=0.
h=0

Dann gilt der folgende Integralsatz

r

.&"dehl---hrw = 2 (—— 1)r—i+1 j. {V(Z) thl...hi—l hi+1...hrw(z)}(hi) ’

i=1 Hp_y
wo hy...h, r beliebige verschiedene Zahlen der Reihe 0,1,...,n — 1
bedeuten. Ist H,_, speziell geschlossen, so gilt

2 (=1 f {V(2)8Zy, i hir.. mp® (@)} =0,

i=1 Hp_r

Fir r =1 erhilt man einen Integralsatz fiir geschlossene Hyper-
flachen H,_,

f{V(z)dZw(z)}"”:O h=0,...,n—1),
Hp

wobei iiber das Verhalten von w und ¥V im Innern von H, , nichts
vorausgesetzt ist. Aus diesem Integralsatz fiir Quaternionenfunktionen
respektiv spezielle Cliffordsche Funktionen (3,3) haben Fueter und Frl.
Schaad |3, 4, 12] den Hartogsschen Satz hergeleitet.

4. Analytische Funktionen und harmonische Differentialformen

Eine Differentialform w heiflt nach Hodge [28] harmonisch, falls
dw = 0 und dw = 0 gleichzeitig erfiillt sind. Nach de Rham [27] heift
eine Differentialform o harmonisch, wenn

Ao = (— 1) ddw + (— 1)"?+?d jw = 0

ist, wo n die Dimension des Raumes, p den Grad der Form o bedeutet.
Diese beiden Definitionen sind in einem geschlossenen Raum #quivalent.
Da der von uns zugrunde gelegte euklidische Raum offen ist, sind die
beiden Definitionen im allgemeinen nicht dquivalent, und wir werden sie
gesondert untersuchen. Der Einfachheit halber sei hier stets voraus-
gesetzt, dafl ¢, = g, ist.

2 Commentarii Mathematici Helvetici 17



a) Die Definition von Hodge. Die Differentialform o = dzw soll
gleichzeitig die Bedingung dw = 0 und Jdw = 0 erfiillen, das heilt die
Funktion w(z) soll gleichzeitig S- und F-analytisch sein. Da £, kommu-
tativ sein muB, sind die Funktionen immer beidseitig analytisch.

«) Nun soll w S-analytisch sein. In welchen Algebren ist w dann auto-
matisch auch F-analytisch? Es gilt

wk) = ¢, w® |

also
n—-1 n—1
_ k) — 2, (0
dw = X c,w'® = 3 g w'® .
k=0 k=0

Setzt man speziell die stets S-analytische Funktion w = z ein, so findet

man n—1

d(dzz) = Y c .
k=0

Satz. Die S-analytischen Funktionen sind dann und nur dann stets
auch F-analytisch, wenn die Basiselemente des — kommutativen — Linear-
systems L, eine verschwindende Quadratsumme besitzen

n—1

>ei=0.

k=0

Ist diese Bedingung erfiillt, so ist die Differentialform o = dzw, wo w
analytisch ist, nach Hodge harmonisch.

p) w sei F-analytisch, eine notwendige Bedingung fiir die S-Analytizi-
tit besteht offenbar darin, daB £, kommutativ ist. Die Funktion w =
x, — ¢, %, ist stets F-analytisch ; es ist

dw _ - Chdxo"{" dxh .

Dies soll gleich
n—1 n—1
k=0 k=0

sein, damit w auch S-analytisch ist. Man erhilt

thk =0 (k;éh;()).

Dieses Gleichungssystem mufl fiir alle A =1,...,n — 1 erfillt sein.
Daraus folgt, dal n = 2 und das Linearsystem £, mit der Algebra der
komplexen Zahlen identisch ist.

18



Satz. Die F-analytischen Funktionen sind nur in der Algebra de: ge-
wohnlichen komplexen Zahlen stets S-analytisch.

Hauptsatz. Nur in der Algebra der komplexen Zahlen sind die Bedin-
gungen do = 0 und dw = 0 dquivalent ; das heifit nur in der klassischen
Funktionentheorie besitzen die F-analytischen Funktionen eine Ableitung,

und st die Differentialform o = dzw, wo w F-analytisch ist, nach Hodge
harmonzisch.

b) Die Definition von de Rham : Es ist p =1 und
Ao =ddéw + (— 1)*ddw .
«) Es sei w(z) S-analytisch, das heilt dw = d(wdz) = 0, und

n—1
—_ 2 (0
0w = X c;w'®
k=0

dann ist
n—1

_ 2 (00)
d dw —kz ¢ dz w00 |
=0

Setzt man w = 2%, so ist w'®® =¢,, und die notwendige und hin-
reichende Bedingung dafiir, dall » harmonisch ist lautet also wie im
Falle a, «.

Satz. Damit die Differentialform o = dzw, wo w S-analytisch ist,
harmonisch ist nach de Rham, muf3

n—1

Yei=0
k=0

sein. Die Definitionen von Hodge und de Rham sind fir S-analytische
Funktionen dquivalent.

p) E sei w(z) F-analytisch, das hei}it dw = 0:

do = Y (¢, w™ — ¢, w®)[dx, dx,]

h<k
(do)! = 2 (@uw® — e wh) dX,,
h<
d (dw)* = %'hzk (¢, w® — ¢, wh)® [da,dX,,]
=k
= ¥ (cs, wh — c, w(k))(k) an — X (¢, wh — ch w(k))(h) dX,
= 3 (¢, w™ dX, — ¢, dX, wk®))
hiZk
Es ist ] .
n— —
e, wt dX, = 5 3 (c,w®)W dX, = — ¥ ¢, w dX,
hZk k=0 k;Zh h—=0
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und somit
0(dw) = (— 1)"dzAw .
Das ergibt
do = dzAwS) .

Satz. Die Differentialform w = dzw, wo w eine F-analytische Funk-
tion bedeutet, st dann und nur dann nach de Rham harmonisch, wenn die
Funktion w(z) der Differentialgleichung

Aw = 0

genilgt, das heif3t, wenn jede Komponente von w eine harmonische Funktion
18t.

Wir werden nun diejenigen Algebren bestimmen, in denen diese Bedin-
gung stets erfiillt ist. Die Funktionen

w;, = ;2L (2, — ;)%
Wi = %‘[(-’”i — €; o) (%), — €, %) + (¢ — €1 Tp) (X, — ;)]
wie iiberhaupt alle p-Funktionen [10] sind F-analytisch, und es ist

Aw; = ¢y + ¢ Aw;;,, = c;¢; - CrC; (t £k) .

Soll also fiir jede F-analytische Funktion w Aw = 0 gelten, so mufl

2

= —c, cCr + €y = 0 (,k=1,...,n —1, v £ k)

sein. Es gilt somit der

Hauptsatz. Die zu den F-analytischen Funktionen gehirenden Diffe-
rentialformen o = dzw sind dann und nur dann harmonisch nach de
Rham, wenn das Linearsystem 2, mit dem erzeugenden Linearsystem einer
elliptischen Cliffordschen Algebra zusammenfillt, in diesem Falle sind die
Funktionen immer beidseitig analytisch. Aufer fir die gewohnlichen kom-
plexen Zahlen sind die Definitionen von Hodge und de Rham fur F-analyti-
sche Funktionen nicht dquivalent.

5. Pseudo-analytische Funktionen

Es wurden schon verschiedene Systeme von partiellen Differential-
gleichungen mit funktionentheoretischen Hilfsmitteln untersucht. Wir
werden zuerst einen kurzen Uberblick iiber diejenigen Resultate geben,

8) Vergleiche [27], S. 22.
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die uns hauptsichlich beschiftigen. Es sei immer vorausgesetzt, dall die
betrachteten Funktionen die nétigen Voraussetzungen beziiglich Ein-
deutigkeit, Differenzierbarkeit usw. erfiillen.

a) Sei p(x,y) eine im betrachteten Bereich positive Funktion, dann
heiBt die Funktion f(z) = u - ¢v der komplexen Variablen z = x -+ 1y
pseudo-analytisch, falls

PUu, —v, =0, v, + pu, =0 . (5,1)

Solche Funktionen wurden von Bergman [19], Polozij [24] und Bers [22]
untersucht. Fiir uns sind hier speziell die Resultate von Polozij wichtig :
Sind »*, v* beliebige Funktionen von x und y; % -+ ¢v eine Losung von
(5,1), so gilt

J(w* v — v* up) de 4+ (wrup + v*v) dy

S

= [J W), + @o*),] + oloy — o)1} dady .

T : Gebiet der z-Ebene, S: Rand von 7. Aus diesem Integralsatz folgt
nach einer lingeren Rechnung die Darstellungsformel

[0 =5 fudB(, 0 +i0d26, )

wo der Punkt ¢ im Innern von S liegt und £ und Q aus Fundamental-
l6sungen der Gleichungen

L(uw) = (%), + (puy)y = 0
Zw = (%) + (%) =0 (5,2)

gebildete, komplexe Funktionen sind.

b) Eine zweite Klasse von Funktionen wurde hauptsichlich von Bers
und Gelbart [20, 21] untersucht. Eine Funktion f(z) = u + tv heillt
2-monogen, wenn ihr Real- und Imagindrteil folgenden Differential-
gleichungen geniigen :

01 (2) u, = 7,(¥) vy , 0s(X) uy = — 75(y) v, .
o;(x), os(x), 7,(y), t2(y) werden als positiv vorausgesetzt. Geniigen
% und v dem Gleichungssystem

um u?l = o/
_— == 'I)y Tl 3 — == - 'Ul T2 5 (0,2 )
O 01

21



so heiflt die Funktion f(2) = u + iv Z’-monogen. Das Integral

4

ff(z)dz 2 =f(u oy dx — vrydy) + if(—(%dx +- %dy) (5,3)

2y

k4

29

ist vom Wege unabhingig, wenn f(z) Z-monogen ist. Es ist eine Z’-mono-
gene Funktion der oberen Grenze. Die X-Ableitung einer XZ-monogenen
Funktion f(z) ist definiert als

dsf .V .U
fO(2) = P =0, U, — z-(;ﬁ = T,0, — 1 — , (5,4)

die Z-Ableitung ist XZ’-monogen. Die entsprechenden Operationen sind
auch fiir die 2’-monogenen Funktionen definiert. Eine wichtige Klasse
von X- respektiv X’-monogenen Funktionen sind die formalen Potenz-
funktionen a-Z'™(z,, z) (es handelt sich nicht um ein Produkt, sondern

um ein einziges Symbol) respektiv a-Z~‘"’(zo, z). Diese sind durch die
folgenden Rekursionsformeln definiert

a-ZO —a.Z® =g (@ beliebige komplexe Zahl) ,
a-Zm(z,,2) = nja-Z‘"*l’(zo, §ds ¢, (5,5)

@-Z" (zy,2) = n fa-Z0V (2, §) dx .

)
Jede 2Z-monogene Funktion kann in eine konvergente Reihe nach den
a-Z™ entwickelt werden.

c) Lukomskaja [23] betrachtet ein System von Differentialgleichungen
der Form
€L Uy + €V, = ay Uy + by v, ,

(5,6)
CoUy + €20, = A Uy + by v, .
Er setzt voraus, daf3
ac, Ja,; de; b,
i i i 7t 7
ox oy ’ ox dy ’ (3,7)

und dal gewisse Determinanten nicht verschwinden. Sind % und v
Losungen von (5,6), so heiBt auch f(2) = % + ¢v Losung von (5,6) und
es kann das folgende, vom Wege unabhéngige 2-Integral

4 2

[1(@) dsz = [(azu + byw) dx + (cou + e,v) dy

%9 2

+ i_f(al'“ + b,v) de + (c,u + e,v) dy (5,8)
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definiert werden. Dieses Integral ist selbst wieder eine Losung von (5,6),
falls
esty = byey ay(e; — ¢3) = ¢1(by — a,)

(5,9)
by(e, — €3) = e;(b, — ay)

gilt, was vorausgesetzt wird. Die 2-Ableitung wird geschrieben als

Wy . biu, — by, . A U, — Ay 0,
¥ () = — + 1
al b2 - az bl al b2 - a2 bl

(5,10)

und eine lingere Rechnung zeigt, dafl auch diese Funktion wieder Losung
von (5,6) ist. Die formalen Potenzfunktionen werden entsprechend, wie
oben definiert

a-Z9(z,,2) =a

4

a-Z™(z5,2) =n faZV (2, 2)dyz . (5,5)

Nach dieser knappen Zusammenstellung der Resultate der einzelnen
Autoren beabsichtigen wir zu zeigen, daB sich diese Theorie viel einfacher
und tbersichtlicher darstellen 148t, wenn man von der komplexen
Schreibweise — die in keinem Zusammenhang steht mit der Metrik der
betrachteten Differentialgleichung — zur Matrizenschreibweise iibergeht.
Es sei gegeben ein System von Differentialgleichungen mit variablen
Koeffizienten a,(z,y) und b,(x, y); statt des Zahlenpaares (x, y)

werden wir z schreiben :
Ay Uy + Ay ¥y — (bluu + b2vv) =0,
(5,11)
Az Uy, + Ay Vy — (b3u‘!l + b4vv) =0.

Wir fiihren die folgenden Matrizen ein

_ (%1 Q2 (b4 b : (%) .
A=), B=(ra) we=():

dann kénnen die Gleichungen (5,11) geschrieben werden als

d 0

Die Spaltenmatrix w(z) werde auch Losung von (5,11) genannt. Die zu
dieser Gleichung gehorige Differentialform ist

o= (Bdx + Ady)w(z) ;
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w ist eine Spaltenmatrix. Die Bedingung dw = 0 ergibt
{4, — B)w+ (Aw, — Bw,)}[dedy] = 0 ,
und ist daher mit (5,11) nur dquivalent, falls
A, =B, . (5,12)

Diese Bedingung ist bei Bers und Gelbart erfiillt, wenn man unter 4 und B
die Matrizen

O I T2 02 0

A — 1 5 =
1 0o L
31 0y

versteht, da die Funktionen v nur von y, ¢ aber nur von z abhiingen.
Lukomskaja gibt diese Bedingungen in Komponentenschreibweise : (5,7) ;
die Matrizen 4 und B sind in diesem Spezialfall natiirlich

() -l
¢ € a, b,
Aus A, = B, folgt die Existenz einer Matrix Z, die die Eigenschaft
hat: Z, = B, Z,= A, das hei}t es ist das Differential

dZ = Bdx + A dy

ein vollstindiges Differential. Da also das duflere Differential von w =
dZ w(z) verschwindet, ist das Integral

JdZ w(z)

unabhingig vom Weg. Dieses Integral fillt in den beiden Spezialfillen
mit dem 2-Integral (5,3) respektiv (5,8) zusammen, wie man durch Ein-
setzen leicht bestatigt. Die formalen Produkte f(2)dyz gehen in das
iibliche Produkt von zwei Matrizen iiber.

1. Integralsatz. Ist w(z) etne Losung von (5,11) im Innern und auf dem
requldren Rand C eines endlichen Bereiches, so gilt

fdZw) =0,
c

falls dZ = Bdx + A dy bedeutet, wo die Matrizen A und B die Bedin-
gung A, = B, erfillen.

Man kann sich von der Voraussetzung 4, = B, in der folgenden Art
befreien. Sei M (z) eine beliebige zweireihige, quadratische Matrix, dann
betrachte man die Differentialform
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w=MdZw ,

wo jetzt dZ nur noch eine Schreibweise ist und kein totales Differential
mehr bedeutet: dZ = Bdx + 4 dy. Esist

dw = {[(MA), — (MB),|w(z) + M (4w, — Bw,)}[dzdy] .
Soll dw verschwinden, und ist w(z) Losung von (5,11), so mufl
(MA), — (MB), = 0

sein ; wir finden das genaue Analogon der rechts-analytischen Funktionen.
Spezialisiert man die Matrizen A und B auf

_(p O (01
A_(O 1), B._(__p o)’ (5.13)
so erhdlt man die Differentialgleichungen von Polozij. Seine Integral-
sitze sind die einfachsten Spezialfille der hier herzuleitenden.

Satz. Ist w(z) Losung von (5,11) und genitgt die quadratische Matrix M
der Differentialgleichung (MA), — (MB), = 0, so verschwindet das
Integral

‘f M dZ w(z)
o

falls C eine regulire geschlossene Kurve bedeutet, auf der und in deren
Innern M und w die gestellten Bedingungen erfiillen.

Die Differentialgleichung (5,11) induziert eine Metrik, deren erste
Fundamentalform wir berechnen wollen. Ist 7' eine beliebige zweireihige

Matrix, so ist die adjungierte Matrix T dadurch definiert, daB

wo | 7T | die Determinante von 7' und £ die Einheitsmatrix bedeutet.

Man erhilt 7' bekanntlich, indem man die Glieder der Hauptdiagonalen
vertauscht und bei den beiden Gliedern der Gegendiagonalen das Vor-
zeichen wechselt. Ist dZ = Bdx + Ady, so ist

dZ = Bdx + Ady .

Das Produkt der beiden ist die erste Fundamentalform unserer
Metrik, multipliziert mit £

ds*-E = (Bdx + A dy) (Bdx + A dy)
— BBdx® + (AB + BA)dwdy + AA dy? .
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Die Matrix AB  BA = AB -+ BA ist immer ein Vielfaches von E
AB + BA = (@ by — byay, + a,b, — bya,) E .

Wir setzen fiir das folgende immer voraus, dal die Metrik — und daher
auch das System (5,11) — elliptisch ist; es ist leicht zu sehen, welche
Satze auch fiir beliebige Systeme giiltig bleiben. Wir schreiben zur Ab-
kiirzung

a, by —bza,=F, , a,b, —bya, =F,
und also
ds* =|B|dx*+ (I, + Fy)dedy + | 4| dy* .
Es sei nun
M— (m1 m2) ’
mg My

dann schreibt sich die Gleichung (MA4), — (M B), = 0 als

((mlal + Me@3),— (M1 b, +myb;),  (Mmyay+maay),— (myby+ m2b4)y>
(M3@y + mya;),— (M3b; +mybs),  (Myay+ myay),+ (myby+ myby),

Das Verschwinden der Glieder in der Gegendiagonalen ist dquivalent mit
den folgenden Gleichungen

(myay + maa,) = @, (mza, + myaz) = v, ,
(myby + myby) = @, (mgb, + myby) = vy, .

Wir driicken die GroBen m; durch ¢ und y aus:

_a4¢w“b4¢u _‘azf}?x‘{“bzfpu
ml'—' Nl ’ mz’—-— N1 (514)
. — %Vt b vy m. — G ¥ — by, ’

3 — N2 ’ 4 — N2

wo N, =a,b, — ayb, und N, = a,b; — az;b,. Wir setzen voraus, daf}
weder N, noch N, verschwindet. Damit auch die Glieder in der Haupt-
diagonalen verschwinden, miissen ¢ und y den folgenden Gleichungen

geniigen
[ A1ps — Frgn) 'B’(py“‘F2(pa:):__O
Nl z Nl Yy ’ (515)
| Aly: = Fayy) IBIwy-—Flwm):O ’
N2 x N2 Yy .
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Diese Gleichungen weisen eine groBe Ahnlichkeit mit der Beltramischen
Gleichung unserer Metrik auf. Aus (5,14) erhélt man sofort die allgemeine
Form der Matrix M.

Satz. Ist die Matriz M Losung der Gleichung
(MA), — (MB), =0,

dann kann M in der Form

Ay — Qg b, by

0 3 0 s M §
w_l’ A AR A
a a b b

0 —— 0 __3 1

Y/e N, N, , L N, N,

geschrieben werden, wo ¢ und v Losungen von (5,15) sind. Jede so erzeugte
Matrix wst auch Losung dieser Gleichung.

Um den zweiten Integralsatz zu erhalten, hat man offenbar als Funk-
tionen ¢ und y entsprechend normierte Fundamentallosungen der Glei-
chungen (5,15) einzusetzen und erhilt w(z) als Funktion seiner Rand-
werte

w(£) = E%JM dZ w(z) .

Durch Spezialisieren auf die Matrizen (5,13) erhilt man die Integraldar-
stellung von Poloztj. Wir fiithren die Rechnung nur fiir diesen Fall explizit
durch. Die Gleichungen (5,15) gehen in (5,2) iiber, es seien

@(2, C) = (pl(z’ C) IOgT + (p2(z: C)
p(z, §) = (2, {) log r + y,(z, {)

deren Fundamentallosungen und » = | 2 — {| (die Metrik ist hier eukli-
disch). Weiter sei die Normierungsbedingung
1
’ = TTUET C ’ C = — ] C .
‘ @1(C, 0) 2(0) 21 ) P (0)
Es ist
P Py
"=\ _»
p p

Es sei ¢ ein fester Punkt im Innern von (', wir umschliefen diesen
durch einen kleinen Kreis k. Auf &t fithren wir Polarkoordinaten ein.
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Es ist
lim (M dZw(z) =2aw() ,
r—>0 k
damit ist fiir den Spezialfall die Formel explizit hergeleitet.

Jetzt kehren wir zur Betrachtung des 1. Integralsatzes zuriick, und
setzen von nun an immer voraus, dal 4, = B,. Durch das vom Wege
unabhingige Integral ;
JdzZ w = V()

wird eine Funktion V(z) — als Spaltenmatrix — definiert, deren par-
tiellen Ableitungen
V,=Bw, V,=4w

sind. V (z) geniigt der Differentialgleichung

0 0
-1 __ ~-1__ ==
(B o 4 ay)v 0.

Es stellt sich die Frage, wann V (z) wieder Losung von (5,11) ist. Dies ist
offenbar nur dann der Fall, wenn eine Matrix 7 so existiert, daf

0 0 0 d
-1_ - __ -1_" )} = I ——
T(B ox 4 ay)_Aax Bay
ist. Man erhéilt die Gleichungen
TB'= 4, TA-= B
und somit
T =AB = BA .

Satz. Das X-Integral einer Liosung von (5,11) ist dann und nur dann
wieder Losung von (5,11), wenn die beiden Matrizen B und A vertauschbar
sind

AB = BA .

In Komponenten geschrieben ergibt diese Bedingung das Gleichungs-
system (5,9) von Lukomskaja.

Wir kommen zur Definition der X-Ableitung. Zu diesem Zwecke be-
trachten wir den Ausdruck

(dZ)tdw =
1
 (ds)®
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und behaupten, dafl dieser richtungsunabhingig ist. Setzt man iiberall
w, = B-'Aw, = AB-'w, ,

so ergibt sich

L

(ds)*

In Komponenten ist dies identisch mit der Formel (5,10). Andere Um-
formungen ergeben

(dZ)-! dw = (Bda*+ (A + B-'AB)dxdy + B-*AA)w, = B-'w, .

B-\w, = A-'w, = 1 (B-'w, + A-'w,) ,

was im klassischen Fall der Beziehung

B _ 178 @
dz~ 2 \ox oy
entspricht. Wir beweisen weiter, dal diese Ableitung einer Lisung von

(5,11) wieder Losung derselben Gleichung ist.

a a ~1 — -1 — -1
(A_a;_BW)B w, = A(B"'w,), — B(B-'w,), ,

da A, = B, gilt, ist dies gleich
(4B-w,), — (BB'w,), = (AB~'w,), — w,, = 0 ;
denn die Matrizen 4 und B sind vertauschbar und es ist Aw, = Bw,.

Satz. Fir die Losungen der Gleichung (5,11) existiert etne X- Ableitung,
drve richtungsunabhingig und selbst wieder Losung von (5,11) st
dzw _ 1

oz = @Z)tdw = Blw,= A 'w, = - (Bw, + A-1w,) .
3

bl

Es ist bemerkenswert, da auch im Falle von variablen Koeffizienten,
die Bedingung fiir die Existenz einer Integralfunktion und einer Ablei-
tung im wesentlichen die Vertauschbarkeit der beiden Matrizen A und B
ist.

Auch die Definition der Potenzfunktion (5,5’) wird durchsichtiger. Wir
betrachten die quadratische Matrix

Z=((Bde+ Ady)E ;

diese geniigt offenbar der Differentialgleichung
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AZ,— BZ,=0 ,
ebenso wie alle 2-Integrale von Z = Z®
F4
Z(n)—__—;ndeZ(n—l) m=1,2,...),
29

wobei wir unter Z(® die Einheitsmatrix £ verstehen. Es sei a = « + ¢ §,
dann erhilt man die formale Potenzfunktion «-Z™(z,,2) in Matrizen-
schreibweise als
Zm (“) .
p

Auch hier geht das formale Produkt in ein Produkt von zwei Matrizen
iiber.
Der zweite interessante Spezialfall der Differentialgleichung (5,11) ist
nun der, wo _ _
AB + BA =0

ist, das heilt wo es sich um eine orthogonale Metrik handelt. Da die
Matrizen bei Bers und Gelbart diese Bedingung erfiillen, sind ihre Funk-
tionen in den von uns betrachteten enthalten. Die Differentialgleichung

BV,—A'V,=0
des 2-Integrales
V(z) = [dZ w(2)

geht nach Linksmultiplikation mit AB = — BA iiber in
(Zf_+ﬁ—3— V(z) =0 (5,16)
ox oy - ’

Eine Funktion, die dieser Differentialgleichung geniigt, heiflt im Spezial-
fall von Bers und Gelbart X’-monogen. Das ergibt den

Satz. Das X-Integral einer Losung von (5,11) ist Losung von (5,16),
wenn die Matrizen A und B die Bedingung

AB+ BA=0
erfillen.

Die zu (5,16) gehorige Differentialform ist

o' = (— Bdx + Ady)V(z) .
Es gilt _ _ _ _
do' = {(B, + 4,)V + (AV, + BV ,)}[dz dy] ;
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soll dw’ = 0 eine Folge von (5,16) sein, so miissen die Matrizen A und B
die Bedingung

B,+A4,=0,
oder, was dasselbe ist
B,+4,=0,

erfiillen. Zusammen mit der Bedingung (5,12) ergibt sich
A, + B,=0,

das heift, die Matrix 4 darf nur von y, die Matrix B nur von x abhingig
sein. Dies setzen wir im folgenden voraus, dann ist das Integral

w(2) = j'dZV(z) ,
wo V (z) Losung von (5,16) und
dZ = — Bdx + Zdy

ist, vom Wege unabhingig und als Funktion der oberen Grenze Losung
von (5,11): Es ist _
w,= — BV | w, = AV
also _ _
Bw,+ A-'w,=|B|*Bw,+ |4|'4Aw, =0 .

Nach Multiplikation mit |4 B| erhilt man
|A|Bw,+|B|Aw,=BAAw,+ ABBw, =0 ,

und, da AB—= — BA
BA(Aw,— Bw,) =0,

was mit (5,11) dquivalent ist. In Komponenten geschrieben erhélt man
das X’-Integral von Bers und Gelbart.
Z- und X’-Ableitung :

Satz. Der Quotient -
(dzZ)dw ,

wo w(z) Losung von (5,11) ist, ist unabhéngig von der Richtung und
fillt mit der XZ-Ableitung von w zusammen. Man erhélt
d > w

@)1 dw = 20— (Byrw,= @) rw, =5 (— Blw, + Aw,) .
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Entsprechend sei V (z) Losung von (5,16), dann ist

ds V

(dZ)-1dV = BV,= AV, = (BV + AV,) = —
ds 2

b

also gleich der X/-Ableitung von V (2).
Wir beweisen nur den ersten Teil des Satzes, da derjenige des zweiten
Teiles analog ist. Es ist

de+Adyd

(dZ)* dw = @

(d s{— Bw,dx* + (Aw, — Bw,) dvdy 4+ Aw,dy?} .

Der Koeffizient von dxdy verschwindet wegen (5,11), und es gilt
Aw,=AB'4w,

Somit folgt
(@2 dw =y (BB dst — AB ABdy) (— Bw,)
was wegen AB—= — BA gleich
— B-lw,
ist.

Da dZ und dZ nach Voraussetzung vollstindige Differentiale sind,
kann man wieder die formalen Potenzfunktionen definieren als

70 — 70 — F

Zm — g de 7Z(n-1)

29

~ z
Z™ =nq (dZZ"V (n=1,2,3,...),

ist @ =« 4 1 § eine beliebige komplexe Zahl, so entsprechen den Funk-
tionen (5,5) a-Z™ (2, 2) respektiv a-Z™(z,,2) die Matrizen

AL ((;) resp. Z™ (;) .

Man kann die Differentialgleichung (5,11), falls
AB+ BA=0

ist, auf die folgende Normalform transformieren. Da
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82 =|B|dx*+ | 4| dy?
ist, fithre man die neuen Variablen
E—"—fl/rj;ldx , nzfl/mdy
ein ; B hingt nur von 2 und 4 nur von y ab. Das ergibt

Ago— By = AVIE] 5 — BVTA] -

das hei3t die Differentialgleichung schreibt sich als

(A __*’__B_i’__)wzo,

1o 1oy
WO
A B
A, = F 5 B ——
V4] ' VIB]

bedeutet. Die Matrizen 4, und B, haben die Eigenschaften
|4,|=|By| =1, A, =47, B, =B, A,B,+BA4,=0.
Die neue Metrik ist

ds* = (B,dx + A,dy)(B,dx + A,dy) = da® + dy?
Im Falle der Matrizen von Bers und Gelbart ergibt sich

0 — ]/1'1 Ty l/01 Oy 0
A, = 1 ) B, = 1
‘/Tl 1";- O O VGI 0‘2

Damit ist bewiesen, da die X-monogenen Funktionen ein Spezialfall
der von Poloztj behandelten Funktionen sind. Zu den gewo6hnlichen ana-
lytischen Funktionen kommt man offenbar fiir

1 1
Ty == —— 02:“““ .
? T ’ 0y

Wir stellen uns zum Schluff noch die Frage, zu welcher Differential-
gleichung die zur Differentialform

w = (Bdx + A dy)w

adjungierte Differentialform w* gehért. Da die Riemannsche Metrik
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ds* = | B|da?+ 2F dady + | A | dy? , F=AB + BA
vorliegt, ist die zu « = b dx 4 a dy adjungierte Form definiert als

o* = b*dx + a*dy ,

WO

, Fb—|Bla ., |4|b—Fa

- , at —

VIAB| —F VI4AB| — F?
Es ist somit

1 — — — — - —

SV TAB— {(AB + BA) B— 2ABB]dxz +[(2BAA — (BA + AB)]dy}
BA - AB

= 2VW:ﬁ?(de+Ady) .

Satz. Drie adjungierte Form w* ist bis auf etnen Faktor mit o identisch

BA — AB
2V AB| — F?

* =

’

somat gehoren die Differentialformen w und w* zu derselben Differential-
gleichung.
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