Zeitschrift: Commentarii Mathematici Helvetici

Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 26 (1952)

Artikel: Sur la réductibilité d'un espace de Riemann.

Autor: de Rham, George de

DOI: https://doi.org/10.5169/seals-21282

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 09.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Sur la réductibilité d'un espace de Riemann

par Georges de Rham

Le but essentiel de cet article est d'établir que tout espace de Riemann réductible, simplement connexe et complet est un produit d'espaces irréductibles. Les résultats sont énoncés d'une manière complète au n° 7. Dans les n° 1 et 2, je rappelle les notions préliminaires indispensables, et, dans l'Appendice, j'ai ajouté une démonstration de théorèmes de H. Hopf et W. Rinow.

1. Soit V un espace de Riemann connexe à n dimensions, de classe C^2 . Les rotations de l'espace vectoriel euclidien T_x tangent en un point $x \in V$ qu'on obtient par transport parallèle le long des lacets différentiables par morceaux fermés en x forment un groupe $\Psi(x)$ appelé groupe d'holonomie homogène de V relatif à x^{-1}).

On dit que V est r'eductible, si ce groupe est réductible, c'est-à-dire s'il laisse invariant un sous-espace réel non trivial de T_x . Dans le cas contraire, V est dit irr'eductible.

Supposons que V soit réductible. Soit T_a' un sous-espace réel de T_a invariant par $\Psi(a)$, de dimension p, $0 , et soit <math>T_a''$ le sous-espace orthogonal à T_a' , de dimension q = n - p. Par transport parallèle le long d'un chemin différentiable par morceaux joignant a à un point quelconque $x \in V$, on obtient deux sous-espaces T_x' et T_x'' de T_x indépendants du chemin suivi et invariants par $\Psi(x)$.

Les champs T'_x et T''_x sont complètement intégrables.

Considérons en effet une famille de repères orthonormaux $R_x=(e_1,\ldots,e_n)$ attachés aux points x d'un voisinage U d'un point $u \in V$, tels que les p premiers vecteurs e_1,\ldots,e_p sous-tendent T'_x et les q derniers e_{p+1},\ldots,e_n sous-tendent T''_x . On pourra prendre par exemple pour U une boule géodésique ouverte de centre u et de rayon assez petit et

¹⁾ E. Cartan, Les groupes d'holonomie des espaces généralisés (Acta math., t. 48, 1926, p. 1—42). — A. Borel et A. Lichnerowicz, Groupes d'holonomie des variétés riemanniennes (C. R. Acad. Sci., Paris 234 (1952), p. 1835—37). C'est un entretien avec les auteurs de cette note, à l'occasion d'une conférence faite par M. Lichnerowicz au Cercle Mathématique de Lausanne, qui est à l'origine du présent article.

pour R_x le repère qui se déduit d'un repère R_u vérifiant les conditions ci-dessus, par transport parallèle le long de l'arc géodésique joignant u à x dans U. D'après la théorie du repère mobile de E. Cartan, il existe alors des formes différentielles de degré 1 bien déterminées dans U, ω_i et ω_{ij} (i, j = 1, ..., n), telles que

$$d\omega_i = \sum_j \omega_{ij} \wedge \omega_j$$
 , $\omega_{ij} + \omega_{ji} = 0$, (1)

$$dx = \sum_{i} \omega_{i} e_{i}$$
 , $ds^{2} = \sum_{i} (\omega_{i})^{2}$, (2)

$$de_i = \sum_j \omega_{ij} e_j$$
 (3)

Le champ T'_x est alors défini dans U par le système

$$\omega_i = 0 \qquad (i = p + 1, \dots, n) \tag{4}$$

et le champ T''_x par le système

$$\omega_i = 0 \qquad (i = 1, \ldots, p). \tag{5}$$

Comme un vecteur de T_x' (ou T_x'') reste dans T_x' (resp. T_x'') par transport parallèle le long de n'importe quel chemin décrit par x, on a

$$\omega_{ij} = 0$$
 si $i \leqslant p$ et $j > p$, ou $i > p$ et $j \leqslant p$,

et il résulte immédiatement de là et de (1) que chacun des systèmes (4) et (5) satisfait à la condition de complète intégrabilité de Frobenius.

Par chaque point z de V passe ainsi une feuille intégrale de (4) à p dimensions et une seule, E(z), et une feuille intégrale de (5) à q dimensions et une seule, F(z).

L'ensemble des E(z) sera appelé le premier système de feuilles, et l'ensemble des F(z) le second système de feuilles.

Chaque feuille de l'un et l'autre système est totalement géodésique dans V. En effet, si le vecteur unité tangent en un point a d'une géodésique est contenu dans T'_a , le vecteur unité tangent en un point quelconque x de cette géodésique, se déduisant du premier par transport parallèle le long de la géodésique elle-même, sera contenu dans T_x' , d'où résulte que la géodésique est entièrement contenue dans la feuille E(a).

A la structure riemannienne donnée dans V est associée une structure d'espace métrique, dans laquelle la distance de deux points est définie par la borne inférieure des longueurs des chemins joignant ces deux points. D'autre part, à la structure riemannienne induite sur chaque feuille E de l'un ou l'autre système par celle de V est aussi associée une structure d'espace métrique, dans laquelle la distance de deux points de \boldsymbol{E} , que nous appellerons distance sur E, est la borne inférieure des longueurs des chemins joignant ces deux points sur E. Cette distance sur E est égale ou supérieure à la distance des deux points dans V; en général, elle ne lui est pas égale. Par exemple, si E est une géodésique non fermée sur la surface d'un tore muni d'un ds^2 euclidien, la distance sur E de deux points de E, n'étant pas bornée, ne peut être toujours égale à leur distance sur le tore qui, elle, est bornée.

Dire que V est complet signifie que toute suite de points de V, x_k , $(k=1,2,\ldots)$, qui est une suite de Cauchy (c'est-à-dire telle que la distance de x_m à x_k tende vers zéro pour m et $k\to\infty$), est convergente. D'après un théorème de Hopf-Rinow, pour qu'il en soit ainsi, il faut et il suffit que toute géodésique de V soit infinie dans les deux sens ou fermée, et l'on sait qu'alors deux points quelconques de V peuvent être joints par un arc géodésique de longueur égale à leur distance et que toute partie bornée de V est relativement compacte 2).

Si V est complet, toute géodésique d'une feuille E est infinie dans les deux sens ou fermée, puisque c'est en même temps une géodésique de V; il résulte alors du théorème de Hopf-Rinow que, pour la métrique définie par la distance sur E, la feuille E est un espace complet. Par suite, deux points quelconques de E pourront être joints par un arc géodésique situé sur E de longueur égale à leur distance sur E.

En vertu de la complète intégrabilité des systèmes (4) et (5), pour chaque point $u \in V$, on peut trouver un voisinage W de u, p intégrales premières de (5) dans W, x_1, \ldots, x_p , et q intégrales premières de (4) dans W, y_1, \ldots, y_q , de manière que $x_1, \ldots, x_p, y_1, \ldots, y_q$ forment un système de coordonnées locales dans W, s'annulant au point u, et prenant dans W toutes les valeurs satisfaisant à $\sum x_i^2 < 1$, $\sum y_i^2 < 1$, et celles-là seulement. Désignons par x le point de coordonnées $(x_1, \ldots, x_p, 0, \ldots, 0)$, par y le point de coordonnées $(0, \ldots, 0, y_1, \ldots, y_q)$ et par f(x, y) le point de coordonnées $(x_1, \ldots, x_p, y_1, \ldots, y_q)$. Le lieu décrit par x est une partie E'(u) de E(u), le lieu décrit par y est une partie F'(u) de F(u). Pour y fixe et x décrivant E'(u), f(x, y) décrit une partie E'(y) de E(y), et pour x fixe et y décrivant F'(u), f(x, y) décrit une partie F'(x) de F(x). On voit que E'(y) et F'(x) se coupent orthogonalement au point f(x, y) qui est leur seul point d'intersection.

Considérons deux points y et y' voisins dans F'(u). Lorsque x varie, l'arc géodésique le plus court joignant f(x, y) à f(x, y') dans F(x)

²) Voir l'Appendice.

reste orthogonal aux courbes décrites par ses extrémités dans E'(y) et E'(y'). Par suite, sa longueur ne varie pas: la distance de f(x, y) à f(x, y') sur F(x) est indépendante de x. De même, la distance de f(x, y) à f(x', y) sur E(y) est indépendante de y. Il résulte de là que, dans W, le ds^2 se décompose en la somme des ds^2 relatifs à E'(u) et F'(u), ce qu'on exprimera en disant que f(x, y) est une isométrie sur W du produit riemannien $E'(u) \times F'(u)$.

Désignons par E(u,r) l'ensemble des points de E(u) dont la distance à u sur E(u) est strictement inférieure à r, et par F(u,r) l'ensemble analogue dans F(u). Si ϱ est assez petit, $E(u,\varrho) \in E'(u)$ et $F(u,\varrho) \in F'(u)$. Ce nombre ϱ dépend de u, mais on peut le choisir de manière qu'il soit fonction continue et strictement positive de u. On désignera par $f_u(x,y)$ la restriction de f(x,y) à $E(u,\varrho) \times F(u,\varrho)$ et par U l'image de ce domaine par f_u . Nous pouvons alors énoncer:

Proposition I. Il existe dans V une fonction continue et strictement positive $\varrho(u)$, telle que, pour $x \in E(u, \varrho(u))$ et $y \in F(u, \varrho(u))$, les ensembles $E(y, \varrho(u))$ et $F(x, \varrho(u))$ se coupent en un point unique $z = f_u(x, y)$, et l'application ainsi définie f_u est une isométrie du produit riemannien $E(u, \varrho(u)) \times F(u, \varrho(u))$ sur un voisinage ouvert U de u dans V.

2. On appellera isométrie toute application topologique différentiable de classe C^2 d'un domaine (c'est-à-dire d'un ensemble ouvert et connexe) d'un espace de Riemann dans un autre espace de Riemann de même dimension, tous deux de classe C^2 , telle que l'image de toute courbe rectifiable soit une courbe rectifiable de même longueur.

Considérons deux isométries dont les domaines de définition sont dans le même espace de Riemann et qui prennent aussi leurs valeurs dans un même espace de Riemann. On dira qu'elles sont en prolongement immédiat, si leurs domaines de définition ont une intersection non vide et si leurs restrictions à cette intersection sont identiques.

Soit L un chemin issu d'un point x_0 du domaine de définition d'une isométrie f, décrit par x_t pour t variant de 0 à 1. On dira que f est prolongeable le long de L, s'il existe une isométrie f_t , définie pour $0 \le t \le 1$, se réduisant à f pour t = 0, dont le domaine de définition (variable avec t) contient x_t , de manière que f_t et $f_{t'}$ soient en prolongement immédiat lorsque |t - t'| est assez petit. On dira que f_t est un prolongement de f le long de L; f_1 sera appelée l'isométrie terminale du prolongement, $f = f_0$ l'isométrie initiale.

Si deux isométries f et g, ayant même domaine de définition D, sont tangentes en un point O de D, elles coïncident sur tout arc géodésique

issu de O et contenu dans D, car les images de cet arc par f et par g seront évidemment un même arc géodésique. Par suite, f et g coïncident dans une boule de centre O et sont donc tangentes en chaque point de cette boule. L'ensemble des points de D où f et g sont tangentes est par suite un ensemble ouvert; par raison de continuité, c'est aussi un ensemble fermé dans D, c'est donc D tout entier: deux isométries ayant même domaine de définition et tangentes en un point de ce domaine sont identiques.

Supposons que f_t et f'_t soient deux prolongements de f le long du même chemin L décrit par $x_t (0 \le t \le 1)$. L'ensemble des valeurs de t telles que f_t et f'_t soient tangentes en x_t est fermé et contient t=0. C'est d'autre part un ensemble ouvert dans l'intervalle (0,1), car si t' lui appartient et si |t-t'| est assez petit, $f_{t'}$ et $f'_{t'}$ étant tangentes en x_t , coïncident au voisinage de ce point et sont par suite tangentes en x_t ; il en sera donc de même de f_t et f'_t puisqu'alors f_t et $f_{t'}$ ainsi que f'_t et f'_t , sont en prolongement immédiat. Il résulte de là que f_t et f'_t sont tangentes en x_t pour tout $t \in (0,1)$. Cela entraîne qu'elles coïncident dans la composante connexe de l'intersection de leurs domaines de définition qui contient x_t , ce qu'on exprimera d'une manière plus brève mais moins précise en disant que, lorsqu'il est possible, le prolongement est unique.

Si les espaces de Riemann qui contiennent le domaine de définition et le domaine des valeurs d'une isométrie f sont analytiques et complets, on sait que f peut être prolongée le long de n'importe quel chemin 3).

Rappelons encore le théorème de monodromie qui jouera plus loin un rôle essentiel. Deux chemins L et L' sont dits homotopes dans V, s'ils ont même origine et même extrémité et s'il existe une déformation continue de L en L' dans V laissant l'origine et l'extrémité fixes. Le théorème de monodromie s'énonce alors ainsi:

Si L et L' sont deux chemins homotopes dans V et si f_t et f_t' sont des prolongements le long de L et L' d'une même isométrie initiale $f_0 = f_0'$, les isométries terminales f_1 et f_1' sont tangentes à l'extrémité commune de L et L' et par suite coïncident dans la composante connexe de l'intersection de leurs domaines de définition qui contient cette extrémité.

3. Après ces préliminaires, nous allons établir la proposition suivante, de laquelle le résultat que nous avons en vue se déduira facilement.

Proposition II. Si l'espace de Riemann V est complet et remplit les conditions de la Proposition I, et si $O \in V$, l'isométrie f_o peut être prolongée de long de tout chemin d'origine (O,O) dans $E(O) \times F(O)$.

³⁾ Voir l'Appendice.

Comme on a vu, si V est complet, E(O) et F(O) le sont aussi et il en est de même de $E(O) \times F(O)$. Si V est analytique, E(O) et F(O) le sont aussi et de même $E(O) \times F(O)$. Dans ce cas, notre proposition résulte immédiatement de celle qui a été rappelée ci-dessus. Mais pour l'établir dans le cas où V n'est pas analytique, une autre méthode est nécessaire et nous commencerons par quelques lemmes.

Reprenons les notations de la Proposition I. Soit P[x, u; r] l'application de F(u, r) sur F(x, r), définie pour $0 < r \le \varrho(u)$ et $x \in E(u, \varrho(u))$ en posant, pour tout $y \in F(u, r)$,

$$P[x, u; r] (y) = f_u(x, y)$$
.

Cette application est toujours une restriction de $P[x, u; \varrho(u)]$ et, en vertu de la Proposition I, c'est une *isométrie*. L'image de u est x; un point et son image sont toujours sur une même feuille du premier système et leur distance sur cette feuille est constante, égale à la distance de u à x sur E(u). On a les relations

$$P[u,x;r] = P[x,u;r]^{-1}$$

$$(6)$$

et

$$P[x, v; r] = P[x, u; r] \cdot P[u, v; r], \qquad (7)$$

pourvu naturellement que chacune des isométries qui y figure soit définie, c'est-à-dire, pour (6), si $x \in E(u, \varrho(u))$, $u \in E(x, \varrho(x))$, $0 < r \le \varrho(u)$, $r \le \varrho(x)$, et, pour (7), si $x \in E(u, \varrho(u))$, $u \in E(v, \varrho(v))$, $0 < r \le \varrho(u)$, $r \le \varrho(v)$.

Soit L un chemin situé dans une feuille du premier système, décrit par x^s pour s variant de 0 à 1. Soit $L(s_2, s_1)$ l'arc de L décrit par x^s pour s variant de s_1 à s_2 , s_1 et s_2 étant deux points quelconques de l'intervalle (0,1). On pourra prendre $s_1 < s_2$ ou $s_1 > s_2$, mais nous considérerons toujours x^{s_1} comme l'origine de $L(s_2, s_1)$ et x^{s_2} comme son extrémité. $L(s_1, s_2)$ n'est alors pas autre chose que le chemin $L(s_2, s_1)$ changé de sens et L(1,0) = L. Soit ϱ_0 le minimum de $\varrho(u)$ sur L.

Lemme 1. Pour $0 < r \le \varrho_0$, $0 \le s \le 1$ et $0 \le s' \le 1$, il existe une isométrie P[L(s',s);r] de $F(x^s,r)$ sur $F(x^{s'},r)$ telle que

a)
$$P[L(s',s);r] = P[x^{s'},x^s;r]$$
 si $L(s',s) \in E(x^s,\varrho(x^s))$ et

b)
$$P[L(s_3, s_1); r] = P[L(s_3, s_2); r] \cdot P[L(s_2, s_1); r)]$$

quels que soient les points s_1 , s_2 et s_3 de l'intervalle (0,1).

On peut en effet décomposer l'intervalle (s, s') en intervalles assez petits pour qu'à chacun d'eux corresponde, en vertu de a), une isométrie bien déterminée. Le produit de ces dernières fournit P[L(s', s); r]. Il résulte alors de (6) et (7) que l'isométrie ainsi obtenue ne dépend pas du partage choisi et qu'elle satisfait à b). Remarquons encore que, P[L(s, s); r] se réduisant à l'isométrie identique, on a, en vertu de b),

$$P[L(s,s');r] = P[L(s',s);r]^{-1}$$
.

Disons qu'un chemin L d'origine x dans E(x) est petit, si $L \in E(x, \varrho(x))$. D'après a), si L et L' sont petits et ont même origine et même extrémité, P[L; r] = P[L'; r]. En particulier, si L est un $petit\ lacet\ (ou\ un\ lasso\ ^4)),\ P[L, r]$ se réduit à l'identité. Il en résulte que si L et L' sont homotopes sur une feuille du premier système,

P[L;r] = P[L';r]. L'isométrie P[L;r] ne dépend que de la classe d'homotopie de L.

Il va s'agir de prouver que l'isométrie P[L;r] peut être prolongée le long de tout chemin M issu de l'origine x^0 de L dans la feuille $F(x^0)$. Cela sera fait dans le Lemme 4, à l'aide des Lemmes 2 et 3 ci-dessous.

Lemme 2. Si $u_2 \in F(u_1, r)$, $0 < r < \varrho_0 = \inf (\varrho(u_1), \varrho(u_2))$, $x_1 \in E(u_1, \varrho_0)$ et $x_2 = P[x_1, u_1; r](u_2)$, pourvu que la distance de u_2 à u_1 sur $F(u_1)$ soit assez petite, $P[x_1, u_1; r]$ et $P[x_2, u_2; r]$ sont en prolongement immédiat.

Les images de $F(u_1, r)$ et $F(u_2, r)$ par les isométries $P[x_1, u_1; r]$ et $P[x_2, u_2; r]$ sont respectivement $F(x_1, r)$ et $F(x_2, r)$, comme elles contiennent toutes deux x_2 , elles sont sur la même feuille $F(x_1) = F(x_2)$. Comme $r < \varrho_0$, si la distance de u_2 à u_1 sur $F(u_1)$ est assez petite, $F(u_2, r) \in F(u_1, \varrho_0)$. Chacune des isométries $P[x_1, u_1; r]$ et $P[x_2, u_2; r]$ étant alors une restriction de $P[x_1, u_1; \varrho_0]$, elles sont bien en prolongement immédiat.

Lemme 3. Soit M un chemin situé sur la feuille $F(u_0)$, décrit par u_t pour t variant de 0 à 1, et soient x_0 et r tels que $P_0 = P[x_0, u_0; r]$ soit définie. Si r et la distance de x_0 à u_0 sur $E(u_0)$ sont strictement inférieurs au minimum ϱ_0 de $\varrho(u)$ sur M, il existe une isométrie P_t de $F(u_t, r)$ dans $F(x_0)$, définie pour $0 \le t \le 1$, se réduisant à P_0 pour t = 0, de manière que P_t et P_t , soient en prolongement immédiat dès que |t-t'| est assez petit. Un point et son image par P_t sont toujours

⁴⁾ Cf. A. Borel et A. Lichnerowicz, loc. cit.

sur une même feuille du premier système, à une distance sur cette feuille égale à la distance de x_0 à u_0 sur $E(u_0)$.

On peut trouver $\varepsilon > 0$ tel que, quel que soit t_0 satisfaisant à $0 \leqslant t_0 < 1$, l'arc décrit par u_t pour t variant de t_0 à $t_1 = \inf(t_0 + \varepsilon, 1)$ soit contenu dans $F(u_{t_0}, \varrho(u_{t_0}))$. Cela étant, pour établir le Lemme 3, il suffira de montrer que, si P_t est définie et satisfait aux conditions exigées pour $t \leqslant t_0$, on peut définir P_t pour $t \leqslant t_1$ de manière à satisfaire encore aux mêmes conditions. Or, la définition de P_t s'étend en posant, pour $t_0 \leqslant t \leqslant t_1$, $P_t = P[P_{t_0}(u_t), u_t; r]$.

Cette isométrie est en effet bien définie, car $P_{t_0}(u_t)$ et u_t sont sur une même feuille du premier système, à une distance sur cette feuille égale à la distance de x_0 à u_0 sur $E(u_0)$, distance inférieure à ϱ_0 qui lui-même ne dépasse pas $\varrho(u_t)$. En tenant compte du Lemme 1, on vérifie alors immédiatement que P_t satisfait aux conditions du Lemme 2 pour $0 \leqslant t \leqslant t_1$, ce qui achève la démonstration.

4. Considérons maintenant deux chemins L et M de même origine O, contenus respectivement dans E(O) et F(O), de longueur < R. Supposons qu'ils sont décrits par x^s et x_t respectivement pour s et t variant de 0 à 1, en sorte que $x^0 = x_0 = 0$.

Supposons que l'espace V est complet. L'ensemble S des points de V dont la distance à O est $\leq 2R$ est alors compact, de sorte que $\varrho(u)$ a sur S un minimum strictement positif ϱ_0 . Nous allons montrer que, si $r < \varrho_0$, P[L; r] est prolongeable le long de M. D'une manière plus précise :

Lemme 4. Si $r < \varrho_0$, il existe une isométrie P_t^s de $F(x_t, r)$ dans $F(x^s)$, définie pour $0 \leqslant s \leqslant 1$ et $0 \leqslant t \leqslant 1$, qui jouit des propriétés suivantes:

- a) $P_0^s = P[L(s, 0); r]$.
- b) P_t^s et $P_{t'}^s$ sont en prolongement immédiat si |t-t'| est assez petit.

De plus, en posant $P_t^s(x_t) = x_t^s$, $x_t^0 = x_t$ et $x_0^s = x^s$, désignant par $M^s(t_2, t_1)$ le chemin décrit par x_t^s pour s constant et t variant de t_1 à t_2 et par $L_t(s_2, s_1)$ le chemin décrit par x_t^s pour t constant et s variant de s_1 à s_2 , on a:

- c) L'image de $F(x_t, r)$ par P_t^s est $F(x_t^s, r)$.
- d) $P_t^s = P[L_t(s, 0); r]$.
- e) $P[L_t(s_2, s_1); r]$ est un prolongement de $P[L(s_2, s_1); r]$ le long de $M^{s_1}(1,0)$.

Pour la démonstration, on remarquera d'abord que les propriétés c), d) et e) découlent immédiatement de a) et b). Ensuite, il existe $\varepsilon > 0$ tel que, pour $0 \le s_0 < 1$ et $s_1 = \inf(s_0 + \varepsilon, 1)$, $L(s_1, s_0) \in E(x^{s_0}, \varrho_0)$, de sorte que $L(s_1, s_0)$ est petit et $P[L(s_1, s_0); r] = P[x^{s_1}, x^{s_0}; r]$. Cela étant, pour établir le Lemme 4, il suffira de prouver que, si P_t^s est définie et satisfait à a), b), c), d) et e) pour $0 \le s \le s_0$ et $0 \le t \le 1$, on peut étendre sa définition pour $s_0 \le s \le s_1$ et $0 \le t \le 1$ de manière à satisfaire encore à a) et b). Or, le chemin $M^{s_0} = M^{s_0}(1,0)$ décrit par $x_t^{s_0}$ pour t variant de 0 à 1 est alors bien défini et il a même longueur que M auquel il est localement isométrique; son origine étant sur L, il est contenu dans S, de sorte que ϱ_0 ne dépasse pas le minimum de $\varrho(u)$ sur M^{s_0} . Il résulte alors du Lemme 2 que $P[L(s, s_0); r] = P[x^s, x^{s_0}; r]$ est prolongeable le long de M^{s_0} ; soit P_t' son prolongement. L'isométrie composée $P_t^s = P_t' \cdot P_t^{s_0}$ satisfait alors à a) et b), ce qui achève la démonstration.

5. En permutant les rôles des deux systèmes de feuilles, on obtient, pour tout chemin M joignant deux points x_0 et x_1 sur une même feuille du second système et pour tout nombre positif r inférieur au minimum de $\varrho(u)$ sur M, une isométrie Q[M;r] de $E(x_0,r)$ sur $E(x_1,r)$ qui est exactement analogue à P[L;r] et jouit des propriétés correspondantes. Le Lemme 4 fournit alors immédiatement le résultat suivant, dans l'énoncé duquel on reprend les notations introduites au début du n^0 4:

Si $r < \varrho_0$, il existe une isométrie Q_t^s de $E(x^s, r)$ dans $E(x_t)$, définie pour $0 \leqslant s \leqslant 1$ et $0 \leqslant t \leqslant 1$, qui jouit des propriétés suivantes:

- a') $Q_t^0 = Q[M(t, 0); r]$.
- b') Q_t^s et $Q_t^{s'}$ sont en prolongement immédiat si |s-s'| est assez petit. De plus, en posant $Q_t^s(x^s) = \dot{x}_t^s$, $\dot{x}_t^0 = x_t$ et $\dot{x}_0^s = x^s$, désignant par $\dot{L}_t(s_2, s_1)$ le chemin décrit par \dot{x}_t^s pour t constant et s variant de s_1 à s_2 et par $\dot{M}^s(t_2, t_1)$ le chemin décrit par \dot{x}_t^s pour s constant et t variant de t_1 à t_2 , on a:
 - c') L'image de $E(x^s, r)$ par Q_t^s est $E(\dot{x}_t^s, r)$.
 - ${
 m d}') \; Q_t^s = Q[\dot{M}^s(t,0);r] \; .$
 - e') $Q[\dot{M}^s(t_2,t_1);r]$ est un prolongement de $Q[\dot{M}(t_2,t_1);r]$ le long de $\dot{L}_{t_1}(1,0)$.

Lemme 5. On a l'égalité $\dot{x}_t^s = x_t^s$.

Nous allons montrer que, si cette égalité est vraie pour $0 \leqslant s \leqslant s_0$, $0 \leqslant t \leqslant 1$ et pour $0 \leqslant s \leqslant s_1 = \inf(s_0 + \varepsilon, 1), \ 0 \leqslant t \leqslant t_0$, où s_0 et t_0

sont des points quelconques de l'intervalle (0,1) et où ε est un nombre strictement positif indépendant de s_0 et t_0 , elle a encore lieu pour $0 \le s \le s_1$, $0 \le t \le t_1 = \inf(t_0 + \varepsilon, 1)$.

On peut choisir $\varepsilon > 0$ assez petit pour que, si $s_0 \leqslant s \leqslant s_1$ et $t_0 \leqslant t \leqslant t_1$, P_t^s et $P_{t_0}^s$ soient en prolongement immédiat ainsi que Q_t^s et $Q_t^{s_0}$, que x_t appartienne au domaine de définition de $P_{t_0}^s$ et x^s à celui de $Q_t^{s_0}$, et que $L_{t_0}(s,s_0)$ et $\mathring{M}^{s_0}(t,t_0)$ soient petits. Alors on a

$$x_t^s = P_t^s(x_t) = P_{t_0}^s(x_t) = P[L_{t_0}(s, 0); r](x_t),$$

d'où

$$x_t^s = P[L_{t_0}(s, s_0); r] \cdot P[L_{t_0}(s_0, 0)](x_t)$$
.

Or, $L_{t_0}(s, s_0)$ étant petit, on a

$$P[L_{t_0}(s,s_0);r] = P[x_{t_0}^s, x_{t_0}^{s_0};r],$$

d'où, comme

$$\begin{split} P\left[L_{t_0}\left(s_0,0\right);\,r\right]\left(x_t\right) &= P_{t_0}^{s_0}\left(x_t\right) = x_t^{s_0}\;,\\ x_t^s &= P\left[x_{t_0}^s,\,x_{t_0}^{s_0};\,r\right]\left(x_t^{s_0}\right)\;. \end{split} \tag{8}$$

D'une manière exactement analogue, on obtient

$$\dot{x}_t^s = Q\left[\dot{x}_t^{s_0}, \, \dot{x}_{t_0}^{s_0}; \, r\right] \left(\dot{x}_{t_0}^s\right),$$

d'où, comme $\dot{x}_t^{s_0} = x_t^{s_0}$, $\dot{x}_{t_0}^{s_0} = x_{t_0}^{s_0}$ et $\dot{x}_{t_0}^{s} = x_{t_0}^{s}$ par hypothèse,

$$\dot{x}_t^s = Q[x_t^{s_0}, x_{t_0}^{s_0}; r](x_{t_0}^s). \tag{9}$$

Il résulte alors de la définition même des isométries P et Q figurant dans (8) et (9) que x_t^s et \dot{x}_t^s se réduisent tous deux à l'unique point d'intersection de $E(x_t^{s_0}, r)$ avec $F(x_{t_0}^s, r)$, ce qui établit notre assertion.

Le Lemme résulte facilement de là. En effet, l'ensemble des valeurs de s telles que $\dot{x}_t^s = x_t^s$ pour tout $t \in (0,1)$ est fermé et non vide, car il contient s = 0; soit s_0 sa borne supérieure. Raisonnant par l'absurde, supposons $s_0 < 1$, ce qui entraîne $s_0 < s_1 = \inf(s_0 + \varepsilon, 1)$; l'ensemble des valeurs de t telles que $\dot{x}_t^s = x_t^s$ pour $s \leq s_1$, qui est fermé et non vide puisqu'il contient t = 0, aurait alors une borne supérieure $t_0 < 1$, ce qui contredirait ce qu'on vient d'établir.

6. Démonstration de la Proposition II. Considérons dans $E(O) \times F(O)$ un chemin K d'origine (O, O) dont les projections dans E(O) et F(O) soient respectivement M et L, et continuons avec les mêmes notations que ci-dessus.

Les isométries P_t^s de $F(x_t, r)$ sur $F(x_t^s, r)$ et Q_t^s de $E(x^s, r)$ sur

 $E(x_t^s, r)$ fournissent une isométrie (Q_t^s, P_t^s) du produit riemannien $E(x^s, r) \times F(x_t, r)$ sur le produit riemannien $E(x_t^s, r) \times F(x_t^s, r)$.

Posons $u=x_t^s$ et soit $f_{u,r}$ la restriction à $E(u,r)\times F(u,r)$ de l'isométrie f_u définie dans la Proposition I. L'application composée

$$R_t^s = f_{u,r} \cdot (Q_t^s, P_t^s)$$

est alors une isométrie de $E(x^s, r) \times F(x_t, r)$ sur un voisinage de $u = x_t^s$ dans V. Cette isométrie jouit des propriétés suivantes:

- a) $R_t^s(x^s, x_t) = x_t^s$.
- b) R_t^s et $R_{t'}^{s'}$ sont en prolongement immédiat si |s-s'| et |t-t'| sont assez petits.
- c) $R_t^s(x, y)$ reste sur une feuille du premier système lorsque x seul varie et sur une feuille du second système lorsque y seul varie.

Pour s = t = 0, l'isométrie R_0^0 se réduit à la restriction à $E(O,r) \times F(O,r)$ de l'isométrie f_o définie dans la Proposition I.

Cela montre que l'isométrie f_{θ} peut être prolongée le long de K et la Proposition II est établie.

7. En vertu du théorème de monodromie, l'image de l'extrémité de K par l'isométrie terminale du prolongement de f_o le long de K ne dépend que de la classe d'homotopie de K, c'est-à-dire que des classes d'homotopie des projections L et M de ce chemin dans E(O) et F(O). Soient \overline{E} et \overline{F} les revêtements universels de E(O) et F(O), et soient x et y les extrémités des relèvements de L et de M dans \overline{E} et \overline{F} respectivement. On sait que x et y caractérisent les classes d'homotopie de L et M. L'application f définie en posant z=f(x,y), où z est l'image de l'extrémité du chemin K par l'isométrie terminale du prolongement de f_o le long de K, est alors une application localement isométrique de $\overline{E}\times\overline{F}$ dans V. Comme E(O) et F(O) sont complets, $\overline{E}\times\overline{F}$ est aussi complet, et, V étant connexe, il en résulte que f est une application sur V.

Si maintenant l'on suppose que V est simplement connexe, en vertu du théorème de monodromie, f est nécessairement biunivoque, d'où résulte que $\overline{E} = E(O)$ et $\overline{F} = F(O)$, c'est-à-dire que E(O) et F(O) sont simplement connexes et se coupent au seul point O. Nous avons ainsi établi le théorème suivant, où, comme ailleurs, l'espace V est toujours supposé de classe C^2 et connexe.

Théorème I. Soit V un espace de Riemann simplement connexe et complet, dont le groupe d'holonomie homogène relatif à un point O laisse invariant un sous-espace réel non trivial T_o' de l'espace vectoriel euclidien T_o tangent en O. Soit T_o'' le sous-espace supplémentaire orthogonal de T_o' et soient T_z' et T_z'' les sous-espaces de l'espace vectoriel euclidien T_z tangent en un point quelconque $z \in V$ qui se déduisent de T_o' et T_o'' par transport parallèle. Les champs T_z' et T_z'' sont complètement intégrables et définissent deux systèmes de feuilles. Par chaque point z passe une feuille et une seule du premier système, E(z), et une feuille et une seule du second système, F(z). Chaque feuille du premier système coupe chaque feuille du second système en un point et en un seul. Pour $x \in E(O)$ et $y \in F(O)$, l'application z = f(x, y) qui associe à (x, y) le point d'intersection z de F(x) avec E(y) est une isométrie de $E(O) \times F(O)$ sur V.

Inversément, à toute isométrie z = f(x, y) d'un produit riemannien $V_1 \times V_2$ sur V est associé un double feuilletage de V, dont les feuilles sont décrites par f(x, y) lorsque x ou y seul varie. Identifions les feuilles E et F passant par un point donné $O \in V$ avec V_1 et V_2 , et soient T', T''et T = T' + T'' les espaces vectoriels euclidiens tangents à E, F et Vau point O. Soit K un lacet fermé en O dans V, et soient L et M les projections de $f^{-1}K$ dans E et F. La rotation de T associée à K dans le groupe d'holonomie homogène Ψ de V relatif au point O laisse T' et T''invariants et elle opère dans T' (resp. T'') comme la rotation associée à L (resp. M), ainsi que cela résulte immédiatement des équations du déplacement parallèle et du fait que le ds^2 de V se décompose en la somme des ds^2 relatifs à E et F. Cela entraîne que Ψ est le produit direct des sousgroupes Ψ' et Ψ'' formés par les rotations associées aux lacets fermés en O et situés dans E et F respectivement. Les groupes induits par Ψ' sur T' et T'' sont respectivement le groupe d'holonomie homogène de Eet l'identité, ceux induits par \(\mathbb{Y}'' \) sont l'identité et le groupe d'holonomie homogène de F.

La généralisation au cas d'une décomposition de T en somme directe d'un nombre fini quelconque de sous-espace invariants deux-à-deux orthogonaux est immédiate, et nous pouvons énoncer:

Théorème II. Soit V un espace de Riemann simplement connexe et complet. A toute décomposition $T=\sum\limits_{i=1}^k T_i$ de l'espace vectoriel euclidien T tangent en un point donné O de V en somme directe de sous-espaces réels deux-à-deux orthogonaux invariants par le groupe d'holonomie homogène Ψ de V relatif au point O correspond une isométrie déterminée f d'un produit

riemannien $F_1 \times F_2 \times \cdots \times F_k$ sur V,

$$z = f(x_1, x_2, ..., x_k), (z \in V, x_i \in F_i, i = 1, 2, ..., k),$$

telle que, lorsque x_i seul varie, z décrive une feuille intégrale du champ obtenu par transport parallèle de T_i . Le groupe d'holonomie Ψ est un produit direct $\Psi = \Psi_1 \times \Psi_2 \times \cdots \times \Psi_k$, où Ψ_i induit sur $T_i(j \neq i)$ l'identité 5) et sur T_i un groupe semblable au groupe d'holonomie homogène de F_i . Réciproquement, toute isométrie d'un produit riemannien sur V correspond ainsi à une telle décomposition de T.

Il résulte de là que, si le sous-espace invariant T_i de T est irréductible, c'est-à-dire ne contient aucun sous-espace non trivial réel invariant par Ψ , l'espace F_i est irréductible. Or, il existe toujours une décomposition de T en somme directe de sous-espaces invariants irréductibles. L'espace V est donc toujours isométrique à un produit d'espaces irréductibles.

Il peut arriver que certains des sous-espaces invariants irréductibles en lesquels se décompose T soient de dimension 1. Leur somme directe est le sous-espace T' de T formé de tous les vecteurs invariants par Ψ et les sous-groupes correspondants se réduisent à l'identité. L'espace de Riemann correspondant à T' dans la décomposition de V en un produit riemannien est un espace euclidien. Si T' est de dimension $\geqslant 2$, il est clair qu'on peut le décomposer d'une infinité de manières différentes en la somme directe de sous-espaces invariants irréductibles, de dimension 1, deux-à-deux orthogonaux : n'importe quel repère orthonormal dans T' fournit une telle décomposition.

On peut alors décomposer T en la somme directe de T' et de sous-espaces invariants irréductibles T_i de dimension $\geqslant 2$. Montrons que cette dernière décomposition est unique. Il suffit de prouver que, si T'' est un sous-espace invariant réel de T, ou bien T'' est orthogonal à T_i , ou bien T'' contient T_i . Or, si tous les vecteurs de T'' sont invariants par le sous-groupe Ψ_i associé à T_i , on est dans le premier cas, car seuls les vecteurs orthogonaux à T_i sont invariants par Ψ_i . Si T'' contient un vecteur X non invariant par Ψ_i , il y a un transformé X' de X par une rotation de Ψ_i qui est distinct de X; la composante de X orthogonale à T_i étant invariante par Ψ_i , le vecteur X - X' est dans T_i en même temps que dans T''; il en est de même de tous ses transformés par Ψ_i , et comme ils sous-tendent T_i , cela entraîne $T_i \in T''$.

⁵) Cette première partie de l'assertion relative au groupe d'holonomie est établie d'une autre manière par A. Borel et A. Lichnerowicz (loc. cit.), sans supposer que l'espace est complet.

Le multifeuilletage de l'espace V qui est associé à une telle décomposition est alors canonique, et il en résulte le théorème suivant.

Théorème III. Tout espace de Riemann simplement connexe, complet et réductible est isométrique à un produit $V_1 \times V_2 \times \cdots \times V_k$ d'espaces de Riemann qui sont irréductibles de dimension $\geqslant 2$ sauf un au plus qui est euclidien. Les espaces facteurs V_i sont univoquement déterminés à l'ordre près et à des isométries près. L'isométrie la plus générale d'un tel produit sur lui-même est de la forme

 $\begin{array}{l} f(x_1,\,x_2,\ldots,\,x_k) = \big(g_1(x_{i_1}),\,g_2(x_{i_2}),\ldots,\,g_k(x_{i_k})\big),\,(x_i\,\epsilon\,V_i,\,i=1,\,2,\ldots\,k),\\ \text{où } i_1,\,i_2,\ldots,\,i_k \ \ \text{est une permutation de } 1,\,2,\ldots,\,k \ \ \text{et } \ g_j \ \ \text{une isométrie}\\ \ \ de\ V_{i_j} \ \ \text{sur } \ V_i(j=1,\,2,\ldots,\,k) \ . \end{array}$

L'espace euclidien qui se présente éventuellement parmi ces facteurs est évidemment isométrique à un produit d'espaces irréductibles, qui sont nécessairement des droites, en nombre égal à sa dimension. Par suite:

Corollaire. Tout espace de Riemann simplement connexe, complet et réductible est isométrique à un produit d'espaces irréductibles qui sont univoquement déterminés à l'ordre près et à des isométries près.

APPENDICE

Envisageons les quatre propriétés suivantes d'un espace de Riemann connexe V.

- a) Toutes les géodésiques sont infinies dans les deux sens ou fermées.
- b) Toute suite de points de V qui est une suite de Cauchy est convergente.
- c) Tout ensemble de points de V qui est borné est relativement compact.
- d) Deux points quelconques de V peuvent être joints par un arc géodésique de longueur égale à leur distance.

Le théorème de H. Hopf et W. Rinow ⁶), utilisé au n° 1 et qu'on va établir ici, affirme que, de ces quatre propriétés, chacune des trois premières entraîne toutes les autres.

⁶⁾ H. Hopf und W. Rinow, Über den Begriff der vollständigen differentialgeometrischen Fläche (Comment. Math. Helv. 3, p. 209—225). Le théorème n'est énoncé que pour des surfaces analytiques, mais la méthode de démonstration est générale; elle semble toutefois moins directe que celle du texte. Le fait que c) entraîne d) remonte à Hilbert.

Il est immédiat que c) entraîne b), et b) entraîne a), car toute géodésique qui n'est ni fermée ni infinie dans les deux sens contient des suites de Cauchy divergentes. Il suffit donc de prouver que a) entraîne c) et d).

Appelons vecteur initial d'un arc géodésique, le vecteur tangent à cet arc à son origine et ayant le même sens et la même longueur. La propriété a), que nous prenons comme hypothèse, entraîne que tout vecteur tangent en un point donné a de V, quelle que soit sa longueur, est le vecteur initial d'un arc géodésique, forcément unique. Cet arc pourra éventuellement se couper lui-même, ou se recouvrir en partie s'il est porté par une géodésique fermée.

Soit S_r l'ensemble des points x de V dont la distance à a est $\leqslant r, d(x, a) \leqslant r$, et soit E_r l'ensemble des points x de S_r qui peuvent être joints à a par un arc géodésique de longueur égale à d(x, a). On voit que E_r est compact, car si $x_h(h=1,2,\ldots)$ est une suite de ses points, T_h étant le vecteur initial d'un arc géodésique de longueur $d(a,x_h)$ joignant a à x_h , la suite des T_h a au moins un vecteur d'accumulation T, qui est le vecteur initial d'un arc géodésique dont l'extrémité appartient à E_r et est un point d'accumulation de la suite des x_h . Nous allons montrer que

$$E_r = S_r . (1)$$

Cette relation est vraie pour r=0. Si elle est vraie pour r=R>0, elle est évidemment vraie pour r< R. Mais réciproquement, si elle est vraie pour tout r< R, elle l'est encore pour r=R. En effet, tout point x de S_R est limite d'une suite de points dont la distance à a est < R; ces points appartenant alors par hypothèse à E_R qui est fermé, il en est de même de leur limite x. Cela étant, pour établir (1) dans toute sa généralité, il suffira de montrer que, si elle est vraie pour r=R, elle l'est encore pour une valeur supérieure r=R+s, s>0.

A cet effet, montrons d'abord que, pour tout point y tel que d(a,y) > R, on peut trouver un point x tel que d(a,x) = R et d(a,y) = R + d(y,x). En effet, quel que soit l'entier h, on peut joindre a à y par une ligne de longueur $< d(a,y) + h^{-1}$, et si x_h est le dernier point de cette ligne appartenant à $E_R = S_R$, on a $d(a,x_h) = R$ et

$$d(x_h, y) < d(a, y) - R + h^{-1};$$

pour $h \to \infty$, x_h a au moins un point d'accumulation x et ce point jouit des propriétés requises.

On sait d'autre part qu'il existe une fonction continue s(x) > 0, telle que, si $d(x, y) \leq s(x)$, le point y est l'extrémité d'un arc géodésique d'origine x et de longueur d(x, y) qui est le seul chemin de longueur

d(x, y) joignant ces deux points, et cela entraı̂ne qu'un chemin de longueur d(x, z) joignant deux points x et z est nécessairement un arc géodésique. s(x) a sur E_R un minimum s>0.

Cela étant, si (1) est vraie pour r=R et si $R < d(a,y) \leqslant R+s$, il existe $x \in E_R$ tel que d(a,x)=R et $d(x,y)=d(a,y)-R \leqslant s$. Il existe par suite un arc géodésique L' de longueur d(a,x) joignant a à x et un arc géodésique L'' de longueur d(x,y) joignant x à y. La ligne formée par L' et L'' joint alors a à y, et comme sa longueur est d(a,y), c'est un arc géodésique. Donc $y \in E_{R+s}$, ce qui achève la démonstration de (1).

De cette égalité résulte que S_r est compact et V jouit de la propriété c); la propriété d) en résulte aussi, puisque tout point x est alors l'extrémité d'un arc géodésique d'origine a et de longueur d(a,x). On peut remarquer que l'hypothèse suivante: "toutes les géodésiques passant par un point donné quelconque de V sont infinies dans les deux sens ou fermées", suffit pour entraîner c), et par suite a), b) et d).

Voici encore une démonstration de la proposition mentionnée aux n^{os} 2 et 3, qui peut s'énoncer ainsi ⁷):

Soient V et V' deux espaces de Riemann de même dimension, analytiques et complets, f une isométrie d'un domaine $D \in V$ dans V' et L un chemin issu d'un point de D dans V. Alors f peut être prolongée le long de L.

Désignons par V(x,r) ou V'(y,r) la boule ouverte de centre x (ou y) et de rayon r dans V (ou V'), et soit s'(y) la fonction analogue dans V' à la fonction s(x) définie ci-dessus dans V. Vérifions d'abord s) que, si g est une isométrie de V(u,r) dans V' et si $0 < r < s \le s(u)$ et $s \le s'(g(u))$, il existe une isométrie s de s dans s dans s qui est en prolongement immédiat avec s, c'est-à-dire dont s est une restriction. En effet, chaque point s et s d'un seul; soit s le vecteur initial de cet arc, s l'image de s par s dans s d'un seul; soit s le vecteur initial de cet arc, s l'image de s par s dans s d'un seul; soit s le vecteur initial de cet arc, s l'image de s par s dans s d'un définie en posant s est le vecteur initial; l'application s définie en posant s est alors une application topologique et analytique de s d'un à l'analyticité, qui coïncide avec s dans s d'un seul; ce dernier fait, joint à l'analyticité,

⁷⁾ Cette proposition est aussi établie par W. Rinow, mais seulement pour les surfaces: W. Rinow, Über Zusammenhänge zwischen der Differentialgeometrie im großen und im kleinen (Math. Z. 35, 1932, p. 512—538).

⁸⁾ Cf. E. Cartan, Leçons sur la Géométrie des Espaces de Riemann, 2me édition, 1946, p. 238.

entraîne que h est une isométrie. Nous dirons que h est l'extension de f à V(u,s).

Supposons maintenant que le chemin L soit décrit par x_t pour t variant de 0 à 1. Sans restreindre la généralité, on peut admettre qu'il est rectifiable; soit R sa longueur, et soit s la plus petite des bornes inférieures de s(x) dans $V(x_0,R)$ et de s'(y) dans $V'\left(f(x_0),R\right)$. Choisissons r>0 et $\leqslant \frac{s}{3}$ tel que $V(x_0,r)\in D$, et soit f_0 la restriction de f à $V(x_0,r)$. Il suffit de montrer qu'il existe une isométrie f_t de $V(x_t,r)$ dans V', définie pour chaque $t\in (0,1)$, de manière que f_t et $f_{t'}$ soient en prolongement immédiat dès que |t-t'| est assez petit. Et pour cela, il suffit encore de prouver que, quel que soit t_0 satisfaisant à $0\leqslant t_0<1$, si f_t est définie et satisfait aux conditions ci-dessus pour $0\leqslant t\leqslant t_0$, on peut étendre sa définition pour $t_0< t\leqslant t_1=\inf(t_0+\varepsilon,1)$ de manière à satisfaire aux mêmes conditions, ε étant un nombre >0 indépendant de t_0 .

Choisissons $\varepsilon > 0$ tel que, quel que soit $t_0 \in (0,1)$, l'arc décrit par x_t pour t variant de t_0 à t_1 soit contenu dans $V(x_{t_0},r)$. Remarquons ensuite que, pour t variant de 0 à t_0 , $f_t(x_t)$ décrit dans V' un chemin localement isométrique à l'arc correspondant de L, donc de même longueur, ce qui entraı̂ne que $f_{t_0}(x_{t_0}) \in V'\left(f(x_0),R\right)$ et $s'\left(f_{t_0}(x_{t_0})\right) \geqslant s$. Pour $t_0 < t \leqslant t_1$, on a $V(x_t,r) \in V(x_{t_0},s)$, à cause de la manière dont on a choisi r; en définissant alors f_t comme la restriction à $V(x_t,r)$ de l'extension de f_{t_0} à $V(x_{t_0},s)$, on satisfait aux conditions requises.

Reçu le 24 août 1952.