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Sur la réductibîlîté d'un espace de Riemami

par Georges de Rham

Le but essentiel de cet article est d'établir que tout espace de Riemann
réductible, simplement connexe et complet est un produit d'espaces
irréductibles. Les résultats sont énoncés d'une manière complète au n° 7. Dans
les nos 1 et 2, je rappelle les notions préliminaires indispensables, et, dans

l'Appendice, j'ai ajouté une démonstration de théorèmes de H. Hopf et
W. Rinow.

1. Soit F un espace de Riemann connexe à n dimensions, de classe C2.

Les rotations de l'espace vectoriel euclidien Tx tangent en un point
x e F qu'on obtient par transport parallèle le long des lacets difïéren-
tiables par morceaux fermés en x forment un groupe W(x) appelé groupe
d'holonomie homogène de F relatif à x 1).

On dit que F est réductible, si ce groupe est réductible, c'est-à-dire s'il
laisse invariant un sous-espace réel non trivial de Tx Dans le cas
contraire, F est dit irréductible.

Supposons que F soit réductible. Soit Ta un sous-espace réel de Ta
invariant par W(a)y de dimension p, 0 < p <n, et soit T"a le sous-

espace orthogonal à Tra, de dimension q n — p Par transport parallèle

le long d'un chemin différentiable par morceaux joignant a à un point
quelconque x € F, on obtient deux sous-espaces Tx et T"x de Tx
indépendants du chemin suivi et invariants par W(x)

Les champs Tx et Tt!% sont complètement intégrables.

Considérons en effet une famille de repères orthonormaux
Bx= (et,..., en) attachés aux points x d'un voisinage U d'un point ueV,
tels que les p premiers vecteurs ex,..., ep sous-tendent Trx et les q
derniers ep+1,..., en sous-tendent Trx On pourra prendre par exemple pour
U une boule géodésique ouverte de centre u et de rayon assez petit et

*) E.Cartan, Les groupes d'holonomie des espaces généralisés (Acta math.,
t. 48, 1926, p. 1—42). — A. Borel et A. Lichnerowicz, Groupes d'holonomie des variétés

riemanniennes (C. R. Acad. Sci., Paris 234 (1952), p. 1835—37). C'est un entretien
avec les auteurs de cette note, à l'occasion d'une conférence faite par M. Lichnerowicz au
Cercle Mathématique de Lausanne, qui est à l'origine du présent article.
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pour Rx le repère qui se déduit d'un repère Ru vérifiant les conditions
ci-dessus, par transport parallèle le long de l'arc géodésique joignant
u à x dans U. D'après la théorie du repère mobile de E. Cartan, il existe
alors des formes différentielles de degré 1 bien déterminées dans U, co,-

et œl3 {i,j=l,...,n)i telles que

dojt £œl3 A w3 col3 + co3t 0 (1)
3

<te 2>A >
ds2 Z(a>t)* (2)

de, 2>,,e, (3)

Le champ Tx est alors défini dans U par le système

co,-0 (i p+l,...,n) (4)

et le champ î7^ par le système

cot 0 (i=l,...,p). (5)

Comme un vecteur de Tx (ou Trfx) reste dans î7^. (resp. Tx) par transport

parallèle le long de n'importe quel chemin décrit par #, on a

cotj 0 si i ^ p et j > p, ou i > p et j ^ p

et il résulte immédiatement de là et de (1) que chacun des systèmes (4)
et (5) satisfait à la condition de complète intégrabilité de Frobenius.

Par chaque point z de V passe ainsi une feuille intégrale de (4) à p dimensions

et une seule, E(z), et une feuille intégrale de (5) à q dimensions et

une seule, F(z)
L'ensemble des E (z) sera appelé le premier système de feuilles, et

l'ensemble des F(z) le second système de feuilles.
Chaque feuille de Vun et Vautre système est totalement géodésique dans V.

En effet, si le vecteur unité tangent en un point a d'une géodésique est
contenu dans T'a, le vecteur unité tangent en un point quelconque x de
cette géodésique, se déduisant du premier par transport parallèle le long
de la géodésique elle-même, sera contenu dans Tx, d'où résulte que la
géodésique est entièrement contenue dans la feuille E(a)

A la structure riemannienne donnée dans F est associée une structure
d'espace métrique, dans laquelle la distance de deux points est définie par
la borne inférieure des longueurs des chemins joignant ces deux points.
D'autre part, à la structure riemannienne induite sur chaque feuille E de

Fun ou l'autre système par celle de F est aussi associée une structure
d'espace métrique, dans laquelle la distance de deux points de E, que

OOQ
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nous appellerons distance sur E, est la borne inférieure des longueurs des

chemins joignant ces deux points sur E. Cette distance sur E est égale
ou supérieure à la distance des deux points dans F ; en général, elle ne
lui est pas égale. Par exemple, si E est une géodésique non fermée sur la
surface d'un tore muni d'un ds2 euclidien, la distance sur E de deux
points de E, n'étant pas bornée, ne peut être toujours égale à leur
distance sur le tore qui, elle, est bornée.

Dire que F est complet signifie que toute suite de points de V, xk,
(h 1,2,...), qui est une suite de Cauchy (c'est-à-dire telle que la
distance de xm à xk tende vers zéro pour m et k -> oo), est convergente.
D'après un théorème de Hopf-Rinow, pour qu'il en soit ainsi, il faut et
il suffit que toute géodésique de F soit infinie dans les deux sens ou
fermée, et l'on sait qu'alors deux points quelconques de F peuvent être
joints par un arc géodésique de longueur égale à leur distance et que
toute partie bornée de F est relativement compacte 2).

Si F est complet, toute géodésique d'une feuille E est infinie dans les
deux sens ou fermée, puisque c'est en même temps une géodésique de F ;

il résulte alors du théorème de Hopf-Rinow que, pour la métrique définie
par la distance sur E, la feuille E est un espace complet. Par suite, deux
points quelconques de E pourront être joints par un arc géodésique situé
sur E de longueur égale à leur distance sur E

En vertu de la complète intégrabilité des systèmes (4) et (5), pour
chaque point u e F, on peut trouver un voisinage W de u, p intégrales
premières de (5) dans W, xl9..., xp, et q intégrales premières de (4)
dans W, yx,..., yq, de manière que xt,..., xv, y1,..., yq forment un
système de coordonnées locales dans W, s'annulant au point u, et
prenant dans W toutes les valeurs satisfaisant à £x\ < 1 Hy\ < 1 et
celles-là seulement. Désignons par x le point de coordonnées (xl9..., xp9

0,..., 0), par y le point de coordonnées (0,..., 0, yl9..., yq) et par
f(x, y) le point de coordonnées {xl9..., xp9 yl9..., yq) Le lieu décrit

par x est une partie E'(u) de E(u), le lieu décrit par y est une partie
F'(u) de F(u) Pour y fixe et x décrivant E'(u), f(x,y) décrit une
partie E'(y) de E(y), et pour x fixe et y décrivant F'(u), f(x9 y)
décrit une partie Ff(x) de F{x). On voit que E'(y) et F'(x) se

coupent orthogonalement au point f(x, y) qui est leur seul point
d'intersection.

Considérons deux points y et y! voisins dans F'(u) Lorsque x varie,
l'arc géodésique le plus court joignant f(x, y) à f(x, y1) dans F(x)

2) Voir l'Appendice.
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reste orthogonal aux courbes décrites par ses extrémités dans E'(y)
et E'(y') Par suite, sa longueur ne varie pas : la distance de f(x,y) à

f(x,yf) sur F(x) est indépendante de x. De même, la distance de f(x,y)
à f(xf, y) sur E(y) est indépendante de y. Il résulte de là que, dans W,
le ds2 se décompose en la somme des ds2 relatifs à E'{u) et Ff(u), ce

qu'on exprimera en disant que f(x, y) est une isomêtrie sur W du
produit riemannien Er(u) x F'(u)

Désignons par E(u,r) l'ensemble des points de E(u) dont la
distance à u sur E(u) est strictement inférieure à r, et par F(u,r)
l'ensemble analogue dans F(u) Si g est assez petit, E(u, q) c E'(u) et
F(u, q) c F'(u) Ce nombre q dépend de u, mais on peut le choisir de
manière qu'il soit fonction continue et strictement positive de u. On
désignera par fu(x, y) la restriction de f(x, y) à E(u, g) X F(u, q)

et par U l'image de ce domaine par fu. Nous pouvons alors énoncer :

Proposition I. Il existe dans V une fonction continue et strictement positive

q(u), telle que, pour x eE(u, q(u)) et y eF(u, q(u)), les ensembles

E(y, q(u)) et F(x, q(u)) se coupent en un point unique z fu(x, y),
et Vapplication ainsi définie fu est une isomêtrie du produit riemannien
E(u, q(u)) x F(u, q(u)) sur un voisinage ouvert U de u dans V.

2. On appellera isomêtrie toute application topologique différentiable
de classe C2 d'un domaine (c'est-à-dire d'un ensemble ouvert et connexe)
d'un espace de Riemann dans un autre espace de Riemann de même

dimension, tous deux de classe C2, telle que l'image de toute courbe recti-
fiable soit une courbe rectifiable de même longueur.

Considérons deux isométries dont les domaines de définition sont dans
le même espace de Riemann et qui prennent aussi leurs valeurs dans un
même espace de Riemann. On dira qu'elles sont en prolongement immédiat,

si leurs domaines de définition ont une intersection non vide et si

leurs restrictions à cette intersection sont identiques.
Soit L un chemin issu d'un point x0 du domaine de définition d'une

isomêtrie /, décrit par xt pour t variant de 0 à 1. On dira que / est pro-
longeable le long de L, s'il existe une isomêtrie ft, définie pour 0 < t ^ 1,
se réduisant à / pour t 0, dont le domaine de définition (variable
avec t) contient xt, de manière que ft et ft, soient en prolongement immédiat

lorsque 11 — t11 est assez petit. On dira que ft est un prolongement
de / le long de L; fx sera appelée l'isométrie terminale du prolongement,
/ /0 l'isométrie initiale.

Si deux isométries / et g, ayant même domaine de définition D, sont

tangentes en un point 0 de D, elles coïncident sur tout arc géodésique
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issu de O et contenu dans D, car les images de cet arc par / et par g
seront évidemment un même arc géodésique. Par suite, f et g coïncident
dans une boule de centre 0 et sont donc tangentes en chaque point de

cette boule. L'ensemble des points de D où / et g sont tangentes est par
suite un ensemble ouvert ; par raison de continuité, c'est aussi un ensemble
fermé dans D, c'est donc D tout entier: deux isométries ayant même

domaine de définition et tangentes en un point de ce domaine sont identiques.
Supposons que ft et ft soient deux prolongements de / le long du même

chemin L décrit par xt(0 ^ t ^ 1). L'ensemble des valeurs de t telles

que ft et ft soient tangentes en xt est fermé et contient t 0. C'est
d'autre part un ensemble ouvert dans l'intervalle (0,1), car si t' lui appartient

et si \t — tf\ est assez petit, ftr et ftf étant tangentes en xt/, coïncident

au voisinage de ce point et sont par suite tangentes en xt ; il en sera
donc de même de ft et f\ puisqu'alors ft et ft, ainsi que f\ et ft, sont en
prolongement immédiat. Il résulte de là que ft et ft sont tangentes en

xt pour tout t € (0,1) Cela entraîne qu'elles coïncident dans la composante

connexe de Vintersection de leurs domaines de définition qui contient

xt, ce qu'on exprimera d'une manière plus brève mais moins précise en
disant que, lorsqu'il est possible, le prolongement est unique.

Si les espaces de Riemann qui contiennent le domaine de définition
et le domaine des valeurs d'une isométrie / sont analytiques et complets,

on sait que / peut être prolongée le long de n'importe quel chemin 3).

Rappelons encore le théorème de monodromie qui jouera plus loin un
rôle essentiel. Deux chemins L et L' sont dits homotopes dans V, s'ils
ont même origine et même extrémité et s'il existe une déformation
continue de L en Lr dans F laissant l'origine et l'extrémité fixes. Le théorème
de monodromie s'énonce alors ainsi :

Si L et L' sont deux chemins homotopes dans F et si ft et f\ sont des

prolongements le long de L et L1 d'une même isométrie initiale /0 /o >

les isométries terminales fx et f[ sont tangentes à l'extrémité commune
de L et L' et par suite coïncident dans la composante connexe de
l'intersection de leurs domaines de définition qui contient cette extrémité.

3. Après ces préliminaires, nous allons établir la proposition suivante,
de laquelle le résultat que nous avons en vue se déduira facilement.

Proposition II. Si Vespace de 'Riemann V est complet et remplit les

conditions de la Proposition I, et si O e F, Visométrie f0 peut être

prolongée de long de tout chemin d'origine (0,0) dans E(O) x F(O)

3) Voir l'Appendice.
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Comme on a vu, si F est complet, E(O) et F(O) le sont aussi et il en
est de même de E(O) x F(O) Si F est analytique, $(0) et F(O) le
sont aussi et de même E(O) x F(O) Dans ce cas, notre proposition
résulte immédiatement de celle qui a été rappelée ci-dessus. Mais pour
l'établir dans le cas où F n'est pas analytique, une autre méthode est
nécessaire et nous commencerons par quelques lemmes.

Reprenons les notations de la Proposition I. Soit P[#, u\ r] l'application

de F(u,r) sur F(x,r), définie pour 0 <r ^ q(u) et
x eE(u, q(u)) en posant, pour tout y eF(u,r)

P[x,u;r] {y) =fu(x,y)
Cette application est toujours une restriction de P[x, u; q(u)] et, en
vertu de la Proposition I, c'est une isométrie. L'image de u est x; un
point et son image sont toujours sur une même feuille du premier système
et leur distance sur cette feuille est constante, égale à la distance de u à

x sur E(u) On a les relations

P[u,x;r] P[x,u;r]-i (6)
et

P[x,v;r] P[x,u;r] • P[u,v;r], (7)

pourvu naturellement que chacune des isométries qui y figure soit définie,
c'est-à-dire, pour (6), si x eE(u, q(u)), u eE(x, q(x)), 0<t^q(u),
r ^ q(x), et, pour (7), si x eE(u, q(u)), u eE{y, q(v)), 0 < r ^ q(u),
r ^ Q(v) •

Soit L un chemin situé dans une feuille du premier système, décrit
par x8 pour s variant de 0 à 1. Soit L(s2, sx) l'arc de L décrit par xs pour
s variant de s1k s2i st et s2 étant deux points quelconques de l'intervalle
(0,1). On pourra prendre sx < s2 ou sx > s2, mais nous considérerons

toujours x81 comme l'origine de L(s2,s1) et x82 comme son extrémité.
L (st, s2) n'est alors pas autre chose que le chemin L (s2, sx) changé de

sens et £(1,0) L Soit q0 le minimum de q(u) sur L.

Lemme 1. Pour 0<r^Q0,0^.s^l et O^s'^Cl, il existe une
isométrie P[L(s',s);r] de F(x8, r) sur F(xsf, r) telle que

a) P[L(s',s);r] P[x8f, xs;r] si L(sr, s) c E(x\ q(x8))
et

b) P{L(sZiSl)',r} P[L(s3,s2);r) • P[L(s2, sx);r)]

quels que soient les points slf s2 et s3 de l'intervalle (0,1).
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On peut en effet décomposer l'intervalle {s,sf) en intervalles assez

petits pour qu'à chacun d'eux corresponde, en vertu de a), une isométrie
bien déterminée. Le produit de ces dernières fournit P[L(sf, s); r] Il
résulte alors de (6) et (7) que l'isométrie ainsi obtenue ne dépend pas du
partage choisi et qu'elle satisfait à b). Remarquons encore que,
P[L(s, s); r] se réduisant à l'isométrie identique, on a, en vertu de b),

Disons qu'un chemin L d'origine x dans E(x) est petit, si
L C E(x, q(%)) D'après a), si L et U sont petits et ont même origine
et même extrémité, P[L\ r] P[L' ; r] En particulier, si L est un
petit lacet (ou un lasso 4)), P[L,r] se réduit à l'identité. Il en résulte que
si L et 27 sont homotopes sur une feuille du premier système,

P[L;r] P[Lf;r] LHsométrie P[L;r] ne dépend que de la classe

d'homotopie de L
Il va s'agir de prouver que l'isométrie P[L; r] peut être prolongée

le long de tout chemin M issu de l'origine #° de L dans la feuille F(zP)
Cela sera fait dans le Lemme 4, à l'aide des Lemmes 2 et 3 ci-dessous.

Lemme2. Siu2 €F(ul9r),0<r<go== inf (e(%), g{u2)), xx €JS7(%, &)
et x% P[xl9u1\ r] (u2), pourvu que la distance de u2 à ut sur F(ux)
soit assez petite, P[#1,w1;r] et i5[^2>^2îr'] son^ en prolongement
immédiat.

Les images de F(ux,r) et F(u2,r) par les isométries P[#1?%;r]
et P[x2iu2;r] sont respectivement F(x1,r) et F(x2, r), comme elles

contiennent toutes deux x2, elles sont sur la même feuille F(xx) F(x2)
Comme r< q0, si la distance de u2 à % sur F(ux) est assez petite,
F(u2, r) c F(ux, q0) Chacune des isométries P[xx, ux\ r] et P[x2, u2; r]
étant alors une restriction de P [xx, ux ; £0], elles sont bien en prolongement

immédiat.

Lemme 3. Soit M un chemin situé sur la feuille F(u0), décrit par ut
pour t variant de 0 à 1, et soient x0 et r tels que Po P [#0, u0 ; r] soit
définie. Si r et la distance de x0 à u0 sur E(u0) sont strictement inférieurs
au minimum £0 de q(u) sur M, il existe une isométrie Pt de F(uti r)
dans F(x0), définie pour 0 < t < 1, se réduisant à Po pour t 0,
de manière que Pt et Pv soient en prolongement immédiat dès que
11 — t' | est assez petit. Un point et son image par Pt sont toujours

4) Cf. A. Borel et A. Lichnerowicz, loc. cit.
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sur une même feuille du premier système, à une distance sur cette feuille
égale à la distance de x0 à u0 sur E(u0)

On peut trouver e > 0 tel que, quel que soit t0 satisfaisant à 0 < t0 < 1,
Tare décrit par ut pour t variant de tQ à tx inf (t0 + e, 1) soit contenu
dans F(utQi q(u1q)). Cela étant, pour établir le Lemme 3, il suffira de
montrer que, si Pt est définie et satisfait aux conditions exigées pour
t < t0, on peut définir Pt pour t < tt de manière à satisfaire encore aux
mêmes conditions. Or, la définition de Pt s'étend en posant, pour

Cette isornétrie est en effet bien définie, car Pto (ut) et ut sont sur
une même feuille du premier système, à une distance sur cette feuille
égale à la distance de x0 à u0 sur E(u0), distance inférieure à q0 qui
lui-même ne dépasse pas g(ut). En tenant compte du Lemme 1, on
vérifie alors immédiatement que Pt satisfait aux conditions du Lemme 2

pour 0 < t < tx ce qui achève la démonstration.

4. Considérons maintenant deux chemins L et M de même origine 0,
contenus respectivement dans E(0) et F(O), de longueur < R.
Supposons qu'ils sont décrits par x8 et xt respectivement pour s et t variant
de 0 à 1, en sorte que x° xQ — 0

Supposons que l'espace F est complet. L'ensemble 8 des points de F
dont la distance à 0 est ^ 22? est alors compact, de sorte que q(u) a
sur S un minimum strictement positif q0 Nous allons montrer que, si

r < qq, P[L;r] est prolongeable le long de M. D'une manière plus précise :

Lemme 4. Si r<g0, il existe une isométrie P\ de F(xt,r) dans

F(x8), définie pour 0<s<l et 0 < $ < 1, qui jouit des propriétés
suivantes :

a) P* P[L(890);r].
b) P\ et P\j sont en prolongement immédiat si | t — t' \ est assez petit.

De plus, en posant P8t(xt) x*t, x°t xt et x80 xs, désignant par
M8(t2, tt) le chemin décrit par x\ pour s constant et t variant de tx à t2

et par Lt(s2, st) le chemin décrit par x\ pour t constant et s variant de

st à s2, on a :

c) L'image de F{xt,r) par P\ est F(x*tir)
d) Pl P{Lt(8,0);r].
e) P[Lt(s2, st) ; r] est un prolongement de P[L(s2, s^) ; r] le long

de M8* (1,0)
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Pour la démonstration, on remarquera d'abord que les propriétés c),
d) et e) découlent immédiatement de a) et b). Ensuite, il existe e > 0

tel que, pour 0 < s0 < 1 et st inf (s0 + 6,1), L(s1,s0) c E{x8\ q0)

de sorte que L(sl9 s0) est petit et P[L(sly s0) ; r] P[x81, xs° ; r] Cela

étant, pour établir le Lemme 4, il suffira de prouver que, si PJ est définie
et satisfait à a), b), c), d) et e) pour 0 < «s ^ ,s0 et 0 <! £ ^ 1, on peut
étendre sa définition pour s0 ^ s ^ s1 et 0 < t < 1 de manière à satisfaire

encore à a) et b). Or, le chemin M*0 Jf*°(l,O) décrit par xst° pour
t variant de 0 à 1 est alors bien défini et il a même longueur que M auquel
il est localement isométrique ; son origine étant sur L, il est contenu dans
S, de sorte que q0 ne dépasse pas le minimum de q (u) sur M'0. Il résulte
alors du Lemme 2 que P[L(s, s0) ; r] P[x8, x80 ; r] est prolongeable le

long de M80 ; soit P\ son prolongement. L'isométrie composée P\ P\- P*t°

satisfait alors à a) et b), ce qui achève la démonstration.

6. En permutant les rôles des deux systèmes de feuilles, on obtient,
pour tout chemin M joignant deux points x0 et xx sur une même feuille
du second système et pour tout nombre positif r inférieur au minimum
de q(u) sur M, une isométrie Q[M;r] de E(xo,r) sur E{xt,r) qui
est exactement analogue à P [L ; r] et jouit des propriétés correspondantes.

Le Lemme 4 fournit alors immédiatement le résultat suivant,
dans l'énoncé duquel on reprend les notations introduites au début du
n°4:

Si r<g0, il existe une isométrie Q\ de E(x8,r) dans E{xt), définie

pour O^^^l et O^^^l, qui jouit des propriétés suivantes :

a') Q°t=Q[M(t,0);r].
b') Q\ et Q8/ sont en prolongement immédiat si | s — sr \ est assez petit.

De plus, en posant Q\(x8) x8t, x°t xt et x$ x8, désignant par
Lt(s2, Sj) le chemin décrit par x\ pour t constant et s variant de sx à s2

et par Ms(t2, tt) le chemin décrit par x\ pour s constant et t variant
de tt à 12, on a :

e') L'image de E(x8, r) par Q\ est E(x8t,r).
d') Q't=Q[M8(t,0);r].
e') Q[M8(t2, t^); r] est un prolongement de Q[M(t2, tx); r] le long

de Ltl(lfi).
Lemme 5. On a l'égalité x\ x\.
Nous allons montrer que, si cette égalité est vraie pour 0 ^ s ^ s0,

0 ^ t ^ 1 et pour 0 < s ^ st inf (s0 + e, 1), 0 ^ t ^ tQ, où sQet t0

336



sont des points quelconques de l'intervalle (0,1; et où e est un nombre
strictement positif indépendant de s0 et t0, elle a encore lieu pour
0 < s < sl9 0 < t < tx inf (t0 + e, 1)

On peut choisir e > 0 assez petit pour que, si s0 ^ s ^ st et
^o ^ ^ ^ ^i > P*t e^ ^Jo soient en prolongement immédiat ainsi que Q\
et Ql°, que a:^ appartienne au domaine de définition de P8 et xs à celui
de Ql°, et que Lto(s, s0) et JfSo(«, ^0) soient petits. Alors on a

o o

d'où
»? P [Lh (s, s0) ; r] P [i,o (*0, 0)] (a;t)

Or, Lto (s, s0) étant petit, on a

P[Lu(s,s0);r] P[xl,x"tl;r],
d'où, comme P [Lh (s0, 0) ; r] (xt) PJ» (»f) x\°

zlt P[xlt,xfcr]{x?). (8)

D'une manière exactement analogue, on obtient

iî Ç[iî°,iî;;r](iî0),
d'où, comme ij°= x8t0, x8t0 x8t0 et if ^î0 par hypothèse,

i; C[^,*ï;;r](^0) (9)

II résulte alors de la définition même des isométries P et Q figurant
dans (8) et (9) que x\ et x\ se réduisent tous deux à l'unique point d'intersection

de E(x*t°, r) avec F(x*q, r), ce qui établit notre assertion.
Le Lemme résulte facilement de là. En effet, l'ensemble des valeurs de

s telles que x\ x\ pour tout t e(0,l) est fermé et non vide, car il
contient 5 0; soit sQ sa borne supérieure. Raisonnant par l'absurde,

supposons s0 < 1, ce qui entraîne s0 < s1 inf (s0 + e, 1) ; l'ensemble
des valeurs de t telles que x J x\ pour s ^ s±, qui est fermé et non
vide puisqu'il contient t 0, aurait alors une borne supérieure t0 < 1,

ce qui contredirait ce qu'on vient d'établir.

6. Démonstration de la Proposition II. Considérons dans E(O) X F(O)
un chemin K d'origine (O, O) dont les projections dans E(O) et F(O)
soient respectivement M et L, et continuons avec les mêmes notations

que ci-dessus.
Les isométries P\ de F(xtir) sur F(x8t,r) et Q\ de E(x8,r) sur
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E(x\,r) fournissent une isométrie (Q\,P\) du produit riemannien
E(x*, r) x F(xt, r) sur le produit riemannien E(x\, r) x F(x*t, r).

Posons u x\ et soit fur la restriction à U(w, r) x F(u, r) de
Fisométrie fu définie dans la Proposition I. L'application composée

est alors une isométrie de E(x8} r) x F(xti r) sur un voisinage de u x*
dans F. Cette isométrie jouit des propriétés suivantes :

a) R*t(x\xt) x*t.

b) R\ et JB'J sont en prolongement immédiat si | s — s11 et \t — tr \

sont assez petits.

c) R\ (x, y) reste sur une feuille du premier système lorsque x seul
varie et sur une feuille du second système lorsque y seul varie.

Pour s t O, l'isométrie JBj se réduit à la restriction à E(O,r) xF(0, r)
de Fisométrie f0 définie dans la Proposition I.

Cela montre que Fisométrie f0 peut être prolongée le long de K et la
Proposition II est établie.

7, En vertu du théorème de monodromie, Fimage de l'extrémité de K
par Fisométrie terminale du prolongement de f0 le long de K ne dépend
que de la classe d'homotopie de K, c'est-à-dire que des classes d'homo-
topie des projections L et M de ce chemin dans E(O) et F(O) Soient

E et F les revêtements universels de E{0) et F(O), et soient x et y
les extrémités des relèvements de L et de M dans EetF respectivement.
On sait que x et y caractérisent les classes d'homotopie de L et M.
L'application / définie en posant z f(x, y), où z est Fimage de l'extrémité

du chemin K par Fisométrie terminale du prolongement de f0 le

long de K, est alors une application localement isométrique de E x F
dans F. Comme E(O) et F(O) sont complets, E x F est aussi complet,

et, F étant connexe, il en résulte que / est une application sur F.
Si maintenant l'on suppose que F est simplement connexe, en vertu

du théorème de monodromie, / est nécessairement biunivoque, d'où

résulte que ~Ë E(O) et ~F F(O), c'est-à-dire que E(O) et F(O)
sont simplement connexes et se coupent au seul point O. Nous avons
ainsi établi le théorème suivant, où, comme ailleurs, l'espace F est
toujours supposé de classe C2 et connexe.

338



Théorème I. Soit F un espace de Riemann simplement connexe et complet,

dont le groupe d'holonomie homogène relatif à un point 0 laisse invariant

un sous-espace réel non trivial T'o de Vespace vectoriel euclidien To
tangent en 0. Soit Tn0 le sous-espace supplémentaire orthogonal de Tr0 et
soient Tz et T'z les sous-espaces de Vespace vectoriel euclidien Tz tangent
en un point quelconque z eV qui se déduisent de T'o et T"o par transport
parallèle. Les champs Tz et T"z sont complètement intégrables et définissent
deux systèmes de feuilles. Par chaque point z passe une feuille et une seule
du premier système, E(z), et une feuille et une seule du second système,
F(z) Chaque feuille du premier système coupe chaque feuille du second

système en un point et en un seul. Pour x eE(O) et y eF(O) Vapplication

z f(x, y) qui associe à (x, y) le point d'intersection z de F(x) avec

E(y) est une isométrie de E(O) x F(O) sur V.

Inversement, à toute isométrie z f(x,y) d'un produit riemannien
Vx x F2 sur F est associé un double feuilletage de F, dont les feuilles
sont décrites par f(x, y) lorsque x on y seul varie. Identifions les feuilles
E et F passant par un point donné 0 eV avec Vx et F2, et soient T', T"
et T T' + T" les espaces vectoriels euclidiens tangents à E, F et F
au point 0. Soit K un lacet fermé en 0 dans F, et soient L et M les
projections de /-^JT dans E et F. La rotation de T associée à K dans le

groupe d'holonomie homogène W de F relatif au point 0 laisse T' et Tn
invariants et elle opère dans Tf (resp. Trr) comme la rotation associée à

L (resp. M), ainsi que cela résulte immédiatement des équations du
déplacement parallèle et du fait que le ds2 de F se décompose en la somme
des ds2 relatifs à E et F. Cela entraîne que W est le produit direct des sous-

groupes W et W" formés par les rotations associées aux lacets fermés
en O et situés dans E et F respectivement. Les groupes induits par W
sur T1 et T" sont respectivement le groupe d'holonomie homogène de E
et l'identité, ceux induits par Tn sont l'identité et le groupe d'holonomie
homogène de F.

La généralisation au cas d'une décomposition de T en somme directe
d'un nombre fini quelconque de sous-espace invariants deux-à-deux
orthogonaux est immédiate, et nous pouvons énoncer :

Théorème II. Soit V un espace de Riemann simplement connexe et
k

complet. A toute décomposition T £Tt de Vespace vectoriel euclidien T
i=l

tangent en un point donné O de V en somme directe de sous-espaces réels

deux-à-deux orthogonaux invariants par le groupe d'holonomie homogène W
de F relatif au point O correspond une isométrie déterminée f d'un produit
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riemannien Ft x F2 x • • • X Fk sur F,

z f(x1,x2,...,xk), (zeV, x^F^i 1,2,...,&)
telle que, lorsque xi seul varie, z décrive une feuille intégrale du champ
obtenu par transport parallèle de Tt. Le groupe d'holonomie W est un
produit direct W Wx x W2 X • • • X Wk, où Wt induit sur T^j ^ i)
Videntité 5) et sur Ti un groupe semblable au groupe d'holonomie homogène
de Fi. Réciproquement, toute isométrie d'un produit riemannien sur V
correspond ainsi à une telle décomposition de T.

Il résulte de là que, si le sous-espace invariant T€ de T est irréductible,
c'est-à-dire ne contient aucun sous-espace non trivial réel invariant par
W, l'espace Ft est irréductible. Or, il existe toujours une décomposition
de T en somme directe de sous-espaces invariants irréductibles. L'espace
F est donc toujours isométrique à un produit d'espaces irréductibles.

Il peut arriver que certains des sous-espaces invariants irréductibles
en lesquels se décompose T soient de dimension 1. Leur somme directe
est le sous-espace T' de T formé de tous les vecteurs invariants par W

et les sous-groupes correspondants se réduisent à l'identité. L'espace de
Riemann correspondant à T1 dans la décomposition de F en un produit
riemannien est un espace euclidien. Si T' est de dimension ^2, il est
clair qu'on peut le décomposer d'une infinité de manières différentes en
la somme directe de sous-espaces invariants irréductibles, de dimension 1,

deux-à-deux orthogonaux : n'importe quel repère orthonormal dans T'
fournit une telle décomposition.

On peut alors décomposer T en la somme directe de T1 et de sous-

espaces invariants irréductibles T{ de dimension ^ 2 Montrons que
cette dernière décomposition est unique. Il suffit de prouver que, si T!t
est un sous-espace invariant réel de T, ou bien T" est orthogonal à T{,
ou bien T!r contient T{. Or, si tous les vecteurs de T" sont invariants
par le sous-groupe W{ associé à Tiy on est dans le premier cas, car seuls
les vecteurs orthogonaux à T{ sont invariants par W^ Si Ttr contient
un vecteur X non invariant par Wiy il y a un transformé X' de X par une
rotation de W{ qui est distinct de X ; la composante de X orthogonale à

Ti étant invariante par Wt, le vecteur X — X' est dans 2\ en même

temps que dans Tn ; il en est de même de tous ses transformés par Wi,
et comme ils sous-tendent Tt, cela entraîne T{ c T".

6) Cette première partie de l'assertion relative au groupe d'holonomie est établie d'une
autre manière par A. Borel et A. Lichnerowicz (loc. cit.), sans supposer que l'espace est
complet.
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Le multifeuilletage de l'espace V qui est associé à une telle décomposition

est alors canonique, et il en résulte le théorème suivant.

Théorème III. Tout espace de Riemann simplement connexe, complet et
réductible est isométrique à un produit Vx X F2 x • • • X Vk d'espaces
de Riemann qui sont irréductibles de dimension ^ 2 sauf un au plus qui
est euclidien. Les espaces facteurs Vt sont univoquement déterminés à
Vordre près et à des isométries près. L'isométrie la plus générale d'un tel
produit sur lui-même est de la forme
f(xl9 x2,.. ,,xk)= (g1(xti)9 g2{xt2)9..., gk(xtk)), (xt e Vt9 i 1,2,... k),
où il9 i2,..., ik est une permutation de 1, 2,..., k et g1 une isométrie
de Vt)sur Vt(j= 1,2,...,*).

L'espace euclidien qui se présente éventuellement parmi ces facteurs
est évidemment isométrique à un produit d'espaces irréductibles, qui
sont nécessairement des droites, en nombre égal à sa dimension. Par suite :

Corollaire. Tout espace de Riemann simplement connexe, complet et

réductible est isométrique à un produit d'espaces irréductibles qui sont

univoquement déterminés à l'ordre près et à des isométries près.

APPENDICE

Envisageons les quatre propriétés suivantes d'un espace de Riemann
connexe F.

a) Toutes les géodésiques sont infinies dans les deux sens ou fermées.

b) Toute suite de points de V qui est une suite de Cauchy est conver¬

gente.

c) Tout ensemble de points de V qui est borné est relativement
compact.

d) Deux points quelconques de V peuvent être joints par un arc géo-

désique de longueur égale à leur distance.

Le théorème de H. Hopf et W. Rinow 6), utilisé au n° 1 et qu'on va
établir ici, affirme que, de ces quatre propriétés, chacune des trois
premières entraîne toutes les autres.

6) H. Hopf und W. Rinow, Ûber den Begriff der vollstandigen differential-
geometrischen Flache (Comment. Math. Helv. 3, p. 209—225). Le théorème n'est
énoncé que pour des surfaces analytiques, mais la méthode de démonstration est générale ;

elle semble toutefois moins directe que celle du texte. Le fait que c) entraîne d) remonte à

Hilbert.
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Il est immédiat que c) entraîne b), et b) entraîne a), car toute géodésique
qui n'est ni fermée ni infinie dans les deux sens contient des suites de

Cauchy divergentes. Il suffit donc de prouver que a) entraîne c) et d).
Appelons vecteur initial d'un arc géodésique, le vecteur tangent à cet

arc à son origine et ayant le même sens et la même longueur. La
propriété a), que nous prenons comme hypothèse, entraîne que tout vecteur
tangent en un point donné a de F, quelle que soit sa longueur, est le
vecteur initial d'un arc géodésique, forcément unique. Cet arc pourra
éventuellement se couper lui-même, ou se recouvrir en partie s'il est

porté par une géodésique fermée.
Soit 8r l'ensemble des points a; de F dont la distance à a est

^ r, d(x, a) ^ r, et soit Er l'ensemble des points x de 8r qui peuvent
être joints à a par un arc géodésique de longueur égale à d(x, a) On
voit que Er est compact, car si xh(h 1, 2,...) est une suite de ses

points, Th étant le vecteur initial d'un arc géodésique de longueur
d(a, xh) joignant a k xh,la, suite des Th a au moins un vecteur
d'accumulation T, qui est le vecteur initial d'un arc géodésique dont l'extrémité

appartient à Er et est un point d'accumulation de la suite des xh.
Nous allons montrer que

Er 8r (1)

Cette relation est vraie pour r 0 Si elle est vraie pour r B > 0

elle est évidemment vraie pour r < B Mais réciproquement, si elle est
vraie pour tout r<B, elle l'est encore pour r B. En effet, tout
point x de 8R est limite d'une suite de points dont la distance à a est

< B ; ces points appartenant alors par hypothèse à ER qui est fermé, il
en est de même de leur limite x. Cela étant, pour établir (1) dans toute
sa généralité, il suffira de montrer que, si elle est vraie pour r — B
eUe l'est encore pour une valeur supérieure r B + s, s > 0

A cet effet, montrons d'abord que, pour tout point y tel que d(a,y)>B,
on peut trouver un point x tel que d(a,x) B et d(a,y) B-\-dty,x).
En effet, quel que soit l'entier h, on peut joindre a à y par une ligne de

longueur < d (a, y) + h"1, et si xh est le dernier point de cette ligne
appartenant à ER 8R, on a d(a, xh) B et

d(xhiy)<d(a,y) - iî + A-1;

pour h->oo, xh a au moins un point d'accumulation x et ce point
jouit des propriétés requises.

On sait d'autre part qu'il existe une fonction continue s(x) > 0 telle

que, si d(x, y) < s(x), le point y est l'extrémité d'un arc géodésique
d'origine x et de longueur d(x, y) qui est le seul chemin de longueur
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^(#> y) joignant; ces deux points, et cela entraîne qu'un chemin de
longueur d(x,z) joignant deux points x et z est nécessairement un arc
géodésique. s (x) a sur ER un minimum s>0.

Cela étant, si (1) est vraie pour r R et si jR < d(a, y) < R + s
il existe x e ER tel que d (a, x) R et d (x, y) d (a, y) — jR < 5

Il existe par suite un arc géodésique L' de longueur d(a, x) joignant a
à # et un arc géodésique Ln de longueur d(x, y) joignant x à y. La ligne
formée par Lf et 1/ joint alors a h y, et comme sa longueur est d(a, y),
c'est un arc géodésique. Donc y eER+8 ce qui achève la démonstration
de (1).

De cette égalité résulte que 8r est compact et F jouit de la propriété c) ;

la propriété d) en résulte aussi, puisque tout point x est alors l'extrémité
d'un arc géodésique d'origine a et de longueur d(a, x) On peut remarquer

que l'hypothèse suivante: ,,toutes les géodésiques passant par un
point donné quelconque de F sont infinies dans les deux sens ou fermées**,
suffit pour entraîner c), et par suite a), b) et d).

Voici encore une démonstration de la proposition mentionnée aux
n08 2 et 3, qui peut s'énoncer ainsi7) :

Soient F et V deux espaces de Riemann de même dimension, analytiques

et complets, f une isométrie d'un domaine D c V dans V et L un
chemin issu d'un point de D dans V. Alors f peut être prolongée le long de L.

Désignons par V(x,r) ou V'(y,r) la boule ouverte de centre x
(ou y) et de rayon r dans V (ou F'), et soit s'(y) la fonction analogue
dans V à la fonction s(x) définie ci-dessus dans F. Vérifions d'abord 8)

que, si g est une isométrie de V(u, r) dans F7 et si 0 < r < s < s(u)
et s< sf (g{u)), il existe une isométrie h de V(u, s) dans V qui est

en prolongement immédiat avec g, c'est-à-dire dont g est une restriction.
En effet, chaque point x eV(u, s) est l'extrémité d'un arc géodésique
issu de u dans V(u, s), et d'un seul; soit X le vecteur initial de cet arc,
Y l'image de X par g dans V et y l'extrémité de l'arc géodésique dont 7
est le vecteur initial; l'application h définie en posant y h(x) est
alors une application topologique et analytique de F (u, s) sur V (/ (u),s),

qui coïncide avec g dans V(u,r). Ce dernier fait, joint à Panalytieité,

7) Cette proposition est aussi établie par W. Rinow, mais seulement pour les surfaces:
W. Rinow, Ûber Zusammenhânge zwischen der Differentialgeometrie im
groflen und im kleinen (Math. Z. 35, 1932, p. 512—538).

8) Cf. IS.Cartan, Leçons sur la Géométrie des Espaces de Riemann, 2me

édition, 1946, p. 238.
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entraîne que h est une isométrie. Nous dirons que h est Vextension de /
à V(u, s)

Supposons maintenant que le chemin L soit décrit par xt pour t variant
de 0 à 1. Sans restreindre la généralité, on peut admettre qu'il est recti-
fiable ; soit R sa longueur, et soit s la plus petite des bornes inférieures
de s(x) dans V(x0, R) et de s'(y) dans F'(/(#o), R). Choisissons

s
r > 0 et < -7T tel que V(xOfr)cD, et soit /0 la restriction de / à

V(x0, r) Il suffit de montrer qu'il existe une isométrie ft de V(xti r)
dans V', définie pour chaque t € (0,1) de manière que ft et ftf soient en
prolongement immédiat dès que \t — t' \ est assez petit. Et pour cela,

il suffit encore de prouver que, quel que soit t0 satisfaisant à 0 ^ t0 < 1

si ft est définie et satisfait aux conditions ci-dessus pour 0 ^ t < t0

on peut étendre sa définition pour t0 < t ^ tx inf(£0 + s, 1) de
manière à satisfaire aux mêmes conditions, s étant un nombre > 0

indépendant de tQ.
Choisissons e> 0 tel que, quel que soit t0 6(0,1) Tare décrit par

xt pour t variant de t0 à tx soit contenu dans V(xtQ, r) Remarquons
ensuite que, pour t variant de 0 à l0, ft(xt) décrit dans Vf un chemin
localement isométrique à l'arc correspondant de L, donc de même

longueur, ce qui entraîne que fto(%tQ) € V (f(xo)> -B) e^ s' {ftQ(xtQ)) ^ s •

Pour t0 < t ^ tl9 on a V(xtir) c V(xt s) à cause de la manière dont
on a choisi r; en définissant alors ft comme la restriction à V(xt, r) de
l'extension de ft à V(xt s) on satisfait aux conditions requises.

Reçu le 24 août 1952.
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