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Sur la réductibilité d’un espace de Riemann

par GEORGES DE RHAM

Le but essentiel de cet article est d’établir que tout espace de Riemann
réductible, simplement connexe et complet est un produit d’espaces irré-
ductibles. Les résultats sont énoncés d’'une maniére compléte au n° 7. Dans
les n® 1 et 2, je rappelle les notions préliminaires indispensables, et, dans
I’Appendice, j’ai ajouté une démonstration de théoremes de H. Hopf et
W. Rinow.

1. Soit ¥ un espace de Riemann connexe & n dimensions, de classe C2.
Les rotations de ’espace vectoriel euclidien 7', tangent en un point
x € V qu’on obtient par transport paralléle le long des lacets différen-
tiables par morceaux fermés en x forment un groupe ¥(x) appelé groupe
d’holonomie homogéne de V relatif & = 1).

On dit que V est réductible, si ce groupe est réductible, c’est-a-dire s’il
laisse invariant un sous-espace réel non trivial de 7',. Dans le cas con-
traire, V est dit irréductible.

Supposons que V soit réductible. Soit 7", un sous-espace réel de T,
invariant par ¥(a), de dimension p, 0 < p <n, et soit 7" le sous-
espace orthogonal 4 7", de dimension ¢ = n — p . Par transport paral-
léle le long d’un chemin différentiable par morceaux joignant e & un point
quelconque z € V, on obtient deux sous-espaces 7', et 71", de T, indé-
pendants du chemin suivi et invariants par ¥(x) .

Les champs T, et T", sont complétement intégrables.

Considérons en effet une famille de repéres orthonormaux
R,=(e,,...,e,) attachés aux points  d’un voisinage U d’un point w e V,
tels que les p premiers vecteurs e,,..., e, sous-tendent 7", et les g der-
niers e,,,,..., ¢, sous-tendent 7", . On pourra prendre par exemple pour
U une boule géodésique ouverte de centre u et de rayon assez petit et

1) E.Cartan, Les groupes d’holonomie des espaces généralisés (Acta math.,
t. 48, 1926, p. 1—42), — A. Borel et A. Lichnerowicz, Groupes d’holonomie des varié-
tés riemanniennes (C. R. Acad. Sci., Paris 234 (1952), p. 1835—37). C’est un entretien
avec les auteurs de cette note, & I’occasion d’une conférence faite par M. Lichnerowicz au
Cercle Mathématique de Lausanne, qui est & 1’origine du présent article.
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pour R, le repére qui se déduit d’un repére R, vérifiant les conditions
ci-dessus, par transport paralléle le long de 'arc géodésique joignant
u & x dans U. D’apres la théorie du repére mobile de E. Cartan, il existe
alors des formes différentielles de degré 1 bien déterminées dans U, w,
et w; (¢,7=1,...,n), telles que

do; = Yo ;Nw;, o;+0;=0, (1)
dx = :‘:wiei , o ds?= Y (w,)?, (2)
i i
de; = Lwe, . (3)
Le champ 7', est alors de':ﬁni dans U par le systéme
w, =0 t=p+1,...,n) (4)
et le champ 7', par le systéme
w; =0 (t=1,...,p). (5)

Comme un vecteur de 7', (ou 7") reste dans 7', (resp. T'.) par trans-
port paralléle le long de n’importe quel chemin décrit par x, on a

w;=0si1<pet >p, ourt>pet j<p,

et il résulte immédiatement de 14 et de (1) que chacun des systemes (4)
et (5) satisfait & la condition de compléte intégrabilité de Frobenius.

Par chaque point z de V passe ainsi une feurlle intégrale de (4) a p dimen-
sions et une seule, E(z), et une feuille intégrale de (5) a q dimensions et
une seule, F(z) .

L’ensemble des E(z) sera appelé le premier systéme de feuilles, et 1’en-
semble des F (z) le second systéme de feuilles.

Chaque feuille de U'un et Uautre systéme est totalement géodésique dans V.
En effet, si le vecteur unité tangent en un point a d’une géodésique est
contenu dans 7'/, le vecteur unité tangent en un point quelconque z de
cette géodésique, se déduisant du premier par transport paralléle le long
de la géodésique elle-méme, sera contenu dans 7', d’ou résulte que la
géodésique est entiérement contenue dans la feuille E(a) .

A la structure riemannienne donnée dans V est associée une structure
d’espace métrique, dans laquelle la distance de deux points est définie par
la borne inférieure des longueurs des chemins joignant ces deux points.
D’autre part, & la structure riemannienne induite sur chaque feuille £ de
I'un ou l'autre systéme par celle de V est aussi associée une structure
d’espace métrique, dans laquelle la distance de deux points de £, que
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nous appellerons distance sur E, est la borne inférieure des longueurs des
chemins joignant ces deux points sur E. Cette distance sur E est égale
ou supérieure & la distance des deux points dans V' ; en général, elle ne
lui est pas égale. Par exemple, si £ est une géodésique non fermée sur la
surface d’un tore muni d’un ds? euclidien, la distance sur £ de deux
points de E, n’étant pas bornée, ne peut étre toujours égale a leur dis-
tance sur le tore qui, elle, est bornée.

Dire que V est complet signifie que toute suite de points de V', x,,
(k=1,2,...), qui est une suite de Cauchy (c’est-a-dire telle que la
distance de x,, a x, tende vers zéro pour m et k— oo), est convergente.
D’apres un théoréeme de Hopf-Rinow, pour qu’il en soit ainsi, il faut et
il suffit que toute géodésique de V soit infinie dans les deux sens ou
fermée, et I'on sait qu’alors deux points quelconques de V peuvent étre
joints par un arc géodésique de longueur égale & leur distance et que
toute partie bornée de V est relativement compacte 2).

St V est complet, toute géodésique d’une feuille £ est infinie dans les
deux sens ou fermée, puisque c’est en méme temps une géodésique de V;
il résulte alors du théoréme de Hopf-Rinow que, pour la métrique définie
par la distance sur K, la feuille E est un espace complet. Par suite, deux
points quelconques de F pourront étre joints par un arc géodésique situé
sur E de longueur égale & leur distance sur £ .

En vertu de la compléte intégrabilité des systémes (4) et (5), pour
chaque point % € ¥V, on peut trouver un voisinage W de u, p intégrales

premiéres de (5) dans W, x,,...,x,, et q intégrales premieres de (4)
dans W, y,,...,y,, de maniére que x,,...,%,, ¥,,..., Y, forment un

systéme de coordonnées locales dans W, s’annulant au point u, et pre-
nant dans W toutes les valeurs satisfaisant & XYa2 <1, Xyi<1, et
celles-1a seulement. Désignons par x le point de coordonnées (z,,..., x,,
0,...,0), par y le point de coordonnées (0,...,0,¥,,...,y,) et par
f(z, y) le point de coordonnées (x,,..., %,, ¥;,...,¥,) . Le lieu décrit
par x est une partie E’'(u) de E(u), le lieu décrit par y est une partie
F'(u) de F(u). Pour y fixe et x décrivant E'(u), f(x,y) décrit une
partie E'(y) de E(y), et pour z fixe et y décrivant F'(u), f(x, y)
décrit une partie F'(x) de F(x). On voit que E'(y) et F'(x) se
coupent orthogonalement au point f(x, y) qui est leur seul point d’inter-
section.

Considérons deux points y et y' voisins dans F’(u) . Lorsque x varie,
Parc géodésique le plus court joignant f(x,y) & f(x,y’) dans F(x)

%) Voir I’Appendice.
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reste orthogonal aux courbes décrites par ses extrémités dans E'(y)
et E'(y'). Par suite, sa longueur ne varie pas: la distance de f(x,y) a
f(x,y') sur F(x) est indépendante de x. De méme, la distance de f(z, y)
a f(z',y) sur E(y) est indépendante de y. Il résulte de 14 que, dans W,
le ds? se décompose en la somme des ds? relatifs &4 E'(u) et F'(u), ce
qu’on exprimera en disant que f(x, y) est une isométrie sur W du pro-
duit riemannien E'(u) x F'(u) .

Désignons par E(u,r) l'ensemble des points de E(u) dont la dis-
tance & w sur K (u) est strictement inférieure a r, et par F(u,r) l'en-
semble analogue dans F(u). Si g est assez petit, K (u, g) C E'(u) et
F(u, o) ¢ F'(u) . Ce nombre ¢ dépend de u, mais on peut le choisir de
maniere qu’il soit fonction continue et strictement positive de . On
désignera par f,(x,y) la restriction de f(z,y) a E(u, o) X F(u, g)
et par U 'image de ce domaine par f,. Nous pouvons alors énoncer :

Proposition I. 1] existe dans V une fonction continue et strictement posi-
tive p(u), telle que, pour x e E(u, o(u)) et y eF(u, o(u)), les ensembles
E(y, o(u)) et F(xz, o(u)) se coupent en un point unique z = f,(x, y),
et Uapplication ainsi définve f, est une isométrie du produit riemannien
E(u, o(u)) X F(u, o(u)) sur un voisinage ouvert U de u dans V.

2. On appellera isométrie toute application topologique différentiable
de classe C? d’un domaine (c’est-a-dire d’un ensemble ouvert et connexe)
d’un espace de Riemann dans un autre espace de Riemann de méme
divmenstion, tous deux de classe C?, telle que 'image de toute courbe recti-
fiable soit une courbe rectifiable de méme longueur.

Considérons deux isométries dont les domaines de définition sont dans
le méme espace de Riemann et qui prennent aussi leurs valeurs dans un
méme espace de Riemann. On dira qu’elles sont en prolongement immé-
diat, si leurs domaines de définition ont une intersection non vide et si
leurs restrictions a cette intersection sont identiques.

Soit L un chemin issu d’un point z, du domaine de définition d’une
isométrie f, décrit par x, pour ¢ variant de 0 & 1. On dira que f est pro-
longeable le long de L, s’il existe une isométrie f,, définie pour 0 < ¢ < 1,
se réduisant & f pour ¢ = 0, dont le domaine de définition (variable
avec t) contient z,, de maniére que f, et f,, soient en prolongement immé-
diat lorsque |t — t'| est assez petit. On dira que f, est un prolongement
de f le long de L; f, sera appelée I'isométrie terminale du prolongement,
f = f, Yisométrie initiale.

Si deux isométries f et ¢, ayant méme domaine de définition D, sont
tangentes en un point O de D, elles coincident sur tout arc géodésique
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issu de O et contenu dans D, car les images de cet arc par f et par g
seront évidemment un méme arc géodésique. Par suite, f et g coincident
dans une boule de centre O et sont donc tangentes en chaque point de
cette boule. L’ensemble des points de D ol f et g sont tangentes est par
suite un ensemble ouvert ; par raison de continuité, ¢’est aussi un ensemble
fermé dans D, c’est donc D tout entier: deux isométries ayant méme
domaine de définition et tangentes en un point de ce domaine sont identiques.

Supposons que f, et f; soient deux prolongements de f le long du méme
chemin L décrit par z,(0 <t << 1). L’ensemble des valeurs de ¢ telles
que f, et f, soient tangentes en z, est fermé et contient ¢t = 0. C’est
d’autre part un ensemble ouvert dans I'intervalle (0,1), car si ¢' lui appar-
tient et si |t — t'| est assez petit, f,, et f;, étant tangentes en x,,, coinci-
dent au voisinage de ce point et sont par suite tangentes en z,; il en sera
donc de méme de f, et f; puisqu’alors f, et f,, ainsi que f, et f;, sont en
prolongement immédiat. Il résulte de 1& que f, et f, sont tangentes en
x, pour tout ¢ e (0,1). Cela entraine qu’elles coincident dans la compo-
sante connexe de Uintersection de leurs domaines de définition qui contrent
x,, ce quon exprimera d’'une maniére plus bréve mais moins précise en
disant que, lorsqu’il est possible, le prolongement est unique.

Si les espaces de Riemann qui contiennent le domaine de définition
et le domaine des valeurs d’une isométrie f sont analytiques et complets,
on sait que f peut étre prolongée le long de n’importe quel chemin 3).

Rappelons encore le théoréme de monodromie qui jouera plus loin un
role essentiel. Deux chemins L et L’ sont dits homotopes dans V, §’ils
ont méme origine et méme extrémité et s’il existe une déformation con-
tinue de L en L’ dans V laissant 1’origine et I’extrémité fixes. Le théoréeme
de monodromie s’énonce alors ainsi:

Si L et L’ sont deux chemins homotopes dans V et si f, et f, sont des
prolongements le long de L et L' d’'une méme isométrie initiale f, = f; ,
les isométries terminales f, et f; sont tangentes & I'extrémité commune
de L et L' et par suite coincident dans la composante connexe de 'inter-
section de leurs domaines de définition qui contient cette extrémité.

3. Apreés ces préliminaires, nous allons établir la proposition suivante,
de laquelle le résultat que nous avons en vue se déduira facilement.

Proposition II. Si Uespace de Riemann V est complet et remplit les
conditions de la Proposition I, et st O €V, Uisométrie f, peut étre pro-
longée de long de tout chemin d’origine (0,0) dans E(O) x F(O).

3) Voir I’Appendice.
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Comme on a vu, si V est complet, E(0O) et F(0) le sont aussi et il en
est de méme de E(0) x F(0). Si V est analytique, E(0) et F(O) le
sont aussi et de méme E(O) x F(O). Dans ce cas, notre proposition
résulte immédiatement de celle qui a été rappelée ci-dessus. Mais pour
Pétablir dans le cas ot V n’est pas analytique, une autre méthode est
nécessaire et nous commencerons par quelques lemmes.

Reprenons les notations de la Proposition I. Soit P[z, w;r] Pappli-
cation de F(u,r) sur F(x,r), définie pour 0<r < p(u) et
x € E(u, o(u)) en posant, pour tout yeF(u,r),

Plz,u;r] (y) = fu(z, y) .

Cette application est toujours une restriction de Pz, u; o(u)] et, en
vertu de la Proposition I, c’est une isométrie. L’'image de u est xz; un
point et son image sont toujours sur une méme feuille du premier systéme
et leur distance sur cette feuille est constante, égale & la distance de u &
x sur E(u). On a les relations

Plu,z;r] = Plx,u;r]™? (6)
et

Plx,v;r]= Plx,u;r] - Plu,v;r], (7)

pourvu naturellement que chacune des isométries qui y figure soit définie,
c’est-a-dire, pour (6), si zeE(u, o(u)), ueE(x, 0(2)), 0<7r < o(u),
r < o(x), et, pour (7), si xeB(u, o)), uek(v, o), 0<r < o(u),
r<<e().

Soit L un chemin situé dans une feuille du premier systéme, décrit
par a° pour s variant de 0 & 1. Soit L(s,, s,) 'arc de L décrit par x* pour
s variant de s, & s,, $; et s, étant deux points quelconques de l'intervalle
(0,1). On pourra prendre s, <s, ou §; > S,, mais nous considérerons
toujours z** comme l’origine de L(s,, s;) et z comme son extrémité.
L(s,,s,) n’est alors pas autre chose que le chemin L(s,, s;) changé de
sens et L(1,0) = L. Soit g, le minimum de p(u) sur L.

Lemme 1. Pour 0 <7 << gy, 0 <s<<1 et 0 << <1, il existe une
isométrie P[L(s',s);r] de F(a®,r) sur F(z*,r) telle que

a) P[L(s',s);r] = P[a*, 2*;r] si L(s', s) ¢ B(a*, o(*))
et
b) P[L(s;, 8;); 7] = P[L(s;,8)57] - P[L(8;, 81);7)]

quels que soient les points s, s, et s; de I'intervalle (0,1).
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On peut en effet décomposer I'intervalle (s, s') en intervalles assez
petits pour qu’a chacun d’eux corresponde, en vertu de a), une isométrie
bien déterminée. Le produit de ces derniéres fournit P[L(s',s);r]. Il
résulte alors de (6) et (7) que I'isométrie ainsi obtenue ne dépend pas du
partage choisi et qu’elle satisfait & b). Remarquons encore que,
P[L(s, s); r] se réduisant & I'isométrie identique, on a, en vertu de b),

P[L(s,s');r] = P[L(s', 8); r]".

Disons qu'un chemin L d’origine x dans E(x) est petit, si
L CE(x, o(x)) . D’aprés a), si L et L' sont petits et ont méme origine
et méme extrémité, P[L;r]= P[L';r]. En particulier, si L est un
petit lacet (ou un lasso 4)), P[L,r] se réduit & l'identité. Il en résulte que
si L et L' sont homotopes sur une feuille du premier systéme,
P[L;r]= P[L';r]. L’isométrie P[L;r] ne dépend que de la classe
d’homotopie de L .

Il va s’agir de prouver que 'isométrie P[L;r] peut étre prolongée
le long de tout chemin M issu de 'origine a° de L dans la feuille F(2?) .
Cela sera fait dans le Lemme 4, & I’aide des Lemmes 2 et 3 ci-dessous.

Lemme 2. Si u, € F (uy,7), 0 <r < g, =inf(o(u,), 0(u,)), 2, e E(uy, go)
et x, = Plx,, u,;r](u,), pourvu que la distance de u, & u, sur F (u,)
soit assez petite, P[x,,u,;r] et P[x,,u,;r] sont en prolongement
immédiat.

Les images de F(u,,r) et F(u,,r) par les isométries P[x,, u,; ]
et P[z,,u,;r] sont respectivement F(z,,r) et F(x,,r), comme elles
contiennent toutes deux z,, elles sont sur la méme feuille F (2,) = F (x,) .
Comme r < g,, si la distance de u, & u, sur F(u,) est assez petite,
F(uy, r) CF(uy, go) . Chacune des isométries P[zx,, u,;r] et Plx,, u,; r]
étant alors une restriction de P[x,, u,; 0,], elles sont bien en prolonge-
ment immédiat.

Lemme 3. Soit M un chemin situé sur la feuille F(u,), décrit par u,
pour ¢ variant de 0 & 1, et soient x, et r tels que Py = P[x,, uy; r] soit
définie. Si r et la distance de z, & u, sur E(u,) sont strictement inférieurs
au minimum g, de g (u) sur M, il existe une isométrie P, de F(u,,r)
dans F(z,), définie pour 0 <t <1, se réduisant & P, pour ¢ =0,
de maniére que P, et P, soient en prolongement immédiat dés que
|t —t'| est assez petit. Un point et son image par P, sont toujours

4) Cf. A. Borel et A. Lichnerowicz, loc. cit.
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sur une méme feuille du premier systéme, 4 une distance sur cette feuille
égale a la distance de x, & u, sur E (u,) .

On peut trouver & > 0 tel que, quel que soit ¢, satisfaisant & 0 < ¢, < 1,
Parc décrit par u, pour ¢ variant de ¢, a ¢, = inf (¢, + ¢, 1) soit contenu
dans F(u, , ¢(u,)). Cela étant, pour établir le Lemme 3, il suffira de
montrer que, si P, est définie et satisfait aux conditions exigées pour
t <t,, on peut définir P, pour ¢ < ¢, de maniére & satisfaire encore aux
mémes conditions. Or, la définition de P, s’étend en posant, pour

hstsh, Pt:P[Pto(ut)aut§7']-

Cette isométrie est en effet bien définie, car P, (u,) et wu, sont sur
une méme feuille du premier systéme, & une distance sur cette feuille
égale & la distance de x4, & u, sur E(u,), distance inférieure a g, qui
lui-méme ne dépasse pas g(u,). En tenant compte du Lemme 1, on
vérifie alors immédiatement que P, satisfait aux conditions du Lemme 2
pour 0 <t <#¢;, ce qui achéve la démonstration.

4. Considérons maintenant deux chemins L et M de méme origine O,
contenus respectivement dans E(O) et F(O), de longueur < R. Sup-
posons qu’ils sont décrits par x° et x, respectivement pour s et ¢ variant
de 0 & 1, en sorte que 2° = 2, = 0.

Supposons que P'espace V est complet. L’ensemble S des points de V
dont la distance & O est << 2R est alors compact, de sorte que p(u) a
sur § un minimum strictement positif g, . Nous allons montrer que, si
r < 0o, P[L;r] est prolongeable le long de M . D’une maniére plus précise :

Lemme 4. Si 7 < g,, il existe une isométrie P; de F(x,,r) dans
F(x*), définie pour 0 <s <1 et 0<<? <1, quijouit des propriétés
suivantes :

a) Py = P[L(s,0);7].

b) P{et P}, sont en prolongement immédiat si | ¢ — ¢’ | est assez petit.
De plus, en posant Pi(x,) = z}, 2} = z, et x§= 2*, désignant par
Me(¢t,, t,) le chemin décrit par x} pour s constant et ¢ variant de ¢, & ¢,
et par L,(s,, s;) le chemin décrit par x; pour ¢ constant et s variant de
8, & 8,, on a:

c) L’image de F(x,,r) par P; est F(x;, 7).

d) P; = P{L,(s,0);r].

e) P[L,(ss,s,);r] est un prolongement de P[L(s,, s;);r] le long

de M* (1,0).
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Pour la démonstration, on remarquera d’abord que les propriétés c),
d) et e) découlent immédiatement de a) et b). Ensuite, il existe &> 0
tel que, pour 0 s, <1 et s, =inf(sy+ ¢,1), L(s;,8) ¢ E(x*, o),
de sorte que L(s,, s,) est petit et P[L(sy, 8); 7] = Pa*, z;r]. Cela
étant, pour établir le Lemme 4, il suffira de prouver que, si P; est définie
et satisfait & a), b), ¢), d) et e) pour 0 s s, et 0 <t << 1, on peut
étendre sa définition pour s, < s s, et 0 <<t << 1 de maniére & satis-
faire encore & a) et b). Or, le chemin M?* = M*°(1,0) décrit par z;° pour
¢ variant de 0 & 1 est alors bien défini et il a méme longueur que M auquel
il est localement isométrique ; son origine étant sur L, il est contenu dans
S, de sorte que g, ne dépasse pas le minimum de p(u) sur M° . Il résulte
alors du Lemme 2 que P[L(s, sy); r] = P[a° x*;r] est prolongeable le
long de M* ; soit P; son prolongement. L’isométrie composée P! = P, . P
satisfait alors & a) et b), ce qui achéve la démonstration.

b. En permutant les réles des deux systémes de feuilles, on obtient,
pour tout chemin M joignant deux points z, et z, sur une méme feuille
du second systéme et pour tout nombre positif » inférieur au minimum
de o(u) sur M, une isométrie Q[M;r] de E(x,,r) sur E(x,,r) qui
est exactement analogue & P[L;r] et jouit des propriétés correspon-
dantes. Le Lemme 4 fournit alors immédiatement le résultat suivant,
dans I’énoncé duquel on reprend les notations introduites au début du
n’4:

Si r < gy, il existe une isométrie @} de E(xf, r) dans E(x,), définie
pour 0 <s<<1 et 0 <<¢< 1, quijouit des propriétés suivantes:

a') Qy =Q[M(,0);r].

b’) @: et Q' sont en prolongement immédiat si | s — s’ | est assez petit.
De plus, en posant Q*(x®) = z!, 2% =z, et xf = 2°, désignant par
it(sz, 8,) le chemin décrit par z! pour ¢ constant et s variant de s, & s,

et par M°(t,,t,) le chemin décrit par z° pour s constant et ¢ variant
de t, 4 t,, on a:

¢’) L’image de E(x% r) par @ est E(x:, 7).

&) Qi = QLH*(t, 0);7]. .

e') Q[M:(t,,t,);r] est un prolongement de Q[M(¢,,1t,);r] le long
de L, (1,0).

Lemme 5. On a I'égalité z! = zf .

Nous allons montrer que, si cette égalité est vraie pour 0 < s < s,
0Kt etpour 0 <s <<, =1inf(s,+¢,1), 0 <<t <Ly, o s et i,
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sont des points quelconques de I'intervalle (0,1) et ol & est un nombre
strictement positif indépendant de s, et #,, elle a encore lieu pour
0<s<<s, 0Kttt =inf (¢, + ¢,1).

On peut chmsu‘ e> 0 assez petit pour que, si s, <s<s; et
to < t <, P{ et P; soient en prolongement immédiat ainsi que @}
et Q;°, que z, appartlenne au domaine de définition de P; et x* & celui

de Q et que L, (s, s,) et Moo (t,t,) soient petits. Alors on a

= Py(x,) = Pgo(xt) = P[L, (s, 0); r](x,) ,
d’ou
2y = P[Lq, (5,50 7] . PLLy, (5 0)](z)

Or, L, (s,s,) étant petit, on a
PlL,, (s,80);7r] = Plag,x57]
d’ou, comme P[L, (39, 0); 7] (x) = Py (%) = a3°
= Plal, alt; 1] (23°) . (8)
D’une maniére exactement analogue, on obtient
= Q[af, 2P; r] (a},) ,
d’oti, comme zjo= xj°, x> = xf* et =z = x] par hypothése,
= Q[afe, wo; 7] (23,) . (9)

Il résulte alors de la définition méme des isométries P et @ figurant
dans (8) et (9) que z? et x* se réduisent tous deux & I'unique point d’inter-
section de K (x;°,r) avec F(xz; ,7), ce qui établit notre assertion.

Le Lemme résulte facilement de la. En effet, I’ensemble des valeurs de
s telles que z! = a! pour tout ¢e(0,1) est fermé et non vide, car il
contient s = 0; soit s, sa borne supérieure. Raisonnant par I’absurde,
supposons s, < 1, ce qui entralne 8o < 8; = inf (sy + ¢, 1); ’ensemble
des valeurs de ¢ telles que z!= x5 pour s <<s,, qui est fermé et non
vide puisqu’il contient ¢ = 0, aurait alors une borne supérieure #, < 1,
ce qui contredirait ce qu’on vient d’établir.

6. Démonstration de la Proposition II. Considérons dans E(0) x F(O)
un chemin K d’origine (O, O) dont les projections dans E(0) et F(O)
soient respectivement M et L, et continuons avec les mémes notations
que ci-dessus.

Les isométries P de F(x,,r) sur F(x{,r) et @; de E(x* r) sur
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E(xz;,r) fournissent une isométrie (Q;, P{) du produit riemannien

E(x*,r) X F(x;,r) sur le produit riemannien E(x},r) x F(z!,r).
Posons u = x; et soit f,, la restriction & E(u,r) X F(u,r) de

Iisométrie f, définie dans la Proposition I. L’application composée

B =fu,r (@, PY)

est alors une isométrie de E (% r) X F(x,,r) sur un voisinage de =z}
dans V. Cette isométrie jouit des propriétés suivantes:

a) Rj(x* z,) = z} .

b) R} et R}, sont en prolongement immédiat si |s — s'| et |t — ¢'|
sont assez petits.

c) Ri(x,y) reste sur une feuille du premier systéme lorsque z seul
varie et sur une feuille du second systéme lorsque y seul varie.

Pour s =¢ =0, 'isométrie Ry se réduit & la restriction & E (0,r) X F(O,r)
de I'isométrie f, définie dans la Proposition I.

Cela montre que I'isométrie f, peut étre prolongée le long de K et la
Proposition II est établie.

7. En vertu du théoréme de monodromie, I’image de ’extrémité de K
par l'isométrie terminale du prolongement de f, le long de K ne dépend
que de la classe d’homotopie de K, c’est-a-dire que des classes d’homo-
tople des projections L et M de ce chemin dans E(0O) et F(0). Soient

E et F les revétements universels de E (0) et F(O), et soient x et y

les extrémités des relévements de L et de M dans E et F respectivement.
On sait que x et y caractérisent les classes d’homotopie de L et M.
L’application f définie en posant z = f(x, y), ol z est 'image de 'extré-
mité du chemin K par l'isométrie terminale du prolongement de f, le
long de K, est alors une application localement 1sométr1que de E xXF

dans V. Comme E(0O) et F(O) sont complets, E x F est aussi com-
plet, et, V étant connexe, il en résulte que f est une application sur V.

Si maintenant I’on suppose que V est simplement connexe, en vertu
du théoréme de monodromie, f est nécessairement biunivoque, d’ou
résulte que E = E(O) et F=F (0), c’est-a-dire que K (0O) et F(O)
sont simplement connexes et se coupent au seul point O. Nous avons
ainsi établi le théoréme suivant, oli, comme ailleurs, I’espace V est tou-
jours supposé de classe C? et connexe.
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Théoréme I. Soit V un espace de Riemann simplement connexe et com-
plet, dont le groupe d’holonomie homogéne relatif & un point O laisse inva-
riant un sous-espace réel non trivial T, de Uespace vectoriel euclidien T,
tangent en O. Soit T, le sous-espace supplémentaire orthogonal de T! et
sotent T, et T, les sous-espaces de Uespace vectoriel euclidien T, tangent
en un point quelconque z eV qui se déduisent de T, et T par transport
paralléle. Les champs T', et T, sont complétement intégrables et définissent
deux systémes de feuilles. Par chaque point z passe une feuille et une seule
du premaer systéme, E(z), et une feuille et une seule du second systéme,
F(z) . Chagque feuille du premier systéme coupe chaque feuille du second
systéme en un point et en un seul. Pour x e E(O) et y e F(0), Uapplica-
tion z = f(x, y) qut associe d (x, y) le point d’intersection z de F(x) avec
E(y) est une isométrie de E(O) x F(O) sur V.

Inversément, & toute isométrie z = f(x,y) d’un produit riemannien
Vy X V, sur V est associé un double feuilletage de V', dont les feuilles
sont décrites par f(x, y) lorsque x ou y seul varie. Identifions les feuilles
E et F passant par un point donné O € V avec V, et V,, et soient 7", T”
et T =T'+ T” les espaces vectoriels euclidiens tangents & E, F et V
au point 0. Soit K un lacet fermé en O dans V, et soient L et M les pro-
jections de f~1K dans E et F. La rotation de 7" associée & K dans le
groupe d’holonomie homogéne ¥ de V relatif au point O laisse 7" et T
invariants et elle opére dans 7" (resp. 7'”) comme la rotation associée &
L (resp. M), ainsi que cela résulte immédiatement des équations du
déplacement parallele et du fait que le ds? de V se décompose en la somme
des ds? relatifs & K et F'. Cela entraine que ¥ est le produit direct des sous-
groupes ¥’ et ¥ formés par les rotations associées aux lacets fermés
en O et situés dans Z et F respectivement. Les groupes induits par ¥’
sur 7" et T sont respectivement le groupe d’holonomie homogéne de £
et I’identité, ceux induits par ¥” sont I'identité et le groupe d’holonomie
homogéne de F'.

La généralisation au cas d’'une décomposition de 7' en somme directe
d’un nombre fini quelconque de sous-espace invariants deux-a-deux ortho-
gonaux est immédiate, et nous pouvons énoncer :

Théoréme II. Soit V un espace de Riemann simplement comnexe et

k

complet. A toute décomposition T = 2T, de Uespace vectoriel euclidien T
i=1

tangent en un point donné O de V en somme directe de sous-espaces réels

deux-a-deux orthogonauzx invariants par le groupe d’holonomie homogéne ¥

de V relatif aw point O correspond une isoméirie déterminée f d’un produst
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riemannien F, X Fy, X -+« X Fy, sur V,
2= f(xy, g,..., %), 2eV,2,eF;;1=1,2,...,k),

telle que, lorsque x; seul varie, z décrive ume fewille intégrale du champ
obtenu par transport paralléle de T';. Le groupe d’holonomie ¥ est un pro-
durt direct V=%, X ¥, X -+ X ¥, ou V¥, induit sur T,(j +# 1)
Uvdentité ®) et sur T, un groupe semblable au groupe d’holonomie homogéne
de F,. Réciproquement, toute isoméirie d’un produit riemannien sur V

correspond ainst a une telle décomposition de T .

Il résulte de la que, si le sous-espace invariant 7', de 7' est irréductible,
c’est-a-dire ne contient aucun sous-espace non trivial réel invariant par
Y, I'espace F; est irréductible. Or, il existe toujours une décomposition
de 7' en somme directe de sous-espaces invariants irréductibles. L’espace
V est donc toujours isométrique & un produit d’espaces irréductibles.

Il peut arriver que certains des sous-espaces invariants irréductibles
en lesquels se décompose T soient de dimension 1. Leur somme directe
est le sous-espace 7" de T formé de tous les vecteurs invariants par ¥
et les sous-groupes correspondants se réduisent & 'identité. L’espace de
Riemann correspondant & 7" dans la décomposition de V en un produit
riemannien est un espace euclidien. Si 7" est de dimension > 2, il est
clair qu’on peut le décomposer d’une infinité de maniéres différentes en
la somme directe de sous-espaces invariants irréductibles, de dimension 1,
deux-a-deux orthogonaux: n’importe quel repére orthonormal dans 7"
fournit une telle décomposition.

On peut alors décomposer 7' en la somme directe de 7" et de sous-
espaces invariants irréductibles 7'; de dimension > 2. Montrons que
cette derniére décomposition est unique. Il suffit de prouver que, si 7"
est un sous-espace invariant réel de 7', ou bien 7" est orthogonal & T';,
ou bien 7" contient 7';. Or, si tous les vecteurs de 7" sont invariants
par le sous-groupe ¥, associé a T';, on est dans le premier cas, car seuls
les vecteurs orthogonaux & 7'; sont invariants par ¥;. Si 7 contient
un vecteur X non invariant par ¥,, il y a un transformé X’ de X par une
rotation de ¥, qui est distinct de X ; la composante de X orthogonale a
T, étant invariante par ¥,, le vecteur X — X' est dans 7', en méme
temps que dans 7"; il en est de méme de tous ses transformés par ¥,
et comme ils sous-tendent 7';, cela entraine 7', ¢ T7.

8) Cette premiére partie de I’assertion relative au groupe d’holonomie est établie d’une
autre maniére par A. Borel et A. Lichnerowicz (loc. cit.), sans supposer que ’espace est
complet.
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Le multifeuilletage de ’espace V qui est associé & une telle décompo-
sition est alors canonique, et il en résulte le théoréme suivant.

Théoréme III. Tout espace de Riemann simplement connexe, complet et
réductible est isométrigue @ un produit V, x V, X ... x V, d’espaces
de Riemann qui sont irréductibles de dimension > 2 sauf un au plus qus
est euclidien. Les espaces facteurs V, somt univoquement déterminés a
Dordre prés et a des isométries prés. L'isoméirie la plus générale d’un tel
produit sur lui-méme est de la forme
f(xy, @aye oo, @) = (gl(xil)’ gz(xiz)" “my gk(xik)): (x; eV =1,2,...k),
O Ty, %3,..., 10 est une permutation de 1,2,...,k et g; une isométrie
de V,-j sur V,j=1,2,...,k).

L’espace euclidien qui se présente éventuellement parmi ces facteurs
est évidemment isométrique & un produit d’espaces irréductibles, qui
sont nécessairement des droites, en nombre égal 4 sa dimension. Par suite :

Corollaire. 7Tout espace de Riemann simplement connexe, complet et
réductible est isométrique a un produit d’espaces vrréductibles qui sont una-
voquement déterminés a Uordre prés et a des isométries prés.

APPENDICE

Envisageons les quatre propriétés suivantes d’un espace de Riemann
connexe V.

a) Toutes les géodésiques sont infinies dans les deux sens ou fermées.

b) Toute suite de points de V qui est une suite de Cauchy est conver-
gente.

c) Tout ensemble de points de V qui est borné est relativement com-
pact.

d) Deux points quelconques de V peuvent étre joints par un arc géo-
désique de longueur égale & leur distance.

Le théoréme de H. Hopf et W. Rinow ¢), utilisé au n° 1 et qu'on va
établir ici, affirme que, de ces quatre propriétés, chacune des trois pre-
maéres entraine toutes les autres.

8) H. Hopf und W. Rinow, Uber den Begriff der vollstdndigen differential-
geometrischen Fliache (Comment. Math. Helv. 3, p.209—225). Le théoréme n’est
énoncé que pour des surfaces analytiques, mais la méthode de démonstration est générale;

elle semble toutefois moins directe que celle du texte. Le fait que c) entraine d) remonte &
Hilbert.
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Il est immédiat que c) entraine b), et b) entraine a), car toute géodésique
qui n’est ni fermée ni infinie dans les deux sens contient des suites de
Cauchy divergentes. Il suffit donc de prouver que a) entraine c) et d).

Appelons vecteur tnitial d’'un arc géodésique, le vecteur tangent & cet
arc a son origine et ayant le méme sens et la méme longueur. La pro-
priété a), que nous prenons comme hypothése, entraine que tout vecteur
tangent en un point donné a de V, quelle que soit sa longueur, est le
vecteur initial d’'un arc géodésique, forcément unique. Cet arc pourra
éventuellement se couper lui-méme, ou se recouvrir en partie s’il est
porté par une géodésique fermée.

Soit S, l’ensemble des points x* de V dont la distance & a est
<r,d(z,a) <r, et soit E, '’ensemble des points x de S, qui peuvent
étre joints & a par un arc géodésique de longueur égale & d(x,a). On
voit que E, est compact, car si z,(h =1,2,...) est une suite de ses
points, 7', étant le vecteur initial d'un arc géodésique de longueur
d(a, z,) joignant a & z,, la suite des 7', a au moins un vecteur d’accu-
mulation 7', qui est le vecteur initial d’un arc géodésique dont I'extré-
mité appartient & E, et est un point d’accumulation de la suite des z,.
Nous allons montrer que

E. =8, . (1)

Cette relation est vraie pour r = 0. Si elle est vraie pour »r = B> 0,
elle est évidemment vraie pour r < R. Mais réciproquement, si elle est
vraie pour tout r < R, elle ’est encore pour r = R. En effet, tout
point x de 8y est limite d’une suite de points dont la distance & a est
< R; ces points appartenant alors par hypotheése & K, qui est fermsé, il
en est de méme de leur limite x. Cela étant, pour établir (1) dans toute
sa généralité, il suffira de montrer que, si elle est vraie pour r = R,
elle I’est encore pour une valeur supérieure r = R 4 s, § > 0.

A cet effet, montrons d’abord que, pour tout point y tel que d (a,y)> R,
on peut trouver un point x tel que d(a,x)= R et d(a,y)= E+d(y,=).
En effet, quel que soit I’entier %, on peut joindre a & y par une ligne de
longueur < d(a,y) + k1, et si z, est le dernier point de cette ligne
appartenant & Ep, = S8z, on a d(a,x,) = R et

d(@y, y) <d(a,y) — B+ b7,
pour h—>oco, z, & au moins un point d’accumulation x et ce point
jouit des propriétés requises.

On sait d’autre part qu’il existe une fonction continue s(z) > 0, telle
que, si d(x, y) < 8(x), le point y est I'extrémité d’un arc géodésique
d’origine x et de longueur d(z, y) qui est le seul chemin de longueur
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d(x,y) joignani ces deux points, et cela entraine qu’un chemin de
longueur d(x,z) joignant deux points = et z est nécessairement un arc
géodésique. s(z) a sur E, un minimum s> 0.

Cela étant, si (1) est vraie pour r =R et si R<d(a,y) < R+ s,
il existe x eHy tel que d(a,z) =R et d(z,y)=d(@,y) — R<s.
Il existe par suite un arc géodésique L’ de longueur d(a, z) joignant a
a z et un arc géodésique L” de longueur d(z, y) joignant z & y. La ligne
formée par L' et L” joint alors a & y, et comme sa longueur est d(a, y),
c’est un arc géodésique. Donc y e B, , ce qui achéve la démonstration
de (1).

De cette égalité résulte que S, est compact et V jouit de la propriété c);
la propriété d) en résulte aussi, puisque tout point x est alors I’extrémité
d’un arc géodésique d’origine a et de longueur d(a, ) . On peut remar-
quer que I’hypothése suivante: ,toutes les géodésiques passant par un
point domné quelconque de V sont infinies dans les deux sens ou fermées*,
suffit pour entrainer c), et par suite a), b) et d).

Voici encore une démonstration de la proposition mentionnée aux
n®” 2 et 3, qui peut s’énoncer ainsi ?):

Soient V et V' deux espaces de Riemann de méme dimension, analy-
tiques et complets, | une tsométrie d’un domaine D CV dans V' et L un
chemin issu d’un point de D dans V. Alors f peut étre prolongée le long de L .

Désignons par V(x,r) ou V'(y,r) la boule ouverte de centre x
(ou y) et de rayon r dans V (ou V'), et soit s'(y) la fonction analogue
dans V' & la fonction s(x) définie ci-dessus dans V. Vérifions d’abord 8)
que, si g est une isométrie de V(u,r) dans V' et si 0 <r <s < s(u)
et s << s (g(u)), il existe une isométrie » de V(w,s) dans V' qui est
en prolongement immédiat avec g, c’est-a-dire dont g est une restriction.
En effet, chaque point z € V (%, s) est 'extrémité d’un arc géodésique
issu de uw dans V(u, s), et d’un seul; soit X le vecteur initial de cet arc,
Y Pimage de X par g dans V' et y ’extrémité de I’arc géodésique dont ¥
est le vecteur initial; I’application % définie en posant y = h(x) est
alors une application topologique et analytique de V (u, s) sur V' (f(u),s),
qui coincide avec ¢ dans V(u,r). Ce dernier fait, joint & 'analyticité,

7) Cette proposition est aussi établie par W. Rinow, mais seulement pour les surfaces:
W. Rinow, Uber Zusammenhénge zwischen der Differentialgeometrie im
groBen und im kleinen (Math. Z. 35, 1932, p. 512—538).

8) Cf. E. Cartan, Legons sur la Géométrie des Espaces de Riemann, 2me
édition, 1946, p. 238.
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entraine que % est une isométrie. Nous dirons que % est ’extension de f
a V(u,s).

Supposons maintenant que le chemin L soit décrit par x, pour ¢ variant
de 0 & 1. Sans restreindre la généralité, on peut admettre qu’il est recti-
fiable ; soit R sa longueur, et soit s la plus petite des bornes inférieures
de s(x) dans V(x,, R) et de s'(y) dans V'(f(x), R). Choisissons

8
r>0 et << — tel que V(x,,7) D, et soit f, la restriction de f a

V (%, r) . Il suffit de montrer qu’il existe une isométrie f, de V (x,, )
dans V', définie pour chaque ¢ ¢(0,1), de maniére que f, et f,, soient en
prolongement immédiat dés que |t — t'| est assez petit. Et pour cela,
il suffit encore de prouver que, quel que soit ¢, satisfaisant & 0 f{, <1,
si f, est définie et satisfait aux conditions ci-dessus pour 0 <t <{,,
on peut étendre sa définition pour ¢, <t <t =inf(f, + ¢,1) de
maniére & satisfaire aux mémes conditions, ¢ étant un nombre > 0
indépendant de ¢, .

Choisissons ¢ > 0 tel que, quel que soit ¢, €(0,1), l'arc décrit par
x, pour ¢ variant de ¢, & ¢, soit contenu dans V(z,,r). Remarquons
ensuite que, pour ¢ variant de 0 a ¢,, f,(x,) décrit dans V' un chemin
localement isométrique & 1’arc correspondant de L, donc de méme
longueur, ce qui entraine que f, (x,)e V' (f(%), R) et s (f, (2;)) =>s.
Pour t, <t <t,, ona V(x,,7)C V(z,,s), acause de la maniére dont
on a choisi r; en définissant alors f, comme la restriction & V(x,,r) de
I'extension de f, & V(x,,s), on satisfait aux conditions requises.

Recgu le 24 aolt 1952.
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