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Algébres quasi-unitaires

Par J. DxMigr, Dijon

Introduction

Rappelons une définition des algébres unitaires [10]1). Soit 4 une al-
gébre associative sur le corps des nombres complexes, munie d’un antiauto-
morphisme involutif 2 — z°, c’est-a-dire d’une application biunivoque
de 4 sur A telle que (Az + uy)® = Azt + ny, (2y) = y*a®, a® ==z
(autrement dit, 4 est une *-algébre). Soit (x, y¥) un produit scalaire
défini sur 4, qui fait de 4 un espace préhilbertien (autrement dit, on a
,P=(y,x), Ae+ Az, =Nz, + A&, 9, @, x>0, et
(x, ) = 0 entraine x = 0). On dit que A est une algebre unitaire si les
axiomes suivants sont vérifiés :

Al — @,y =<,z pour =zed, yed.
A2 —(@y,z2)=(y,x2°2) pour zxzedA, yedA, zeA .

A 3. — Pour tout = € 4, il existe une constante M, telle que (xy, zy)
<M y,y> pour yeA.

A 4. — L’ensemble des éléments de la forme xy (x € 4, y € 4), c’est-
a-dire A2, est partout dense dans 4.

Un exemple important d’algébre unitaire est le suivant. Soient G' un
groupe localement compact unimodulaire, do I’élément de mesure de
Haar invariante & gauche, L I’ensemble des fonctions continues com-

plexes & support compact sur G. Pour feL, posons f*(x)= f(a"1).
Muni de I’involution ainsi définie, du produit de composition, et du pro-
duit scalaire (f,g>= [f(«) g (x)dx, L est une algébre unitaire, comme
on le vérifie aisément.

Si G n’est pas unimodulaire, les axiomes A1 et A 2 ne sont plus vérifiés.
Ceci n’est pas di & un choix dissymétrique dans les définitions. En effet,
soient y, y, des fonctions continues >0 sur G, telles que y(xp) =

1) Les chiffres entre crochets renvoient & la bibliographie.
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x(@)x2(B); x1(xf) = x1(2)x1(B) pour o €@, B eG; et essayons de poser,
pour feL, gelL:

G, = [He) glo) g(@da  f(a) = ga (o) f(a?)

(x (a)do est la mesure positive relativement invariante la plus générale
sur (). Le produit dans L étant toujours défini par la composition des
fonctions, L est encore une *-algébre et un espace préhilbertien, et les
axiomes A 3 et A 4 sont vérifiés. On a d’autre part facilement (4 désignant
le module de G) :

@, = i) 1 (@) 47 () f(®) g(a) da
Gxg. by = [ffB)yg ﬂ"‘a)h(a)x( ) docdf
@, fxhy = [§1(B) g(B o) h(2) 21(B) 2(B*) A71(B) dx
pour feL, geL, heL; de sorte que Al et A2 sont vérifiés si on a:

Xt 47 a) = x(a) x(2) = 2:(8) x(B™) x () 472(B)
d’ou les conditions :
n=z4 n=24

qui ne sont compatibles que pour 4 = 1, c’est-a-dire pour G unimodu-
laire.

L’étude de cet exemple conduit & généraliser les axiomes A1l & A4
et & introduire la notion d’algébre quasi-unitaire, qui sera définie plus
loin.

Les premiers exemples de facteurs donnés par F. J. Murray et J. von
Neumann dans [14] relévent de la théorie des algébres unitaires, tandis
que les exemples ultérieurs de J. von Neumann [15] relévent de la théorie
des algébres quasi-unitaires, comme on le montrera dans ce mémoire.

Des deux théorémes essentiels de [10] sur les algébres unitaires, le
premier (le théoréme de commutation, qu’'on trouve aussi dans [19]) se
généralise aux algebres quasi-unitaires. Par contre, le deuxiéme (construc-
tion de la trace canonique sur les anneaux d’opérateurs associés) ne
s’étend pas. On sait en effet que, parmi les facteurs construits par J. von
Neumann dans [15], certains sont de type III (les résultats du présent
travail fourniront une nouvelle démonstration des théorémes de [15] &
ce sujet, et cette démonstration s’applique dans des cas ou celle de [15]
n’est plus utilisable). Les algébres quasi-unitaires généralisent donc essen-
tiellement les algébres unitaires.

Les résultats de ce travail ont été annoncés partiellement dans [2].
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I. Définitions et propriétés élémentaires

Soit 4 une algébre associative sur le corps complexe, munie d’un pro-
duit scalaire (x, y) qui en fait un espace préhilbertien. On suppose
donnés :

1. — Un automorphisme x — a7 de A, c’est-a-dire une application
biunivoque de A sur A4 telle que (Ax + py)! = A7 + uy!, (xy) = 277,

2. — Un antiautomorphisme involutif x — x* de A4, c¢’est-a-dire une
application biunivoque de 4 sur 4 telle que (Ax + py)* = 12* + ny?,
(ry)® = y*a®, 2% = x.

Définition 1. — On dira que A est une algébre quasi-unitaire si les
axiomes survants sont vérifiés :

Al. — <(z,2iy >0 pour xed.

A2, — (x,x) = (x® x*) pour xed.

A3. — (xy,z)=(y,x¥2z) pour zxzed, yed, zeA.

A4. — Pour tout xeA, Dapplication y — xy est continue.

A5, — Les éléments zy + (xy)', ou xzedA, yed, sont partout
denses dans A .

L’axiome A5 peut étre remplacé par beaucoup d’axiomes voisins
(peut-étre non équivalents) dans presque toutes les démonstrations.

Lorsque j est I’automorphisme identique, I'axiome A1 est vérifié de
lui-méme, de sorte que la définition se réduit & celle des algébres uni-
taires.

Les axiomes A1 et A 2 entrainent aussitot les égalités <z, ¥7) = <&/, y)
et (x,y)= (Y, x°) pour xed, yed. Les axiomes A2 et A4 en-
trainent que l'application y —yx est continue. Les axiomes A2 et A3
entrainent

@Y,z = @, y'x®y = (Yl 2% 2%) = (&, 29%) (1)

ce qui rétablit la symétrie entre la multiplication & gauche et la multipli-
cation & droite. En outre, on a (xy,z) = (y, x%2) = (x**y, z), donc
(@, zy!®y = (x%%, zy’®); comme %’ est un élément quelconque de 4,
et comme les 2z y forment un ensemble total en vertu de A5, on en déduit
x = x¥% d’ol:

g™l =gt (2)

xit = ¥, (3)
La relation (1) et 'axiome A3 peuvent donc s’écrire aussi :
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(xy,z) = (x, 295" (4)
(xy,2) =y, 27 %2y . (5)

Soit maintenant H D’espace hilbertien complété de 4. D’aprés A2,
Papplication x — z* se prolonge d’une maniére unique en une appli-
cation @ — Sa de H sur H telle que

S(Aa + ub) = 28a + uSb  S2=1 Sa,Sby = kb, a) .

D’aprés A4, les opérateurs y — xy et y — yz se prolongent en opéra-
teurs bornés U, V, définis sur H. On a immédiatement

UAa:+p.y =AU, +pnU, Ua:y =U,U, U: = stf
VAw-my =2 V:c + u Vv me = Vva V: = ins
Ua:Vv = Vy U:v

SU8 =V, SV,8=1U,

Les applications z — U,, z —V, sont biunivoques. Car si par
exemple U, =0, on a <(x,yz)= (U,2’%, y) =0 pour tout yed
et tout zed, donec = 0.

Les U, (respectivement V,) engendrent une *-algébre faiblement
fermée d’opérateurs R? (respectivement R?); tout opérateur de R? per-
mute & tout opérateur de R?; l'application T' - ST'S applique R? sur
R4, Soit I le sous-espace associé au plus grand projecteur de RY.
Comme tout élément U,y = xy est dans JZ, on en déduit 7 =H.
Donc 1eR‘. De méme, 1 e R?

L’opérateur x — a7, étant hermitien, admet un plus petit prolonge-
ment fermé que nous désignerons par J. L’opérateur J est hermitien
> 0. L’opérateur 1 4 J, qui est défini aussi dans I’ensemble de défini-
tion D; de J, est hermitien > 0 fermé d’inverse borné ; son ensemble
des valeurs est partout dense dans H (d’aprés A5) donc égal & H. Donc
1 + J est auto-adjoint et par suite J est auto-adjoint. On a vu que
27 = 8J8x pour xeA; donc Iapplication z — 2/ de 4 sur 4
admet un plus petit prolongement fermé, qui est évidemment I'inverse
de J. Donc J est inversible, et on a

J*' = 8JS J=8J"8 . (6)

En particulier, S(D;) = D;.,. Enfin, le méme raisonnement que plus
haut, montre que le plus petit prolongement fermé de la restriction de
J & A? (c’est-d-dire & ’ensemble des zy, xed, yed) est auto-ad-
joint, donc est encore JJ .
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II. Le théoréme de commutation

Définition 2. — Un élément a e H sera dit borné a gauche (respecti-
vement a droite) 8’il existe un opérateur continu U, (respectivement V)
de H tel que U,z = V,a (respectivement V,x = U,a) pour xzeA.

Les éléments de 4 sont évidemment bornés & gauche et & droite, et
les notations U,, V, sont cohérentes avec les notations U,, V, anté-
rieures quand a € 4.

Lemme 1. — 8¢ a est borné d gauche et T € (R%)’, Ta est borné a gauche
et TU,=Up,; les U, forment un idéal a gauche m de (R%)'. St a est
borné d droite et T € (R°)', Ta est borné a droite, et TV, = V,,; les V,
forment un idéal a gauche n de (R?)’.

Soient z €A, yeA et a borné & gauche. On a:
UV,y = Us(y2) = Vipa = V,V,a =V, Uy
donc U, permute aux V,, U, e (R%’. Si T ¢(R%)’, ona:
TU,x = TV,a =V, Ta ,

donc T'a est borné a gauche et U,p, = TU,. Raisonnements analogues
pour les V.

Lemme 2. — Soient my=m~m*, n,=n~n* On a: (m)" =
(R2)', (ny)" = (R,

D’aprés le lemme 1, (m,)” ¢ (R%)’, (n,)” ¢ (R?)’. On va prouver que
(R?)’ ¢ (m;)”. La démonstration de (R?)’ ¢ (n,)” est analogue. Soient
donc T e(R%', T,e(m,). Il faut prouver que 77,= T,T. Or, le
lemme 1 entraine aussitot que, pour x € 4, 2’ €4, ona U, TU,em,.
Donc: U, TU,T,= T,U,TU,, et il suffit de faire converger faible-
ment U, vers 1, puis U,, vers 1.

Lemme 3. — Si a et b (respectivement c et d) sont bornés a gauche
(respectivement & droite), et si U, = U, (respectivement V,=7V,), on
a: aeD;, e¢ b=8J1a (respectivement ceD; et d = 8Jc).

Soient yed, zeA. Ona:
@,yz)=<a, V,y)= Va,y) = U,2"% y) = 2*, U,y
= (2%, V, by = (Vg,; 827, b) = S(y2), b) = (8h,J(y=2)) .
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Comme J est le plus petit prolongement fermé de sa restriction & 42, on
en déduit que SbeD; et que JSbh=a; donc aeD,, et b=_SJ1a.
De méme, on a (Sd, yz) =<¢,J(yz)), donc ceD; et Jc = Sd.

Lemme 4. — m, et n, commutent.

Soient U,em,, V,en,. Ona: U,=U,, V.=V, avec un b
borné a gauche, un d borné & droite. D’aprés le lemme 3, il existe une
suite x, e 4 avec:

z, >a , Jlz,—>J'a=8b, donc SJlz,—>0b.
De méme, il existe une suite y, € 4 avec:
Y, —>C, Jy, >Jc=8d , donc SJy, >d .
Ceci posé, remarquons que, pour zeAd, yed, on a:
O V,z,y) = V,x, Uyy) = U,c, V,b)

(I’cUax’ y) = (Uax’ de) = (Vwa, U.yd) «
Or:
WU, y,, V,8Jtx,) =<xy,, 81z, -y

= (@, z,y-SJy,) =V,x,, U,8y,>
d’ol1, en faisant tendre n vers 4 oo:
U,e, V,by = (V,a,U,d>

donec (U,V,x,y)= (V,U,z,y> et finalement U,V,= V, U,.

Théoréme 1. — R° = (Rd)’, R% = (Rv)'.

On a déja vu que R? ¢ (R%)’. D’autre part,

(RY = (my)" ¢ (n,)"” = (R9)" = Ro

donc R = (R%)/, et par suite (R?) = R?,

Par suite, R? ~ R? = R est le centre commun de R? et R%, ensemble
des opérateurs qui permutent & la fois & R? et R?,

Définition 3. — Si R se réduit aux opérateurs scalaires, c’est-a-dire si
R? et R? sont des facteurs, A sera dite trréductible.

Nous aurons besoin plus tard des lemmes suivants, qui constituent
d’ailleurs des compléments naturels aux lemmes 1 et 3.
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Lemme 5. — 8¢ a est borné a drotte, Sa est borné a gauche, et réciproque-
ment. On a alors: Uy, = SV, S.

En effet, on a, pour ze€d et a eH, Ug,a = SV,Sa. Sia est borné
a droite, on en déduit SV,Sx = V,Sa, donc Sa est borné & gauche,
et Ug, = SV,8. Si Sa est borné & gauche, on en déduit Ug,a = S Ug, z,

ou Uya=S8U;,Sy pour yeA, donc a est borné & droite et V, =
SUg,S.

Lemme 6. — Si a est borné a droite (respectivement a gauche) et si a €D,
(respectivement a € D;_,), SJa (respectivement SJ—1a) est borné a droite
(respectivement & gauche), et V., = Vg, (respectivement U, = Ug;-1,).

(Ce lemme constitue une réciproque du lemme 3.)

Supposons a borné & droite et @ €D;. On a, pour xeAd, yeA:

U SJa,yy= SJa,Jzt-y)= y*J 1z, Ja)= Jy* x,a)
=, Uya)= @, V,y)= Vi, y

donec U,8Ja = Vix; donc SJa est borné a droite, et Vg, = V.

Si @ est borné & gauche, et a € D;_,, Sa est borné & droite (lemme 5)
et Sa eD,. Donc SJ(Sa) = J-la est borné & droite, et Vg, = V,_,,.
Donc 8J-1a est borné a gauche, et SU,S = SUg,,,8, donec U, =
USJ ~1qg°*

Nous désignerons par P?¢ (respectivement P¢) I’ensemble des opéra-
teurs de R? (respectivement R?) permutables & J.

Lemme 7. — a) St a e D;_, est borné a gauche et st T e P?, ST*Sa
est borné a gauche et Ugp.g, = U,T.

b) 8¢ a €D, est borné a droite et si T eP?, Ta est borné a droite et
VT(I s ‘VaST*S.

Lemme 8. — a) Si a € D,_, est borné a gauche et si T e P4, Ta est borné
a gauche et Uy, = U,ST*S.

b) 8¢ a € D; est borné a droite et si T € P?, ST*8a est borné a droite et
Vspesa = VaT'-

Supposons @ € D;_, borné & gauche et T eP?. On a JSaeD;,
et JSa est borné & gauche; donc T*JSa eD; , et T*JSa est borné
a gauche ; donc SJ-1T*JS, = ST*Sa appartient & D,_, et est borné
a gauche ; on a en outre :
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(UaT)* = T* U’Z = T'* USJ—la = UT*JSa = U;J—IT*JSa = U;T*Sa

donc U,T = Ugpsg,

Si @ € D; est borné a droite et T e P?, Sa € D;_, est borné a gauche,
donec Uy T* = Ugp,, donc SUg,S8T*S = SUgp,S, donc enfin
V.8T*S = Vp,.

Si TeP? on a ST*S eP? de sorte que le lemme 8 résulte du
lemme 7.

III. Décomposition centrale discréte

Proposition 1. — J est permutable aux opérateurs de R.
Soient CeR, z€4d, yed. Ona:
Ugsi1e = C Uy, = OU: = (C*U,)* = UZ*x
Vaussy = OV, = C*V = (OV,)* = Ve,
donc (lemme 3) J-1CSJ-lx et JC*SJy existent, et
SJ-1C8Jx = C*x , (7)
SJC*SJy =Cy . (8)

Supposons maintenant x = SJy. On voit que SJC*x existe et est égal
a CS8Jx. Donc 8J(SJCSJ-'z) existe et est égal & CSJx. Donc
SJSJ-1C8J18Jy = J~2CJ?y existe et est égal & Cy. Bref, pour y e 4,
J:Cy existe et est égal & CJ2y.

Supposons en outre C unitaire. Alors

| JCy ||2 = JCy, JCy> = J2Cy, Cy)>
= (CJ?%y,Cyy = J2y, )= || Jy|?

donc ||JCy||=]||Jy]|| pour yeA. Soit maintenant a eD;. Soit
Y15 Ys, - . . € A une suite telle que y, > a, Jy, >Ja. Ona Cy, - Ca,
et [|[J(Cy—Cyn)ll=1J(¥n—Yn) || >0 quand n — +oco et

m — 4+ oo, donc JCy, a une limite forte, de sorte que Ca € D; et que
JCa est la limite de JCy,; donc ||JCa|| =1lm]||JCy,|| = lm
Ny, |l =1lJe||. Ainsi, C(D,) cD;, et un raisonnement identique
prouve que C-1(D;) ¢ D;; done C(D;) = D;, de sorte que les opéra-
teurs J et C-1JC, auto-adjoints >0, ont méme ensemble de défini-
tion; et ||C'JCal||=||Ja|| pour a eD,. On sait que ceci entraine
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C-1JC =J. Comme tout opérateur de R est combinaison linéaire
d’opérateurs unitaires de R, la proposition est démontrée.

Corollaire. — On a SCS = C* pour C eR.

En effet, la formule (7) devient, compte tenu de la proposition 1,
SCSx = C*x pour zeA.

Soient alors H,, H, deux sous-espaces orthogonaux complémentaires
de H tels que les projecteurs E, et E, sur H, et H, appartiennent & R.
Soit 4, = E,(A4). On va définir sur 4, une structure d’algébre quasi-
unitaire. Si ze€d, yed, 2, = E,x, y,= E,y, ona:

E(zy) = E, U,y = E, U, K,y = le?ll )

de sorte que E,(xy) ne dépend que de z, et y,, et définit évidemment
un produit associatif sur 4,. D’autre part, Sz, = SE,x = E,Sx
d’aprés le corollaire de la proposition 1, donc S induit une involution
dans A4,. On a aussi xeD;, donc z,eD; et Jx, = E,Jx d’apres
la proposition 1 ; donc J induit dans 4, un automorphisme. Il est facile
de voir que les axiomes des algébres quasi-unitaires sont vérifiés. Soient
R] et R? les anneaux d’opérateurs correspondants dans H,. On définit
de méme une structure d’algebre quasi-unitaire sur A, = E,(A4) et des
anneaux d’opérateurs Rj et R? dans H,. Pour qu’un opérateur continu
T sur H appartienne & R? (respectivement R?), il faut et il suffit que 7'
soit réduit par H, et H,, et que les parties induites par 7' dans H, et H,
appartiennent & R? et R? (respectivement R! et RY).

Quelques problémes. — Soit Q¢ (respectivement Q%) I’ensemble des
opérateurs de R’ (respectivement R?) permutables aux opérateurs de
P? (respectivement P¢). L’application 4 — SAS transforme R’ en R?,
donc P? en P? (parce que SJS = J-1), donc Q7 en Q<.

D’aprés la proposition 1, P? et P¢ (et aussi, évidemment, Q¢ et Q%)
contiennent R. Voici quelques hypotheéses vraisemblables, évidemment
vérifiées pour les algébres unitaires, dont nous n’avons pu établir la
validité en général ; on verra 'importance de I’hypothése 1 dans la suite.

Hypothése 1. — Q7 ¢ P?, Q% ¢ P4.

Hypothése 2. — J appartient au sens large?) & I’anneau d’opérateurs
engendré par Q7 et Q<.

?) Cest-a-dire J 7 R? au sens de [14]. (Rappelons que J n’est pas supposé borné.)
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Hypothése 3. — Il existe dans R? (respectivement R?) une sous-*-al-
gébre abélienne maximale L? (respectivement Lé) dont les éléments sont
permutables & J .

Remarques — Si I’hypothése 3 est vérifiée, on a L% ¢ P?, donc
Q? ¢ L?, de sorte que I’hypothése 1 est vérifiée. L’hypothése 1 entraine
évidemment que Q7 et @4 sont abéliens. Enfin, si les hypothéses 1 et 2
sont vérifiées, soit L’ une sous-*algeébre abélienne maximale de R? con-
tenant Q7; L commute avec Q7 ¢ L?, et avec Q9 ¢ (R?)’, done avec
J, de sorte que I’hypothése 3 est vérifiée.

IV. Algébres quasi-unitaires de dimension finie

Si une algebre quasi-unitaire A est de dimension finie, on a 4 = H,
R? est ’ensemble des U, R? est ’ensemble des V. L’algébre 4 posséde
un élément unité 1, tel que U, = V, = 1.

Une forme linéaire f sur une *-algébre A est dite centrale si f(zxy) =
f(yx), positive si f(x®) = f(x) et f(x*x) >0, fidele si f(x*z) =0
entraine x = 0.

Proposition 2. — a) Soient 4 une *-algébre de dimension finie, f une
forme linéaire centrale positive fidéle sur A, b un élément inversible tel que
b=1>0%; soit a=0b% Pour xeA, yedA, posons: Jx=a'lza,
x,y) = f(xaya). Alors, A est une algébre quasi-unitaire.

b) Soit A une algébre quasi-unitaire de dimension finie. Il existe une
forme linéaire cemtrale positive fidele f sur A, et un élément imversible
bed, avec b = b®, tels que, posant a = b2, on ait:

Jr=a1lza (x,y)=f(xay’a)
pour xeA, yed.

Soient 4 une *-algébre de dimension finie, f une forme linéaire centrale
positive fidele sur 4, b un élément inversible tel que & = b°. Posons
a=>0 Jx=alza, (x,y)= f(xay’a). D’abord, <(x,y) est bien
une forme sesquilinéaire sur 4 X A. Puis:

y, ) = f(yaza) = flazay’) = f(zay’a) = @, y)
(@, ) = f(xb2x*b?) = f ((bxb) (bxb)®) = 0
X, 2)=0=bzb=0=2=0.

Donc <(z, y) est bien un produit scalaire sur 4. Puis:

Sz, 2) = f(raaz®) = f ((xa)(za)’) =0 .
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L’opérateur J est évidemment un automorphisme de ’algébre 4. Enfin :

(x*, 2*) = f(x*axa) = f(zxax’a) = (x, x)
(wy, z) = f(zyaz’a) = f(yaz'ax) = f (yaz*(axa)a)
= f(ya(Jx* 2)%a) = <y, Jx*-2) .

La vérification des axiomes A4 et A5 est triviale.

Maintenant, soit A4 une algébre quasi-unitaire de dimension finie.
Désignons par T'r une trace fidéle sur I’*-algébre d’opérateurs R?. Pour
xed, yeA, posons: @(x,y) = Tr(U,U,). La forme ¢ est sesqui-
lindaire. On a: ¢(y, z) = Tr(U,U,) = Tr(U,U,) = ¢(x,y). Done il
existe un opérateur auto-adjoint L dans H = A4 tel que:

Tr(U,U,) = <x,Ly)= Lz, y) .

On a: (Lz,z)= Tr(U,U,) > 0; donc L = M2, avec un opérateur
M auto-adjoint >0 de H. De plus, (Lz,z)= 0 entraine U,= 0
parce que T'r est fidele, donc x = 0. Donc L et M sont inversibles.

Observons les égalités suivantes, ol 7' désigne un opérateur quelconque
de R’ :

@, LTy = Tr(U,U%,) = Tr(UUT") = Tr(T*U,U")
= Tr(Uy.,U,) = (I, Ly) = <z, TLy) (8)
@, LSJ-1yy = Tr(U,Uly,) = Tr(U,U,) = Tr(U,U,)
= Tr(U,Ugy-,) = Ly, 8J 1) = J-1z,SLy) = <z, J-1SLy) . (9)
Les égalités (9) donnent LSJ-! = J-18L, d’ou:
J-? = LISL-18J1 . (10)

Les égalités (8) prouvent que LT = TL, donc L e R M € R Posons:
M’ = SMS8, L' = SLS. Ona: L' eR? M’ eR’ On peut d’autre part
éerire: M=V, dou M=V,,, L=V,_, .

Observons alors que, pour z €4, yeAd, ona:

U,,y=Jx-y=J(x-Jly) =JU,J 1y

done U,;, = JU,J-!; en particulier, U, permute & J si et seulement si
x=dJzx.

Puisque L’-1eR?, on a donc JL'-1J-1 ¢ R?. Dans I'égalité (10), le
deuxiéme membre est alors permutable & L. Donc J est permutable & L.
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Donc L'~ est permutable & SJ-1S = J. Alors, I’égalité (10) se simplifie
et donne
J-2 = LL"-1 . (11)

Les opérateurs J, L, L’ sont auto-adjoints > 0 et deux & deux per-
mutables, de sorte que (11) entraine :

J=M1M . (12)

Puisque M-%eR? on peut poser: M~% = V,. On aura: a = b2
L’égalité V, = V, prouve que b = SJb. Enfin, comme V, permute &
J d’aprés ce qui précéde, une remarque antérieure prouve que Jb = b.
Alors, b = 8Jb entraine b = b*; et nous avons, pour tout zed :

Jr=M18MSx = V,(8V,-.S)x = V,Ugp'nz = V,U,-yz = alza .

Posons d’autre part, pour xed, f(x) = Tr(U,). Evidemment, f est
une forme linéaire centrale sur 4. En outre :

@, 9> = @, LLy) = Tr(U, Uy) = Tr(U,.s5-151,)

= [(@-8JVoy) = f(x-8T(ya?) = f(xa*-Jy’)

= f(xata~'ly’a) = f(xay‘a) . (13)
En particulier :
0 < (b 1zb L, b 1xby=f(b~1zb-182b12*b-1b2) =f(b~lxz®b) = f(xz*);

d’ailleurs f(x*) = Tr(U,) = Tr(Uj,)

=Tr(U,)=TrJU,J)=Tr(M U, M) =Tr(U)=f(x) (14)

de sorte que f est positive. Enfin, f(xz°) = 0 entraine blab~! =0
donc = 0:f est fidéle. Ceci achéve de démontrer la proposition.

Corollaire 1. — Soit A une algébre quasi-unitaire de dimension finie. Il
existe des opérateurs auto-adjoints positifs inversibles M et M’ possédant les
propriétés sutvantes :

M eRe, M’ eR?, M = 8SMS, J=M71M .
On a plus précisément: M e Q¢ c P?, M’ e Q? ¢ P7 .

En effet, reprenons les notations de la démonstration précédente.
Comme M’ e R’ un opérateur de R? permute & J, c’est-a-dire appar-
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tient & P9, si et seulement si il permute & M ; en particulier M e P¢; il
en résulte que Q¢ P?¢ et que M e Q% De méme, M e Q’cPr.
On voit donc que les hypotheéses 1, 2, 3 du § III sont vérifiées.

Corollaire 2. — Soit A une *-algébre d’opérateurs contenant 1 dans un
espace hilbertien F de dimension finie. Soit Tr une trace fidéle sur A, et
a un opérateur de A auto-adjoint positif inversible. Pour zeA, yeA,
posons: (x,y)= Tr(xay*a), e Jx =alxa. On obtient ainsi U'al-
gébre quasi-unitaire de dimension finie la plus générale. En prenant pour A
U'*-algébre de tous les opérateurs de F#, on obtient Ualgébre quasi-unitaire
vrréductible de dimension finie la plus générale.

Une algébre construite comme I’indique le corollaire est quasi-uni-
taire d’aprés le a de la proposition 2 ; de plus, si 4 est I’*-algébre de tous
les opérateurs de #, son centre se réduit aux scalaires, donc R’ et R4
sont des facteurs, de sorte que A4 est irréductible.

Réciproquement, soit 4 une algebre quasi-unitaire de dimension finie.
Il existe (proposition 2) une forme linéaire centrale positive fidéle f sur
A4, et un élément inversible b € A, avec b = b?, tels que, posant a = b2,
on ait Jx =a'za, x,y)=f(zxay’a). Pour v €A, yeA, posons:
«x, > = f(xy®). Il est immédiat qu’on obtient ainsi un produit sca-
laire sur 4, qui devient un espace hilbertien # de dimension finie. Pour
x e A, définissons un opérateur lindaire U, dans # par ULy = xy.
On a aussitét: Uj,,,, = AU, +uU,, U, = U,U,; d’autre part:

ULy, 20 = f(z*y2®) = fyz*z*) = f(y(z2)°) = «y, U,2»

done U, = U.,. L’application z — U, est donc un isomorphisme
de I'*-algébre A sur 1'*-algébre A’ des opérateurs U, dans l’espace
hilbertien #. Ona: U,=U,,=U,U,*, et U,.,=U.?, donc U, est
un opérateur auto-adjoint positif inversible. D’autre part, U}, = U, .,
= U*U,U,. Par Tr(U,) = f(x), on définit évidemment une trace
fidéle sur 4’, et <z, y> = f(zay’a) = Tr(U, U, U, U,). Sienfin 4 est
irréductible, A’ est un facteur, donc il existe un *-isomorphisme de A’
sur I’*-algébre de tous les opérateurs d’un espace hilbertien de dimension

finie convenable. Ceci achéve la démonstration.

Y. Nature de R’ et R?

Théoréme 2. — Supposons qu’il existe des opérateurs auto-adjornts =0
wnversibles, M, M', appartenant au sens large @ R% et R? respectivement,
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avec M’ = SMS, tels que J soit le plus petit prolongement fermé de
M M-

a) R? et R? sont sans composantes purement infinies 3).

b) Soit m I'ensemble des opérateurs dela forme X7_, U,, U;‘i, avec a;, b,,
bornés a gauche et dans D,,. Alors, m est un idéal bilatére de R? qui engendre
R, et la formule ¢(X7_, U, U;i) = ¥t Ma;, Mb,) défimit sur m
une trace normale fidéle.

c) Les opérateurs M et M' appartiennent au sens large & Q2 et Q7 respecti-
vement. On a Q4 ¢ P¢, Q7 ¢ P7.

La partie @ du théoréme est une conséquence de la partie b ([5], propo-
sition 9). Démontrons donc la partie b. On désignera par M = j‘ FeAdE),
M’ = [} AdE; les décompositions spectrales de M et M’

Soit A, I’ensemble des éléments de D,, bornés a gauche. Si a € 4,
et TeR’ ona TaeA,; eneffet TaeD, parce que T permute & M,
et T'a est borné & gauche (lemme 1). Ceci posé, les formules 7'(2U, U ;i)
=2 Uy, Uy, (22U, Up)T=2XU, Uy, prouvent que m est un idéal
bilatére de R?.

Montrons que A, est partout dense dans H. Puisque M permute &
M’, il permute & J, donc les K, sont permutables & J. Done, si z €4,
E ) x est borné a gauche d’apres le lemme 8 ; et, bien entendu, ¥,x € D,,,
de sorte que E zeA,. Or, les E)yx, pour xe€A et 1> 0, sont évi-
demment partout denses dans H.

Nous pouvons alors montrer que m engendre R?Y, c’est-a-dire que
m = R? avec les notations de [5]. Car soit % un élément de H tel que
Uu = 0 pour tout U em, et prouvons que %« = 0. On a, pour tout
xeA ettout aed,:

| @, Voar 2= 1w, Uz 2= | (Uqu, ) |2 < || 2|2 ]| Upu||?
=z |20, Ugu,u)=0

donc <u, V,a) = 0. Comme 1 est fortement adhérent & l’ensemble
des V,, on en déduit (u,a) = 0 pour a ed,, donc u = 0.

Pour poursuivre la démonstration, nous avons besoin des lemmes
suivants:

Lemme 9. — 8¢ a,, b, (1 <17 < n) sont des éléments de A, tels que
12 UyU, >0, ona 37, (Mb;, Ma;,> > 0.

3) (Vest-a-dire HP® = 0 au sens de [4]. De méme, si H? #0, nous dirons que R’
et R? possédent des composantes purement infinies.
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En effet, on a, pour tout z e 4,
0 < (X, U:iUbix,x)z i1 WUy 2, Uy 2y = X7, (V, b, Voayy

Onendéduit X7_,<Vb,, Va,;»>0 pour tout VeRe, Enfin, 3", «(Mb,, Ma,)
est limite de quantités de la forme X%_, «<Vb,, Va,), d’ou le lemme.

Lemme 10. — 8¢ aeDy~ D,,, ona SJlaeD, e MSJ la =
SMa.

En effet, soit a’ = J-'a. Ona: a’ €D, et Ja' e Dy, donc a’ € Dy,
et M'a’ = MJa’, c’est-a-dire SMSJ1a = Ma.

Lemme 11. — 8¢ a,, b, (1 <¢ < n) sont des éléments de A, tels que
21U, Uy >0, ona 37, (Ma,, Mb,) > 0.

En effet, supposons d’abord a;,b;,e 4,~D,,. On a SJa, e Dy,
8J1b; e Dy, d’aprés le lemme 10, et SJ-la,, SJ-1b, sont bornés a
gauche d’aprés le lemme 6, avec Ugy,, = U,., Ugj—sp, = U,,. Donc
SJta;ed,, 8SJ1b,eA,, et 2 Uy Uy, = X7 Ugyorg; Usyory,-
Alors, les lemmes 9 et 10 prouvent que :

?=1<Ma’i> sz): 2?:1(8Mbi, SMG,-)
= X (MSJ1b;, MSTta;) =0 .

Arrivons maintenant au cas général. Soit (4,, A,,...) une suite de
nombres >0 tendant vers 0, et posons dans fout ce paragraphe: E| =
1 — E;\n. Les projecteurs K/, sont dans R’ et tendent fortement vers 1;
et E,(H)cDy.. Si aed,, ona: E,aed,~D,,. En effet, nous
savons déja que E,a e A,; et ME,a=E,Ma € Dy, donc E.aeD,_,.
D’autre part,on a: X7, Up ., Upy, = E, (X7, U, Uy) E, >0, donc,
d’aprés la premiére partie de la démonstration

St (E. Ma;, E. Mb,y = X", (ME a;, ME. b,> >0 .

Quand n — 4 oo, on en déduit le lemme.

Revenons maintenant & la démonstration du théoreme 2. Soient
a;€d,, bjed, (1<i<n) telsque X7_, U, U,, = 0. Le lemme 11
entraine que X 7_,<Ma;, Mb,>=0. Donc, en posant ¢(X7_, U, Uy)
= ¥, Ma;, Mb,) pour a;eA,, b,ed;, (1 <t <n), on définit
univoquement sur m une forme linéaire. Et le lemme 11 exprime que
cette forme est positive. Si 7' ¢ R?, on a:
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' (T(E?ra Uai UZ,- ) = (X7 UTa, U;;) = Xt (MTa;, Mb,)
= 37 (TMa; Mb,)

' ((2:;1 Ua«; U;:,-) T) = @(Xia Ua«; U;*bi) = i Ma;, MT*b;)
= Xi, Ma;, T*Mb,)
ce qui prouve que ¢ est centrale, donc est une trace.

Lemme 12. — Tout opérateur de m* est de la forme "1 U Us
avec a,ed;, pour 1 <1 < m.

En effet, soit U= X7_,U, U;,em*, ou a,ed,, b,ed,. Posons:
0,-=%(a,~+b,-), diz%(“i—bi)- Ona: c;ed,, d;ed,, et:

U =3t (U, + Ud,,)( o~ Ug)*= X1, U, U; — =1,U, U5,
'+' Z Ud, i=1 Uci U;i
U* = ?=1 Uci Uci - ?=1 Ud-i U;@' + 2?——-1 Uci U;i - ?=1 Udi U:i

done U=3{U+U*%= X ,U0,U; — 32,0, U;, Soit U =
LU, Us. Ona 0<U<U, donc || Uta| <||U%a| pour
tout a eH, donc UJ*’= TU'? avecun T € R°. Par suite :

U=UUY = T0'T*= 37 TU, U, T*= 3"_ Uy, Uk,

ce qui démontre le lemme.
Grace au lemme 12, on voit aussitét que ¢ est fidele. Car, si

‘p(2?=1 Uai U:i) = ?=1 (Maia Mai) =0,
ona Ma;= 0 donc a, =0 pour 1<t <n, done ¥7,U,. U, =

Lemme 13. — 8¢ a;€e4,(1 < n), il existe un aed, tel que
U,>0, e X", U, U,-.U?,

En effet, soit U = X7, U, U,.. On a, pour tout #eH :
| U b2 = UL Uy, t, 6> < Ut, ty = || Ut e ]2

donc U, =T, Ut avec T, e R?, T; ’annulant sur HS U (H) (H). Onen
déduit '
(P T, Ub, Ubty = sr_«UY T T U, 1)

== 2?=1<Uaanit,t) = <U%t’ U%t) ’
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done (X%  T:T;u,uy=<(u,u) pour weU (H); donc X"  T;T,
est le projecteur sur U (H); par suite:

U= (3" TiT) Ut = 3" TiU, =U,n

i =1 2@ lT"f ai
ce qui prouve le lemme.

Nous pouvons maintenant prouver que ¢ est normale. Soit (U,),;
une famille filtrante croissante d’opérateurs de m* de borne supérieure
U emt. Il s’agit de prouver que ¢(U) est la borne supérieure des
p(U,). On a: @(U) = ¢(U,). Soit donc &>0, et prouvons qu’il
existe un cel tel que @(U) = ¢(U)—e. Soit U= X} U, U,
(lemme 12). Ona: E, UE, = X%, Uy , Uy ,; , donc

¢(U) = Xl Ma,|®
¢(E,UE,) = Xi{,||ME,a sz—— Sl By Ma® .

Par suite, pour n bien choisi, ¢(U) — = < ¢(E, UE)) <¢@(U). On va

&

voir qu’on peut trouver un ¢ eI tel que gv(E' U,E) > o(E, UE)) — 5
I1 en résultera :

o(U,) > oE,UE,) =>¢U) —¢

et notre assertion sera établie. Nous sommes ainsi ramenés & prouver que
¢(E,UE]) est la borne supérieure des ¢(E. U, E.), n fixé, sachant
que (E, U,E,),; est un ensemble filtrant croissant de borne supé-
rieure E, UE,. Mais de plus, d’aprés les lemmes 12, 13 et un raisonne-
ment fait dans la démonstration du lemme 11, on a cette fois :

E.UE, ="U? E;ULE;.—:Uf,‘

avec a,e4,, aed,, U, >0, U,>0; dailleurs, ¢(U;) =|| Ma,|?
o(Ug) = || Ma|]*
Comme U i‘ converge fortement [3] vers U2 en restant borné, U,, con-

verge fortement vers U, ([11], lemme 5). Soient ze 4, yeA. Obser-
vons que aeD;, et U,= Ug.,, d’aprés le lemme 3. Pour tout
A>0, posons M) = ME),, quiest borné. On a:

Mya,zyy= MyJa,Jx-Jy) =<(Ug, M)Ja,Jy)
= (MA USwJ‘la, Jy) = (MAVJ..Ian, Jg) == (M,\SUSJ_lax,Jy>
=S MJy,U, x>

et de méme (Mpa,,zy)= SMJy, U, ). Donc <(M,a,,zy)
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- (Mya,zy). Comme || M)a, | <||Ma,||<||Mal]|, on voit que
M,a, tend faiblement vers M,a®. Par suite, liminf || Ma, |l >
liminf || M)a,|| =||M)a||, quel quesoit >0, donc liminf || M a,|| >
|| Ma ||, ce qui achéve la démonstration de la partie &6 du théoreme.
Quant & la partie ¢, elle se démontre comme le corollaire 1 de la proposi-
tion 2.

On observera que, pour J =1 (cas des algébres unitaires), la dé-
monstration se simplifie considérablement.

Nous n’avons pu décider si la trace ¢ est maximale (ce qui est vrai
dans le cas des algébres unitaires : cf. théoréme 2 de [10]); il faudrait,
pour résoudre ce probléme, arriver & caractériser plus simplement les
opérateurs de m+.

Proposition 3. — a) Soient M, M, (respectivement M', M,) des opéra-
teurs auto-adjoints > 0 inversibles appartenant au sens large @ R? (respec-
tivement RY), avec M’ = SMS, M, = SM,S; supposons que J soit le
plus petit prolongement fermé de M' M- et de M, M{*. Il existe alors
un opérateur auto-adjoint >0 inversible C appartenant aw sens large @
R, tel que M, (respectivement M}) soit le plus petit prolongement fermé de
CM (respectivement CM’).

b) Réciproquement, soit C un opérateur auto-adjoint = 0 inversible
appartenant au sens large ¢ R ; soit M, (respectivement M) le plus petit
prolongement fermé de CM (respectivement CM'); M, et M’ sont auto-
adjoints > 0 tnversibles, appartiennent au sens large a R? et R? respective-
ment; on a M;= SM,S, et J est le plus petit prolongement fermé de
M; M.

Soient M, M,, M’, M, des opérateurs ayant les propriétés de a.
L’opérateur M, permute & M,, donc & J, et & M, donc & M’. De méme,
M, permute & J, M, M'. Bref J, M, M’', M,, M, sont deux & deux
permutables. Puisque M;M;* et M’ M-! ont méme prolongement
fermé minimum, M M’'~' et M, M~' ont méme prolongement fermé
minimum C. L’opérateur C est auto-adjoint positif inversible, et appar-
tient au sens large & R; et M, (respectivement M) est le plus petit
prolongement fermé de CM (respectivement CM’).

Réciproquement, soit C' un opérateur ayant les propriétés de b, et
soit M, (respectivement M) le plus petit prolongement fermé de CM
(respectivement CM'). Il est évident que M,, M, sont auto-adjoints
> 0 inversibles, et appartiennent au sens large & R? et R? respective-
ment. En outre, M; My et M'CC-! M-! ont méme prolongement
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fermé minimum ; ce prolongement est donc J; et SM,S est égal au
prolongement fermé minimum de (SCS8)(SMS), donc (cor. de la propo-
sition 1) de CM'; ce prolongement est donc M;.

Remarque. — Si A est irréductible, on voit que M et M’ sont bien
déterminés par J a la multiplication pres par un scalaire >0.

VI. Nature de R’ et de R® (suite)

Théoréme 3. — Si R? et R? sont sans composantes purement infinies et
st Q7 cP?, Q% Pl il existe des opérateurs auto-adjoints > 0 inver-
stbles M, M’, appartenant au sens large a Q% et Q7 respectivement, avec
M’ = SMS, tels que J soit le plus petit prolongement fermé de M’ M—1.

Comme R? est sans composante purement infinie, il existe ([5], propo-
sition 9) une pseudo-trace normale fidéle et essentielle 7'r sur (R?)+. Soit
(@,),¢; une famille d’éléments de H telle que Tr(7T) = 2,;(Ta,,a,)
pour 7 e (R%)* (cf. [17]). Comme 7'r est fidele, on voit aussitét que les
Ua,, UeR? 1€el, engendrent H. Nous désignerons encore par T'r la
trace normale fidéle essentielle maximale associée a la pseudo-trace 7'r.
Si T appartient a 'idéal de définition de cette trace, on a encore : 17 (7')
=2, ¢;Ta,,a,, lafamille (Ta,,a,) étant sommable.

Soit RY I’ensemble des 7 € R? tels que Tr(7T7T*)< +co. Il est im-
médiat que R} est un idéal bilatére de R?. D’autre part, muni du produit
scalaire (7', Ty = Tr(TT'*), R} est un espace préhilbertien dont nous
désignerons le complété abstrait par . L’application T — T* de R}
sur RY est isométrique 4). On a donc (T'*, T*)y = (T, T'), c’est-d-dire
Tr(TT'*) = Tr(T'*T) pour T eR T eR). Ainsi, (I, T')=
2, T"*Ta,,a,)=Z2,;<Ta,, T"a,>. Donclapplication 7T — (Ta,),¢;
est une application isométrique de R} dans @,.; H,, H, étant, pour tout
tel, identique & H ; cette application se prolonge donc en une appli-
cation isométrique y de # dans @, H,.

Soit A’ ’'ensemble des @ € H bornés & gauche et tels que U, e Rj. Si
a € H est borné & gauche et si T € R}, T'a est borné a gauche, et U,, =

4) En effet, si T'=K W est la décomposition canonique de T'¢ RY en un opérateur K auto-
adjoint >0 et un opérateur W partielloment isométrique, on a T*T = W*(TT*)W,
et TT* = (WW*)(TT*), donc

(T*, T*y = Tr(T*T) = Tr(WW*TT*) = Tr(TT*) = (T, T) .

(On notera que 1’égalité T'r(TT*) = Tr(T*T) n’est pas absolument évidente puisque 7'
et T'* ne sont pas nécessairement de trace finie. Cf. cependant [7].)
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TU,eR), donc TaeA’; or 1 est fortement adhérent & RY (parce que
Tr est essentielle), donc I'adhérence de A’ contient tous les éléments

bornés & gauche, de sorte que A"=H.
L’application a — U, est une application linéaire biunivoque de A4’
dans .

Lemme 14. — L’application a — U, de A’ dans F admet un plus petit
prolongement linéaire fermé défini dans un ensemble partout dense de H
et ce prolongement est inversible.

Pour prouver ’existence d'un prolongement fermé (donc d’'un plus
petit prolongement fermé, qui sera défini sur un ensemble partout dense
puisque A'=H ), il faut prouver ceci : soit b,, b,,... une suite d’élé-
ments de A4’, telle que b, — 0, et telle que U, ait une limite u e #
au sens de la structure hilbertienne de #; alors u = 0.

Or, U, a une limite v e 7 au sens de la structure hilbertienne de #,
et ||v||=|u]|l. Soit (c,),; I'image de v par l'application v de F#
dans @, H,. On a U, a, >c, dans H,, pour tout tel. Or, si
red, ona:

WUy a,x)= @, U, z)= <@, V,b,) >0

donc <(c,, x) = 0, de sorte que ¢, = 0 pour tout ¢el. Ainsi, v =0
et par suite u = 0.

Pour prouver que le plus petit prolongement fermé de l’application
a — U, est inversible, on raisonne de facon analogue ; il faut prouver
ceci: soit by, b,,... une suite d’éléments de A’ tels que b, —b e H et
telle que U, — 0 au sens de #; alors b= 0. Or,ona U a, >0,
done U, V,a,=V,U, a, >0 pour zeA. Comme plus haut, on en
déduit que <V, a,, V,b,) >0 pour €A, yeA, donc <(V,a, V,b>
= 0. Comme les V,a, sous-tendent H, on en déduit V,b = 0, et,
comme 1 est fortement adhérent & I’ensemble des V,, on en déduit
b=0.

Le lemme 14 entraine 'existence d’un opérateur auto-adjoint inver-
sible, soit M, dans H, tel que: 1. A’ ¢ D, ; 2. M est le plus petit pro-
longement fermé de sa restriction 4 4’; 3. pour aeA’, bed’, on a:

Ma, Mby = (U,, U,y = Tr(U,U;) . (15)

Posons M’ = SMS, L = M2, L' = M'2. Les opérateurs M, M’, L,
L’ sont auto-adjoints > 0, et L’ = SLS. Les propriétés annoncées de
M et M’ vont découler des lemmes suivants :
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Lemme 15. — St a e A’ et TeR?, ona TaeA'.

En effet, on sait que T'a est borné & gauche ;et ona: U,, = TU, € R},
puisque U, € R}.

Lemme 16. — Soient a e Dy, et T e R7.
a) On a: TaeD,.
b) Il existe une suite a,,a,,... dans A’, avec a, >a, Ma — Ma,

et MTan - MTa.

Puisque M est le plus petit prolongement fermé de sa restriction & A4’,
il existe une suite a,,a,,... dans A’ telle que a, >a, Ma, > Ma.
On a Ta,eA’ d’aprés le lemme 15, et 7Ta, - Ta. Montrons que
MTa, aune limite ; cette limite sera M7Ta puisque M est fermé. Pour
cela, observons que, si 77 et 7' sont deux opérateurs bornés quelconques
dans H, et x un vecteur quelconque de H, on a:

(T/* T/I* T// T’CU, ) = H Tl/ T’.’E Hz < ” T//Ilz ” T’x Hg
= || T" |2 (T'* Tz, %)

done 0 T/*T"*T"T" L||T"||2T'*T'. Ceci entraine en parti-
culier :

Tr(UT(an—am) UT(dn am)) TT(TUan—am U:n—am T*)
- TT(Uan am T*TUan-am ” T H2 TT an am Uan—am)

c’est-a-dire, d’apres la formule (15):
| MT (@ —an) || < || T || Mgy, — an) | -

Comme || M (@, — a,)|| — 0, on en déduit que || MTa,— MTa,l|l — O,
ce qui établit notre assertion.

Lemme 17. — M (respectivement M') appartient au sens large a R?
(respectivement R?).

Soient a €eA’, beA’, T eR?; daprés le lemme 15, T*aeA’ et
ThbeA'. On a: Tr(Up,US)=Tr(T*U,U))= Tr(UU;ST* =
Tr(U,Up,), done (MT*a, Mby= (Ma, MTb). Supposons main-
tenant a € Dy, beD,, T eR’. D’apréslelemme 16, ona T*a €D,
Tb € D,;, et il existe deux suites (a,,@a,,...), (by,b,,...) dans A’
telles que

a, >a, b, >b, Ma, >Ma, Mb, > Mb, MT*a, - MT*a,
MTb, - MTb .
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L’égalité MT*a,, Mb,) = (Ma,, MTb,) donne & la limite :
(MT*a, Mby = (Ma, MTh) .

Supposons enfin a e€D;,beD,. A fortiori, a €Dy, beD,;, donc
MT*a, Mb) = (Ma, MTb). Comme en outre Mbe D, et MaeD,,,
on en déduit (T*a,Lby = (La,Tb), c’est-a-dire: (La, Tb)y =
@, TLby. Laissant b fixe, et faisant varier @ dans D, cette égalité
prouve que 7b eD;.= D,;, et que LTb = TLb. Donc T est permu-
table & L. Donc L, et par suite M, appartiennent au sens large & R4,
Donc M’ = SMS appartient au sens large & RY.

Lemme 18. — Soit A" =A4"~D;,. Si aeA”, ona SJlaecAd”.

En effet, SJ-la est borné i gauche, et Ug,., = U) (d’aprés le
lemme 6), donc Ug;-,, € RS puisque U, e RJ. Par suite, SJ-laeA’.
En outre, SJ-'a € D,_,, puisque SJ~!=J8S.

Lemme 19. — S: aeA”, e¢¢ TeP? ou TeP? ona Taed”.

Si aed” et TeP?, ona TaeA' daprés le lemme 15; comme
aeD;, et que 7 permute & J~, on a aussi TaeD,_,.

Si aed” et TeP? ona SJlaeA” d’aprés le lemme 18, done
STS(SJ1a) e A” d’aprés ce qui précéde (parce que STS eP?); &
nouveau d’apres le lemme 18, le vecteur

(JS)(STS)(SJ1a) = JTJla = Ta
est dans A”.

Lemme 20. — La restriction de M a A" admet M pour plus petit prolon-
gement fermé (ce qui entraine en particulier que A” = H).

Comme la restriction de M 4 A’ admet M pour plus petit prolonge-
ment fermé, il suffit de prouver que le plus petit prolongement fermé
de la restriction de M & A” est défini au moins dans A’. Il suffit donc
de prouver ceci: soit a e€A’; il existe dans 4” une suite a,, a,,...
telle que a, - a, avec || Ma, || borné supérieurement.

Soit =z, x,,... une suite d’éléments de A, pour le moment quel-
conque. Posons: a, = U, a. On sait que a,ed’ (lemme 15). En
outre, U, = (U, U)*= U} Ugjr,, = Uys ss-14,- Donc (lemme 3)
a, e€D;_,, de sorte que a,eA”. Enfin,

H Ma'ﬂ “2 = Tr(Uan U:n) = Tr(an Ua U;‘ U:n)
= Tr(U; U;, U, U <|| Uy, |I* Tr(U; U,)
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d’aprés ce qu’'on a vu dans la démonstration du lemme 16, c’est-a-dire
| Ma,l|| <|| Ul || Ma||. D’apres le théoreme 1 de [12], il existe
une suite 2, €A telle que || U, || <1 et U, a —a. Ceci acheve de
prouver le lemme.

Lemme 21. — Sotent a € Dy, et T e PC.
a) Ona: TaeD,y.
b) Il existe une suite a,,a,,... dans A”, avec a, -a, Ma, > Ma

et MTa, > MTa.

D’aprés le lemme 20, il existe une suite a,,a,,... dans A” telle que
a, >a, Ma,—>Ma. On a: Ta,eA” daprés le lemme 19, et
Ta, - Ta. En outre,

TT(UT(an—-am) ;(an—-am)) = Tr (Ua»n—am (ST*S) (STS) U::n-—am
< H T ”2T7‘(Uan~am U:lkn——am)

en utilisant le lemme 7c. Autrement dit || MTa, — MTa, || <
N7 || ey — @y ||. Ainsi, MTa, aune limite, de sorte que Ta € D,y,.

Lemme 22. — M (respectivement M') appartient au sens large a Q¢
(respectivement Q7).

Soit 7T eP?, et montrons que M permute & 7. Si aeAd”, beA”,
ona T*aeA” et TheA” d’aprés le lemme 19. En outre, en vertu du
lemme 7, on a: Tr(Uy., U;) = Tr(USTSU,) = Tr(U, Uy,), Cest-
a-dire (MT*a, Mby = (Ma, MTh). Griace au lemme 21, on étend
cette égalité au cas ou a € Dy, b eD,, comme dans la démonstration
du lemme 17. Si enfin a eD;, b eD,, cette égalité donne (T*a, Lb)
= (La, Tby. Comme dans la démonstration du lemme 17, on en déduit
que L, donc M, permute & 7. Donc M appartient au sens large a Q¢ et
par suite M’ appartient au sens large & QY.

Lemme 23. — M, M’, J sont deux a deux permutables, et J est le plus
petit prolongement fermé de M’ M1,

M, M’ J sont deux & deux permutables, & cause de I’hypothése
Q? ¢ P4, Q° P’ qui interviendra ici seulement. L’opérateur M’ J-!
admet donc un plus petit prolongement fermé M' qui est auto-adjoint
> 0. D’aprés le lemme 18, on a SJ-1(4”") ¢ Dy, donc A" ¢ Dygy-
= Dgpyss1 = Dypry-1 ¢ Dyy. Pour aeAd”, beA” on a:
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(Ma, Mby = Tr(U,UJ) = Tr(U; U,) = Tr(Ugy-p Udys,) =
(MSJ-1b, MSJ-'ay = (SMSJ-‘a, SMS8J-1by = (M'a, M*by .  (16)

Nous allons en déduire que M=M?, ce quiachevera la démonstration.
Soient M = (= AdE), M* = [ AdE} les décompositions spectrales
de M et M*. Supposons M #* M*. Alors, E, s E; pour une certaine
valeur 1, de 2. On a donc, compte tenu du fait que les E) et les £, sont
deux & deux permutables, ou bien E, (1—Ej )+#0, oubien E} (1—E,)
# 0. Dans les deux cas, on en déduit 'existence d’'un a € Dy, ~ D,
tel que || Ma || # || M'a||. Comme M est le plus petit prolongement

fermé de sa restriction & 47, il existe une suite a,, a,,... dans 4” telle
que a, >a, Ma,—>Ma. On a: || M(a,—a,)]||=]|M@,—a,)||
d’apres les égalités (16), donc M'a, a une limite, qui est nécessaire-
ment M'la. L’égalité || Ma, ||=|| M'a,|| entraine || Ma ||=|| M'a ||,

d’ou contradiction.

VII. Eléments quasi-centraux

Proposition 4. — Pour un élément a € H, les conditions suivantes sont
équivalentes :

a) <a,xy)= (a,yx) pour xeA, yeA.
b) U,a="V,a pour zxzed.
¢) Ta=S8T*Sa pour T eR? (donc pour T € RY)

En effet, on a, pour z €4 et yed:
@, 2'yy = (U, a,y> @, yx) =V a0,y

donc la condition <@, 2'y) = (@, yx) pour veAd, yeA équivaut a
U,o0=17V,.0a pour xed, cest-a-dired U_a= V,a pour zed.
D’autre part, U= U}, = (SV,8)* =8V, S8, de sorte que la condi-
tion ¢ entraine la condition &. Enfin, la condition b entraine la condition ¢

puisque tout 7' € R? est limite faible d’opérateurs V.

Définition 4. — St a € H vérifie les conditions de la proposition 4, nous
dirons que a est quasi-central.

Soit H° 'ensemble des éléments quasi-centraux. Il est évident que
H¢ est un sous-espace vectoriel fermé de H.

Proposition 5. — Si aeH°, ona SaeHe, e¢¢ Ja=a. En oulre,
Ca e H® pour tout C ¢ R.
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Si aeH®, ona T(Sa)=8(8TSa)= S(T*a) = (ST*S)(Sa) pour
T eRé, donc SaeH¢ D’autre part, T (Ca)= C(Ta)= C(ST*Sa)
= (ST*8)(Ca), donc Ca e H°. Enfin, pour x €A et yeA, ona:

@, zy)= @, Jy-x)= @, Jx-Jy) = (a,J(xy))

donc aeD; et Ja =a.

Pour démontrer le théoréme 4 ci-dessous, nous sommes obligés d’intro-
duire I’axiome suivant :

A’ 5. — Il existe un filtre Fsur A tel que U, et V, convergent faiblement
vers 1 suivant F en restant de normes bornées.

Remarques. — 1. L’axiome A5 est une conséquence de A’5 et de
I'axiome suivant :

A”5. Les éléments x + 7, on x e A, sont partout denses dans A .

En effet, quand « converge suivant 7, SV;8 = U_; converge faible-
ment vers 1, donc zy + (vy)' = U,y 4+ U_; 4’ converge faiblement
vers y + yi.

2. Il existe toujours (d’aprés le théoréme 1 de [12]) un filtre # sur 4
tel que U, converge faiblement vers 1 suivant 4 en restant de norme
bornée. Si A est une algébre unitaire, V, = SU}S converge aussi
faiblement vers 1 suivant # en restant de norme bornée, de sorte que
A’5 (et, naturellement, A”5) sont vérifiés.

Soit F le sous-espace fermé de H engendré par les T'a, ou 7 € R? et
a € H°. Le sous-espace I est stable par R?, et aussi par R? car U, Ta
=TU,a =TV, ,,aeF pour aeH’, TeR? et xeA. Donc F est
aussi le sous-espace fermé de H engendré par les Ta, T e R?, a ¢ H®. Le
projecteur sur F est un opérateur de R.

Théoréme 4. — Supposons Q4 ¢ Pé, Q° ¢ P?. La condition mécessaire
et suffisante pour que R? et R? soient de classe finie est que F = H.

Observons d’abord que, si a € H°, lapplication T — (Ta,a) est
une trace sur R? (et sur R?). Car c’est une forme linéaire positive, et

(TT a,a) = (T (ST'*S)a,a) = (ST'*8)Ta,a)
= (Ta,8T'Sa) = (Ta, T'*a) = (T'"Ta,an).

Ceci posé, si (T*Ta,a)= 0 pour un T € R? quel que soit a € H®,
ona T(H®) =0, donc T(F)=0. Si F =H on voit donc que R?
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posséde un systéme complet de traces, de sorte que ([8], lemme 12),
R? est de classe finie (donc aussi R?). Cette partie du raisonnement ne
suppose pas que Q¢ ¢ P¢, Q7 ¢ Ps.

Supposons maintenant Q¢ ¢ P4, Q7 ¢ P?, et R? R’ de classe finie ?).
Raisonnant par 1’absurde, supposons F # H. Utilisant une décompo-
sition centrale discréte, nous sommes ramenés & la situation suivante :
Qic Pl Q°cP’, R*et R sont de classe finie, H#0 et H° =0,
et il existe une trace normale fidéle partout définie 7'r sur R’.

On peut alors raisonner comme dans le paragraphe VI, et construire
des opérateurs M, M’ ayant les propriétés du théoreme 3. Mais de plus
(adoptant les notations antérieures), A’ est alors 'ensemble des éléments
bornés & gauche, et on a, pour yeA’:

| My ||>=Tr(U, U;) <k U, | .

Faisons converger y suivant . L’inégalité || My || <k|| U,|| pour
y € A entraine qu’il existe un filtre "/ plus fin que F tel que My con-
verge faiblement suivant 7’ versun élément a ¢ H. Et 1’égalité MV, «
=MU,y=U,My (ou zed, yeA) entraine, en faisant converger
y suivant F', Mx = U,a (tenant compte du fait que M est fermsé).
Ceci posé, on a, pour tout vz eAd et tout yed:

@, Je-y) = U_,a,y)= Mz, y) = x°, My) = (SMSy* x)
= (MJy*, ) = U0, )= (@, yx)

donc a € H°, et par suite a = 0. Alors Mz =U,a = 0 pour tout
x € A, contrairement au fait que M est inversible.

VIII. Algébres quasi-unitaires achevées
Lemme 24. — St a est borné a gauche et b borné a droite,ona U,b = V,a.
Supposons d’abord beD;. Si zx€Ad et yed, ona:

U,z,y)= (Vya,y)= (@, y27®) .

5) 8Si J =1 (cas des algébres unitaires), la fin de la démonstration peut étre consi-
dérablement abrégée: les opérateurs U,, a borné & gauche, forment un idéal bilatére non
nul de R?; eot, dans un anneau de classe finie, tout idéal bilatére non nul contient un
opérateur central non nul comme on le voit aisément; donec H¢ # 0; & partir de 14, on
démontre sans peine que F = H. (Le théoréme 4 est connu dans le cas des algdbres uni-
taires: cf. [8], théorédme 6; et [17]).
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En considérant une suite ,ed4 telle que =, >b, Jx, > Jb, 'éga-
lité précédente donne & la limite, compte tenu du lemme 6

Wb, y) =<, U,8Jby = <@, Vg;,y) = V,a, y)

donc U,b = V,a. Supposons maintenant b borné & droite quelconque.
Si zed, ona Vg ,=(V,V)*="V;V,=Vy;,s, de sorte que Vb,
qui est borné a droite, appartient & D; (lemme 3). D’aprés la premiére
partie de la démonstration, on a donc U,V,b =V, ,a ="V, V,a; en
faisant converger fortement V, vers 1, on a le lemme.

Définition 5. — Soient A et A’ deux algébres quasi-unitaires. Nous di-
rons que A’ est un prolongement de A si: 1) A est une sous-*algébre de A’ ;
2) le produat scalaire et Uautomorphisme de A s’obtiennent en restreignant
a A le produit scalaire et U'automorphisme de A’ ; 3) A est partout dense
dans A’. Nous dirons que A est une algébre quasi-unitaire achevée si A
n’admet aucune extension distincte de A .

Si 4’ est un prolongement de 4, et si 87, S sont les anneaux d’opé-
rateurs définis par A’, on a R? ¢ 89, R? ¢ 8% donc R? = §9, R? = §¢
en vertu du théoréme 1.

Proposition 6. — Soit A une algébre quasi-unitaire. Tous les prolonge-
ments de A sont contenus dans U'un d’entre eux qui est une algébre quasi-
unitaire achevée.

Soit toujours H I’espace hilbertien complété de 4. Soit A, 'ensemble
des a € H tels que tous les J"a (n entier positif ou négatif) existent et
soient bornés a gauche. D’aprés le lemme 6, les SJ"a sont bornés a
gauche, donc (lemme 5) les J"a sont aussi bornés & droite.

Soient a e A,, bed,. Ona, pour xeA:

U,,Jb,xy= Jb, Uy, x) = Jb, V,Sa)
== <VSJmJb’ Sa/) == <UJbSJx, Sd) = (Cb, SUJbSJx)
= (a, Vg J2) = (V,a,Jx) = U,b, Jx)
done J (U,b) existe et est égal & U,;,Jb. De méme, J(U,,Jb) existe
et est égal a Uy,J%b, et d’autre part & J2U,b. Par récurrence,
J*(U,b) existe et est égal & Ujn,J"b pour n entier > 0. Donc
J* (U ;-n,J"b) existe et est égal & U,b pour n entier > 0, de sorte

que J"(U,b) = Uj-n,J—"b. Bref, J*(U,b) existe pour tout entier =,
et est égal & U;n,J"b, et par suite borné a gauche. Done U,b € 4,.
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Posons alors, pour a €4, et bed,, ab= U,b. Cette multiplication
prolonge évidemment celle de A. Elle est associative, car,sia, b, c e 4,,
on a:

(@b)c = Uy c = Uy,pc = U, Uyc = U,(bc) = a(be) .

D’autre part, si a €e4,, ona Saed,. Car 8J"a = J"Sa existe
pour tout entier n et est borné a droite et & gauche. Et S définit un
anti-automorphisme involutif de 4,, car, si a €4,, bed, ona:

S(ab) = SU,b = V,,8b = Uy, Sa = (8b)(Sa) .

L’opérateur J induit évidemment une application biunivoque de 4,
sur 4,. Cette application est un automorphisme, car

J(@b) = JUb = U,,Jb = (Ja)(Jb) .

Les axiomes A1 & A5 se vérifient alors sans aucune difficulté, de sorte
que 'algébre quasi-unitaire 4, prolonge 4.

Maintenant, soit A’ un prolongement quelconque de A4, que nous
pouvons identifier & un sous-espace de H. On a montrer, ce qui achévera
la démonstration, que 4, est un prolongement de A’. Soient s’ et j’
Panti-automorphisme et I’automorphisme de A’. Comme s’ est continue
et induit s sur 4, on a nécessairement z* = Sx pour x e A’. D’autre
part, j/ prolonge j, donc j* = J prolonge j’* et a fortiori j/; on a donc
A’ ¢ Dy, et ' est la restriction de J & 4’; en outre, comme ;' est une
application biunivoque de 4’ sur 4’, on a A’ ¢ D;n pour tout entier n.
Enfin, si a e 4’ et xeA, le produit ax calculé dans 4" dépend conti-
niment de a, et est égal & V,a si a ed; il est donc encore égala V,a
pour a € A’; comme d’autre part il dépend contintiment de z, on voit
que a est borné & gauche (donc 4’ ¢ 4,) et que ax = U,z pour z e 4 ;
on a donc encore ab = U,b pour a e A’, beA’. Ainsi 4, est un pro-
longement de A’.

Remarque. — Si A vérifie les axiomes A’5 et A”5, il en est évidem-
ment de méme de A4,.

Proposition 7. — Soit A une algébre quasi-unitaire achevée.

a) St a e H esttel que J"a existe et soit borné @ gauche (respectivement
a droite) pour tout entier n,on a aeA.
b) St ae€d et T eP? (respectivement T eP?), ona TaeAd.

La premiére partie de la proposition résulte aussitét de la démonstra-
tion précédente. La deuxiéme partie résulte de la premiere partie et du
lemme 7.
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IX. Décomposition centrale continue

Lemme 25. — Soient A une algébre quasi-unitaire, B une partie de A.
Supposons que, pour tout xeA, il existe une suite x,e B telle que
x, >x et x, —>al. Alors, si un élément a eH est tel que || V,a ||
< Ml|lyl|| pour ye B, aestborné d gauche.

En effet, soit x € 4, et soit x, e B une suite ayant les propriétés du
lemme. Pour tout zed, ona:

| <Ufa,S8Jx,)| =| @, z-8Jx,) | = | Voo, 2| S M|z, || || 2] .
Donc :
| (Vea,2)| = | USa,8J2)| = |lim (U a, 8z, | < M| z]|| || z|| .
Par suite, || V,a|| < M || z||, ce qui prouve le lemme.

Dans la suite de ce paragraphe, nous supposerons vérifiés les axiomes
suivants, plus forts respectivement que A’5 et A’S5.

B’5. — Il existe un fillre Fsur A tel que U, et V, convergent fortement
vers 1 suivant 7 en restant de normes bornées®).

B”5. — Pour tout entier n, les éléments x + «3", x e A, sont partout
denses dans A .

D’aprés un raisonnement fait au § 1, B”5 signifie que J* est le plus
petit prolongement fermé de sa restriction & 4.

En outre, nous supposerons H séparable. Alors, dans l’espace des
opérateurs continus sur H, toute boule fermée, munie de la topologie
forte, est métrisable et séparable; 'axiome B’5 entraine donc qu’il
existe dans 4 une suile, que nous désignerons par ¢,,f,,... dans tout
ce paragraphe, telle que U, et V, convergent fortement vers 1 quand
n —> -+ oo.

Proposition 8. — Supposons A achevée. Soit Z le spectre, hyperstonien
(cf. [6]), de R. On peut définir :

1. — une mesure positive normale u de support Z

2. — pour tout { eZ, un espace hilbertien H ({) séparable

3. — pour presque tout ( eZ, wume algébre quasi-unitaire achevée irré-
ductible A(¢) dams H(L), vérifiant B'5 et B”5, pour laquelle nous
emploterons les notations s({), S(£),5(8)... dans un sens évident

8) Cet axiome est toujours vérifié pour une algdbre unitaire. Ceci résulte, comme pour
A’5, du théoréme 1 de [12], ou plutét d’un léger renforcement de ce théoréme que donne
aussitot la démonstration de [12].
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4. — une famille fondamentale A de champs de wvecteurs continus
x(C) e H(L) vérifiant Uaxiome A4 de [9].

5. — un tsomorphisme de H sur L2 (u) par lequel mous identifions
désormais ces deux espaces,

avec les propriétés sutvantes :

(a) Les opérateurs de R sont les opérateurs continus @ composantes sca-
lavres ; st T ~ T (L) est un élément de R, T ({) est, pour presque tout {,
la valeur en T du caractére CeZ.

(b) Soit a ~a(l) un élément de H ; pour que a soit borné a gauche
(respectivement a droite), il faut et il suffit que presque tous les a (L) sotent
bornés a gauche (respectivement d droite) et que ess.sup. || U, || < +oo
(respectivement ess. sup. || V) || < +o0); lorsqu’il en est ainsi, on a:
U, ~ U, (respectivement V, ~V,q).

(c¢) St a ~a(l) est un élément de H,on a Sa ~ S({)a(l).

(d) Soit a ~a(l) un élément de H ; pour que a € Dy, il faut et il
suffit que a(l) € Dyyn pour presque tout {, et que J(L)"a(l) e Li(p);
lorsqu’il en est ainsi, on a: J*a ~ J ({)"a ().

(e) Soit a ~a(l) un élément de H ; pour que a € A, il faut et il suffit
que a(L) € A(L) pour presque tout ¢, que a(L) " eL?(u) pour tout
entier n, et que ess. sup. || U, || < +oo.

() St x~z(l) e¢ y~y(L) sont des éléments de 4, on a zy ~
2(0)y(L), o ~x()®, o ~2(0)®.

En outre, si A(L)~,H(L),... possédent les mémes propriétés, il
existe, pour presque tout C, un isomorphisme @(L) de A(L) sur A(Z)”
tel que, si a eH se décompose suivant les a(L) e H(L) et les a(l)”
eH(L)™, on ait presque partout a(C)” = @(L)a(C)(9(L) étant le prolon-
gement continu de ¢ (L) a H(()).

La démonstration suivante utilise des raisonnements non publiés de
R. Godement sur les sommes continues.

1. — Construction de u. — Soit u, , la mesure spectrale sur Z associée
3 deux éléments a, b de H (cf. [9]). Soit D ¢ A un ensemble dénom-
brable possédant les propriétés suivantes: 1) D est stable pour s, §, 571
et la multiplication ; 2) toute combinaison linéaire & coefficients ration-
nels d’éléments de D est dans D ; 3) ¢, e D pour tout ¢; 4)les = + x7",
o z €D, sont partout denses dans 4 pour tout n. Soit A’ 'ensemble
des combinaisons linéaires (& coefficients complexes) des éléments de D.
Alors A’ est une sous-*-algébre de A stable pour j et j-1, et D sera évidem-
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ment partout dense dans A’ pour toutes les structures d’espaces pré-
hilbertiens que nous construirons sur 4’.

Soit u =2, po,p,,, les o,>0 étant choisis de telle sorte que
2oy ||| s || < 4 o00. La mesure u est une mesure normale, de sup-
port Z (parce que D = H).

2. — Construction de A(C) e¢ H({). — Pour aeH, beH, pu,,
est une mesure normale, donc du, ,({) = 0, ;({)du (L), ou 6, 4({)
est une fonction & valeurs dans [—oo, +o0], qui peut étre supposée
continue, ce qui la détermine complétement. En outre, d’aprés le choix
de u, 0,,(f) est bornée quand aeD, beD, donc quand a ed’,
bed’.

Pour ¢ fixé dans Z, et x,y variant dans 4’, 6, ,() est une forme
sesquilinéaire hermitienne positive sur A’; en effet, les égalités immé-

diates Pre,y = }“lux,y? Metazr,y = Mo,y + By My, Mg,ys Mo,z =0,
entrainent

elx,y(c) = )‘ Bw,y(z) ’ 0x+z’,y(c) = Ga;,y(c) + ox’,y(c) ’
By,x(é.) = 0x,y(C) ’ Hwac(C) =0

pour tout ¢ (parce que les 0 sont continues). Soit () le sous-espace
des zeAd’ telsque 0, ,(f)= 0. On va montrer que () est un idéal
bilatére de A’ stable pour s, j et 5-1.

Pour TeR, aeH, beH, on a (corollaire de la proposition 1) :

(T8b, Say = (a,8TSbY = a, T*b) = (Ta,b)
donc pg, 5, = Mgy, €6 par suite

Osp,54(8) = 04,(8) (17)

pour tout . En particulier, I({) est stable pour §.
Soit maintenant 7' un opérateur continu de H permutable & R. Soit
a e H. Pour tout 7 € R+, on a

(TT'a, T'ay = <T'Tta, T' T¥a)
< 7|12 <TFa, THa) = || T'||2(Ta, a)

done pgig prg < || T ||2144,4, ©b par suite

Opra,0a(8) < T|1% 04,4(0) (18)
pour tout . En particulier, pour z e A’, yed’, ona

Oy, 2y (8) < || Ug 11?0,,,(2) (19)

Osy, o0 (8) < Vi 1126, (8) (19°)

pour tout ¢. Par conséquent I({) est un idéal bilatére de A4’.
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Enfin, pour 7' e R+ et a € Dj;, on a (proposition 1) :
Ja, TJay: = (Tta, T J2a)2 < || Tra |2 || T?J2a |2

= (a, Ta) J?a, TJ?a)
donc

[J6sa,44(0) T (D) du(0)]?
<[§00,0(0) T () ()] [ 620,55 (E) T () du(2)] - (20)

Supposons alors plus particuliérement a € A’, et 6, ,({) =0 pour
un certain {. Soit ¢>0. Il existe un ensemble compact ouvert K conte-
nant ¢ tel que 6, ,(¢') <& pour ('€ K. D’ou, en désignant par M la
borne supérieure de 0., ;2,(l):

p(E) [ 0s0 7a(8) du(2) < (e M)E .

On en déduit que 0;, ;,({) = 0. Donc I({) est stable pour J. Comme
(20) entraine, pour a € D;_, et T ¢ Rt

[f65-10, 510 (©) T (2) dpe (O)]?
< [.foJ-za,J'-ﬁa (C)T(C)d,u(C)] [jaa,a(C)T(C)d,u(C)]

on voit de méme que I({) est stable pour J-1.

Ceci posé, le quotient A’/I ()= A’ ({) est muni naturellement d’une
structure d’algébre, d’une involution s’({), d’un automorphisme j’(¢),
et d’'un produit scalaire qu’'on notera encore (, ). On va montrer que
A’() est, pour presque tout {, une algébre quasi-unitaire. Pour tout
x € A’, nous désignerons par z({) 'image canonique de x dans A’({).

Si TeRt et aeD;, ona (Ta,Ja)= (TJ%a,J%cw >0, donc
Py ge = 0, et par suite 0, ;,() > 0 pour tout {. En particulier, si
xed', ona (), 2(£) Py >0, ce qui est 'axiome A1,

L’égalité (17) donne en particulier, pour = € 4/, 1’égalité <(x(¢), (L))
= @(5)¥®, 2(£)¥ D), ce qui est I'axiome A2,

Soit T’ un opérateur continu de H permutable & R; pour a e H,
beH, TeR, ona (I'T'a,by = (Ta, T'*b), donc

O0p1a,6(8) = 04,704 (C) (21)

pour tout (. En particulier, si zeA’, yed’, zed’, ona 0, ,({)

= 0,,04:(0), cest-d-dire <2 ()y(L), 2(0)) = <y({), x(£) WPz (l),
ce qui est 'axiome A 3.
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I’inégalité (18) entraine

@(8)y(£), 2(O)y () < U (L), y (&) (22)
ce qui est 'axiome A 4.

Soit xeD. Ona: (6, , . ,. .(0)du(l)=|t,x—=|]2—>0 quand
n — 4-co, donc, en extrayant au besoin une suite partielle de la suite
(ts)s Otpz—z, tyo—2z(£) = 0 sauf sur un ensemble négligeable N,. Soit
N =U,epN,, qui est négligeable. Pour ¢ N, ona 6, , , ,, ,({)
— 0 pour tout = €D (la nouvelle suite (¢,) ayant été choisie valable
pour tous les x par application du procédé diagonal). Autrement dit,
[| 2,(C) () — x(L) || >0 quand x €D, pour tout ¢ N. De méme,
il existe un ensemble négligeable N, tel que || z({)t, () — (L) || —0
quand xzeD, pour tout ¢ N,. Ceci, avec l’1negahte (22), entraine
que B’ 5 est vérifié pour {¢ N v N,.

Soient » un entier et x un élément de D. Il existe une suite =z, e D
telle que || x, 4 x;" — || -0 quand p — +oco. On en déduit comme
ci-dessus que, sauf sur un ensemble négligeable N, ,, on a || z,(¢)
+ 2, (&) —2(Z)|| =0 quand p — 4oo. Soit N’ la réunion,
négligeable, des N, , quand x parcourt D et n I'ensemble des entiers.
Pour (¢ N’ laxiome B”5 est vérifié.

Pour (¢ NvN,v N =N,, A'({) est donc une algtbre quasi-
unitaire séparable. Soit A({) lalgébre quasi-unitaire achevée cor-
respondante, qui vérifie aussi B’5 et B”5. Soit H({) l'espace com-
plété de A’({), donc aussi de A (), pour (¢ N,. Nous désignerons par
8() et j(¢) lantiautomorphisme et I’automorphisme de A({) (définis
pour (¢ N,).

3. Définition de la famille fondamentale A. Nous prendrons pour
famille A la famille des champs de vecteurs ¢ —> z({) pour zeAd’. 1l
est immédiat que 'axiome (A,) de [9] est vérifié. L’axiome (A4,) est
vérifié a cause de I'égalité <x({), x({)) =0, ,({) pour z e A’. L’axiome
(A,) est vérifié en considérant les = € D.

4. — Isomorphisme de H et L’ (u); démonstration de a. Soient x e A’,
yeA', TeR. Ona

Tz, y) = [T ()dpg (L) = JT(£)05,4(8)du(?)
= T (€)<@(0), y(£)ydut) . (23)

En particulier I'application qui, au vecteur x € A’, fait correspondre
le champ «(¢) de L2 (u), est isométrique. Elle se prolonge donc en un
isomorphisme de H dans L?(u). Nous désignerons encore par a({) le
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champ de vecteurs de carré intégrable associé & a e H par cet isomor-
phisme. Pour a e H, be H et T ¢ R, 1’égalité (23) entraine, par passage
a la limite, 1’égalité

(Ta,by = [T(£) @(Z), b(£)ydu(l) . (24)
Comme d’autre part <Ta by = [07,4(0)du(l) = [ T(L)0,4,(0)du(l),
on a encore 6, ,(L) = (a({),b({)> presque partout, lorsque a et b sont

des éléments quelconques de H. On en déduit aussitét, pour 7" eR,
T'a(Z),b(l)y=T'(L) a(¢),b()y presque partout. En particulier,
T'a(l) — T'(¢)a(L) est orthogonal, sauf sur un ensemble négligeable,
aux x(¢) ol x parcourt D. Donec T'a(l) = T'(¢)a(f) presque par-
tout. Comme toute fonction mesurable bornée sur Z est égale presque
partout & une fonction de la forme 7T'(), ou 7’ eR, on voit d’abord
que les opérateurs de R sont les opérateurs & composantes scalaires, ce
qui est le (a) de la proposition. En outre, comme tout champ de vecteurs
continu peut étre approché dans L% (u) par des sommes finies de champs
de vecteurs de la forme 7/ ({)z(¢() ou T'eR, xzeA’, on voit que
I'isomorphisme de H dans L?(u) applique H sur L2 (u).

5. — Irréductibilité des A(L). — Pour e A’ et yeA’, ona U,y
=ay ~x(0)y(l) = Uy»y({), de sorte que U, ~ U, . De méme,
Ve~ V,¢- Or, I'*-algébre d’opérateurs engendrée par les U, et les
V, admet R pour commutant. Alors, d’aprés un raisonnement de [10],
I'*-algébre d’opérateurs engendrée par les U, et les V,., est irré-
ductible pour presque tout ¢. Donc A’(f), et par suite A4({), sont
irréductibles pour presque tout .

6. — Démonstration de b. — Soient a € H un élément borné & gauche,
et zeD. D’aprés (18), on a, sauf sur un ensemble négligeable N

I Vaa(O) Il =1l Vaa () | = 1l Usz(O) || <11 UL 1 2(8) 1]

quel que soit x e€D; donc (lemme 25), si (¢ N, a(l) est borné a
gauche, et || U, || < || U,||. Réciproquement, soit a ~a(l) un
élément de H. Supposons a({) borné & gauche pour presque tout ¢.
et ess.sup. || U, || = M < 4 0. Pour xz€d’, ona V,a ~7V,,a(),
donce

| Voa l12 = Jll Vama(2) [12du(C
—fi!Ua<g)w(C)|I2dﬂ(€ <M S| 2(Q) [12du(C) = M2 || ] .

Donc a est borné & gauche (lemme 25). En outre, V,a ~V,a({)
entraine U,x ~ U, x(f), done U, ~U,.
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7. — Démonstration de c et d. — Si zeA’, ona Sz~ 8S()x(l),
donc 8 ~ §(f). Soit maintenant @ ~a() un élément de H. Si
a € D;, pour un certain entier =, il existe une suite x,e A’ telle que
x, >a et x;'," —J"a. Donec, pour { n’appartenant pas 4 un certain
ensemble négligeable N, x_ ({) —a(l) et x,()®" - J"a({). Donc,
pour (¢ N', a(l) €Dy et J(L)"a(l) = J a(l).

Réciproquement, supposons a({) € D;»n pour { n’appartenant pas

& un certain ensemble négligeable N', et J({)"a(¢) e LA (u); soit x e A';
on a:

| @, ey | = | [ @(&), J () x(@)du(l) |
= | fJ()ra(d), (&) du@) | < [T E@)a@) |l 1] =) || du(?)
ST E@)a@) |12du@n? ([l =) [|2de @)t = M || = ||

donc a e€D;n .

8. — Démonstration de e et f. — Si z ~ x() est élément de 4, x est
borné a gauche, et x € D;n pour tout entier n. Donc, en dehors d’un
certain ensemble négligeable N”, () est borné & gauche et x({)
€ Djyn. Donce (proposition 7), pour C¢gN" x(l)eA(l). En outre,
xi® ~x (L)Y O el (u), et ||Uyqpll <||U,ll. La réciproque se dé-
montre aussi en appliquant la proposition 7. Enfin, f résulte aussitot de
b, c, d, e.

9. — Unicité des A(). — Supposons donnés H ()™, A(),47,...
possédant les propriétés de H((), A({), A,... énoncées dans la propo-
sition 8; (on conserve la méme mesure u). Alors, & tout a e H cor-
respondent deux champs de vecteurs de carré intégrable, a(() e H ()
et a(l)” eH(Z)”. On a, pour tout 7T eR, et tout b eH

[T(2) @(@)™,b(2)>du(t) = (Ta, by = [T(£) @(&), b(¢)> du(?)

donc (@ (¢),b(¢)y = @(C)”,b(¢)” ) presque partout.

En agrandissant au besoin D (sans changer les propriétés imposées au
début de la démonstration), on peut supposer que, pour presque tout £,
les ()", zeD, sont partout denses dans H ()~ (grice & la pro-
priété (A,)). Il existe alors un ensemble négligeable N ¢ Z tel que, pour
tout { ¢ N, on ait
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z(0)eA(l) =z(0) ed(2)”
x(2), y(2)y = <& (0", y (&)™
(Ax + py)(0) = Az(C) + py(C) Az + py)() = Az(C)” + py()”

(zy)(5) = z(0)y(C) (y)(2)” = (&) y(2)”
z'(f) = =x()® x4 (L) = =x(L)*OT
() ==x(L)® 2i()” = x(g)TI0"

pour tout x e D, tout y eD, A et u rationnels quelconques; en outre,
on peut choisir N de telle sorte que :

1) quel que soit I'entier », les x({) + x(£)I®" (respectivement

x(E)” 4 x(¢)"7®™™), ou x parcourt D, sont partout denses dans
H(C) (respectivement H(()™), si (¢ N ;

2) quand p — Joo, les Ut,,(;)a th@), Utp(§)~’. th(g)~, convergent
fortement vers 1 en restant de normes bornées, si (¢ N.

Alors, pour (¢ N, lapplication z({)—z(¢ )" se prolonge en un
isomorphisme ¢(f) de H({) sur H({) ; on voit facilement que la
restriction ¢ () de H({) a A({) est un isomorphisme de A({) sur
A()”. En outre, si a ~a(l) est élément de H, on a a(é‘)~
@(l)a(l) pour aeD par construction pour (¢ N, donc a({ )~
@(C)a(l) presque partout pour tout @ € H par passage & la limite.

X. Exemple d’algébre quasi-unitaire

Soient £ un espace localement compact, @ un groupe localement com-
pact d’élément neutre e. Soit (x, a) - xo une application continue de
E x G dans E telle que, pour « €G, I'application # — z«a de E dans £
soit un homéomorphisme u, de £ sur &, et telle que 'application « — u,
soit un homomorphisme de @ dans le groupe des homéomorphismes de .
Autrement dit, (za)a’ = z(xa’).

Soit Lg.o= L l'ensemble des fonctions continues & valeurs com-
plexes et a support compact sur EX G. Pour felL, geL, posons?):

frg(x, 0) = [f(xB, xp)g(x, p~)dp

ol df désigne la mesure de Haar invariante & gauche sur . On vérifie
aisément que fxg eL. L’addition et la multiplication par les scalaires

7) Lorsque y; = x3 = x = 4 = 1, les définitions qui suivent ont été utilisées indé-
pendamment par R. Godement. De méme pour les théorémes 5 et 6 ci-dessous, quand de
plus G et E sont & base dénombrable.
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complexes se définissant & la maniére habituelle, L devient une algébre :
seule I'associativité du produit nécessite un calcul que nous laissons au
soin du lecteur.

Si E se réduit & un point, E X G s’identifie & G, et on retrouve le pro-
duit de composition habituel.

On appellera multiplicateur une fonction continue >0, p(x, «), sur
Ex @, telle que o(x, fa) =p0(zB, a)o(x, f). Ceci entraine p(x,e) =1
et o(z,at) =po(xa?, o)L

Soit x# une mesure de Radon positive sur £, de support £ (nous utili-
sons les définitions de [1]) ; supposons qu’il existe une fonction continue
>0, g(x,a), sur EX (G, nécessairement unique, telle que du(x o) =
e(x, a)du(x). On a:

du(xapf) = o(x, af)du(x) = o(xa, f)du(x o) = o (2, flo(x, x)du(x)

donc g est un multiplicateur.
Pour feL, geL, posons

f, 9> = fji(x’ a) g(‘”! ) x (o) dadp(z) ,

% (o) étant une fonction continue >0 sur G telle que y(«f) = x(x)x(8).
On définit ainsi un produit scalaire sur L qui devient un espace pré-
hilbertien.

Enfin, soient x,, y, deux multiplicateurs sur E X G. Pour felL,
posons :

ﬁ(xa a) = xa(z, a—-l)f(x,a) ’

frle, o) = pa(@, o) f (2ot oY) .

Nous désignerons par A le module de G, c’est-a-dire la fonction continue
>0 sur G telle que d(x oy) = A(oy) dex.

Proposition 9. — Avec les définitions précédentes, L est une algébre
quasi-unitaire si et seulement st y* = y2Ado, y: = Ao~'. En outre, les
axtomes B'5 et B"5 sont vérifiés.

Ona:

(f* 9 (z,0) = ga(@, &™) ff(xB, af)g(z, p~)dp
(ff % g))(z, &) = [ a (@B, p~ra?) f (2B, ap) 2a(, B) g (2, p~*) B
= [ x(x, &) f(B, ) g(x, B~)dp

donc j est bien un automorphisme de L.
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Ensuite :
fole, ) =pe e p(@a o) fz, o) = f(, o)
(f % 9)* (2, 0) = ga(@, ) [f(xa B, ot f) g (x o, f1) df
@ * 1) (@, 0) = [ (B, pL o)) g (wa, f2 o) gy (w, B) f (2 B, B) dP
= [n(@,a )z (2B, ) (2, B) f (2B, B) g (wa?, f~1a ) dp
= (e, e f(@atp, et p) g (@, f1) dp

donc s est bien un antiautomorphisme involutif de L.

Les axiomes A1l et B”5 sont immédiats. Montrons que A4 est vérifié.
Soient feL, geL, heL. Soit ((a) le maximum de | f(x, «)| pour
a fixé. On a:

| <fxg. b= [ff{B, ap)g(z, )k (x, a) x(x) dodf du(x)

< [ff11@B, gz, p) bz, af™) | 1() 2 (™) A(B)*dadfdu ()
<20 fflg@, B[ Ax(B) ¥ | h(z, ap) | Ax(B) 2 dBdu ()

< 20 @da[ff1g(z, B [2Ax (B dBdu (@) [[f1h(x, o) |2 Ay (B dBdp (2)]*
= (1@ C(@da[[f19(x.B) 122 (B)dBdu@)E[[f1 A (x, B) |25 (B) df du ()]}
=gl 1] f2(*C(e)da

done gl <[fz@}C@da]llg]l . (25)

ce qui prouve A4.

Montrons que B’5 est vérifié. Soit ‘¢ un voisinage symétrique de e
dans G, A un compact de £. Soit Tz g~ I'ensemble des g ¢ L™ véri-
fiant les conditions suivantes :

1) g(x,a) =0 pour «a¢ 0.
' 2) Pour « fixé, g(x, «) est constante sur A et maximum sur .
3) Pour ze, [g(x,a)da= [g(za,x)de=1.

11 est facile de voir que les Ty o forment sur L la base d’un filtre 7.

On va voir que U, et V, convergent fortement vers 1 suivant # en
restant de normes bornées. D’abord, (25) montre que || U, || reste
borné, et un calcul analogue montre que || V,|| reste borné. D’autre
part, soit f un élément fixe de L. Soit K, un voisinage compact du
support de f; choisissons un voisinage ¢/ de e dans G de telle sorte que :
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lﬁ(;v(g:;i;:;g:g:zz} pour fe?, zel, ael

Gelin=a] w0 e

|4(B) —1|<e pour BeT

et soit A un compact de E contenant les images de K, par les appli-

cations (z,a)—>x et (x,a) >z a1, Alors,si g e@(a ¢, on a, pour
xeAN

1—e<fg(@, p)df = fg(x,p) A B <1+

done, pour (z, a) € K,

[ (f*g — Dz, o) | <|ff(B, aﬂ g(z, p)dp — [f(z, 0)g(z, -1)dp |
+ [z, 0)g(z, A — f(z, o) |
<efgz, p1dp + | f(z, o) e<e(1+e+|f(x,a)!)
et par suite :
g —f1l <e(l+ e+ max|f])[fg, x(@dadp()]?

De méme, pour (z, a) e K,:
lg*f—H )| =|fg(xaB,p) f(x, ) df
—Jg@a B, p) f(z, ) df| <efg(x B, p)df =¢

done || g *f—f|| <e[fx, x(®)dadu(x)]?, ce qui établit B'5
Passons 4 A2et A3. On a:

d. 0 =[f@ o) (=, @) g(e)dadu ()
do o =[fn@e?) @t o (e, o) f(@a, o) g (o) dadp (@)
=[5 (@a, a—lmx o) f(z, ) 2(e) o (%, o) dadp ()
= [[f(x,0) | (x,0) 5 (za?, )@(m"l,a 12 (0)~ A (o) dodp ()
xg,hy=[[fiB, aﬂ (€, B b (2, o) y () dBdadu(x)
9,fxh) =
=[§§9(@ @) (2B, B2 g1 (2B, f o) f (wa?, B2 (w, f~7) 7 (o) A dex s ()
=[[f9(@, ) f(za, Ba)h (w, B) 1o w2, Be) ya(@ B o) x(o™) A (@) A(B)* dexdBdpu ()
=[ffHxp,af)g(x, ) h(2,0) 1105 (v, )y (B)* 4 (ap) " dexdBelpu () .

Pour que A2 soit vérifié, il faut et il suffit qu’on ait

x(o) = B(xa?, o) o(zo?, o)y (a) 14 (x)?
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c’est-a-dire i (za~!, a) = 24 (a)o(za?, a), quels que soient «€Q,
x €G. Autrement dit, il faut et il suffit que

xn=xde . (26)

Pour que A3 soit vérifié, il faut et il suffit qu’'on ait y(a) =

Xixa(wot af) g (B) 1 A(af)™t, cest-d-dire  yyzp(vataf) = x4(af),

quels que soient « €@, feG, x eE. Autrement dit, il faut et il suffit
que x,%. = x4, c’est-a-dire, compte tenu de (26):

xs = de7t . (27)

Le complété H de L s’identifie & 1’espace des fonctions de carré inté-
grable sur E X G pour la mesure dadu(x). L’opérateur J est encore
Popérateur de multiplication par yx,(z, «71).

Nous supposons désormais vérifiés (26) et (27). Définissant R’ et R?
comme au § 1, on a R? = (R?%)’, R? = (R?)’. Lorsque E se réduit & un
point, on a donc la généralisation aux groupes localement compacts non
unimodulaires du théoréme de commutation de [8] et [18], généralisa-
tion établie dans [16]. La présente démonstration est plus rapide que
celle de [16], et peut étre abrégée si on n’a en vue que le théoreme de
commutation.

XI. Autre définition des anneaux d’opérateurs précédents

Si ¢ est une fonction complexe sur £, mesurable et essentiellement
bornée relativement & u, on pose, pour feH :

Lyf(x, ) = p(2)f(2, ) , Lg f(z,a) = p(x o) f(z, o) .

Les opérateurs L,, L, sont bornés, et un calcul facile montre que SL, S
= L,. D’autre part, si « €@, on pose, pour feH:

Uy f (@, ) = 72(2, o0) 7 (20) (2 e, o)

Up (@, 0) = z(o0) 2/ (2, 05 a) -
On voit facilement que U}, est unitaire et que SU, S = U, (donc que
U,, est unitaire).

Soit L# (respectivement L¢, U¢, U?) 'ensemble des L, (respectivement
L;’ Uao ’ U&(,) ’

Proposition 10. — R? (respectivement R?) est Panneau d’opérateurs
engendré par L et U? (respectivement L¢ et U¢).
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Soient feL, geL. On a:

VUl g(x, o) = [U. g@B,xp)f(x, ) dB
= [g (@B, 05  af) f (2, fY) x (o) 2 dB
ULV, (x,0) =y () 2 Vg (@, 05" )

=y (x) F fg(xB, a5t xB) f (x, B dB

donc V,U, = U, V,, donc U, e(R% =R’ donc U?cR?. Il en
résulte que U? ¢ R4
Si @(x) est une fonction continue bornée sur E, on a:

UjLyg(x,0) = [f(xB,ap) Lyg(x, ) dp = [{(xf,ap)p(x)g(x, f-)dp
LyUjg(z,0) = @(@)Uyg(2,0) = @(2) [f(f,xf)g(x, f~1)dp

donc L,U,=U,L,, donc L, e (R’) = R?. Comme tout opérateur L,
défini par une fonction ¢ mesurable essentiellement bornée est limite
faible d’opérateurs L, définis par des fonctions y bornées continues, on
a L% ¢ R 1l en résulte que L7 ¢ RY.

Maintenant, on va prouver que tout opérateur U,, g ¢ L, est forte-
ment adhérent & 'algébre engendrée par L? et U’. Il en résultera que
L¢ et U? engendrent R, donc que L? et U? engendrent R%. Si fe L, ona:

U,f(,0) = [g(x8B, aﬂ f,50dp = [g(zarB, B) f(x,f1a)dB
= [ Ly, Usf(x.0) 1(B)rdp

olt (%) = g(xf,p). La fonction f—L, Upf, & valeurs dans H, est
fortement continue et & support compact, et 1'égalité précédente en-
traine que U,f=]{ 2 (BEL, ] UsfdB. Donc U,f est limite forte de vec-
A L, U,gz.;‘, oh A, >0 et ou X7 , A est borné supé-

b [ =1

teurs

A—@l

rieurement. Les operateurs AL, Up, sont de normes bornées

Hzl

et tendent fortement vers U

Définition 6. — G est dit libre si, pour tout x € E en dehors d’un certain
ensemble localement négligeable N, Uapplication o — xa de G dans B est
biunivoque.

Il est immédiat que, si G est discret dénombrable, cette condition
équivaut & la suivante: pour tout a €@, « % e, les points de K fixes
pour « forment un ensemble localement négligeable. On retrouve donc la
définition des groupes libres donnée dans [15].
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Désignons par L I’ensemble des opérateurs de multiplication dans H
par toutes les fonctions mesurables et essentiellement bornées sur £ x G
relativement & la mesure du(x)dx. Ona: L ¢ L, Lic L.

Lemme 26. — St G est libre, L? et L2 engendrent U'anneau d’ opérateurs L.

Démonstration. — Soit 4 un opérateur auto-adjoint borné dans H,
permutant & L? et & L. On va montrer que A permute & L, ce qui éta-
blira le lemme.

Soient F ¢ £, K ¢ G des compacts non négligeables. Soit f ¢ H une
fonction nulle presque partout en dehors de F x K. Désignant dune
maniére générale par y, la fonction caractéristique d’un ensemble §, on
a yp(x)Af(r,0) = Alyp(®)f(x, a)] = Af(x, «), donc Af est nulle pres-
que partout en dehors de F x@. Soit d’autre part K’ un ensemble com-
pact de G disjoint de K. Montrons que 4f est nulle presque partout sur
FxK'

Si tout point de F ~ [} N possédait un voisinage V tel que V ~ F
soit négligeable, tout ensemble compact contenu dans F ~ [j N serait
négligeable, donc F ~ [} N, et par suite F, seraient négligeables, con-
trairement & 'hypothése. I1 existe donc un point z eF ~ [ N tel que,
pour tout voisinage V de z, V~ F soit non négligeable. Puisque = ¢ NV,
les ensembles xK-! et xK’-! sont des ensembles compacts disjoints
de E, donc il existe un voisinage V de x tel que VK- et VK’'~! soient
disjoints. Soit Fy ¢ ¥V ~ F un ensemble compact non négligeable; les en-
sembles compacts F, = F,K-!, F, = F,K'-*1 sont disjoints. Remar-
quons que :

1o (@) 1, (@) (@, @) = 15, (@) (%, ) (28)

en effet, si yp ()f(x,2) #0, ona xeF, et a«eK, donec zalef,,
done yp (za ) = 1. L’égalité (28) entraine presque partout :

xFo(x)Af(x, a) = yp, (xo ) xp, ()4 f(2, @)
donc

V4:& (“)ZF(, (x)Af(z,0) = xr, (¢ o) g (a)XFo(x)Af(xs a) . (29)

Or,si yg.()xp,(x) #0, ona zeFy, aecK’', donc za'eF,, donc
Ap,(x «71) = 0. Par suite, yp (v a?)yg (o) xp, () = 0. Légalité (29)
prouve alors que Af s’annule presque partout sur Fo x K'.

Ceci posé, considérons les familles (F,),.; d’ensembles compacts con-
tenus dans F, non négligeables, deux a deux disjoints, tels que Af soit
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nulle presque partout sur les F, x K’. Ordonné par inclusion, ’ensemble
de ces familles, non vide d’aprés ce qui précéde, est inductif. Considérons
une telle famille maximale, que nous notons encore (F,),.;. Cette
famille est dénombrable puisque u(F)<-+oo. Soit F’'= U, F, cF,
qui est mesurable. La fonction 4 f est nulle presque partout sur F’/x K’.
Pour prouver le résultat annoncé, il suffit de prouver que F ~ [} F/ est
négligeable. Or, dans le cas contraire, F ~ [} F’ contiendrait un en-
semble compact non négligeable auquel on pourrait appliquer le méme
raisonnement qu’a F, de sorte que F ~ [J F/ contiendrait un ensemble
compact non négligeable F° tel que Af soit nulle presque partout sur
FexK'; et ceci contredit le fait que la famille (F,),.; est maximale.

Ainsi, Af s’annule presque partout sur F x K’, done, vu Parbitraire
de K', presque partout sur F x[) K. Comme, on I'a vu, Af est aussi
nulle presque partout sur [j # xG, on voit que A f est nulle presque par-
tout en dehors de F x K. Si donc D désigne le projecteur de L défini
par la fonction yp,x, on voit que f= Df entraine Af = DAf. Donc
AD = DAD. Prenant les adjoints, DA = DAD. Donc AD = DA.

Comme les projecteurs D engendrent évidemment L, on voit que 4 per-
mute a L.

Théoréme 5. — 8¢ G est libre, L (respectivement L®) est une sous-algébre
abélienne maximale de R? (respectivement R9).

Il suffit de considérer le cas de L%. Soit 4 € R?, permutant & Lé. Ilfaut
prouver que 4 €L?. Or A permute & R?, donc & L?, donc a L (lemme 26).
D’apreés un résultat classique (valable sans hypothese de dénombrabilité),
4 eL: il existe une fonction ¢ (x, ) mesurable et essentiellement bornée
sur B xXQ@, telle que A soit 'opérateur de multiplication par ¢. Soient
fisfase-.,f, des éléments de L. Soient K ¢ E et K’ ¢ @ des ensembles
compacts tels que les supports des f; soient contenus dans K X K’; soit
K,=K'K’-!. Enexprimant que 4 permute aux U, on trouve que, pour
BeG fixé, ¢ (x,a)f;(z,f1a)=¢(z, a)f;(x, ) presque partout pour
du()da; done gz, (B)p(@, O)fi(x, f1a) = 1k, ()9 (z, f1e)fi(z, f1e)
presque partout sur E XG xG pour du(z)dadf. Donc il existe o € K’
tel que g, (B)¢ (2, o) f: (@, B~ o) = xx, (B) @ (%, f~2 o) fi (@, f~ o) Presque
partout sur K x@ pour du(z)df (siona choisi K’ nonnégligeable). Donc
1x, (00 )@ (2, 0o) (@, @) = g, ()@ (x, )fs(%, @) presque partout
sur £ xQ@ pour du(x)da. Vule choix de K, onendéduit ¢(x,a)f;(x,a)
= ¢@(z, a)f,(xz, «) presque partout sur E > G pour du(x)dx. Ainsi, 4
est limite forte d’opérateurs de L¢, donc 4 e L?.
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Corollaire. — 8¢ G est libre, Q7 ¢ P?, Q% ¢ P4,

En effet, on a évidemment L ¢ P?, Lé ¢ P2 1l suffit donc d’appli-
quer le théoréme 5 et les remarques qui terminent le paragraphe III.

Lemme 27. — Si G est libre, R se compose des Ly, tels que ¢ (x) = ¢p(za)
localement presque partout sur K, pour tout a €G.

Un opérateur 4 de R est permutable & L? et L%, donc est dans L¢ et L?
(théoréme 5). Donc il existe deux fonctions mesurables essentiellement
bornées ¢ et y sur E telles que A = L, = L;,. Ceci entraine aussitot
que @(x) = p(xa-1) localement presque partout pour du(x)da. Done,
si Be@, on a, localement presque partout pour du(x)doa:e(xf) =
p(@f-plal) = p(xal) = ¢(x). Done ¢(xf) = ¢(x) localement pres-
que partout sur £. La réciproque est immédiate.

Disons que @ est ergodique, si tout ensemble mesurable F ¢ E, tel que
Foa=F, & un ensemble localement négligeable pres, pour tout «e@,
est localement négligeable ou de complémentaire localement négligeable.
Alors, le lemme 27 entraine aussitot le théoréme suivant :

Théoréme 6. — St G est libre, R? et R® sont des facteurs si et seulement
81 G est ergodique.

Par exemple, si on prend pour £ le groupe @ lui-méme, G opérant sur
E par (x,a) - o'z, et pour u une mesure équivalente & la mesure de
Haar, @ est évidemment libre et ergodique.

XII. Classification de R’ et R?

Définition 7. — G est dit mesurable s’il existe une fonction ¢ sur K,
u-mesurable, telle que O0<@(x)<+4oo, et telle que @(xa)p(r)? =
A(x)o(x, a)1 localement presque partout sur E, pour tout « €G.

Remarque 1. — 1l revient au méme de dire qu’il existe une fonction ¢
sur E, u-mesurable, telle que 0<g(x) <+ oo, et telle que ¢(zra)p(x)™?
= A(a)p(x, a)"! localement presque partout sur E xXG pour du(x)do.
En effet, s’il en est ainsi, soient oy €@, et K ¢ £ un ensemble compact
Les fonctions o — [z ¢p(xa)p(x)tdu(z) et a— [r A(x)e(x, o) *du(x)
sont égales localement presque partout sur G, et continues comme on le
voit facilement, donc égales pour tout «, et en particulier pour oy. Vu
Parbitraire de K, ceci entraine que ¢@(xay)@(2) = A (x)o(x, x)?
localement presque partout sur .

318



Remarque 2. — Considérons les mesures comme des fonctions d’en-
sembles, définies sur ’ensemble des parties u-intégrables de E, et utili-
sons momentanément les notations de [11]. Si u est totalement o-finie,
dire que G est mesurable revient & dire qu’il existe une mesure positive v,
totalement o-finie, équivalente & u, telle que dv(xa) = Aadv(x) pour
tout o €G. (Mais » n’est pas nécessairement une mesure de Radon.) En
effet, si G est mesurable, soit ¢ une fonction possédant les propriétés de
la définition 7, et posons, pour tout ensemble u-intégrable 4, »(4)
== 5 4 9(x)du(x). On définit ainsi une mesure positive v équivalente & u,
totalement o-finie; et, pour tout xe@, on a:

v(Aa) = [40 9 (®)du(x) = 4 p(ro)du(za)
= fap@A(x)e(x, o) e(x, o)du(x)
— A(@) f4 p@)dp(@) = 4 v(A) .

Réciproquement, soit » une mesure positive totalement o-finie équi-
valente & u, telle que dv»(xa) = A(x)dv(x). D’aprés le théoréme de
Lebesgue-Nikodym, il existe une fonction ¢(x) sur E, u-mesurable,
telle que 0<g(x)<+oo, et telle que »(4) = [, ¢(x)du(x) pour tout
ensemble u-intégrable 4. On a alors :

A(o) f4 p@)du(z) = A(x) v(A) =v(Ada) = [44 ¢ (2)du()
= [4 p(xa)du(ra) = [4 p(xa)o(x, «)du(x)

donc A(x)@(z) = @(za)p(x, «) localement presque partout sur E.

Théoréme 7. — St G est libre et non mesurable, R? et R% possédent des
composantes purement infintes. En particulier, si G est de plus ergodique,
R? et R? sont des facteurs purement infinis.

Supposons @ libre, et R?, R? sans composantes purement infinies.
Appliquons le théoréme 3, ce qui est possible grace au corollaire du
théoréme 5. Soient M et M’ les opérateurs dont le théoréme 3 affirme
I'existence. L’opérateur M appartient au sens large & L4 ; grice au calcul
opérationnel, il est facile d’en déduire qu’il existe une fonction finie >0
mesurable y(x) sur K telle que M soit I'opérateur de multiplication par
w(x). Alors, M’ = SMS est I'opérateur de multiplication par y(xo1).
Le plus petit prolongement fermé de M’ M-! est I’opérateur de multipli-
cation par y(xa~1)yp(x)-1. Ecrivons qu’il est égal a J :

3 3

p@at)p(@)t = gp(x, a7?) = A(a)20 (2, a7)
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localement presque partout sur £ X@. Posant ¢ = 92, on voit que
p(xa)p(x) ! = A(x)o(x, o)~ localement presque partout sur £ xX @, ce
qui prouve que (@ est mesurable.

La proposition suivante généralise le lemme 4.4.1 de [15].

Proposition 11. — Soit G, le sous-groupe des o €@ tels que du(z )
= A(x)du(x). Si G, est ergodique et distinct de G, G est non mesurable.

En effet, pour « €G,, o(x, o) = 4(a) localement presque partout sur
E. Supposons alors G mesurable, et soit ¢ une fonction possédant les
propriétés de la définition 7. Pour « €@y, on a

p(ra) = @(@)d(x)e(x, o)™t = @(2)

localement presque partout sur . Si G, est ergodique, on en déduit que
@ (x) est localement presque partout égale & une constante. Donc g (x, «)
= A(a) localement presque partout sur &, pour tout «eG. Donc
du(ra) = A(a)du(x) pour tout « €@, de sorte que G, = G.

Proposition 12. — St G est mesurable, R? et R? sont sans composantes
purement infinies. En particulier, st G est de plus libre et ergodique, R? et
RY sont des facteurs de classe I ou I1.

Supposons G mesurable. Soit @ une fonction possédant les propriétés

de la définition 7. Posons y = <p%. L’opérateur de multiplication par
p(x) (respectivement y(x o~!)) est un opérateur auto-adjoint >0
inversible M (respectivement M’) appartenant au sens large & L¢ (res-
pectivement L?), et ona M’ = SMS. En outre, le plus petit prolonge-
ment fermé de M’ M- est I'opérateur de multiplication par

p(@ o) p(a)t = [A(@e (@, ) = gy(z, o)

donc est identique & J. Alors, d’aprés le théoréme 2, R? et R? sont sans
composantes purement infinies.

Le cas ol G est discret a été traité complétement dans [15] (au moins
si G est dénombrable, avec y = 1), et s’étudie d’ailleurs facilement a
partir de ce qui précéde ; on sait que, G étant supposé mesurable, libre
et ergodique, on obtient des facteurs de classe finie ou infinie suivant
que ¢@(x) est intégrable ou non; les anneaux abéliens maximaux L¢
et L? sont «non purement infinis ». Nous nous contenterons ici de donner
une proposition qui prouve que, dans le cas o G est non discret, la
situation est sensiblement différente.
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Proposition 13. — St G est mesurable, libre, ergodique, et non discret, les
anneaux abéliens maximaux L? et L sont purement infints. En particulier,
R’ et R% sont des facteurs de classe I, ou I .

Soit K ¢ £ un ensemble compact non négligeable fixe sur lequel ¢(x)
soit borné, et soit P = L/ g qui est un projecteur. Désignons par T'r
I'unique trace normale = 0 (définie & un facteur constant prés) sur R?.
On va montrer que 7r(P)= 4 oo, ce qui démontrera la proposition.

Soit ¥V un voisinage compact de e dans ¢, et soit m, sa mesure pour
da; soit f(x,a) = my'yg (%) gy () . Il est facile de voir que f est un
élément borné & gauche de H, et que l'inégalité (25) est encore valable
pour toute g eL; on aici C(x) = my'yy(a), donc j.x(oz)%O(oz)d(x <
2"}, my'do = 2 si V est assez petit. Donc || U, || < 2, et par suite
0 < PU,UJ P <2P. Nous allons montrer, ce qui achévera la démons-
tration, que 7'r(PU,UJ P) peut étre rendu arbitrairement grand pour
V assez petit. Remarquons que PU,U; P = Up,Up,, et que PfeDy,
parce que ¢@(z) est bornée sur K. D’apres le théoreme 2, on a:

Tr(Up,Upy) = || MPf ||?
= [J (@) xg (xa )2 my® yg (2)2 2y ()% (@) dd (@)
= my* J‘V x (o) do anKa ¢ (x)du(z) .

Si V est assez petit, ceci est supérieur a

my? [y 3 da d fx @(@)du(z) = tmi [ [z o (x)du(x)] .

Or, (g @(x)du(x)>0 parce que K est non négligeable. Et, si G est non
discret, m, peut étre rendu arbitrairement petit.

Dans I'exemple cité a la fin du paragraphe XI, on peut montrer, utili-
sant le théoréme 15 de [13], que R? et R% sont de classe I.
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