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Algèbres quasi-unitaires
Par J. Dixmier, Dijon

Introduction

Rappelons une définition des algèbres unitaires [10]1). Soit A une
algèbre associative sur le corps des nombres complexes, munie d'un antiauto-
morphisme involutif x -> x8, c'est-à-dire d'une application biunivoque
de A sur A telle que (Xx + fxy)8 Xx8 + Jiy8, (xy)8 y8x8, x88 x
(autrement dit, A est une *-algèbre). Soit (x, y) un produit scalaire
défini sur A, qui fait de A un espace préhilbertien (autrement dit, on a

(x, y) (y, x>, {Xx + Xfxf, y) X(x, y} + X'(x', y), {x, x> > 0, et
{x, x) 0 entraîne x 0). On dit que A est une algèbre unitaire si les
axiomes suivants sont vérifiés :

A 1. — {x, y) (ys,x8} pour xeA, yeA
A 2. — (xy, z) (y, x8z) pour xçA, yeA, zeA
A 3. — Pour tout x e A, il existe une constante Mx telle que (xy, xy)

< Mx(y, y) pour y € A.
A 4. — L'ensemble des éléments de la forme xy (x eA, y eA), c'est-

à-dire A2, est partout dense dans A.

Un exemple important d'algèbre unitaire est le suivant. Soient 0 un
groupe localement compact unimodulaire, doc l'élément de mesure de
Haar invariante à gauche, L l'ensemble des fonctions continues
complexes à support compact sur G. Pour feL, posons f8(oc) /(a"1).
Muni de l'involution ainsi définie, du produit de composition, et du produit

scalaire (f,g> J/(«) g (oc)da, L est une algèbre unitaire, comme
on le vérifie aisément.

Si 0 n'est pas unimodulaire, les axiomes A1 et A 2 ne sont plus vérifiés.
Ceci n'est pas dû à un choix dissymétrique dans les définitions. En effet,
soient %, %x des fonctions continues >0 sur G, telles que #(a/3)

x) Les chiffres entre crochets renvoient à la bibliographie.
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x(*)x(P)> Xi(<*P) Xi(<*)Xi(P) P°ur <**#> P^G; et essayons de poser,
pour f eL, g eL:

</, 9> J/(«) 9(«) X(oc) doc f*(«) Xl(or*) /V1)

(#(a)da est la mesure positive relativement invariante la plus générale
sur G). Le produit dans L étant toujours défini par la composition des

fonctions, L est encore une *-algèbre et un espace préhilbertien, et les
axiomes A3 et A4 sont vérifiés. On a d'autre part facilement (A désignant
le module de G) :

<(7*> /-> jYi(") r"» à-H*) f(oc) g(*) doc

</ * 9, h) JJ/(/8) g(^oc)h(oc) X(oc) doc dp

<g,f°*h> Jj7(/?) ^(^i«) *(«) Zl(^) z(/j-i«) zi-M/S) *« #
pour / 6^, g eL, h ei; de sorte que Al et A2 sont vérifiés si on a :

d'où les conditions :

xt X2d Xi xA

qui ne sont compatibles que pour A 1, c'est-à-dire pour G unimodu-
laire.

L'étude de cet exemple conduit à généraliser les axiomes Al à A4
et à introduire la notion d'algèbre quasi-unitaire, qui sera définie plus
loin.

Les premiers exemples de facteurs donnés par F. J. Murray et J. von
Neumann dans [14] relèvent de la théorie des algèbres unitaires, tandis
que les exemples ultérieurs de J. von Neumann [15] relèvent de la théorie
des algèbres quasi-unitaires, comme on le montrera dans ce mémoire.

Des deux théorèmes essentiels de [10] sur les algèbres unitaires, le

premier (le théorème de commutation, qu'on trouve aussi dans [19]) se

généralise aux algèbres quasi-unitaires. Par contre, le deuxième (construction

de la trace canonique sur les anneaux d'opérateurs associés) ne
s'étend pas. On sait en effet que, parmi les facteurs construits par J. von
Neumann dans [15], certains sont de type III (les résultats du présent
travail fourniront une nouvelle démonstration des théorèmes de [15] à

ce sujet, et cette démonstration s'applique dans des cas où celle de [15]
n'est plus utilisable). Les algèbres quasi-unitaires généralisent donc
essentiellement les algèbres unitaires.

Les résultats de ce travail ont été annoncés partiellement dans [2].
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I. Définitions et propriétés élémentaires

Soit A une algèbre associative sur le corps complexe, munie d'un produit

scalaire (x, y) qui en fait un espace préhilbertien. On suppose
donnés :

1. •— Un automorphisme x -> x> de A, c'est-à-dire une application
biunivoque de A sur A telle que (Xx + fiy)i Xx> + fiyi, (xy)j xjyK

2. — Un antiautomorphisme involutif x -> x8 de A, c'est-à-dire une
application biunivoque de A sur A telle que (Xx -{• fiy)8 Jx* + Ji>y8,

(xy)8 y8x8, x88 x.

Définition 1. — On dira que A est une algèbre quasi-unitaire si les

axiomes suivants sont vérifiés :

Al.— {x, xi) ^ 0 pour xç.A.
A2. — (x, x) {x8, x8) pour xeA.
A3.— (xy,z)=(y,x8jz) pour xeA, yeA, zeA.
A4. — Pour tout x eA, Vapplication y -> xy est continue.
A5. — Les éléments xy + (xy)i, où xeA, yeA, sont partout

denses dans A.

L'axiome A 5 peut être remplacé par beaucoup d'axiomes voisins
(peut-être non équivalents) dans presque toutes les démonstrations.

Lorsque j est l'automorphisme identique, l'axiome Al est vérifié de

lui-même, de sorte que la définition se réduit à celle des algèbres
unitaires.

Les axiomes A1 et A 2 entraînent aussitôt les égalités (x, y* (xi, y >

et (x, y) (y8, x8} pour x çA, y eA. Les axiomes A2 et A4
entraînent que l'application y->yx est continue. Les axiomes A2 et A3
entraînent

(xy, z) (z8, y8x8} <y* z8, x8) (x, zy*8) (1)

ce qui rétablit la symétrie entre la multiplication à gauche et la multiplication

à droite. En outre, on a (xy, z) (y, x8Jz) (x8jsiy, z), donc

(x, zyjs) (x8i8i, zyi8> ; comme yj8 est un élément quelconque de A,
et comme les zy forment un ensemble total en vertu de A5, on en déduit
x xti, d'où :

xi'1' x8* (2)

xjs xsrl (3)

La relation (1) et l'axiome A3 peuvent donc s'écrire aussi :
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(4)

(5)

Soit maintenant H l'espace hilbertien complété de A, D'après A2,
l'application x -> x8 se prolonge d'une manière unique en une
application a -> Sa de H sur H telle que

S(ka + fib) ÏSa + ]lSb S2 1 (Sa, Sby <6, a>

D'après A4, les opérateurs y -> xy et y -> yx se prolongent en opérateurs

bornés E7_, K définis sur 2/. On a immédiatement' X 9

xux + puv uxy ux uy u; uxij
Vxx+liV A 7, + fi Vv Vxy= VVVX VI Vxi,

UJy VyUx

SUXS VsS 8Vx8=Ux>

Les applications x -> Ux, x ->VX sont biunivoques. Car si par
exemple Ux 0, on a {x, yz)= (Uxz^8, y) 0 pour tout y eA
et tout 2 € -4, donc x 0.

Les ÎJa. (respectivement Fj engendrent une *-algèbre faiblement
fermée d'opérateurs Rg (respectivement Rd) ; tout opérateur de R9
permute à tout opérateur de Rd ; l'application T -> STS applique R9 sur
Rd. Soit 3/t le sous-espace associé au plus grand projecteur de R9.

Comme tout élément Uxy xy est dans fJ/C, on en déduit ^T= H.
Donc 1 c R9. De même, 1 € Rd.

L'opérateur x -> x^, étant hermitien, admet un plus petit prolongement

fermé que nous désignerons par J. L'opérateur J est hermitien

^ 0. L'opérateur l -\- J, qui est défini aussi dans l'ensemble de définition

Dj de J, est hermitien ^ 0 fermé d'inverse borné ; son ensemble
des valeurs est partout dense dans H (d'après A5) donc égal à H. Donc
1 + J est auto-adjoint et par suite J est auto-adjoint. On a vu que
x^1 SJSx pour x eA ; donc l'application # -> x^1 de -4 sur -4

admet un plus petit prolongement fermé, qui est évidemment l'inverse
de J. Donc J est inversible, et on a

J-1 8JS J SJ^S (6)

En particulier, S(Dj) Dj-i. Enfin, le même raisonnement que plus
haut, montre que le plus petit prolongement fermé de la restriction de

J k A2 (c'est-à-dire à l'ensemble des xy, xeA, yeA) est auto-adjoint,

donc est encore J.
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II. Le théorème de commutation

Définition 2. — Un élément a eH sera dit borné à gauche (respectivement

à droite) s'il existe un opérateur continu Ua (respectivement Va)

de H tel que Uax Vxa (respectivement Vax Uxa) pour xeA.

Les éléments de A sont évidemment bornés à gauche et à droite, et
les notations Ua, Va sont cohérentes avec les notations Ux, Vx
antérieures quand a e A.

Lemme 1. — Si a est borné à gauche et T e (RdY, Ta est borné à gauche
et TUa= UTa ; les Ua forment un idéal à gauche m de (Rd)f. Si a est

borné à droite et T € (R9)', Ta est borné à droite, et TVa= VTa ; les Va

forment un idéal à gauche n de (R9)'.

Soient x eA, y eA et a borné à gauche. On a :

UaVxy Ua(yx) Vyxa VxVya VxUay

donc Ua permute aux Vx9 Uae(Rd)f. Si Te(RdY, on a :

TUax TVxa VxTa

donc Ta est borné à gauche et UTa TUa. Raisonnements analogues

pour les Va.

Lemme 2. — Soient mx m^ m*, n1 n^ n*. On a: (nti)"

D'après le lemme 1, (mj" c (Rd)', (n^^ c (R9)'. On va prouver que
(RdY c (mx)". La démonstration de (R9)' c (n^" est analogue. Soient
donc T € (Rd)f, Tx e (m^. Il faut prouver que TTX TtT. Or, le
lemme 1 entraîne aussitôt que, pour x e A, z' eA, on a Z7*/2Tï7a, c xn1.
Donc : Ul,TUxT1 Tx U*X,TUX, et il suffit de faire converger faiblement

Ux vers 1, puis Ux, vers 1.

Lemme 3. — Si a et b (respectivement c et d) sont bornés à gauche
(respectivement à droite), et si Î7* Ub (respectivement F* Vd), on
a: a e Dj-X et b SJ"1 a (respectivement c eDj et d SJe)

Soient y € A, z eA. On a :

=: <a, Vzy) <F^,a,t/>= <Uazi*,y>= {&*, Uhy)

>= <Sb,J(yz)>
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Comme J est le plus petit prolongement fermé de sa restriction à A2, on
en déduit que 8 b eDj et que JSb a ; donc a eDj-i et b BJ~xa.
De même, on a (8d, yz) <c, J(yz)), donc ceDj et Jc Sd.

Lemme 4. — m1 et nx commutent.

Soient Uaeml9 K^^i- On a : U*a Z76, F* T^, avec un 6

borné à gauche, un d borné à droite. D'après le lemme 3, il existe une
suite xn € A avec :

xn ->a J~x%n -^J"1® #& donc 8J~xxn ->6

De même, il existe une suite yn € A avec :

yn -> c, Jyn -*Jc Sd donc ^2/,^ -> d •

Ceci posé, remarquons que, pour #€-4, î/€^4, on a:

<f//e^ y> <^c^, ^&2/> <umc, vyb>

<VcUax, y} <C7a#

Or:
<Uxyn, VySJ-1xn)=<xyn,SJ-1xn.y)

<xnx,y-8Jyn>={Vxxn,Uy8Jyn>

d'où, en faisant tendre n vers + oo :

(Umc, Vyb)= <Vxa,Uyd>

donc <ÎJaFcx, y) <VcUax,y) et finalement UaVc Fct7a.

Théorème 1. - JV (H*/, Hd (JP);.

On a déjà vu que 1^ c (Rd)'. D'autre part,

(H*)' (my c {nx)fn (R?)" K^

donc Rff (RdY, et par suite (Rg)' Kd.

Par suite, J?g ^ Kd U est le centre commun de R° et Rd, ensemble
des opérateurs qui permutent à la fois à R° et JR^.

Définition 3. — Si R se réduit aux opérateurs scalaires, c'est-à-dire si
Rg et Rd sont des facteurs, A sera dite irréductible.

Nous aurons besoin plus tard des lemmes suivants, qui constituent
d'ailleurs des compléments naturels aux lemmes 1 et 3.
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Lemme 5. — Si a est borné à droite, Sa est borné à gauche, et réciproquement.

On a alors : USa SVaS.

En effet, on a, pour x ei et a çH, USxa SVx8a. Si a est borné
à droite, on en déduit SVaSx VxSa, donc Sa est borné à gauche,
e^ &sa ~ SVaS. Si Sa est borné à gauche, on en déduit USxa S USax,
ou Uya SUSaSy pour «/ €^4, donc a est borné à droite et Fa

SUSaS.

Lemme 6. — Si a est borné à droite (respectivement à gauche) et si aç. Dj
(respectivement aeDj-x), SJa (respectivement 8J~xa) est borné à droite
(respectivement à gauche), et F* VSJa (respectivement U*a USJ-la).

(Ce lemme constitue une réciproque du lemme 3.)

Supposons a borné à droite et a e Dj. On a, pour x e A, y € A:

(UxSJa,y) (SJa,Jxs-y)= <ys-J-1x,Ja)= <Jys-x,a)

(x, Uya> {x, Vay) <F*s, y)

donc UxSJa V*ax ; donc SJa est borné à droite, et VSJa F*.
Si a est borné à gauche, et a € Dj-X, Sa est borné à droite (lemme 5)

et Sa eDj. Donc SJ(Sa) J~xa est borné à droite, et V*Sa Vj-ia.
Donc SJ~xa est borné à gauche, et 8U*a8 SUSJ-laS, donc U*a

uSJ-la.
Nous désignerons par P9 (respectivement Pd) l'ensemble des opérateurs

de R9 (respectivement Rd) permutables à J.

Lemme 7. — a) Si a eDj-x est borné à gauche et si T eP9, ST*Sa
est borné à gauche et UST*Sa UaT.

b) Si a çDj est borné à droite et si T eP9, Ta est borné à droite et

VTa= VaST*S.

Lemme 8. — a) Si a e Dj-i est borné à gauche et si T ç. Pd, Ta est borné
à gauche et UTa UaST*S.

b) Si a e Dj est borné à droite et si T ePd, ST*Sa est borné à droite et

*ST*Sa ^ VqT-

Supposons aeDj-x borné à gauche et T ePg. On a JSaeDj^
et JSa est borné à gauche ; donc T*J8a cDj-i et T*J8a est borné
à gauche ; donc SJ^T^JSa ST*8a appartient à Dj-X et est borné
à gauche ; on a en outre :
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ITT T\* T*TJ* T7* 77 77 77* 77*[UaJ. — J. U a — ± USJ-la — UT*jsa — uSJ-*T*JSa — uST*

donc UaT UST*Sa

Sa

Si a eDj est borné à droite et Te Pg, Sa e Dj-\ est borné à gauche,
donc USaT* USTa, donc SUSaSST*S SUSTaS, donc enfin
VaST*S= VTa.

Si TePd, on a ST+SeP9, de sorte que le lemme 8 résulte du
lemme 7.

III. Décomposition centrale discrète

Proposition 1. — J est permutable aux opérateurs de R.

Soient G eR, x eA, y eA. On a :

Uov-i. CUSJ-lx CU*X (C*UX)* U*o..

Vc*Sjv C*^, C* V*v (OF,)* F*C!,

donc (lemme 3) J"1CSJ~1x et JC*SJy existent, et

SJ'KISJ^x C*x (7)

SJC*SJy =Cy (8)

Supposons maintenant # /SJ?/. On voit que SJC*x existe et est égal
à CSJx. Donc 8J (SJ^CSJ^x) existe et est égal à CSJx. Donc
SJSJ^CSJ^SJy J~2CJ*y existe et est égal à Cy. Bref, pour y e A,
J2Cî/ existe et est égal à CJ2y.

Supposons en outre C unitaire. Alors

|| JCy H* <JCy, JCy} <J*Cy, Cy>

<CJ*y,Cy)= {J*y,y)=\\Jy\\*
donc 11 JC y \\ 11 J y \ \ pour y € A. Soit maintenant a e Dj. Soit

Vu Vzi • • • €j£ une suite telle que yn->a, Jyn -> Ja. Ona Cyn ->(7a,
et || J(Ot/w - CyJ || || J(yn - ym) || -> 0 quand n -* +oo et
m -> +oo, donc JCt/n a une limite forte, de sorte que Ga eDj et que
JCa est la limite de JCyn ; donc || JCa \\ lim || JCyn \\ lim
II ^2/n 11 II *^^ II • Ainsi, C(Dj) cDj, et un raisonnement identique
prouve que C~1(DJ) c Dj ; donc C(Dj) Dj9 de sorte que les opérateurs

J et C~~XJC, auto-adjoints ^0, ont même ensemble de définition

; et || G~xJCa || || Ja || pour a eDj. On sait que ceci entraîne
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G~XJC J. Comme tout opérateur de JR est combinaison linéaire
d'opérateurs unitaires de H, la proposition est démontrée.

Corollaire. —On a SCS C* pour C eR.

En effet, la formule (7) devient, compte tenu de la proposition 1,
SCSx C*x pour x eA.

Soient alors Hl9 H2 deux sous-espaces orthogonaux complémentaires
de H tels que les projecteurs Ex et E2 sur Ht et H2 appartiennent à R.
Soit A1 E1(A). On va définir sur A1 une structure d'algèbre quasi-
unitaire. Si x €A, yeA, x1~E1x, y1 E1y, on a :

Ex{xy) E,Uxy ExUxEiy UXiVl

de sorte que Ex(xy) ne dépend que de xx et yl9 et définit évidemment
un produit associatif sur Ax. D'autre part, Sxx SExx EtSx
d'après le corollaire de la proposition 1, donc S induit une involution
dans At. On a aussi xeDj, donc xxzDj et Jx1 EXJx d'après
la proposition 1 ; donc J induit dans Ax un automorphisme. Il est facile
de voir que les axiomes des algèbres quasi-unitaires sont vérifiés. Soient
R9X et Rf les anneaux d'opérateurs correspondants dans Hx. On définit
de même une structure d'algèbre quasi-unitaire sur A2 E2(A) et des

anneaux d'opérateurs JR^ et R2 dans H2. Pour qu'un opérateur continu
T sur H appartienne à Rd (respectivement R9), il faut et il suffit que T
soit réduit par Ht et H2, et que les parties induites par T dans Hx et H2
appartiennent à R% et R2 (respectivement R[ et R92).

Quelques problèmes. — Soit Q9 (respectivement Qd) l'ensemble des

opérateurs de Rg (respectivement Rd) permutables aux opérateurs de
P° (respectivement Pd). L'application A -> SAS transforme R° en Rd,
donc Pg en Pd (parce que SJ8 J-1), donc Qg en Qd.

D'après la proposition 1, P9 et Pd (et aussi, évidemment, Qg et Qd)
contiennent R. Voici quelques hypothèses vraisemblables, évidemment
vérifiées pour les algèbres unitaires, dont nous n'avons pu établir la
validité en général ; on verra l'importance de l'hypothèse 1 dans la suite.

Hypothèse 2. — Q9 c P9, <?<* c Pd.

Hypothèse 2. — J appartient au sens large2) à l'anneau d'opérateurs
engendré par Qg et Qd.

2) C'est-à-dire J r\ Rd au sens de [14]. (Rappelons que J n'est pas supposé borné.)
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Hypothèse 3. — II existe dans R° (respectivement Rd) une sous-*-al-
gèbre abélienne maximale L° (respectivement Ld) dont les éléments sont
permutables à J.

Remarques — Si l'hypothèse 3 est vérifiée, on a L° c P9, donc
Q9 c L9, de sorte que l'hypothèse 1 est vérifiée. L'hypothèse 1 entraîne
évidemment que Q9 et Qd sont abéliens. Enfin, si les hypothèses 1 et 2

sont vérifiées, soit Lg une sous-*algèbre abélienne maximale de Rg
contenant Q9; L9 commute avec Q9 c L9, et avec Q1 c (R°Y, donc avec
J, de sorte que l'hypothèse 3 est vérifiée.

IV. Algèbres quasi-unitaires de dimension finie

Si une algèbre quasi-unitaire A est de dimension finie, on a A H,
R9 est l'ensemble des Ux, Rd est l'ensemble des Vx. L'algèbre A possède

un élément unité 1, tel que U1 V1 1.
Une forme linéaire / sur une *-algèbre A est dite centrale si f{xy)

f(yx), positive si f(xs) f(x) et f(xsx) ^ 0, fidèle si f(x8x) 0
entraîne x 0.

Proposition 2. — a) Soient A une *-algèbre de dimension finie, f une
forme linéaire centrale positive fidèle sur A, b un élément inversible tel que
b b8 ; soit a 62. Pour x eA, y eA, posons : J x a~1xa,
(x, y) f(xay8a). Alors, A est une algèbre quasi-unitaire.

b) Soit A une algèbre quasi-unitaire de dimension finie. Il existe une
forme linéaire centrale positive fidèle f sur A, et un élément inversible
b eA, avec b b8, tels que, posant a 62, on ait :

J x a~1xa {x, y) f(xay8a)

pour x eA, y eA.

Soient A une *-algèbre de dimension finie, / une forme linéaire centrale
positive fidèle sur A, b un élément inversible tel que 6 b8. Posons

a b2, Jx a~xxa, (x, y) f(xay8a). D'abord, <x,y) est bien
une forme sesquilinéaire sur A X A. Puis :

{y, x) f(yax8a) f(axay8) f(xay8a) {x, y}
{x, x) f(xb*x8b*) f ((bxb){bxb)8) > 0

(x, x) 0 => bxb 0 => x 0

Donc {x, y) est bien un produit scalaire sur A. Puis :

(Jx, x} f(xaax8) / ((xa)(xa)8) > 0
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L'opérateur J est évidemment un automorphisme de l'algèbre A. Enfin :

(xs, x8) f(x8axa) f(xax8a) <#, x)

(xy, z) f(xyaz8a) f(yaz8ax) f (yaz8(axa~1)a)

f {ya(Jx8'Z)8a) (y, Jx8-z)

La vérification des axiomes A4 et A5 est triviale.
Maintenant, soit A une algèbre quasi-unitaire de dimension finie.

Désignons par Tr une trace fidèle sur l'*-algèbre d'opérateurs R°. Pour
x eA, y eA, posons : q>(x, y) Tr(UxU*y). La forme cp est sesqui-
linéaire. On a : cp(y,x) Tr(UyU*x) Tr(UxUl) <p(x, y). Donc il
existe un opérateur auto-adjoint L dans H A tel que :

Tr(UxU*y)= <x,Ly>= <Lxfyy

On a : {Lx, x) Tr(UxUl.) ^ 0 ; donc L M2, avec un opérateur
M auto-adjoint ^ 0 de H. De plus, <Lx, x) 0 entraîne Ux 0

parce que Tr est fidèle, donc x — 0. Donc L et M sont inversibles.
Observons les égalités suivantes, où T désigne un opérateur quelconque

<x,LTy> Tr{UxU*Ty) Tr(UxU;T*) Tr(T* UXUD

xUl)= <T*x,Ly>= (x,TLy> (8)

<x9 LSJ-^y) TrC^C/*^,) Tr(UxUy)

îPrt^ 17^) cLy, flfJ-1») {J^x, SLy) <x, J^flfLy) (9)

Les égalités (9) donnent LSJ~X J"XSL9 d'où :

J-2 LJSL^SJ-1 (10)

Les égalités (8) prouvent que Lî7 jPL, donc LeRd, M eRd. Posons:
M' SMS, Lr SLS. On a : V e R9, Mf e Rg. On peut d'autre part
écrire : M-1 Va9 d'où ilf Fa_1? i Fa_2

Observons alors que, pour x eA, y eA, on a:

donc UJx JUg.J"1 ; en particulier, Ux permute à J si et seulement si
x

Puisque L'^eR0, on a donc JL^J^eR9. Dans l'égalité (10), le
deuxième membre est alors permutable à L. Donc J est permutable à L.
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Donc L'~x est permutable à SJ~XS J. Alors, l'égalité (10) se simplifie
et donne

J-* LLr~1 (11)

Les opérateurs J,L,Lf sont auto-adjoints ^ 0 et deux à deux
permutables, de sorte que (11) entraîne :

J M"1 M1 (12)

Puisque M~% eRd, on peut poser : M~i Vb. On aura : a 62.

L'égalité Vh Vl prouve que b SJb. Enfin, comme Vb permute à

J d'après ce qui précède, une remarque antérieure prouve que Jb b.
Alors, b SJb entraîne b b8 ; et nous avons, pour tout x eA :

Jx M^SMSx Va(8Va-1S)x VaU8rlx VoUrlx a~lxa

Posons d'autre part, pour xeA, f(x) Tr(Ux). Evidemment, / est

une forme linéaire centrale sur A. En outre :

<x, y) <x, LL-*y> Tr(Um V*L-ly) Tr(Ux.SJ.1L-ly)

f(x.SJ-*Vaty) f(x.SJ-i(ya*)) f(xa*-Jy*)

j{xaïarxy*a) f(xay*a) (13)

En particulier :

0 <<6~1o;6-1, 6~1o;6-1> /(6-1a;6-1626-1a;86-162) /(6-1xa;lï6) /(a;^);
d'ailleurs ^ ^ ^

Tr (C^J Tr (J Ux J"1) Tr (Mf Ux M'-*) ÏV (Î7J / (») (14)

de sorte que / est positive. Enfin, f(xx8) 0 entraîne b~xxb~x 0

donc x 0 : / est fidèle. Ceci achève de démontrer la proposition.

Corollaire 1. — Soit A une algèbre quasi-unitaire de dimension finie. Il
existe des opérateurs auto-adjoints positifs inversibles M et Mr possédant les

propriétés suivantes :

MeRd, M'eW, M! SMS J M-1 M'

On a plus précisément : M e Qd c F*, M' e Qg c P°

En effet, reprenons les notations de la démonstration précédente.
Comme Mr çR9, un opérateur de Rd permute à J, c'est-à-dire appar-
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tient à Pd, si et seulement si il permute à M ; en particulier M ePd; il
en résulte que Qd c Pd, et que M € Qd. De même, M! ç Q9 c P9.
On voit donc que les hypothèses 1, 2, 3 du § III sont vérifiées.

Corollaire 2. — Soit A une *-algèbre d'opérateurs contenant 1 dans un
espace hilbertien 3fde dimension finie. Soit Tr une trace fidèle sur A, et

a un opérateur de A auto-adjoint positif inversible. Pour xeA, y eA,
posons: (x, y) Tr(xay*a), et Jx a~xxa. On obtient ainsi
Valgèbre quasi-unitaire de dimension finie la plus générale. En prenant pour A
V*-algèbre de tous les opérateurs de JV, on obtient Valgèbre quasi-unitaire
irréductible de dimension finie la plus générale.

Une algèbre construite comme l'indique le corollaire est quasi-unitaire

d'après le a de la proposition 2 ; de plus, si A est F*-algèbre de tous
les opérateurs de 3F, son centre se réduit aux scalaires, donc R9 et Rd

sont des facteurs, de sorte que A est irréductible.
Réciproquement, soit A une algèbre quasi-unitaire de dimension finie.

Il existe (proposition 2) une forme linéaire centrale positive fidèle / sur
A, et un élément inversible 6 c A, avec b b8, tels que, posant a 62,

on ait Jx a~xxa, (x, y) f(xay8a). Pour xeA, yeA, posons:
(<%, y)) f(xy8). Il est immédiat qu'on obtient ainsi un produit

scalaire sur A, qui devient un espace hilbertien J^de dimension finie. Pour
xeA, définissons un opérateur linéaire TJ!X dans JFpar Ufxy xy.
On a aussitôt : U[x+M ÂU'm + /iU'v, Uxy=U'xU'y; d'autre part :

«ff«.y, *>> f{xsyzs) f{yzsx3) f{y(xz)s) «y, U'9z»

donc Ur* Ux8. L'application x -> Ux est donc un isomorphisme
de l'*-algèbre A sur l'*-algèbre Af des opérateurs Ux dans l'espace
hilbertien JK On a : U'a= Urb*=UfhU'h*, et U'rl U'"1, donc V'a est

un opérateur auto-adjoint positif inversible. D'autre part, U'Jx Ura-lxa

Uf-lUxUra. Par Tr(Ux) f(x), on définit évidemment une trace
fidèle sur A', et (x, y) f(xaysa) Tr(Ux U'a U'* U'a). Si enfin A est
irréductible, A1 est un facteur, donc il existe un *-isomorphisme de A1

sur l'*-algèbre de tous les opérateurs d'un espace hilbertien de dimension
finie convenable. Ceci achève la démonstration.

V. Nature de Rg et Rd

Théorème 2. — Supposons qu'il existe des opérateurs auto-adjoints
inversibles, M, Mf, appartenant au sens large à Rd et R9 respectivement,
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avec Mf SMS, tels que J soit le plus petit prolongement fermé de

M' M~\
a) Rd et R9 sont sans composantes purement infinies 3).

b) Soit m Vensemble des opérateurs de la forme X ?~i Uai U^, avec a{, 6t,
bornés à gauche et dans DM. Alors, m est un idéal bilatère de R9 qui engendre

R9, et la formule ç>(JS?-i uai uh) X"=i <Mai9 Mbi> définit sur m
tme trace normale fidèle.

e) £es opérateurs M et Mf appartiennent au sens large à 0e et Q9 respectivement.

On a Q* c Pd, Qg c P9.

La partie a du théorème est une conséquence de la partie b ([5], proposition

9). Démontrons donc la partie b. On désignera par M J^ °° À e£E^,

Jf; J+°° X dE'x les décompositions spectrales de M et Jf '.
Soit -4X l'ensemble des éléments de DM bornés à gauche. Si aeAt

et T e R*, on a Ta c ^ ; en effet Ta e DM parce que T permute à M,
et Ta est borné à gauche (lemme 1). Ceci posé, les formules T(SUaiUl^

E UTa.Ul., (E Ua. U*ht)T EUai U*T*bi prouvent que m est un idéal
bilatère de R9.

Montrons que Ax est partout dense dans H. Puisque M permute à

M', il permute à J, donc les Ex sont permutables à J. Donc, si x ç.A,
E\% est borné à gauche d'après le lemme 8 ; et, bien entendu, E^x € DM,
de sorte que E^x ç.Ax. Or, les E\x, pour x eA et A > 0, sont
évidemment partout denses dans H.

Nous pouvons alors montrer que m engendre R9, c'est-à-dire que
m R9 avec les notations de [5]. Car soit u un élément de H tel que
Uu 0 pour tout U € m, et prouvons que u 0. On a, pour tout
# c J. et tout a eAt:

| <*, Vxa> |2 I <«*, Uax) |» | <C7>, z> |2 < || x ||21| U*au ||2

donc {u, Vxa> 0. Comme 1 est fortement adhérent à l'ensemble
des Vx9 on en déduit (u, a) 0 pour a eAt, donc u 0.

Pour poursuivre la démonstration, nous avons besoin des lemmes
suivants :

Lemme 9. — Si a{, b{ (1 ^ i ^ n) sont des éléments de Ax tels que

-Sî-i U^U.^O, on a J£?-i <Jf6,, Jfa,> > 0.

8) C'est-à-dire H^ 0 au sens de [4]. De même, si H** ;zf 0, nous dirons que Rg
et Rd possèdent des composantes purement infinies.
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En effet, on a, pour tout x c A,

0 < <EU K^x, x) EU <Uhx, Uaix) EU <Vxbti Vxat>

Onen déduit EU<Vbi> Vat)^0 pour tout VeRd. Enfin, EU<Mbt>Ma%>
est limite de quantités de la forme EU <Vbt9 J^U>> d'où le lemme.

Lemme 10. — Si aeDMr, Dj-l9 on a 8J"1aeDM et MSJ^a
SMa.

En effet, soit a' J-1a. On a : a'eDj et Jaf€DM, donc af eDM,,
et Jlf'a' JfJV, c'est-à-dire SMSJ^a Ma.

Lemme 11. — Si at, b% (1 ^.i ^n) sont des éléments de At tels que

^^iUaiU;t^0, on a £?=1 <Mati Mb,} > 0.

En effet, supposons d'abord at, bt eA1^ Dj-X. On a SJ~1aleDM,
SJ^b^Djy d'après le lemme 10, et 8J~1al, SJ~1bl sont bornés à

gauche d'après le lemme 6, avec U*SJ-la% Uai, U*SJ-lbi Ub%. Donc
8J-*at cAt, 8J~ibt e Al, et £?=1 U^ U*h £U ^h-^i USJ-lh.
Alors, les lemmes 9 et 10 prouvent que :

Arrivons maintenant au cas général. Soit (A1? A2,...) une suite de
nombres > 0 tendant vers 0, et posons dans tout ce paragraphe : Efn

1 — EfXn. Les projecteurs E'n sont dans R9 et tendent fortement vers 1 ;

et Efn(H) c DM,-X. Si aeAly on a : Efna eAxrs Dj-X. En effet, nous
savons déjà que Erna eA1; et MEfna E'nMa e DM,-X, donc Efna cDj-i.
D'autre part, ona: I ?=1 U<a% U*<b% =E/n(E ?-i Ua% U*h) E'n > 0, donc,

d'après la première partie de la démonstration

EU <E'n Mat, E'n Mbt) EU <ME'n at, MEfn bt) > 0

Quand n -> +00? on en déduit le lemme.
Revenons maintenant à la démonstration du théorème 2. Soient

at€At, bteAx (l<f<w) tels que JST-i ^a» ^= °- Le lemme 11

entraîne que EU<Mai> Mbt) 0. Donc, en posant (p(EU Uat utt)
^T=i <^«i> Jf6t> pour a, e^l5 b% eA± (1 < i < n), on définit

univoquement sur m une forme linéaire. Et le lemme 11 exprime que
cette forme est positive. Si T e Rg, on a :

289



9 (rdî-i UH Ut,)) <p(EU UTai U*h) EU
SÎ-tiTMat, Mbt>

9 ((EU U^ U*b,)T) <p(EU UH U*T>h) EU<Mat, MT*bt)

EU <Mat, T*Mbt)

ce qui prouve que <p est centrale, donc est une trace.

Lemme 12. — Tout opérateur de tn+ est de la forme EU Uai U*tti,

avec attA-L pour l^i^w.
En effet, soit U EUiUai ut, * "i+. où «t«^i> bleA1. Posons:

c, =£(«, +6,), d, ==|(a, — 6,). On a: c,*^, d, €^1; et.

^ EU (Uc, + Vd%)(UH - UJ* EU UCt V*ei - EU Udt Ul
+ EUudlu*Ct- zuuCtK

u* EU uH K% - EU ud% ul + EU uei u*di - su udl u*ci

donc U | (U + U*) SU V« K - EU Ud% U*dt Soit W

EUUhUh- On a ° <U^U', donc H U* a H < H 17'* o H pour
tout a cff, donc Z7* TC/'* avec un T eR". Par suite :

C7 U* Uh* TC/'T* SU TUct K T* EU UTe% U*Tet

ce qui démontre le lemme.
Grâce au lemme 12, on voit aussitôt que <p est fidèle. Car, si

on a Jfat 0 donc at 0 pour 1 ^ i ^ n, donc JSt=i ^at U^% 0.

Lemme 13. — Si at€Â1(\ ^i ^n), il existe un aeAx tel que

Ua>0, et EUUlu«>=K
En effet, soit U SU Ulv u<h- On a, pour tout t eH :

donc U^ T, Z7* avec T, efi», Ts s'annulant sur JEfO Î7(iï). On en
déduit
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donc <i:jssail3T*3Tfu,tt> <w,w> pour ueU(H); donc

est le projecteur sur U(H); par suite :

ce qui prouve le lemme.
Nous pouvons maintenant prouver que ç> est normale. Soit {UL)l€l

une famille filtrante croissante d'opérateurs de tn+ de borne supérieure
Î7cnt+. Il s'agit de prouver que (p(U) est la borne supérieure des

<p(Ut). On a: <p(U) > <p(Ut). Soit donc e>0, et prouvons qu'il
existe un i el tel que (p(Ut) > <p(U) — e. Soit U J£?=1 £7at C7*t

(lemme 12). On a : Ern UEfn v?=1 t/<<H £7*^ donc

V (17) Xr-i

Par suite, pour n bien choisi, cp(U) — — ^ 9^(^n ^^n) ^ 9?(^')« On va

voir qu'on peut trouver unu/ tel que <p(Efn Ut Ern) > (p(E'n UErn) — -|-
II en résultera :

et notre assertion sera établie. Nous sommes ainsi ramenés à prouver que
q)(EfnUEfn) est la borne supérieure des q>(E'n UtErn), n fixé, sachant

que (Ern UtE'n)^! est un ensemble filtrant croissant de borne
supérieure Efn UEfn. Mais de plus, d'après les lemmes 12, 13 et un raisonnement

fait dans la démonstration du lemme 11, on a cette fois :

avec aleA1, aeA1, Ua >0, Ua > 0 ; d'ailleurs, <p(U\ || la, ||2,

<p(Ul) || Ma ||«.

Comme U2a converge fortement [3] vers U2a en restant borné, Ua

converge fortement vers Ua ([11], lemme 5). Soient xeA, yeA. Observons

que aeDj-t et Ua USJ-la d'après le lemme 3. Pour tout
A>0, posons Mx ME^, qui est borné. On a :

<Mxa, xy) {MxJ^a^JxJy} {USxMxJ"1a} Jy)
<MxUSxJ~1aiJy>= <MxVj-la8x,Jy)= {MxSUSJ.lax, Jy)

et de même <Mxati xy) (SMxJy, Uaix). Donc (Mxat,xy)
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», xy). Comme || M^aL || < || Mat || ^ || Ma ||, on voit que
tend faiblement vers M^a. Par suite, lim inf || M at || ^

liminf || Jf^at|| > || M^a\\, quel que soit A>0, donc lim inf || M at || ^
|| Ma ||, ce qui achève la démonstration de la partie b du théorème.
Quant à la partie c, elle se démontre comme le corollaire 1 de la proposition

2.

On observera que, pour J 1 (cas des algèbres unitaires), la
démonstration se simplifie considérablement.

Nous n'avons pu décider si la trace <p est maximale (ce qui est vrai
dans le cas des algèbres unitaires : cf. théorème 2 de [10]) ; il faudrait,
pour résoudre ce problème, arriver à caractériser plus simplement les

opérateurs de m+.

Proposition 3. — a) Soient M, Mx (respectivement Mr, M[) des opérateurs

auto-adjoints > 0 inversibles appartenant au sens large à Rd
(respectivement R9), avec M' SMS, M[ SMXS ; supposons que J soit le

plus petit prolongement fermé de Mr M~x et de M[ M^1. Il existe alors

un opérateur auto-adjoint ^0 inversible C appartenant au sens large à

R, tel que Mx (respectivement M[) soit le plus petit prolongement fermé de

CM (respectivement CMf).

b) Réciproquement, soit C un opérateur auto-adjoint ^ 0 inversible

appartenant au sens large à R ; soit Mx (respectivement M[) le plus petit
prolongement fermé de CM (respectivement CMf) ; Mt et Mrx sont
autoadjoints ^ 0 inversibles, appartiennent au sens large à Rd et R9 respectivement

; on a M[ SMX S, et J est le plus petit prolongement fermé de

Soient M, Mx, Mf, M[ des opérateurs ayant les propriétés de a.
L'opérateur M[ permute à Ml9 donc à J, et à M, donc à Mf. De même,
Mx permute à J, M, Mf. Bref J, M, Mf, Ml9 M[ sont deux à deux
permutables. Puisque M^M^1 et M! M~x ont même prolongement
fermé minimum, M[ M'~x et Mx M"1 ont même prolongement fermé
minimum C. L'opérateur C est auto-adjoint positif inversible, et appartient

au sens large à JR ; et Mx (respectivement M[) est le plus petit
prolongement fermé de CM (respectivement CM').

Réciproquement, soit C un opérateur ayant les propriétés de 6, et
soit Mx (respectivement M[) le plus petit prolongement fermé de CM
(respectivement CM'). Il est évident que Ml9 M[ sont auto-adjoints

^ 0 inversibles, et appartiennent au sens large à Rd et R9 respectivement.

En outre, M[ Mx et MrCC~x M-1 ont même prolongement
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fermé minimum; ce prolongement est donc J; et SMj^S est égal au
prolongement fermé minimum de (SCS)(SMS), donc (cor. de la proposition

1) de CM' ; ce prolongement est donc M[.

Remarque. — Si A est irréductible, on voit que M et M! sont bien
déterminés par J à la multiplication près par un scalaire > 0.

VI. Nature de R? et de Rd (suite)

Théorème 3. — Si R9 et Rd sont sans composantes purement infinies et

si Q9 c P9y Qd c Pd, il existe des opérateurs auto-adjoints ^ 0 inversibles

M, Mf, appartenant au sens large à Qd et Q9 respectivement, avec
M1 SMS, tels que J soit le plus petit 'prolongement fermé de Mr M~x.

Comme R9 est sans composante purement infinie, il existe ([5], proposition

9) une pseudo-trace normale fidèle et essentielle Tr sur (R9)+. Soit
(ai)iei une famille d'éléments de H telle que Tr(T) Sl€l{Tal,al)
pour T e(R9)+ (cf. [17]). Comme Tr est fidèle, on voit aussitôt que les

UaL, U eRd, tel, engendrent H. Nous désignerons encore par Tr la
trace normale fidèle essentielle maximale associée à la pseudo-trace Tr.
Si T appartient à l'idéal de définition de cette trace, on a encore : Tr(T)

Ev€l {Tat ,at), la famille (Tat, aL > étant sommable.
Soit Rg0 l'ensemble des T eRg tels que Tr(TT*)< +oo. Il est

immédiat que Ri est un idéal bilatère de R9. D'autre part, muni du produit
scalaire (T, Tf) Tr(TTf*), R^ est un espace préhilbertien dont nous
désignerons le complété abstrait par 3F. L'application T -> T* de Rg0

sur R$ est isométrique4). On a donc {Tf*, T*> {T, Tf), c'est-à-dire
Tr(TTf*) Tr(Tf*T) pour T eR%, T1 eRg0. Ainsi, {T, Tf}
Z^jiT^Ta^a,} ZleI(Tat, Tfat). Donc l'application T -> (Tat)l€l
est une application isométrique de Rg0 dans ®l€l Ht,HL étant, pour tout
tel, identique à H ; cette application se prolonge donc en une
application isométrique y) de JSFdans @l€lHc.

Soit A1 l'ensemble des a eH bornés à gauche et tels que Ua e R^. Si

a € H est borné à gauche et si Te Rg0, Ta est borné à gauche, et UTa

4) En effet, si T=KW est la décomposition canonique de T e KjJ en un opérateur K
autoadjoint >0 et un opérateur W partiellement isométrique, on a T*T W*(TT*)W,
et TT* (WW*){TT*), donc

<T*, T*) Tr(T*T) Tr{WW*TT*) Tr(TT*) (T,T)
(On notera que l'égalité Tr{TT*) Tr(T*T) n'est pas absolument évidente puisque T
et T* ne sont pas nécessairement de trace finie. Cf. cependant [7].)
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TUa eRgQ, donc Ta e Af ; or 1 est fortement adhérent à Rd0 (parce que
Tr est essentielle), donc l'adhérence de A1 contient tous les éléments

bornés à gauche, de sorte que A! H.
L'application a -> Ua est une application linéaire biunivoque de A1

dans 3f.

Lemme 14. — L'application a -> Ua de Ar dans J^fadmet un plus petit
prolongement linéaire fermé défini dans un ensemble partout dense de H,
et ce prolongement est inversible.

Pour prouver l'existence d'un prolongement fermé (donc d'un plus
petit prolongement fermé, qui sera défini sur un ensemble partout dense

puisque A1 H), il faut prouver ceci : soit 6l5 62,... une suite
d'éléments de Af, telle que bn -> 0, et telle que Ubn ait une limite u e 3f
au sens de la structure hilbertienne de Jf\ alors u 0.

Or, Uln a une limite v e 3f au sens de la structure hilbertienne de 3f,
et || v || || u ||. Soit (ct)l€l l'image de v par l'application xp de JV
dans ®l€jHl. On a UlnaL ->ct dans Ht, pour tout tel. Or, si

x e A, on a :

{VlnaLix)= <at, Ubnx}= <a4, Ffl,6n>->0

donc <ct, x) 0, de sorte que ct 0 pour tout te/. Ainsi, v 0

et par suite ^ 0.
Pour prouver que le plus petit prolongement fermé de l'application

a -> Ua est inversible, on raisonne de façon analogue ; il faut prouver
ceci : soit 61, b2,... une suite d'éléments de A! tels que bn ->b eH et
telle que Ubn -> 0 au sens de J?F; alors 6 0. Or, on a Uln at -> 0,
donc UlnVxat F^ ?7^nat -> 0 pour x eA. Comme plus haut, on en
déduit que {VxaL, Vy bn) ~> 0 pour ojcJ., yeA, donc (F^a^F^ô)

0. Comme les VxaL sous-tendent H, on en déduit Vyb 0, et,
comme 1 est fortement adhérent à l'ensemble des Vy, on en déduit
6 0.

Le lemme 14 entraîne l'existence d'un opérateur auto-adjoint inversible,

soit M, dans H, tel que : 1. A1 c DM ; 2. Jf est le plus petit
prolongement fermé de sa restriction ài;; 3. pour a eAf, b eAf, on a :

<Ma,Mby= <Ua,Ub>= Tr(UaU*b) (15)

Posons Mr SMS, L M2, V M'2. Les opérateurs M, Jf', £,
2/ sont auto-adjoints ^ 0, et 2/ SLS. Les propriétés annoncées de

M et Jf ' vont découler des lemmes suivants :
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Lemme 15. — Si aeAf et T eR°, on a Ta* A'.

En effet, on sait que Ta est borné à gauche ; et on a : UTa= TUa€ Rg0,

puisque Ua e Rg0.

Lemme 16. — Soient aeDMi et TeR9.

a) On a: TaeDM.
b) II existe une suite a1,a2, •.. dans A\ avec an -> a, Man -> Ma,

et MTan->MTa.
Puisque M est le plus petit prolongement fermé de sa restriction à A',

il existe une suite at, a2,... dans Ar telle que an -> a, Man -> Ma.
On a jTan€J/ d'après le lemme 15, et Tan-> Ta. Montrons que
MTan a une limite ; cette limite sera MTa puisque M est fermé. Pour
cela, observons que, si T'et Tn sont deux opérateurs bornés quelconques
dans H, et x un vecteur quelconque de H, on a :

<T/*T"*T"T'x,x>= || r* T'a H* < || ï7"!!2!! T'zH2
|| T/f\\2 <Tf* T'x,x>

donc 0 < Tf* T"* T"Tf < || T;/1|2 î7'* î7'. Ceci entraîne en particulier

:

am) U*T(an_aJ Tr(TUan_am U*an_am T*)

T*TUan_am < || T ||« 2V(l7i_^ Uan_aJ

c'est-à-dire, d'après la formule (15) :

\\MT{an-am)\\ < || T \\ \\ M (an - am) \\

Comme \\M(an — am)\\ -> 0, on en déduit que \\MTan—MTam\\ -> 0,
ce qui établit notre assertion.

Lemme 17. — M {respectivement Mf) appartient au sens large à Rd

(respectivement R9).

Soient aeAf, beA', TeR9; d'après le lemme 15, T*aeA' et
TbeA'. On a: Tr(UT*aU£) Tr(T*UaU£) Tr(UaU£ T*)
Tr (Ua V%h), donc {MT*a ,Mb>= {Ma, MTb >. Supposons
maintenant aeDM, beDM, TeR9. D'après le lemme 16, on a T*aeDM,
TbeDM, et il existe deux suites (ax,a2,...), {bl9b2,...) dans Ar
telles que

an->a, bn-+b, Man-+Ma, Mbn->Mb, MT*an-+MT*a,
MTbn -> MTb
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L'égalité (MT*an, Mbn) <Man, MTbn) donne à la limite :

<MT*a, Mb) {Ma, MTb)
Supposons enfin a eDL,b eDL. A fortiori, a e DM, b e DM, donc

(MT*a, Mb) (Ma, MTb). Comme en outre Mb eDM et MaeDM,
on en déduit <T*a, Lb) (La,Tb), c'est-à-dire : (La, Tb)
(a, TLb). Laissant 6 fixe, et faisant varier a dans DL, cette égalité
prouve que Tb eDL* DL, et que LTb TLb. Donc T est permutable

à L. Donc I, et par suite M, appartiennent au sens large à Kd.

Donc Jf ' SMS appartient au sens large à R9.

Lemme 18. — Soit A" A' r, Dj-X. Si a*A", on a SJ-xaeA!f.

En effet, SJ~xa est borné à gauche, et USJ-la — U* (d'après le
lemme 6), donc USJ-la eR^ puisque Ua eR%. Par suite, 8J~xa eAr.
En outre, SJ~xa eDj-1} puisque SJ-1 JS.

Lemme 19. - Si aeA", et T eP9 ou T ePd, on a TaeA".

Si aeA" et T eP9, on a TaeAf d'après le lemme 15; comme
a e Dj-x et que T permute à J*1, on a aussi Ta e Dj-\.

Si aeA" et T ePd, on a SJ^atA" d'après le lemme 18, donc
8TS(SJ~1a)€A// d'après ce qui précède (parce que STSeP9); à

nouveau d'après le lemme 18, le vecteur

(JS){STS)(SJ~1a) JTJ~*a Ta
est dans An.

Lemme 20. — La restriction de M à A11 admet M pour plus petit prolongement

fermé (ce qui entraîne en particulier que An H).

Comme la restriction de M à A! admet M pour plus petit prolongement

fermé, il suffit de prouver que le plus petit prolongement fermé
de la restriction de M à An est défini au moins dans A1. Il suffit donc
de prouver ceci : soit a eAf ; il existe dans A" une suite al9 a2,...
telle que an ->a, avec || Man || borné supérieurement.

Soit xx, x2,... une suite d'éléments de A, pour le moment
quelconque. Posons: an UXfla. On sait que aneAf (lemme 15). En
outre, U*n=(UXnUa)*=UÎUSJ-1Xn==UulsJ-1Xn. Donc (lemme 3)

an € Dj-x, de sorte que an e Aff. Enfin,

|| Man ||* Tr(UanUtn) Tr(UXn Ua U*a U*Xn)
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d'après ce qu'on a vu dans la démonstration du lemme 16, c'est-à-dire
II Man || < || UXn || || Ma ||. D'après le théorème 1 de [12], il existe
une suite xn e A telle que 11 UXn \ | < 1 et UXfla -> a. Ceci achève de

prouver le lemme.

Lemme 21. — Soient a eDM, et T ePd.

a) On a: Ta eDM.

b) II existe une suite al9 a2,... dans Afr, avec an->a, Man -> Ma
et MTan ->MTa.

D'après le lemme 20, il existe une suite al9 a2,... dans A " telle que

an-^a, Man -> Ma. On a: TaneA" d'après le lemme 19, et
Tan -> Ta. En outre,

an__am) U%{an_aJ Tr (Uan_am (ST*S)(STS) U*an_am)

en utilisant le lemme 7 c. Autrement dit || MTa n — MTam || ^
II T || || an — am ||. Ainsi, MTan a une limite, de sorte que Ta eDM.

Lemme 22. — M (respectivement Mf) appartient au sens large à Qd

(respectivement Q9).

Soit T ePd, et montrons que M permute à T. Si a eAfr, b eA'\
on a T*a ç.An et Tb € A " d'après le lemme 19. En outre, en vertu du
lemme 7, on a : Tr(UT*a U*b) Tr{UaSTSU£) Tr(Ua U$b), c'est-
à-dire <MT*a,Mb) (Ma,MTb>. Grâce au lemme 21, on étend
cette égalité au cas où a e DM, b e DM, comme dans la démonstration
du lemme 17. Si enfin a eDL, b eDL, cette égalité donne (T*a, Lb)

{La, Tb). Comme dans la démonstration du lemme 17, on en déduit
que L, donc M, permute à T. Donc M appartient au sens large à Qd et

par suite Mr appartient au sens large à Qg.

Lemme 23. — M, Mf, J sont deux à deux permutables, et J est le plus
petit prolongement fermé de Mf M~x.

M, Mf, J sont deux à deux permutables, à cause de l'hypothèse
Qd c pd? Qg c pg^ qUj interviendra ici seulement. L'opérateur M' J~x

admet donc un plus petit prolongement fermé M1 qui est auto-adjoint
> 0. D'après le lemme 18, on a SJ-1^") c DM, donc A" c

j-i dm>j-i dmi • Pour a « A \ b ç.A" on a :

9Q7
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{Ma, Mb) Tr{VaUt) Tr(U* Ua) Tr(USJ.lb U*j.la)

^b, MSJ^a) {SMSJ^a, SMSJ^b} {M*a, M^} (16)

Nous allons en déduire que M=M*, ce qui achèvera la démonstration.
Soient M J+00 X dEx, M1 J+00 X dE\ les décompositions spectrales
de M et M1. Supposons M =£ M1. Alors, Ex ^ E\ pour une certaine
valeur Ao de A. On a donc, compte tenu du fait que les Ex et les E1^ sont
deux à deux permutables, ou bien EXq (1 — E\q) ^ 0, ou bien E\o (1 — E\q)

^ 0. Dans les deux cas, on en déduit l'existence d'un a c DM ^ DM1

tel que || Ma \\ ^ || M1 a ||. Comme M est le plus petit prolongement
fermé de sa restriction à A ", il existe une suite al9 a2,... dans A" telle
que an->a, Man-+Ma. On a : || M1(an - am) || || M (an - am) ||

d'après les égalités (16), donc Mxan a une limite, qui est nécessairement

M1a. L'égalité || Man \\ || Mxan \\ entraîne || Ma \\ \\ Mxa ||,
d'où contradiction.

VII. Éléments quasi-centraux

Proposition 4. — Pour un élément a eH, les conditions suivantes sont
équivalentes :

a) (a, xîy) (a, yx) pour zeA, ycA.
b) Uxj a Vxa pour x e A.
c) Ta 8T*Sa pour TeRd (donc pour TeR9)

En effet, on a, pour x e A et y e A :

(a,xiy)= <Ux8a,y> (a,yx)= <VxSj-ta9y)

donc la condition <a, xjy) (a, yx) pour x eA, y eA équivaut à

XJ^ga Vx8j-! a pour x eA, c'est-à-dire à Uxja Vxa pour x eA.
D'autre part, Uxj= U*s (SVX8)* 8V* 8, de sorte que la condition

c entraîne la condition b. Enfin, la condition b entraîne la condition c

puisque tout T eRd est limite faible d'opérateurs Vx.

Définition 4. — Si a eH vérifie les conditions de la proposition 4, nous
dirons que a est quasi-central.

Soit Hc l'ensemble des éléments quasi-centraux. Il est évident que
Hc est un sous-espace vectoriel fermé de H.

Proposition 5. — 8i aeHc, on a 8aeHc, et Ja a. En outre,
Ca eHc pour tout C eR.
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Si a €HC, on a T(Sa) 8(8TSa) 8(T*a) {ST*8)(8a) pour
TeRd, donc 8aeHc. D'autre part, T(Ca) C(Ta) C(ST*Sa)

(8T*8)(Ca), donc CaeHc. Enfin, pour xeA et yeA, on a:

(a,xy> (a,Jy-x)= {a,JxJy) <a,J(xy))

donc a eDj et Ja a.
Pour démontrer le théorème 4 ci-dessous, nous sommes obligés d'introduire

l'axiome suivant :

A/ 5. — II existe un filtre J7*sur A tel que Ux et Vx convergent faiblement
vers 1 suivant SFen restant de normes bornées.

Remarques. — 1. L'axiome A 5 est une conséquence de A'5 et de
l'axiome suivant :

A"5. Les éléments x + xj, où x eA, sont partout denses dans A.

En effet, quand x converge suivant J7*, SV*8 Uxj converge faiblement

vers 1, donc xy + {%yY Uxy + Uxjy1' converge faiblement
vers y + yK

2. Il existe toujours (d'après le théorème 1 de [12]) un filtre J7~sur A
tel que Ux converge faiblement vers 1 suivant J^en restant de norme
bornée. Si A est une algèbre unitaire, VX SU*8 converge aussi
faiblement vers 1 suivant J7~en restant de norme bornée, de sorte que
A7 5 (et, naturellement, A;/5) sont vérifiés.

Soit F le sous-espace fermé de H engendré par les Ta, où T eRd et
a e Hc. Le sous-espace F est stable par Rd, et aussi par R9, car Ux Ta

TUxa= TVj-lxaeF pour aeH0, TeRd et xeA. Donc F est
aussi le sous-espace fermé de H engendré par les Ta, Te R9, a e Hc. Le
projecteur sur F est un opérateur de H.

Théorème 4. — Supposons Qd c Pd, Qg c P°. La condition nécessaire

et suffisante pour que R9 et Rd soient de classe finie est que F H.

Observons d'abord que, si aeHc, l'application T -> (Ta, a} est

une trace sur Rd (et sur R9). Car c'est une forme linéaire positive, et

<TT'a,a)= <T(STf*S)a,a> <(ST'*8)Ta,a>

<Ta,STfSa)= {Ta, T'*a)= (TrTa,a).

Ceci posé, si (T*Ta, a) 0 pour un T eRd quel que soit a eHc,
on a T(HC) 0, donc T(F) 0. Si F H on voit donc que JR^
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possède un système complet de traces, de sorte que ([8], lemme 12),
Rd est de classe finie (donc aussi R9). Cette partie du raisonnement ne

suppose pas que Q* c Pd, Q9 c P9.

Supposons maintenant 0e c Pd, Q9 c P9, et Rd, R9 de classe finie5).
Raisonnant par l'absurde, supposons F ^ H. Utilisant une décomposition

centrale discrète, nous sommes ramenés à la situation suivante :

Qdcpa qo c pg Rd et Rg gont de classe finie, H ^ 0 et Hc 0,
et il existe une trace normale fidèle partout définie Tr sur R9.

On peut alors raisonner comme dans le paragraphe VI, et construire
des opérateurs M, Mf ayant les propriétés du théorème 3. Mais de plus
(adoptant les notations antérieures), A' est alors l'ensemble des éléments
bornés à gauche, et on a, pour y e A! :

\\My\\*=Tr(UyU*)^k*\\ Uy

Faisons converger y suivant J7~. L'inégalité 11 My \\ ^k\\ Uy\\ pour
y eA entraîne qu'il existe un filtre SF' plus fin que JT'tel que My
converge faiblement suivant S7*! vers un élément a,€JH. Et l'égalité MVyx

MUxy UxMy (où x eA, y eA) entraîne, en faisant converger
y suivant S?', Mx=Uxa (tenant compte du fait que M est fermé).
Ceci posé, on a, pour tout x e A et tout y e A :

(a, Jx-y) <Uœ8a, y) (Mx8, y) (x8, My) (SMSy8, x)
(MJy8, x) <UJy8a, x) <a,

donc a €HC, et par suite a 0. Alors Jf # fJ^a 0 pour tout
x e A, contrairement au fait que M est inversible.

VIII. Algèbres quasi-unitaires achevées

Lemme 24. — Si a est borné à gauche et h borné à droite, on a Uab Vba,

Supposons d'abord 6 e Dj. Si # € -4 et y € A, on a :

(Uax,y)= (Vxaiy}= {a,

6) Si «7 1 (cas des algèbres unitaires), la fin de la démonstration peut être
considérablement abrégée: les opérateurs Ua, a borné à gauche, forment un idéal bilatère non
nul de R9; et, dans un anneau de classe finie, tout idéal bilatère non nul contient un
opérateur central non nul comme on le voit aisément; donc Hc ;zf 0; à partir de là, on
démontre sans peine que F H. (Le théorème 4 est connu dans le cas des algèbres
unitaires: cf. [8], théorème 5; et [17]).
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En considérant une suite xn c A telle que xn -> 6, Jxn -> Jb, l'égalité

précédente donne à la limite, compte tenu du lemme 6

{Uab, y) {a, Uy8Jb) <a, VSJhy) <Vba, y)

donc Uab Vba. Supposons maintenant b borné à droite quelconque.
Si zeA, on a V$zb (VzVb)* F* Vzj8= Vv*bzu, de sorte que Vzb,
qui est borné à droite, appartient à Dj (lemme 3). D'après la première
partie de la démonstration, on a donc UaVzb VVzba VzVba\ en
faisant converger fortement Vz vers 1, on a le lemme.

Définition 5. — Soient A et Af deux algèbres quasi-unitaires. Nous
dirons que A1 est un prolongement de A si : 1) A est une sous-*algèbre de A1 \

2) le ^produit scalaire et Vautomorphisme de A s'obtiennent en restreignant
à A le produit scalaire et Vautomorphisme de Ar ; 3) A est partout dense
dans A!. Nous dirons que A est une algèbre quasi-unitaire achevée si A
n'admet aucune extension distincte de A.

Si A! est un prolongement de A, et si Sg, Sd sont les anneaux
d'opérateurs définis par i', on a Rg c S9, Rd c Sd donc Rg Sg, Rd Sd

en vertu du théorème 1.

Proposition 6. — Soit A une algèbre quasi-unitaire. Tous les prolongements

de A sont contenus dans Vun d'entre eux qui est une algèbre quasi-
unitaire achevée.

Soit toujours H l'espace hilbertien complété de A. Soit Ax l'ensemble
des a eH tels que tous les Jna (n entier positif ou négatif) existent et
soient bornés à gauche. D'après le lemme 6, les SJna sont bornés à

gauche, donc (lemme 5) les Jna sont aussi bornés à droite.
Soient aeA1, b^Ax. On a, pour xçA:

<UJaJb, x) {Jb, USax) <J6, VxSa)

<UJbSJx,Sa)= <a,8UJbSJxy

<Vba,Jx}= <Uab,Jx)

donc J(Uab) existe et est égal à UJaJb. De même, J(UJaJb) existe
et est égal à UJ2aJ2b, et d'autre part à J2Uab. Par récurrence,
Jn(Uab) existe et est égal à UjnaJnb pour n entier > 0. Donc
Jn(Uj-naJ~~nb) existe et est égal à Uab pour n entier ^0, de sorte

que J-n(Uab)= Uj-naJ~nb. Bref, Jn(Uab) existe pour tout entier n,
et est égal à UjnaJnb, et par suite borné à gauche. Donc Uab eAlt
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Posons alors, pour aeAx et beAly ab Uab. Cette multiplication
prolonge évidemment celle de A. Elle est associative, car, si a, b, c eAl3
on a :

(ab)c Uabc UUabc UaUbc Ua(bc) a(bc)

D'autre part, si a eAt, on a Sa eAx. Car SJ~na JnSa existe

pour tout entier n et est borné à droite et à gauche. Et S définit un
anti-automorphisme involutif de Al9 car, si a eAt, b eAx on a:

S(ab) SUab= VSaSb USbSa (8b) (Sa)

L'opérateur J induit évidemment une application biunivoque de At
sur Ax. Cette application est un automorphisme, car

J(ab) JUab TJJaJb (Ja)(Jb)

Les axiomes A1 à A 5 se vérifient alors sans aucune difficulté, de sorte

que l'algèbre quasi-unitaire Ax prolonge A.
Maintenant, soit A! un prolongement quelconque de A, que nous

pouvons identifier à un sous-espace de H. On a montrer, ce qui achèvera
la démonstration, que Ax est un prolongement de A\ Soient s! et jr
l'anti-automorphisme et Fautomorphisme de Ar. Comme sf est continue
et induit s sur A, on a nécessairement x8' Sx pour x e Ar. D'autre
part, jf prolonge j, donc j* J prolonge jf* et a fortiori f ; on a donc
A! c Dj, et j' est la restriction de J à A' ; en outre, comme j' est une
application biunivoque de Ar sur i;, on a Af c Djn pour tout entier n.
Enfin, si a ç.A' et x eA, le produit ax calculé dans A1 dépend
continûment de a, et est égal à Vxa si a e A ; il est donc encore égal à Vxa

pour a e Af ; comme d'autre part il dépend continûment de x, on voit
que a est borné à gauche (donc Af c Ax) et que ax Uax pour a; €^1 ;

on a donc encore ab Uab pour a €^4;, 6 e^47. Ainsi Ax est un
prolongement de A'.

Remarque. — Si A vérifie les axiomes A'5 et A/;5, il en est évidemment

de même de Ax.

Proposition 7. — Soit A une algèbre quasi-unitaire achevée.

a) Si a çH est tel que Jna existe et soit borné à gauche (respectivement
à droite) pour tout entier n, on a a eA.

b) Si aeA et T çP9 (respectivement T ePd), on a TaeA.

La première partie de la proposition résulte aussitôt de la démonstration

précédente. La deuxième partie résulte de la première partie et du
lemme 7.
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IX. Décomposition centrale continue

Lemme 25. — Soient A une algèbre quasi-unitaire, B une partie de A.
Supposons que, pour tout x € A, il existe une suite xne B telle que
xn -> x et xjn -> xK Alors, si un élément a eH est tel que \\ Vya \\

< M || y || pour y € B, a est borné à gauche.

En effet, soit x € A, et soit xn e B une suite ayant les propriétés du
lemme. Pour tout z e A, on a :

| <C7>, SJxn> | \{a, z-SJxn) | | <VXna, z) | < M \\ xn || \\z\\
Donc :

| (Vxa,z>\ | <U?a,SJx> | | lim (U*a,8Jxn) \ ^ M \\ x\\ || z\\

Par suite, || Vxa \\ ^ M \\ x ||, ce qui prouve le lemme.
Dans la suite de ce paragraphe, nous supposerons vérifiés les axiomes

suivants, plus forts respectivement que A7 5 et A/;5.

B;5. — II existe un filtre S?sur A tel que Ux et Vx convergent fortement
vers 1 suivant S?en restant de normes bornées*).

B/75. — Pour tout entier n, les éléments x + x^' x eA, sont partout
denses dans A.

D'après un raisonnement fait au § 1, B//r5 signifie que Jn est le plus
petit prolongement fermé de sa restriction à A.

En outre, nous supposerons H séparable. Alors, dans l'espace des

opérateurs continus sur H, toute boule fermée, munie de la topologie
forte, est métrisable et séparable ; l'axiome B75 entraîne donc qu'il
existe dans A une suite, que nous désignerons par tl912,... dans tout
ce paragraphe, telle que Uin et Vtn convergent fortement vers 1 quand
n -> +oo.

Proposition 8. — Supposons A achevée. Soit Z le spectre, hyperstonien
(cf. [6]), de R. On peut définir :

1. — une mesure positive normale fj, de support Z
2. — pour tout f ç.Z, un espace hilbertien H (£) séparable
3. — pour presque tout f eZ, une algèbre quasi-unitaire achevée

irréductible A(C) dans H(Ç), vérifiant B75 et B;/5, pour laquelle nous
emploierons les notations s(Ç), S(Ç), j{Ç)... dans un sens évident

6) Cet axiome est toujours vérifié pour une algèbre unitaire. Ceci résulte, comme pour
A'5, du théorème 1 de [12], ou plutôt d'un léger renforcement de ce théorème que donne
aussitôt la démonstration de [12].
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4. — une famille fondamentale A de champs de vecteurs continus
x(Ç) eH(Ç) vérifiant Vaxiome A4: de [9].

5. —- un isomorphisme de H sur L\([i) par lequel nous identifions
désormais ces deux espaces,

avec les propriétés suivantes :

(a) Les opérateurs de R sont les opérateurs continus à composantes
scalaires ; si T ~ T(C) est un élément de R, T(Ç) est, pour presque tout f,
la valeur en T du caractère f eZ.

(b) Soit a ~a{Ç) un élément de H ; pour que a soit borné à gauche

(respectivement à droite), il faut et il suffit que presque tous les a(Ç) soient
bornés à gauche (respectivement à droite) et que ess. sup. || Ua(:) || < +oo
(respectivement ess. sup. || Va^ ||< -f~°°J/ lorsqu'il en est ainsi, on a:
Ua ~ Ua(Q (respectivement Va ~ Va(^).

(c) Si a~a(Ç) est un élément de H, on a Sa ~ S(Ç)a(Ç).

(d) Soit a ~a(£) un élément de H ; pour que a eDjn, il faut et il
suffit que a(f eDj^n pour presque tout C, et que J(Ç)na(Ç) eL^(ju) ;

lorsqu'il en est ainsi, on a : Jna ~ J(Ç)na(Ç).

(e) Soit a ~ a(Ç) un élément de H ; pour que a € A, il faut et il suffit
que a(Ç) eA(Ç) pour presque tout C, que a(CY^)n eL2A(fi) pour tout
entier n, et que ess. sup. || Ua^t) \\< +oo.

(f) Si x ~ x(C) et y r^j y{^) sont des éléments de A, on a xy ~

En outre, si A(Ç)"~, H(Ç)~,... possèdent les mêmes propriétés, il
existe, pour presque tout C, un isomorphisme <p(Ç) de A(Ç) sur A(Ç)~
tel que, si aeH se décompose suivant les a(Ç) eH(C) et les a(Ç)~
€2?(£)~, on ait presque partout a(Ç)~ (p(Ç)a(Ç)(ç>(£) étant le prolongement

continu de <p(Ç) à H(Ç)).
La démonstration suivante utilise des raisonnements non publiés de

R. Godement sur les sommes continues.

1. — Construction de jbt. — Soit [xah la mesure spectrale sur Z associée
à deux éléments a, b de H (cf. [9]). Soit D c A un ensemble dénom-
brable possédant les propriétés suivantes : 1) D est stable pour s, j, j~x
et la multiplication ; 2) toute combinaison linéaire à coefficients rationnels

d'éléments de D est dans D ; 3) tteD pour tout i ; 4) les x + xjn,
où x € D, sont partout denses dans A pour tout n. Soit Ar l'ensemble
des combinaisons linéaires (à coefficients complexes) des éléments de D.
Alors Ar est une sous-*-algèbre de A stable pour j et j~x, et D sera évidem-
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ment partout dense dans A1 pour toutes les structures d'espaces pré-
hilbertiens que nous construirons sur A1.

Soit /i £x€l)(xxlix>x, les ocx>0 étant choisis de telle sorte que
% I ax I II f*x,x II < + °°- La mesure \i est une mesure normale, de
support Z (parce que D H).

2. — Construction de A(Ç) et H(Ç). — Pour aeH, beH, fiab
est une mesure normale, donc d/iab(Ç) Oab(Ç)dfi(Ç), où 0ab(Ç)
est une fonction à valeurs dans [ — 00, +00], qui peut être supposée
continue, ce qui la détermine complètement. En outre, d'après le choix
de fi, ^a,ô(C) est bornée quand aeD, beD, donc quand aeAf,
beA!.

Pour f fixé dans Z, et x, y variant dans A', 0^ y(f est une forme
sesquilinéaire hermitienne positive sur A1 \ en effet, les égalités immédiates

flXxy À [lxy, flx+x,ty [lXiy + {lX'ty, [lytX /^, fl^ > 0,
entraînent

pour tout C (parce que les 0 sont continues). Soit /(£) le sous-espace
des xç.A' tels que 0xx(C) 0. On va montrer que /(C) est un idéal
bilatère de A' stable pour s, j et j~x.

Pour T eR, aeH, beH, on a (corollaire de la proposition 1) :

<TSb, Sa) (a, STSb) <a,

donc fiSbSa /iab, et par suite

pour tout C« En particulier, J(f est stable pour 8.
Soit maintenant î77 un opérateur continu de if permutable à JR. Soit

a eH. Pour tout T e R+, on a

'a, Tfa) {T'T^a,

donc llT>a,Tra ^ II ^' l^i^a.a» e^ Par

er'..r'.(f)<l|2"llï0...(f)
pour tout C. En particulier, pour œe^l7, y eAf, on a

e.^ttXUff.ll1^?) (19)

ew>w(C)<linilïe..-(C) (19')

pour tout Ç. Par conséquent J(f) est un idéal bilatère de A'.
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Enfin, pour T c R+ et a eDJ%, on a (proposition 1) :

<Jay TJa)2 (T^a, T*J2a)2 < || T*a ||2

(a, Ta><J2a, TJ2a>
donc

UeJlaiJia(nT(nd^n] • (20)

Supposons alors plus particulièrement «€.4', et 0aa(£) O pour
un certain f. Soit e > 0. Il existe un ensemble compact ouvert K contenant

f tel que 0a>a(C') < e pour Çr eK. D'où, en désignant par M la
borne supérieure de dj2aJ2a(t;) :

On en déduit que 0Jttrja(Ç) 0. Donc /(£) est stable pour «7. Comme
(20) entraîne, pour a e Dj-t et T e K+

on voit de même que /(£) est stable pour J*1.
Ceci posé, le quotient A'/I(Ç) -4' (£) est muni naturellement d'une

structure d'algèbre, d'une involution £'(£), d'un automorphisme ^(C),
et d'un produit scalaire qu'on notera encore < >. On va montrer que
Af(C) est, pour presque tout f, une algèbre quasi-unitaire. Pour tout
x €Âr, nous désignerons par x(Ç) l'image canonique de x dans -4'(f).

Si TeR+ et aeDj, on a <Ta, Ja) <7V*a, J*a> >0, donc

/^«/a ^ ^? e^ Par suite 0a Ja(Ç) ^ 0 pour tout f. En particulier, si

x eAf, on a (x(Ç), x(CY^> ^ 0, ce qui est l'axiome Al.
L'égalité (17) donne en particulier, pour xçA', l'égalité <#(£)>#(£)>
<^(C)*'(D,^(f)*'(Ç)>, ce qui est l'axiome A2.

Soit Tf un opérateur continu de H permutable à R; pour aeH,
TeR, on a <TT'a,b> <Ta, Tf*b), donc

pour tout f. En particulier, si iC€-4^ yeA', zeAr, on a O^y^f)
8y.^.(C), c'est-à-dire <a?(f )y(f «(f )> - <y(f »(C)f'(5W/(5)«(f)>,

ce qui est l'axiome A3.
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L'inégalité (18) entraîne

<x(C)y(C), *C)yC)> < II u, ||2<2/(C), y(n> (22)

ce qui est l'axiome A4.
Soit xeD. On a: $0tnX_x. ,„,_, (£)<*/*(£) II[*«*- * II2^<> quand

tî, -> +oo, donc, en extrayant au besoin une suite partielle de la suite
(tn)> Otnx-x,tnx-x(Ç) ~^ ^ sauf sur un ensemble négligeable JV^. Soit
^ Ua-cD^, qui est négligeable. Pour £ £ JV, on a 0^.*, ^^ (f)
-> 0 pour tout x e D (la nouvelle suite (£n) ayant été choisie valable
pour tous les x par application du procédé diagonal). Autrement dit,
|| tn(C) x{C) — x(C) H ->0 quand xeD, pour tout Ç$N. De même,
il existe un ensemble négligeable Nt tel que || x(Ç)tn(Ç) — x(Ç) \\ ->0
quand xeD, pour tout Ç $ N19 Ceci, avec l'inégalité (22), entraîne
que B' 5 est vérifié pour f £ JV ^ iV1.

Soient n un entier et x un élément de D. Il existe une suite xpeD
telle que || xp + #£n — » || -> 0 quand p -> +oo. On en déduit comme
ci-dessus que, sauf sur un ensemble négligeable Nfn>x, on a || xp(Ç)

+ xp(Cyf(')n ~ x(£) II ~* ® quand p -> +cx>. Soit iVr/ la réunion,
négligeable, des JV^ quand x parcourt D et n Fensemble des entiers.
Pour f ^ N' l'axiome B/;5 est vérifié.

Pour Ç$N^N1^N/ N2, A'(Ç) est donc une algèbre quasi-
unitaire séparable. Soit A(Ç) l'algèbre quasi-unitaire achevée
correspondante, qui vérifie aussi B'5 et B/;5. Soit H(Ç) l'espace
complété de A'(Ç)9 donc aussi de A(Ç), pour Ç$N2. Nous désignerons par
s(Ç) et j(C) l'antiautomorphisme et l'automorphisme de A(Ç) (définis
pour Ç$N2).

3. Définition de la famille fondamentale A. Nous prendrons pour
famille A la famille des champs de vecteurs £ -» x(Ç) pour x eAf. Il
est immédiat que l'axiome (Ax) de [9] est vérifié. L'axiome (A2) est
vérifié à cause de l'égalité <#(£), x(Ç)> 0x X(Ç) pour ojç^7. L'axiome
(A4) est vérifié en considérant les x e D.

4. — Isomorphisme de H et L2A (fjt) ; démonstration de a. Soient x e A',
y *A', T eR. On a

<Tx,y> JT(f )rf/i.f¥(f) Jr(C)8.fw(t)^(t)
jr(f)<»(£), y(f)>^(f) (23)

En particulier l'application qui, au vecteur xeA', fait correspondre
le champ x(Ç) de L^(jbt), est isométrique. Elle se prolonge donc en un
isomorphisme de H dans L2A(/u). Nous désignerons encore par a(f le
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champ de vecteurs de carré intégrable associé à a çH par cet isomor-
phisme. Pour a eH, b eH et T eR, l'égalité (23) entraîne, par passage
à la limite, l'égalité

$ (24)

Comme d'autre part <Ta,b> j0Ta
on a encore 6a b(Ç) <&(£), 6(£)> presque partout, lorsque a et 6 sont
des éléments quelconques de H. On en déduit aussitôt, pour Tf çR,
<T'a(Ç),b(Ç)> T'(Ç) «*(£), 6(f)> presque partout. En particulier,
Tfa(Ç) — Tf(C)«(£) est orthogonal, sauf sur un ensemble négligeable,
aux #(£) où x parcourt D. Donc T'a(Ç) Tf(Ç)a(Ç) presque
partout. Comme toute fonction mesurable bornée sur Z est égale presque
partout à une fonction de la forme Tf(Ç), où Tf eR, on voit d'abord
que les opérateurs de R sont les opérateurs à composantes scalaires, ce

qui est le (a) de la proposition. En outre, comme tout champ de vecteurs
continu peut être approché dans LA (/u,) par des sommes finies de champs
de vecteurs de la forme Tf(Ç)x(Ç) où T'eR, xeAr, on voit que
l'isomorphisme de H dans L2A(fi) applique H sur L2A(/Lt).

5 __ Irréductibilité des A(Ç). — Pour xeA! et yeAf, on a Uxy
xy ~ x(Ç)y{Ç) UxCo)y(C), de sorte que Ux ~ Ux{ty De même,

Vx~Vx(t). Or, l'*-algèbre d'opérateurs engendrée par les Ux et les

Vx admet JR pour commutant. Alors, d'après un raisonnement de [10],
r*-algèbre d'opérateurs engendrée par les Ux{t) et les Vx{u) est
irréductible pour presque tout £. Donc A'(Ç), et par suite A(Ç), sont
irréductibles pour presque tout £.

6. — Démonstration de b. — Soient a eH un élément borné à gauche,
et x eD. D'après (18), on a, sauf sur un ensemble négligeable N

II F,($)a(f || || Vxa(n II || Uax(C) II < II Ua || || x(£) ||

quel que soit xeD; donc (lemme 25), si Ç $ N, a(£) est borné à

gauche, et || Ua(L) \\ < || Ua \\. Réciproquement, soit a ~a(f) un
élément de H. Supposons &(£) borné à gauche pour presque tout f.
et ess. sup. || C7a<^ || M< + oo. Pour a; €^4;, on a Vxa ~ Vx(^a(C),
donc

^2 Jn *(f)
Donc a est borné à gauche (lemme 25). En outre, Vxa
entraîne Uax ~ Ua(Ç)x(£), donc Ua ~ Ua(çy
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7. — Démonstration de c et d. — Si xeAf, on a Sx ~ 8(Ç)x(Ç),
donc S~8(Ç). Soit maintenant a~a(Ç) un élément de H. Si
a cDjm pour un certain entier n, il existe une suite xp e A1 telle que

xp->a et xpn ->Jna. Donc, pour f n'appartenant pas à un certain
ensemble négligeable N'9 xp(f -> a(C) et xp(£ )'(*>n -> Jn a C Donc,
pour fftf', a(C)€DJ(Dn et J(f)MC) Jna(Ç).

Réciproquement, supposons a(£) eDj^n pour C n'appartenant pas
à un certain ensemble négligeable Nf, et J(Ç)na(C) €2^(/^) ; soit x çA' ;

on a :

<a,J»z>\ |J^|J «a(f H || z(

if
donc a e Djn

8. — Démonstration de e et f. — Si x ~ x(£) est élément de Ji, x est
borné à gauche, et a; e Djn pour tout entier n. Donc, en dehors d'un
certain ensemble négligeable N"9 x(Ç) est borné à gauche et x(Ç)
eDj^n. Donc (proposition 7), pour Ç$Nn, x(Ç) eA(Ç) En outre,
x*n ~»(f )Hb)n €^0m), et || Ux{t) || < || Ux ||. La réciproque se

démontre aussi en appliquant la proposition 7. Enfin, / résulte aussitôt de

6, c, d, e.

9. — Unicité des A(Ç). — Supposons donnés H(Ç)~9 A(Ç)~, A~,...
possédant les propriétés de H(Ç)9A(Ç), A,... énoncées dans la proposition

8; (on conserve la même mesure ju,). Alors, à tout açH
correspondent deux champs de vecteurs de carré intégrable, a(Ç) eH(Ç)
et a{£)~ €H(Ç)~. On a, pour tout reJR,ettout beH

donc (a(Ç),b(Ç)) (a(Ç)~,b(Ç)~} presque partout.
En agrandissant au besoin D (sans changer les propriétés imposées au

début de la démonstration), on peut supposer que, pour presque tout C,

les se(f)~, xeD, sont partout denses dans I7(C)~ (grâce à la
propriété (^.4)). Il existe alors un ensemble négligeable N c Z tel que, pour
tout C $ N, on ait
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(Xx

(xy)(Ç)

pour tout x €D, tout y eD, X et ju rationnels quelconques ; en outre,
on peut choisir N de telle sorte que :

1) quel que soit l'entier n, les x(Ç) + a;(£)*<ç)n (respectivement
#(C)~ + #(£)~*<5)~n)> °^ ^ Parcourt D, sont partout denses dans

1Z(C) (respectivement H(Ç)~), si f ^ N ;

2) quand 2> -> +oo, les C7<pQ, ^^,17^^-, Vtp{;r, convergent
fortement vers 1 en restant de normes bornées, si f ^ iV.

Alors, pour Ç$N, l'application o;(f)->a;(C)^ se prolonge en un
isomorphisme ç?(£) de H(£) sur #(£) ; on voit facilement que la
restriction ç?(C) de H(Ç) à ^4(C) est un isomorphisme de -4(0 sur
A(£)~. En outre, si a~a(Ç) est élément de iT, on a a(0~

(0 pour aeD par construction pour £$iV\ donc a(f)"
(0 presque partout pour tout a eH par passage à la limite.

X. Exemple d'algèbre quasi-unitaire

Soient E un espace localement compact, 0 un groupe localement compact

d'élément neutre e. Soit (x, a) -» x a une application continue de

ExG dans JE/ telle que, pour a e(r, l'application # -> #a de 1? dans E
soit un homéomorphisme ua de i? sur JS, et telle que l'application oc -> wa

soit un homomorphisme de G dans le groupe des homéomorphismes de E.
Autrement dit, (xoc)ocf x(otaf).

Soit LExQ .L l'ensemble des fonctions continues à valeurs
complexes et à support compact sur ExG. Pour / ei, g eL, posons7) :

f*g(z,*) Sf(xp,*P)g(z,p-*)dp

où d/? désigne la mesure de Haar invariante à gauche sur G. On vérifie
aisément que f*geL. L'addition et la multiplication par les scalaires

7) Lorsque ^1 ^2 ^ zl 1, les définitions qui suivent ont été utilisées
indépendamment par R. Godement. De même pour les théorèmes 5 et 6 ci-dessous, quand de

plus G et E sont à base dénombrable.
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complexes se définissant à la manière habituelle, L devient une algèbre :
seule l'associativité du produit nécessite un calcul que nous laissons au
soin du lecteur.

Si E se réduit à un point, ExG s'identifie à G, et on retrouve le produit

de composition habituel.
On appellera multiplicateur une fonction continue >0, q(x, a), sur

ExG, telle que q(x, f}oc) q(x(}, oc)q(x, fi). Ceci entraîne g(x,e) l
et q(x, a'1) q(x or1, a)"1.

Soit fi une mesure de Radon positive sur E, de support E (nous utilisons

les définitions de [1]) ; supposons qu'il existe une fonction continue
>0, q(x,oc), sur ExG, nécessairement unique, telle que d/i(xoc)
q(x, a)d^,(x). On a :

dft(xocp) q(x, ocp)dp(x) q{xoL,p)dfi(x(x) q{xoc, 0)q(x, oc)dfx(x)

donc q est un multiplicateur.
Pour feL, geL, posons

X(oc) étant une fonction continue >0 sur G telle que %(oùp) #
On définit ainsi un produit scalaire sur L qui devient un espace pré-
hilbertien.

Enfin, soient Xi X2 deux multiplicateurs sur E xG. Pour feL,
posons :

P(x,ol) £2(a;, or1)/(#,«)

f*(x, oc) %1{x, or1)] (x or\ or1)

Nous désignerons par A le module de G, c'est-à-dire la fonction continue

> 0 sur G telle que d (oc (%) A (oùq) doc.

Proposition 9. — Avec les définitions précédentes, L est une algèbre

quasi-unitaire si et seulement si xl %%Aq, fô Aq~x. En outre, les

axiomes Br 5 et B!t 5 sont vérifiés.

On a:

(/ * g)'(x, oc) X%(x, a-1) $f{xp, ocp) g(x, p-1)dp

donc j est bien un automorphisme de L.
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Ensuite :

f**(x, a) Xl(x, or1) Xl(x or1, a) f(x, oc) f(x, oc)

(/ * 9)s(x, a) Xl(x, or1) §f(z ex-1 0, or1 p) g (x or\ p-1) dp

(g* * p)(x, oc) SxifrPtP-1 «-1) 9 (* «^ P"1 «-1) Xi(*> P) H*P> P) dP

5Xi(*> «-1) 7 (« oc-1 p, oc-1 P) g (x a~\ p-1) dp

donc s est bien un antiautomorphisme involutif de L.
Les axiomes Al et B/;5 sont immédiats. Montrons que A4 est vérifié.

Soient feL, geL, heL. Soit C(oc) le maximum de \f(x,ot)\ pour
a fixé. On a :

<f*g,h>\ ////(*/?, *p)g(x, /?-i) h (x, a) X(a) docdfl d/x{x)

(x0, a)g(x, j8-i) h(x, a/?-*) | x

11 S'il ||AJ
II / * Il < UzfrfiCM doc] || g H (25)

ce qui prouve A4.
Montrons que B; 5 est vérifié. Soit V un voisinage symétrique de e

dans G, STTnn compact de E. Soit ^cZqy cj^- l'ensemble des g eL+
vérifiant les conditions suivantes :

1) g(x, oc) 0 pour a ^ ^Z7.

2) Pour a fixé, g (x, oc) est constante sur i^T~et maximum sur S7C.

3) Pour xeSTT, $g(x, oc)doc §g(x oc, oc)doc 1.

Il est facile de voir que les ^qy cjç forment sur L la base d'un filtre SF.

On va voir que Ug et Vg convergent fortement vers 1 suivant J7* en
restant de normes bornées. D'abord, (25) montre que || Ug \\ reste
borné, et un calcul analogue montre que || Vg || reste borné. D'autre
part, soit / un élément fixe de L, Soit Ko un voisinage compact du
support de / ; choisissons un voisinage T7 de e dans G de telle sorte que :
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| zl (/3) - 1 | <£ pour

et soit !~7C un compact de E contenant les images de Ko par les
applications (x, a) ->¦ x et (x, a) -»¦ x a"1. Alors, si g e ^5%; r^-, on a, pour

9C
1 - e < fg(z, j8-i) d^

donc, pour (cc,a)eJT0

| (/ * flr - /)(*, a) | < | J/(*/î, «P)g(x,

| f(x, ce) | e < «(1

et par suite :

II / * 9 - t II < e(l + s + max

De même, pour (x, a.) e Ko :

| (fir */-/)(*, «) | | J?(* «-1 /3, /S) /(*, /S-i a

{x oc-ip, fi) f(x, a)

donc || J7 * / — / || ^ £ [ Jk0 ^(«J^^C*)]5! ce qui établit B'5
Passons à A2 et A3. On a :

JJx\{xa, a"1) f(x,oc-1)f(x,oc-1)x{'x)Q(x,cx)dad/i(x)
{$1(x,cc)]{x,«)x\{x°r\oc)Q{xor\«)-iX{<x)-iA{oL)

<f *9,h> JJJ/(*/8, <x|%(z, /S"1) Â(*. a) Z(a) d^dccdfi(x)

Pour que A 2 soit vérifié, il faut et il suffit qu'on ait

• *(<*) Xl(xorl> oî)Q{xor\ ^-^(a)-1/! (a)-1
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c'est-à-dire xl (x a"~1> ot) %2â (oc) q (x a"1, a), quels que soient ex € G,
x eG. Autrement dit, il faut et il suffit que

Û %%àq ¦ (26)

Pour que A3 soit vérifié, il faut et il suffit qu'on ait %(oc)

XxXtfr*-1* otiïxiP)-1*^)-1, c'est-à-dire XiXt^^r1^) xA(otp),
quels que soient a eG, p eG, x eEt Autrement dit, il faut et il suffit
que X1X2 ^ X^ c'est-à-dire, compte tenu de (26) :

Û AQ-1 • (27)

Le complété H de L s'identifie à l'espace des fonctions de carré inté-
grable sur Ex G pour la mesure docdjj,(x). L'opérateur J est encore
l'opérateur de multiplication par #2(#> a"1).

Nous supposons désormais vérifiés (26) et (27). Définissant R9 et Rd

comme au § 1, on a Rg (Rd)f, Rd (R9)f. Lorsque E se réduit à un
point, on a donc la généralisation aux groupes localement compacts non
unimodulaires du théorème de commutation de [8] et [18], généralisation

établie dans [16]. La présente démonstration est plus rapide que
celle de [16], et peut être abrégée si on n'a en vue que le théorème de

commutation.

XI. Autre définition des anneaux d'opérateurs précédents

Si (p est une fonction complexe sur E, mesurable et essentiellement
bornée relativement à ju,, on pose, pour / eH :

L9f(x9 oc) <p{x)f{x, ex) Ly f(x, oc) y(x oc'1) f(x, a)

Les opérateurs L9, Lfv sont bornés, et un calcul facile montre que SL^ S

Ly. D'autre part, si ocq eG, on pose, pour /

u**f(x> a) Xi(x>

On voit facilement que U^ est unitaire et que SU'ao8 U^ (donc que
Ua est unitaire).

Soit Ld (respectivement Lg, Ud, U9) l'ensemble des L^ (respectivement
L'9,Uao,V'aa).

Proposition 10. — R9 (respectivement Rd) est Vanneau d'opérateurs
engendré par L° et Ug (respectivement Ld et Ud).
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Soient / c L, g e L. On a :

V,U'a<>g(x,K)=-$U'a<)g (xp,*flf(x, /H)ci/}

/g (x/S, «-1 « /S) / (x, /H) z («„

^o F, gf (x, oc) x («„)"* F, g (*, «o"1 «)

donc V,V'at V'atVt, donc t/^ e (Rd)' K", donc 17» c«». lien
résulte que Ud c Rd.

Si 95 (x) est une fonction continue bornée sur E, on a :

L<pU/g(x,oc) <p{x)Utg{x ,<x) <p{x) jf{x p ,<x

donc L,, E/j UfL9, donc Lv e (R9')/ B*. Comme tout opérateur Lv
défini par une fonction q> mesurable essentiellement bornée est limite
faible d'opérateurs L^ définis par des fonctions y) bornées continues, on
a Ld c Rd. Il en résulte que L" c Rg.

Maintenant, on va prouver que tout opérateur UB, g e£, est fortement

adhérent à l'algèbre engendrée par L" et Ug. Il en résultera que
L" et U" engendrent R", donc que Ld et Ud engendrent Rd. Si / e L, on a :

où (fp (x) g(xfi, /?). La fonction p ->Lfv U^f, à valeurs dans jET, est

fortement continue et à support compact, et l'égalité précédente
entraîne que Ugf J^dS)*^ D^/rf/î. Donc Z7J est limite forte de

vecteurs V^=1 A, l^ Î7^/, où A, > 0 et où vj=1 At est borné
supérieurement. Les opérateurs J£T=i ^-^L ^ son^ de normes bornées

et tendent fortement vers Uf.

Définition 6. — G est dit libre si, "pour tout x eE en dehors d'un certain
ensemble localement négligeable N, l'application a -> x<x de G dans E est

biunivoque.

Il est immédiat que, si G est discret dénombrable, cette condition
équivaut à la suivante : pour tout ex e G, a ^ e, les points de E fixes

pour a forment un ensemble localement négligeable. On retrouve donc la
définition des groupes libres donnée dans [15].
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Désignons par L l'ensemble des opérateurs de multiplication dans H
par toutes les fonctions mesurables et essentiellement bornées sur ExG
relativement à la mesure dfi(x)doc. On a : LgcL, LdcL.

Lemme 26. — Si G est libre, L9 et Ld engendrent Vanneau d'opérateurs L.

Démonstration. — Soit A un opérateur auto-adjoint borné dans H,
permutant à L9 et à Ld. On va montrer que A permute àl, ce qui
établira le lemme.

Soient F c E, K c G des compacts non négligeables. Soit f eH une
fonction nulle presque partout en dehors de F xK. Désignant d'une
manière générale par %B la fonction caractéristique d'un ensemble S, on
a %F{x)Af(x,<x) A[%F(x)f(x, a)] Af(x, a), donc Af est nulle presque

partout en dehors de F xG. Soit d'autre part Kf un ensemble compact

de G disjoint de K. Montrons que Af est nulle presque partout sur
FxK'.

Si tout point de F rs 0 N possédait un voisinage V tel que V ^ F
soit négligeable, tout ensemble compact contenu dans F r>§ N serait

négligeable, donc Frs §N, et par suite F, seraient négligeables,
contrairement à l'hypothèse. Il existe donc un point x eF r\ (J N tel que,

pour tout voisinage F de #, V rs F soit non négligeable. Puisque x N,
les ensembles xK~x et xKf~x sont des ensembles compacts disjoints
de E, donc il existe un voisinage V de x tel que VK~X et VKr~x soient
disjoints. Soit j^o c V rs F un ensemble compact non négligeable; les
ensembles compacts Fx FqK"1, F2 F^Kr~x sont disjoints. Remarquons

que :

xfM)H*> <*) **.(*)/(*> «) ; <28)

en effet, si %F0(x)f(x, a) ^ 0, on a X€F0 et oceK, donc xor1€F1,
donc XFifa0*"1) ~ *• L'égalité (28) entraîne presque partout :

XFo(x)Af(z,oi) XF1(xorl)XFo(x)Af(x, a)
donc

»«) • (29)

Or, si Xk'MXf (x) ¥=- 0> on a xeF0, oceK', donc xor1eF2, donc

XFlixor*) 0. °Par suite, XfM ^Xk'^XfM) °- L'égalité (29)

prouve alors que Af s'annule presque partout sur FQxK\
Ceci posé, considérons les familles (Ft)ieI d'ensembles compacts

contenus dans F, non négligeables, deux à deux disjoints, tels que Af soit
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nulle presque partout sur les FL x Kr. Ordonné par inclusion, l'ensemble
de ces familles, non vide d'après ce qui précède, est inductif. Considérons
une telle famille maximale, que nous notons encore (Ft)l€l. Cette
famille est dénombrable puisque /li(F) <+ oo. Soit Fr \Jl€lFL c F,
qui est mesurable. La fonction Af est nulle presque partout sur Fr xKr.
Pour prouver le résultat annoncé, il suffit de prouver que F o (} F' est

négligeable. Or, dans le cas contraire, F ^ Q Fr contiendrait un
ensemble compact non négligeable auquel on pourrait appliquer le même
raisonnement qu'à F, de sorte que F <^ §Ff contiendrait un ensemble

compact non négligeable F0 tel que Af soit nulle presque partout sur
F°xKf ; et ceci contredit le fait que la famille (Ft)l€l est maximale.

Ainsi, Af s'annule presque partout sur FxKf, donc, vu l'arbitraire
de K!, presque partout sur Fx$K. Comme, on l'a vu, Af est aussi

nulle presque partout sur C F xG, on voit que Af est nulle presque
partout en dehors de FxK. Si donc D désigne le projecteur de L défini
par la fonction %FxK, on voit que / Df entraîne Af DAf. Donc
AD DAD. Prenant les adjoints, DA DAD. Donc AD DA.
Comme les projecteurs D engendrent évidemment L, on voit que A
permute à L.

Théorème 5. — Si G est libre, L9 (respectivement Ld) est une sous-algèbre
abélienne maximale de R9 (respectivement Rd).

Il suffit de considérer le cas de Ld. Soit A e Rd, permutant à Ld. Il faut
prouver que A elA Or A permute à R9, donc à L9, donc à L (lemme 26).
D'après un résultat classique (valable sans hypothèse de dénombrabilité),
A eL : il existe une fonction <p (x, oc) mesurable et essentiellement bornée
sur ExG, telle que A soit l'opérateur de multiplication par <p. Soient

h>hf->fn des éléments de L. Soient K c E et Kr c G des ensembles

compacts tels que les supports des ft soient contenus dans KxKf ; soit
Kx K'K'-1. En exprimant que A permute aux Up, on trouve que, pour
peG fixé, <p (x, ol) ft (x, /S"1 oc) <p (x, f}-1 a) ft (x, /S"1 oc) presque partout pour
dft(x)da; donc XkAPM** a)A(*> t1*) W0M*, ^«)/*(», P"1")
presque partout sur ExGxG pour djLt(x)dadp. Donc il existe oc^eK'
tel que XK1(P)?(^^)fAx,p~1oc0) XK^)?^^-1^)h(^^t1^) presque
partout sur ExG pour dfi(x)d(} (si on a choisi Kr non négligeable). Donc
Xk1{ocqot1)(P(x, <xt)U(z, oc) XkSw1)?^* <*)L(x> «) presque partout
sur ExG pour dfi(x)doc. Vu le choix de K1, on en déduit cp x ioc0)fl (x, a)

<p (x, oc)ft (x, oc) presque partout sur Ey.G pour dp (x) doc. Ainsi, A
est limite forte d'opérateurs de Ld, donc A e Ld.
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Corollaire. — Si G est libre, Q° c P°, Qd c Pd.

En effet, on a évidemment L9 c P9, Ld c Pd. Il suffit donc d'appliquer

le théorème 5 et les remarques qui terminent le paragraphe III.
Lemme 27. — Si G est libre, R se compose des L9 tels que <p(x) q>(xoc)

localement presque partout sur E, pour tout oc eG.

Un opérateur A de R est permutable à Lg et Ld, donc est dans L9 et Ld

(théorème 5). Donc il existe deux fonctions mesurables essentiellement
bornées (p et rp sur E telles que A L9 L'y. Ceci entraîne aussitôt

que q>(x) lp(xor1) localement presque partout pour dju(x)doc. Donc,
si peG, on a, localement presque partout pour djbi(x)doc : q>(xfi)
y)(xP• fi-1 or1) "^(xor1) <p(x). Donc q>{xp) <p{x) localement presque

partout sur E. La réciproque est immédiate.
Disons que G est ergodique, si tout ensemble mesurable F c E, tel que

Fa F, à un ensemble localement négligeable près, pour tout aeG,
est localement négligeable ou de complémentaire localement négligeable.
Alors, le lemme 27 entraîne aussitôt le théorème suivant :

Théorème 6. — Si G est libre, R9 et Rd sont des facteurs si et seulement

si G est ergodique.

Par exemple, si on prend pour E le groupe G lui-même, G opérant sur
E par (x, a) -> oc~1x, et pour /u une mesure équivalente à la mesure de

Haar, G est évidemment libre et ergodique.

XII. Classification de JR* et Rd

Définition 7. — G est dit mesurable s'il existe une fonction <p sur E,
H-mesurable, telle que 0<ç>(#)< + oo, et telle que q)(xot)(p(x)-1
A (a)q{x, a)"1 localement presque partout sur E, pour tout oc eG.

Remarque 1. — II revient au même de dire qu'il existe une fonction ç>

sur E, ^-mesurable, telle que 0<q>(x)<-\-oo, et telle que <p(xa)(p(x)~-1

A(oc)q(x, oc)"1 localement presque partout sur ExG pour dfx{x)doL.
En effet, s'il en est ainsi, soient ocq eG, et K c E un ensemble compact
Les fonctions oc -> §K (p(xoi)(p(xY1d[ji(x) et a -> J^ A (oc)q(x, oc^d/nix)
sont égales localement presque partout sur G, et continues comme on le

voit facilement, donc égales pour tout a, et en particulier pour ocq. Vu
l'arbitraire de K, ceci entraîne que <p(xoLQ)(p(x)-'1 A(ao)g(x, ocq)-1

localement presque partout sur E.
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Remarque 2. — Considérons les mesures comme des fonctions
d'ensembles, définies sur l'ensemble des parties /j-intégrables de E, et utilisons

momentanément les notations de [11]. Si fi est totalement a-finie,
dire que G est mesurable revient à dire qu'il existe une mesure positive v,
totalement cr-finie, équivalente à /u, telle que dv(xa) Aocdv(x) pour
tout oc eO. (Mais v n'est pas nécessairement une mesure de Radon.) En
effet, si G est mesurable, soit q> une fonction possédant les propriétés de
la définition 7, et posons, pour tout ensemble //-intégrable A, v(A)
— Jj. <p(x)dp(x) - On définit ainsi une mesure positive v équivalente à ju,
totalement or-finie ; et, pour tout oc e G, on a :

v(Aoc) fAoi <p(x)dp(x) $A <p(x<x)d/A{zoL)

J^ (p(x)Â{ol)q{x, ol)~1q{x, oc)

Réciproquement, soit v une mesure positive totalement c-finie
équivalente à ju,, telle que dv(xoc) A(oc)dv(x). D'après le théorème de

Lebesgue-Nikodym, il existe une fonction q>(x) sur E, ^-mesurable,
telle que Q<<p(x)< + oo, et telle que v(A) j^ (p(x)djbt(x) pour tout
ensemble ^-intégrable A. On a alors :

A(a)v(A) v(Aoc) $Aoc(p(x)d[A,(x)

J4 <p{xa)dfi(x<x) §A <p(xot)Q{x, oc)dju(x)

donc A (oc)(p(x) <p(xoc)q(x> ol) localement presque partout sur E.

Théorème 7. — Si 0 est libre et non mesurable, Rg et Rd possèdent des

composantes purement infinies. En particulier, si G est de plus ergodique,
Rg et Rd sont des facteurs purement infinis.

Supposons G libre, et R9, Rd sans composantes purement infinies.
Appliquons le théorème 3, ce qui est possible grâce au corollaire du
théorème 5. Soient M et M1 les opérateurs dont le théorème 3 affirme
l'existence. L'opérateur M appartient au sens large à Ld ; grâce au calcul

opérationnel, il est facile d'en déduire qu'il existe une fonction finie > 0

mesurable tp(x) sur E telle que M soit l'opérateur de multiplication par
rp (x). Alors, M' SMS est l'opérateur de multiplication par ^(^a"1).
Le plus petit prolongement fermé de M' M~x est l'opérateur de multiplication

par \p(xor1)%p(x)-1. Ecrivons qu'il est égal à J :
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localement presque partout sur ExG. Posant ç? rp2, on voit que
(p(xa)cp(x)"1 A(oc)q(x, a)"1 localement presque partout sur ExG, ce

qui prouve que G est mesurable.
La proposition suivante généralise le lemme 4.4.1 de [15].

Proposition 11. — Soit GQ le sons-groupe des oceG tels que dfj,(x oc)

A (a)dju(x). Si Go est ergodique et distinct de G, G est non mesurable.

En effet, pour a eG0, q(x, oc) A(a) localement presque partout sur
E. Supposons alors G mesurable, et soit <p une fonction possédant les

propriétés de la définition 7. Pour oc eG0, on a

<p(xoc) <p(x)A{ol)q{x, oc)'1 cp(x)

localement presque partout sur E. Si Go est ergodique, on en déduit que
y(x) est localement presque partout égale à une constante. Donc q(x,<x)

A (a) localement presque partout sur E, pour tout oc e C?. Donc
d/Li(xa) A(oc)djui(x) pour tout oc eG, de sorte que Go G.

Proposition 12. — Si G est mesurable, R9 et Rd sont sans composantes

purement infinies. En particulier, si G est de plus libre et ergodique, R9 et

Rd sont des facteurs de classe I ou II.
Supposons G mesurable. Soit <p une fonction possédant les propriétés

de la définition 7. Posons tp <p*. L'opérateur de multiplication par
ip(x) (respectivement ^(œor"1)) est un opérateur auto-adjoint ^0
inversible M (respectivement Mf) appartenant au sens large à Ld
(respectivement L9), et on a M' SMS. En outre, le plus petit prolongement

fermé de M' M*1 est l'opérateur de multiplication par

y>(x a"1) y>(x)-i [A (oc^)q(x, ot"1)-^ X^x, or1)

donc est identique à J. Alors, d'après le théorème 2, R9 et Rd sont sans

composantes purement infinies.
Le cas où G est discret a été traité complètement dans [15] (au moins

si G est dénombrable, avec %= 1), et s'étudie d'ailleurs facilement à

partir de ce qui précède ; on sait que, G étant supposé mesurable, libre
et ergodique, on obtient des facteurs de classe finie ou infinie suivant
que (p(x) est intégrable ou non; les anneaux abéliens maximaux L9

et Ld sont «non purement infinis ». Nous nous contenterons ici de donner
une proposition qui prouve que, dans le cas où G est non discret, la
situation est sensiblement différente.
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Proposition 13. — Si G est mesurable, libre, ergodique, et non discret, les

anneaux abêliens maximaux L9 et Ld sont purement infinis. En particulier,
R9 et Rd sont des facteurs de classe 1^ ou 11^

Soit K c E un ensemble compact non négligeable fixe sur lequel q> (x)
soit borné, et soit P L\ qui est un projecteur. Désignons par Tr
Tunique trace normale ^ 0 (définie à un facteur constant près) sur JR^.

On va montrer que Tr(P) + oo, ce qui démontrera la proposition.
Soit V un voisinage compact de e dans G, et soit mv sa mesure pour

doc; soit f(x, oc) rny1xK(x)Xv((X) • H es^ facile de voir que / est un
élément borné à gauche de H, et que l'inégalité (25) est encore valable

pour toute g eL\ on a ici C(oc) ^f1^f(«), donc §%{ocyC(<x)d(x ^
2§vmy1d<x 2 si V est assez petit. Donc || Uf \\ ^ 2, et par suite
0 ^ PUfUf P < 2P. Nous allons montrer, ce qui achèvera la démonstration,

que Tr(PUfUf P) peut être rendu arbitrairement grand pour
F assez petit. Remarquons que PUfUf P UPf Upf, et que Pf eDM
parce que <p(x) est bornée sur K. D'après le théorème 2, on a :

Si V est assez petit, ceci est supérieur à

Imy1 [ Jz <p(x)d/i(xj\

Or, J^ (p(x)djbt(x) >0 parce que K est non négligeable. Et, si G est non
discret, mv peut être rendu arbitrairement petit.

Dans l'exemple cité à la fin du paragraphe XI, on peut montrer, utilisant

le théorème 15 de [13], que R9 et Rd sont de classe I.
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