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Beitrâge zur Théorie

von Stutzfimktion und Radius

Von Johann Jakob Schindleb, Bolligen

Der BegrifE der Stutzfunktion hat in der neueren Differentialgeometrie
eine ziemliche Bedeutung erlangt ; aber auch im Bereich der klassischen

Problemstellungen lâBt er sich verwenden, wie W. Scherrer in seinen

Arbeiten1) gezeigt hat. Es werden darin die Grundgleichungen der
Flâchentheorie auf dièse beiden ansehaulichen und orthogonalinvarianten
GrôBen, die relativen Hauptformen und die entsprechenden Krummungs-
maBe zurûckgefûhrt. In der zweiten Arbeit werden Radius R x2 und

Stutzfunktion P — 91 x)2 respektive deren reziproker Wert 8 —

selber als Parameter eingefûhrt, was zu besonders einfachen
Grundgleichungen fuhrt. Es folgt dann der Satz, daB eine Flache, deren GauB-
sche Krûmmung als Funktion von R und S bekannt ist, durch Vorgabe
eines nicht asymptotischen Streifens eindeutig bestimmt wird.

Im AnschluB an diesen Satz liegt die Frage nahe, was fiir Flachen
resultieren, falls zwischen Stutzfunktion und Radius selber ein funktio-
neller Zusammenhang besteht. Diesen Flachen ist die vorliegende Arbeit
gewidmet.

Die Problemstellung war anfanglich die, ob neben den Rotations-
flàchen noch andere Flachen existieren, die der Bedingung

P - P(R)

genugen. Es hatte dabei den Anschein, als wâre der Gesamtheit dieser
Flachen auf Grand von râumlichen Polarkoordinaten beizukommen.
Berechnet man nàmlich in ihnen P und R, so liefert die Bedingung fur
die Abhàngigkeit dieser beiden GrôBen eine partielle Differentialgleichung
2. Ordnung fur R. Sie lâBt sich auf eine Gleichung 1. Ordnung zuruck-

*) W. Scherrer, Integralsâtze der Flâchentheorie, Comment. Math. Helv. 19
(1946). Stutzfunktion und Radius I, Comment. Math. Helv. 20 (1947). Stutzfunktion

und Radius II, Comment. Math. Helv. 25 (1951).
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~-\ Dièses ist denn auch berechenbar ; da-

gegen kann die 2. Stufe der Intégration zur Bestimmung von R nicht
mehr allgemein durchgefuhrt werden.

Es hat sich dann als zweckmâBig erwiesen, auf die Grundgleichungen
der Flâchentheorie zuruckzugreifen, und zwar auf eine Form, die
W. Scherrer schon vor Jahren in seiner Vorlesung iiber das Formen-
problem zur Darstellung gebracht hat, und die nun ktirzlich auch in
einem Aufsatz ,,Zur elementaren Flâchentheorie"2) erschienen ist. (Bei
Bezug auf dièse Arbeit soll die dortige Numerierung mit ,,Sch" gekenn-
zeichnet werden.)

Mit Hilfe dieser speziellen Form der Grundgleichungen ist es leicht
môglich, die Klasse der Flâchen P P(R) zu bestimmen. Im besondern
wird gezeigt, wie man, von einer beliebigen Raumkurve ausgehend, solche
Flâchen konstruieren kann. Dabei erkennt man, daB es bei dieser Art der
Konstruktion gerade die Bôschungslinien sind, welche AnlaB geben zur
Erzeugung von Rotationsflâchen, wâhrend aile andern Raumkurven bei
nicht trivialer Wahl der freien Parameter auf Flâchen fûhren, die nicht
Rotationscharakter aufweisen.

In einem Anhang werden schlieBlich einige Eigenschaften angegeben,
die man erhâlt, wenn man im konkreten Fall der Zentralflâchen zweiter
Ordnung die Parameter R und S einfuhrt.

§ 1. Die Abhângigkeitsbedingung îûr P=zP(R)

Notwendige und hinreichende Bedingung fur die Abhângigkeit der
Stutzfunktion P — 9t -e)2 vom Radius respektive dessen Quadrat
R x2 ist das identische Verschwinden der Déterminante

P P

Bei Verwendung von Krûmmungslinienparametern lassen sich auf
Grund der Gleichungen von Rodrigues die Ableitungen von P berechnen :

Die Gleichungen von Rodrigues lauten nach (Sch 10)

1 1

Durch skalare Multiplikation mit dem Flâchenvektor x erhâlt man
1 1

¥ flfr — ¥ ¥ — ¥ Mff — ¥ ¥
q a

*) W, Scherrer, Zur elementaren Flachentheorie, Cîomment. Math. Helv. 26 (1952).
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Dièse beiden Gleichungen lassen sich auch schreiben

oder ausgedruckt in P und BPI)u~ 2|/F ~ 2p « '

Die Ableitungen von P und R sind somit verkniipft durch die Beziehun-

gen

Pu=~- \/JrBu > Pv — \/rFRv (2)
q a

Die Bedingungsgleichung (1) wird nun

oder
Rv

0

(3)

Dièse Bedingung ist erfiillt, wenn

a)

oder
b)
oder endlich

Ru 0 bzw. Rv 0

Die beiden ersten Fâlle sind trivial ; a) fûhrt auf Kugeln und b) auf
Ebenen durch den Ursprung respektive Kegel mit der Spitze im Ursprung.
Intéressant ist bloB der letzte Fall.

§ 2* riâchen mit der Eigenschaît

Wegen R s2 ist
Ru 2x stt (4)

Aus der ersten Gleichung von Rodrigues iu — q 3lu bekommt man
durch skalare MuItipMkation mit x: xux= -— q31uX 0. Das bedeutet,
dafi ï senkrecht steht zu 3tM und sich darstellen lèlfit

X a 91 + fi % (5)
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Durch Ableitung erhalt man
3EU «„ 9i + « <ru + pu nv
Xv a, 91 + et 91, + Pv iïv + P 3lvv

Unter Verwendung der Gleichungen (Sch 8) gibt das

Durch Vergleich mit den Beziehungen von Rodrigues bekommt man
folgende sechs Bedingungen :

oc -f- P—— — Q (6) oc -f- Pv -f- /5—— — a (7)

Pu + P-y-O (8) £-^r-0 (9)

«. 0 (10) «• — /» »a 0 (11)

Die Bedingung (9) verlangt entweder p 0, was zusammen mit (6)
und (7) auf Kugeln fuhrt, oder

g g(v) unabhàngig von u. (12)

Mit dieser Einschrànkung ist die Integrabilitatsbedingung (Sch 9)

\Ï!L\ + ITiL + 1 0
,y 1 I - I ' I f I '

' y

leicht integrierbar besonders dann, wenn man zusâtzlich die erlaubte
Annahme trifft, daB der Parameter v die Bogenlânge des Normalen-
bildes sein soll, was bewirkt, daB

9 1 (13)
wird.

Die Integrabilitatsbedingung wird damit

evv + e 0 (14)
das heiBt

e a(u) sm v + o(^) cos v (15)

Mit diesen Ausdriicken vereinfacht sich das System (Sch 8) :

m (a' sin v -f br cos v) ^ w v
Vtuu — ; -—= — vl — (a sm v -\- o cos v) (a cos v-osin v)

a sm v + 6 cos #
— (a sin v + b cos u) 91

^os^-^in^ (16)

d sm v -f- 6 cos v

9l«» - 31
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Die dritte dieser Gleichungen hat das Intégral

9t — a(u) sin v + h(u) cos v (17)

Dièses Normalenbild 91 hat neben den beiden ersten Gleichungen von
(16) auch verschiedene geometrische Eigenschaften zu erfûllen:

1. $ft2 =_ q^ ajso a2 s|n v _|_ jj2 cos v _j_ 2a b sin v cos v 1 fur aile v.
Das verlangt, da8

a2 1 b2 1 aj_b (18)

2. yi2v — g2 1, was auf die unter 1) angefuhrten Eigenschaften
fuhrt.

3. yi2u e2. Nun ist 9lM (a' sin v + bf cos v) und 5R2 (a' sin v

+ b' cos v)2. Der Vergleich mit e2 (asinv -\- b cos #)2 gibt fur a und
b die Eigenschaften ar2{u) a2(m), b/2(ti) b2(u), und aus den ge-
mischten Gliedern der Binôme schlieBt man a' || b7.

Nach (18) sind a und b Einheitsvektoren, so daB man die neuen
Eigenschaften zusammenfassend schreiben kann

a' =- a[a,b] b; b[a,b] (19)

Wie sich durch Einsetzen leicht zeigen lâBt, reichen die Eigenschaften
(18) und (19) aus, um auch die beiden ersten Gleichungen von (16) zu
erfûllen.

Bevor vermittels der Gleichungen von Rodrigues der Flâchenvektor
x(u, v) bestimmt werden kann, hat man aus dem System (Sch 11)

noch die Hauptkrummungsradien zu ermitteln. Wegen gu 0 wird
daher

a a(v) (20)

beliebig. Zur Bestimmung von q dient die Differentialgleichung

a cos v — b sin v a cos v — b sin v
__

a sin v + b cos v a sin v + b cos v

Ihr Intégral lautet
v1

g — {c(u) -\- a §o (w) cos wdw — b §o (w) sin ^dw} (21)
e o o

oder mit
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r(w) cos wdw X{y)
(22)

J a (w) sin w dw ju (v)
o

und

q -= — {c(u) + a(u) X(v) — b(u) ju(v)} (23)

Es verbleibt nur noch die Intégration der Gleichungen von Rodrigues.
An ihrer Stelle kônnten auch die noch nicht ausgewerteten Bedingungs-
gleichungen (6) bis (11) verwendet werden zur Bestimmung der Faktoren
ol und j3, welche in (5) eingesetzt ebenfalls die gesuchte Flâche ergeben
wùrden.

Die zweite der Rodriguesschen Gleichungen lautet nun

Xv — (a(u)-a(v) cos v — b(u)-a(v) sin v)

Fur x (u, v) kann man daher auch schreiben

x(u,v) — a{u)-X{v) + b(u)-ju(v) — t(u) (24)

wo X und fx die in (22) definierten Funktionen bedeuten.
(24) nach u abgeleitet gibt

xu= -a'>X + b'.fi- cf

oder bei Verwendung von (19)

*u= -[a-A-6.^]-[a,b]-c' (25)

Andererseits liefert die erste Gleichung von Rodrigues

f sin v „ A t, f cos v t « .1
3^= _ a' ____(«.A-- 6 /i + c) - b'I—j—(a-A-6./« + c)J

oder

Xu= - [a(u)-X(v) - b{u)./i{v) + c(u)].[a,b] (26)

Ber Vergleich von (25) und (26) liefert fiir c die Beziehung

b] (27)

Im weiteren mu8 noch die Bedingung (4) xxu 0 erfullt sein. Das
bedeutet wegen der Orthogonalitât von a, b und [a, b]

c-ra,b] O (28)

Daher steht c senkrecht auf [a, b] und lâBt sich aus a und b kombi-
nieren

c^ha + mb (29)
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Fur die Ableitung von c bekommt man t/=lfa+mfb'{-[la+nib]-[ayb].
Die ersten beiden Glieder mûssen wegen (27) verschwinden, was bedeutet,
daB l und m Konstanten sind. Weiter erkennt man wieder durch Ver-
gleich mit (27) die Beziehung

c(u) ha(u) + m-b{u) (30)

Damit bekommt man sehlieBlich den Flâchenvektor x (u, v)

X(u, v)=- [k(v) + I].a + [f*(v) - m]-b (31)

wobei m, l Konstanten, A jo(w) cos w dw, [x ^o(w) sin w dw.
o o

Dadurch sind die Flâchen mit der geforderten Eigenschaft bei Vor-
gabe der beiden von u allein abhângigen Funktionen a(u) und b(u)
aus (15) bestimmt bis auf die Intégration der Differentialgleichungen (19)
mit den zugehôrigen Nebenbedingungen (18).

Zu einer bestimmten Lôsung von (19) kann dann immer noch der zum
Parameter v gehôrige Krummungsradius a(v) frei gewâhlt werden. Er
geht gemâB (22) ein in die beiden Funktionen X[v) und ju,(v). Weiter
kann in (31) liber die beiden Parameter l und m willkurlich veriiigt
werden.

Wûrde man in diesem Paragraphen nicht ausgehen von der Bedingung
Eu 0, sondern von der offenbar âquivalenten Ev 0, so wûrden in
(31) einfach die Rollen der Parameter u und v vertauscht sein.

§ 3. Koiistruktioii von Flâchen mit der Eigenschaft Ru 0
aus einer Raumkurv e.

Fiir den Zusammenhang der Vektoren a und b mit den skalaren GrôBen

a und b aus (15) gelten die Differentialgleichungen (19) mit den
Nebenbedingungen (18).

Fur die Ableitung des Produktes [a, b] bekommt man

/] a[[a,b],b] + 6[a,[a,b]] -a.a-6b. (32)

Schreibt man (19) und (32) in der folgenden Reihenfolge

a' a[a,b]
[û,b]'=-aa -6b (33)

V 6[a,b]
so gibt ein Vergleich mit den bekannten Formeln von Frenet fur die

Ableitungen des eine Raumkurve begleitenden Dreibeins der Tangente t,
Normalen n und Binormalen b
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t' +xn
n' - * t + rb
b' -m,

da8 die Vektoren a, [a,b] und b aufgefaBt werden kônnen als solches
Kurvendreibein :

a ~ t Tangente
— [a • b] ~ n Normale

b^b Binormale.
Weiter entsprechen sich : ¦ * '

— a ~ x Krûmmung
+ b ~ t Torsion.

Bezeichnet man die zugehôrige Kurve mit X), so muB u nun aufgefaBt
werden als Bogenlànge auf dieser Kurve.

Zur Konstruktion einer Floche mit der geforderten Eigenschaft kann man
jetzt ausgehen von einer beliebigen Maumkurve, die als Funktion ihrer
Bogenlànge u gegeben sei. Man berechnet ihr begleitendes Kurvendreibein so-
wie Krûmmung und Torsion, geht dann auf Grund der Entsprechungen (34)
ûber zu den Grôfîen der gesuchten Flâche. Mit einem willkilrlich gewàhlten
a (v) hat man noch die Funktionen A (t?) und [x (v) zu berechnen, womit die
Floche (31) vollstândig bestimmt ist.

§ 4. Botationsflâchen

Die ursprûngliche Problemstellung war die : Gibt es neben der Klasse
der Rotationsflachen noch andere Flàchen mit der Eigenschaft P=P(R)

Nachdem nun allgemein die Flâchen mit dieser Eigenschaft bestimmt
sind, ist es nachtraglich von Interesse, zu untersuchen, unter welchen
Voraussetzungen man durch die Darstellung (31) auf Rotationsflachen
gefuhrt wird.

Die beiden Scharen der Krummungslinien auf Rotationsflachen fallen
bekanntlich zusammen mit den Breitenkreisen und den Meridianen. Der
Parameter auf diesen letzteren sei v, und entspreche gleichzeitig der
Bogenlànge ihres Normalenbildes. Weiter sei b die auf die Lange 1 nor-
mierte Rotationsachse. Die Rotationsflachen um b sind dann charakteri-
siert durch die beiden Bedingungen

(*•*)„ o I (35)

17 Commentarii Mathematici Helvetici



Die erste Bedingung fur sich allein fûhrt, wie eben gezeigt, auf die
Flâehen (31). Welche Bedingungen mussen dièse Flâchen zusâtzlich er-
ftillen, um auch der zweiten Beziehung von (35) zu genugen?

Es soll also gelten atu-b 0. Fur xu bekommt man aber

Somit
{[l + X] a + [m - p] 6}.[a, b]-b 0 (36)

Das Verschwinden des Klammerausdruckes ist weiter nicht intéressant ;

also muB sein [a, b] • b 0. Das heiBt : b liegt in der Ebene von a und b :

b C-a + ^-b
Nun ist

b' 0

C a + j b + (ta + vb)[a,b] (38)

Wegen der Orthogonalitât des Dreibeins a, b, [a, b] mûssen die Kom-
ponenten von (38) einzeln verschwinden, was bedeutet, daB f und rj
Konstanten sind, und b proportional a ist.

Bei tîbertragung auf die Raumkurve bedeutet dies Proportionalitàt
ihrer Krummung und Torsion ; dièse Eigenschaft kennzeichnet aber die
Bôschungslinien.

Die Bedingung dafttr, da/î nach dem am Schlufi des Paragraphen 3 ange-
gebenen Konstruktionsjrrinzip eine andere als eine Rotationsflache erzeugt

wird, ist somit die Vorgabe einer Raumkurve, die keine Bôschungslinie ist.

Ânhang

Die Zentralflâchen zweiter Ordnung dargestellt durch Radius
und Stûtzfunktion

Die Parameterdarstellung in R und 8 fur die Zentralflâchen zweiter
Ordnung

lautet

IB + CAS-C-A] (2)(B-CHB-A)
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Der Parameterbereich in der (i?*S)-Ebene ist bestimmt als Durch-
echnitt dreier Halbebenen, deren Randgeraden sich in den drei Punkten

S -
-R2= B

1

s --!3~ c
(3)

schneiden, die aile auf der Hyperbel R8 1 liegen. Er ist fur jeden
Oktant der gleiche und wird daher achtfach ûberdeckt.

Parallelschnitte zu einer Koordinatenebene x 0, y 0 oder
z 0 bilden sich im (i?$)-Bereich als Parallelen zu den Randgeraden ab.

Weiter zeigt sich, daB eine beliebige Gerade in der (RS)-Parameter-
ebene das Bild einer Kurve auf der Zentralflâche zweiter Ordnung ist, die
sich durch Orthogonalprojektion auf eine der drei Koordinatenebenen
als Kegelschnitt abbildet. Von diesem Satz gilt auch die Umkehrung.

Der Zusammenhang zwischen den (RS)- und den Krummungslinien-
parametern u und v ist gegeben durch die zwei Beziehungen

S u-v
~ABC u + v + (A + B + G) (4)

Die Schar der Krummungslinien im (i&S)-Parameterbereich besitzt
daher als Enveloppe die Parabel

[jj _ (A + B + Cf 4ABCS

Dièse wird durch die Randgeraden des Bereiches in den Punkten

(5)

A- B

GA

B-C
(6)

tangiert.
Berechnet man noch die GauBsche Rriimmung K, so erhâlt man

„ LN -M* 1

EG-F* ABCS2 ' (7)

Man sieht daraus, daB auf den Zentralflâchen zweiter Ordnung das

Kurvennetz konstanter GauBscher Krummung identisch ist mit dem-
jenigen konstanter Stutzfunktion.

(Eingegangen den 22. April 1952.)
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