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Beitriige zur Theorie
von Stiitzfunktion und Radius

Von JoHANN JAKOB SCHINDLER, Bolligen

Der Begriff der Stiitzfunktion hat in der neueren Differentialgeometrie
eine ziemliche Bedeutung erlangt ; aber auch im Bereich der klassischen
Problemstellungen 148t er sich verwenden, wie W. Scherrer in seinen
Arbeiten?) gezeigt hat. Es werden darin die Grundgleichungen der
Flidchentheorie auf diese beiden anschaulichen und orthogonalinvarianten
Grofen, die relativen Hauptformen und die entsprechenden Kriimmungs-

mafle zuriickgefiihrt. In der zweiten Arbeit werden Radius R = x2 und

Stiitzfunktion P = (— N x)? respektive deren reziproker Wert § = -1—15

selber als Parameter eingefiihrt, was zu besonders einfachen Grund-
gleichungen fiihrt. Es folgt dann der Satz, dal eine Flidche, deren Gaul3-
sche Kriimmung als Funktion von R und § bekannt ist, durch Vorgabe
eines nicht asymptotischen Streifens eindeutig bestimmt wird.

Im AnschluB an diesen Satz liegt die Frage nahe, was fiir Flichen
resultieren, falls zwischen Stiitzfunktion und Radius selber ein funktio-
neller Zusammenhang besteht. Diesen Flichen ist die vorliegende Arbeit
gewidmet.

Die Problemstellung war anfinglich die, ob neben den Rotations-
flichen noch andere Fldchen existieren, die der Bedingung

P = P(R)

geniigen. Es hatte dabei den Anschein, als wire der Gesamtheit dieser
Flichen auf Grund von rdumlichen Polarkoordinaten beizukommen.
Berechnet man nédmlich in ihnen P und R, so liefert die Bedingung fiir
die Abhingigkeit dieser beiden GroBen eine partielle Differentialgleichung
2. Ordnung fiir R. Sie 148t sich auf eine Gleichung 1. Ordnung zuriick-

1) W. Scherrer, Integralsadtze der Flachentheorie, Comment. Math. Helv. 19
(1946). Stitzfunktion und Radius I, Comment. Math. Helv. 20 (1947). Stiutzfunk-
tion und Radius II, Comment. Math. Helv. 25 (1951).
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fithren fiir das Verhéltnis ( g“ ) . Dieses ist denn auch berechenbar ; da-

gegen kann die 2. Stufe der Integration zur Bestimmung von R nicht
mehr allgemein durchgefiihrt werden.

Es hat sich dann als zweckmédig erwiesen, auf die Grundgleichungen
der Fldchentheorie zuriickzugreifen, und zwar auf eine Form, die
W. Scherrer schon vor Jahren in seiner Vorlesung iiber das Formen-
problem zur Darstellung gebracht hat, und die nun kiirzlich auch in
einem Aufsatz ,,Zur elementaren Flidchentheorie‘‘?) erschienen ist. (Bei
Bezug auf diese Arbeit soll die dortige Numerierung mit ,,Sch* gekenn-
zeichnet werden.)

Mit Hilfe dieser speziellen Form der Grundgleichungen ist es leicht
moglich, die Klasse der Flichen P = P(R) zu bestimmen. Im besondern
wird gezeigt, wie man, von einer beliebigen Raumkurve ausgehend, solche
Fldchen konstruieren kann. Dabei erkennt man, daf} es bei dieser Art der
Konstruktion gerade die Boschungslinien sind, welche Anlaf3 geben zur
Erzeugung von Rotationsflichen, wihrend alle andern Raumkurven bei
nicht trivialer Wahl der freien Parameter auf Flichen fiithren, die nicht
Rotationscharakter aufweisen.

In einem Anhang werden schliefllich einige Eigenschaften angegeben,
die man erhilt, wenn man im konkreten Fall der Zentralflichen zweiter
Ordnung die Parameter R und § einfiihrt.

§ 1. Die Abhingigkeitshedingung fiir P = P(R) .

Notwendige und hinreichende Bedingung fiir die Abhéingigkeit der
Stiitzfunktion P == (— N x)> vom Radius respektive dessen Quadrat
R = ¥? ist das identische Verschwinden der Determinante

pP,, P,
R., R, (1)
Bei Verwendung von Kriimmungslinienparametern lassen sich auf

Grund der Gleichungen von Rodrigues die Ableitungen von P berechnen :
Die Gleichungen von Rodrigues lauten nach (Sch 10)

1 1
‘R,,—-:———Q—xu, mv:‘“ng.

Durch skalare Multiplikation mit dem Flichenvektor x erhélt man

1 1
——x%,,=~éxxu , ——xiﬁ,,————(;xx,, .

1) W. Scherrer, Zur elementaren Flachentheorie, Comment. Math. Helv. 26 (1052).
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Diese beiden Gleichungen lassen sich auch schreiben

1 1 1 1
— _— . — (g2 — _— . (g2
(=Ray=75 5@, (=NDy=7 ),
oder ausgedriickt in P und R
— P 1 = P 1
pP), = S = R, , P),=—2—= R, .
VPh=5 =5 VP) = =,

Die Ableitungen von P und R sind somit verkniipft durch die Beziehun-
gen

Pu:—‘%VFRu: PQ:%V?R'U' (2)
Die Bedingungsgleichung (1) wird nun
1 _ = |
—V PR, , —V PR,
V' E B -V —o
R, , R,
oder
1 1 =
(—-——-«)1/PR,JZ,,EO. (3)
e ©
Diese Bedingung ist erfiillt, wenn
a) (i — _1_) — 0
e o©
oder o
b) VP =0
oder endlich
c) R,=0 bzw. R,=0.

Die beiden ersten Fille sind trivial; a) fiihrt auf Kugeln und b) auf
Ebenen durch den Ursprung respektive Kegel mit der Spitze im Ursprung.
Interessant ist bloB der letzte Fall.

§ 2. Flichen mit der Eigenschaft R, =0.

Wegen R = x? ist
: R, =2x%, . (4)

Aus der ersten Gleichung von Rodrigues x, = — o R, bekommt man
durch skalare Multiplikation mit x: x, ¥ = — o R, ¥ = 0. Das bedeutet,
daB x senkrecht steht zu 9, und sich darstellen 148t

t=aR+ N, . (6)
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mvv:“‘m

Durch Ableitung erhélt man

xu=aum+amu+ﬂu%v+ﬁmuv )
xv:avm+amv+ﬁvmv+ﬁmvv .

Unter Verwendung der Gleichungen (Sch 8) gibt das
ro= (o B2 R+ (Bt AL R+ o

5, — — Ll mu+(a+ﬂv+ﬁ%)mv+(%—gw .

Durch Vergleich mit den Beziehungen von Rodrigues bekommt man
folgende sechs Bedingungen :

atfrt=—0o (8 Bt f =m0 (D
But Boe = (8) flg-=10 (9)
“W=0  (10) a — Bg* =0 (11)

Die Bedingung (9) verlangt entweder § = 0, was zusammen mit (6)
und (7) auf Kugeln fiihrt, oder

g=g() , unabhéngig von . (12)
Mit dieser Einschrinkung ist die Integrabilitdtsbedingung (Sch 9)

A1) o

leicht integrierbar besonders dann, wenn man zusétzlich die erlaubte
Annahme trifftt, dal der Parameter v die Bogenlinge des Normalen-
bildes sein soll, was bewirkt, daf

wird.
Die Integrabilitétsbedingung wird damit
€y +€6=0, (14)
das heif3t e = a(u)sinv + b(u) cosv . (15)

Mit diesen Ausdriicken vereinfacht sich das System (Sch 8) :

N (@' sin v + b’ cos v)
wn = =
asinv -+ bcosv

N — (asinv + b cos v) (@ cos v — b sin v) N,
— (asinv + b cosv) N

N __acosv — bsinw
“e asinv -+ becosv ~ ¥
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Die dritte dieser Gleichungen hat das Integral
N = a(u)sinv + b(u) cos v . (17)

Dieses Normalenbild Jt hat neben den beiden ersten Gleichungen von
(16) auch verschiedene geometrische Eigenschaften zu erfiillen :
1. N2 =0, also a2sinv + b2cosv 4+ 2absinvcosv = 1 fiir alle v.
Das verlangt, daf3
a2=1, B =1, alb. (18)

2. N =92>=1, was auf die unter 1) angefiihrten Eigenschaften
fiihrt.

3. M =¢e% Nunist N, = (a'sinv + b cosv) und N2 = (a’ sin
+ b’ cos v)%. Der Vergleich mit e? = (@ sin v + b cos v)? gibt fiir a und
b die Eigenschaften o°(u) = a?(u), b'*(u) = b%(u), und aus den ge-
mischten Gliedern der Binome schlie3t man a’ || b’.

Nach (18) sind a und b Einheitsvektoren, so dafl man die neuen Eigen-
schaften zusammenfassend schreiben kann

a =ala,b], b’ =bla,b] . (19)

Wie sich durch Einsetzen leicht zeigen liaft, reichen die Eigenschaften
(18) und (19) aus, um auch die beiden ersten Gleichungen von (16) zu
erfiillen.

Bevor vermittels der Gleichungen von Rodrigues der Flichenvektor
¥(u,v) bestimmt werden kann, hat man aus dem System (Sch 11)

Gu

€, . . Gu
@v=-(e—0)~e—, o, = — (0 e)g

noch die Hauptkrimmungsradien zu ermitteln. Wegen g, = 0 wird
daher
o= o(v) (20)

beliebig. Zur Bestimmung von g dient die Differentialgleichung

acosv —bsinv acosv — bsinwv

— : — 0
l[')”—}_9asinv—{—bcosv Gasmv—{—bcosv

Ihr Integral lautet

Q=~z—{c(u)+afa(w)coswdw——bfa(w)sinwdw} (21)
0

0
oder mit
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fa(w) cos wdw = A(v)
y (22)
fa(w) sin wdw = u(v)

und

0 = o) + a(u) Aw) — bw) p(v)} . (23)

Es verbleibt nur noch die Integration der Gleichungen von Rodrigues.
An ihrer Stelle konnten auch die noch nicht ausgewerteten Bedingungs-
gleichungen (6) bis (11) verwendet werden zur Bestimmung der Faktoren

« und B, welche in (5) eingesetzt ebenfalls die gesuchte Fliche ergeben
wiirden.

Die zweite der Rodriguesschen Gleichungen lautet nun
¥, = — (a(u)-o(v) cos v — b(u) o(v)sinv) .
Fir x(w,v) kann man daher auch schreiben
¥(u,v) = —a(w)-A(v) + b(u) p() — c(w) , (24)

wo A und u die in (22) definierten Funktionen bedeuten.
(24) nach u abgeleitet gibt

, = —a A4+b-p—,
oder bei Verwendung von (19)
¥, = —[@a-2A—b-u]fla,b] — ¢ . (26)
Andererseits liefert die erste Gleichung von Rodrigues

%, = —-a'[S“:” (a-l——b-,u—}—c)l - b'["":’” (a-a—b.ﬂ+c)] ,
oder ‘

¥, = — [a(u)-A(v) — b(u) -u(v) + c(u)]-[a,Db] . (26)
Der Vergleich von (25) und (26) liefert fiir ¢ die Beziehung
¢ (u) = c(u)[a,b] . (27)

Im weiteren muB noch die Bedingung (4) xx, = 0 erfiillt sein. Das
bedeutet wegen der Orthogonalitit von a, b und [a, b]

c-fa,b]=0. (28)

Daher steht ¢ senkrecht auf [a,b] und liBt sich aus a und b kombi-
nieren
c=l-a+mb. (29)
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Fiir die Ableitung von ¢ bekommt man ¢=0a+m'b-+[la+mb]-[a,b].
Die ersten beiden Glieder miissen wegen (27) verschwinden, was bedeutet,
daB ! und m Konstanten sind. Weiter erkennt man wieder durch Ver-
gleich mit (27) die Beziehung

c(u) =l-a(u) + m-b(u) . (30)
Damit bekommt man schlieBlich den Flachenvektor x(u, v)
¥(u,v) = — [A(v) +1]-a + [p(v) —m]-b , (31)
wobei m, | Konstanten, A = j'a(w coswdw, u= j' o (w) sin w dw.

Dadurch sind die Flidchen mlt der geforderten E1genscha.ft bei Vor-
gabe der beiden von u allein abhiéngigen Funktionen a(u) und b(u)
aus (15) bestimmt bis auf die Integration der Differentialgleichungen (19)
mit den zugehorigen Nebenbedingungen (18).

Zu einer bestimmten Losung von (19) kann dann immer noch der zum
Parameter v gehorige Kriitmmungsradius o(v) frei gewéhlt werden. Er
geht gemiB (22) ein in die beiden Funktionen A(v) und u(v). Weiter
kann in (31) iiber die beiden Parameter ! und m willkiirlich veriiigt
werden.

Wiirde man in diesem Paragraphen nicht ausgehen von der Bedingung
R, = 0, sondern von der offenbar dquivalenten R, = 0, so wiirden in
(31) einfach die Rollen der Parameter » und » vertauscht sein.

§ 3. Konstruktion von Flichen mit der Eigenschaft R, = 0
aus einer Raumkurve.

Fiir den Zusammenhang der Vektoren a und b mit den skalaren Gréfien
a und b aus (15) gelten die Differentialgleichungen (19) mit den Neben-
bedingungen (18).

Fiir die Ableitung des Produktes [a,b] bekommt man

[a,b]=[a,b]+[a,b'] = a[[a,b],b] +b[a,[a,b]] = —a-a—b-b. (32)
Schreibt man (19) und (32) in der folgenden Reihenfolge

a = ala,b]
[a,b] = —aa —bb (33)
b = bla,b] ,

so gibt ein Vergleich mit den bekannten Formeln von Frenet fiir die
Ableitungen des eine Raumkurve begleitenden Dreibeins der Tangente t,
Normalen n und Binormalen b
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b == + xn
n=—=xt + b
b = —Tn,

dafl die Vektoren a, [a,b] und b aufgefaBBt werden konnen als solches
Kurvendreibein :
a ~t Tangente
— [a-b] ~n Normale
b ~b Binormale. (34)
Weiter entsprechen sich :
— a ~ » Kriimmung

+ b ~1t Torsion.

Bezeichnet man die zugehorige Kurve mit 1y, so muBl 4 nun aufgefallt
werden als Bogenlidnge auf dieser Kurve.

Zur Konstruktion evner Fldiche mit der geforderten Eigenschaft kann man
jetzt ausgehen von einer beliebigen Raumkurve, die als Funktion ihrer
Bogenlinge u gegeben ser. Man berechnet ihr begleitendes Kurvendreibein so-
wie Kriiommung und Torsion, geht dann auf Grund der Entsprechungen (34)
iher zu den Grofen der gesuchten Fliche. Mit einem willkiirlich gewdihlten
o(v) hat man noch die Funktionen A(v) und u(v) zu berechnen, womit die
Fliche (31) vollstindig bestimmt ist.

§ 4. Rotationsfliichen

Die urspriingliche Problemstellung war die : Gibt es neben der Klasse
der Rotationsflichen noch andere Flichen mit der Eigenschaft P=P(R)?

Nachdem nun allgemein die Flichen mit dieser Eigenschaft bestimmt
sind, ist es nachtriglich von Interesse, zu untersuchen, unter welchen
Voraussetzungen man durch die Darstellung (31) auf Rotationsflichen
gefithrt wird.

Die beiden Scharen der Kriimmungslinien auf Rotationsflichen fallen
bekanntlich zusammen mit den Breitenkreisen und den Meridianen. Der
Parameter auf diesen letzteren sei v, und entspreche gleichzeitig der
Bogenlinge ihres Normalenbildes. Weiter sei d die auf die Linge 1 nor-
mierte Rotationsachse. Die Rotationsflichen um d sind dann charakteri-
siert durch die beiden Bedingungen

(%)
(I * b)u

l

R,=0
2 } (35)

I
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Die erste Bedingung fiir sich allein fiihrt, wie eben gezeigt, auf die
Fldchen (31). Welche Bedingungen miissen diese Flachen zuséitzlich er-
fiillen, um auch der zweiten Beziehung von (35) zu geniigen ?

Es soll also gelten x,-d = 0. Fiir ¥, bekommt man aber

¥, =—{l+ A]a+ [m — u]b} [a,b].
Somit
{4+ Ala+ [m — p]b}-[a,6]0 =0 . (36)

Das Verschwinden des Klammerausdruckes ist weiter nicht interessant ;
also muf} sein [a, b]-d=10. Das heillt : b liegt in der Ebene von a und b :

b=<_{-a+7b.
Nun ist
=0
={a+%b+ ({a+nb)la,b]. (38)

Wegen der Orthogonalitéit des Dreibeins a, b, [a, b] miissen die Kom-
ponenten von (38) einzeln verschwinden, was bedeutet, dal { und 7
Konstanten sind, und b proportional a ist.

Bei Ubertragung auf die Raumkurve bedeutet dies Proportionalitit
ihrer Kriitmmung und Torsion; diese Eigenschaft kennzeichnet aber die
Boschungslinien.

Die Bedingung dafiir, daf nach dem am Schluf des Paragraphen 3 ange-
gebenen Konstruktionsprinzip eine andere als eine Rotationsfliche erzeugt
wird, ist somit die Vorgabe einer Raumkurve, die keine Boschungslinze ist.

Anhang

Die Zentralflichen zweiter Ordnung dargestellt durch Radius
und Stutzfunktion

Die Parameterdarstellung in R und 8§ fiir die Zentralflichen zweiter
Ordnung

_ at y? 22 .
F(x)—”z"{'—B*'F*CT—l——O (1)
lautet s
B == @ —B) (4 —0) [R + BCS — B — C]
B2
y: = (B—0) (B —4) [R+ CAS — C — 4] (2)
02

z2

==y —p B+ 4BS— 4 B].
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Der Parameterbereich in der (RS)-Ebene ist bestimmt als Durch-
schnitt dreier Halbebenen, deren Randgeraden sich in den drei Punkten-

R,—4 R,— B R,=C
1 1 1 (3)
8= 8= o=

schneiden, die alle auf der Hyperbel RS = 1 liegen. Er ist fiir jeden
Oktant der gleiche und wird daher achtfach iiberdeckt.
Parallelschnitte zu einer Koordinatenebene x =0, y =0 oder
z = 0 bilden sich im (RS)-Bereich als Parallelen zu den Randgeraden ab.
Weiter zeigt sich, dafl eine beliebige Gerade in der (RS)-Parameter-
ebene das Bild einer Kurve auf der Zentralfliche zweiter Ordnung ist, die
sich durch Orthogonalprojektion auf eine der drei Koordinatenebenen
als Kegelschnitt abbildet. Von diesem Satz gilt auch die Umkehrung.
Der Zusammenhang zwischen den (RS)- und den Kriimmungslinien-
parametern « und v ist gegeben durch die zwei Beziehungen
u-v

S:m; BR=u-t+v+(4+ B+ 0). (4)

Die Schar der Kriimmungslinien im (RS)-Parameterbereich besitzt
daher als Enveloppe die Parabel

[R—(A+ B+ CP?P=44BCS . (5)
Diese wird durch die Randgeraden des Bereiches in den Punkten

R=B+C—4 R,=C+4—B R,=4+B—-C
A B C (6)
BC % =01 S=Z25
tangiert.
Berechnet man noch die Gauflsche Kriimmung K, so erhdlt man

Slz

LN — M? 1

K=—Fa—7 = 4BOS (7)

Man sieht daraus, dafl auf den Zentralflichen zweiter Ordnung das
Kurvennetz konstanter GauBscher Krimmung identisch ist mit dem-
jenigen konstanter Stiitzfunktion.

(Eingegangen den 22. April 1952.)
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