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Etude stochastique de l’erreur
dans un calcul numérique approché

par CHARLES Brawc, Lausanne

On sait qu’il est nécessaire d’'user de méthodes approchées dans la
grande majorité des problémes numériques posés par les applications ;
cela explique I'intérét qu’il y a & posséder des renseignements sur 1’erreur
qu’entraine ’emploi de ces méthodes. Dans un probléme particulier, ces
renseignements permettent de mesurer la valeur du résultat approché;
d’autre part, la comparaison de diverses méthodes pour une classe de
problémes doit également tenir compte (outre les questions de commo-
dité et de plus ou moins grande généralité) des erreurs plus ou moins
grandes sur les résultats.

Pour un probléme donné et pour une méthode approchée de résolu-
tion, on a en général abordé le probléeme de 1’évaluation de l’erreur en
cherchant une borne de cette erreur pour une certaine classe de données :
ainsi, lorsque le probléme comporte la donnée d’une fonction f, on a
cherché une borne de I’erreur pour tous les cas ol la fonction f appartient
4 un certain ensemble ; par exemple, on connait une borne de Y'erreur

b
commise en évaluant par la formule de Simpson 'intégrale j f(x)dz si
a

f(x) appartient & I’ensemble des fonctions dont la dérivée quatriéme a
une borne M dans (a, b).

Cette fagon d’aborder le probléme de I’étude de I’erreur ne peut donner
entiére satisfaction. Tout d’abord, dans de nombreux cas, on n’aboutit
4 aucun résultat pratiquement utilisable. En outre, les ensembles de
fonctions que I'on est amené & considérer ne sont pas trés intéressants
en général et peu en relation avec le probléme considéré : ainsi ’ensemble
des fonctions dont la dérivée quatriéme a une certaine borne dans un
intervalle n’est pas naturellement lié au probléme du calcul d’'une in-
tégrale définie; cet ensemble est beaucoup trop restreint et il est du
reste souvent inutilement compliqué de s’assurer si une fonction donnée
lui appartient. Pour cette raison, de nombreuses évaluations d’erreur
sont inutilisables, par les hypothéses trop restrictives qu’elles impliquent.
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Enfin, il est en général impossible d’utiliser ces évaluations pour une
étude comparative des diverses méthodes : en effet, elles font intervenir
des ensembles différents de données, comme on peut le voir trés facile-
ment déja pour les formules de quadrature.

Or le probleme de I’évaluation de l’erreur peut étre abordé d’une
maniére toute différente, plus féconde semble-t-il. Il suffit pour cela de
doter d’une distribution en probabilité 1’ensemble des fonctions qui
figurent dans les données, plus précisément, de considérer ces fonctions
comme des fonctions aléatoires ; I’erreur devient alors une variable aléa-
toire, dont on étudie la distribution en probabilité. En d’autres termes, le
probléme se présente ainsi: choisir, d’une maniere plausible, I’ensemble
des données, avec sa distribution en probabilité, puis en déduire la
distribution de l’erreur, pour la méthode approchée considérée ; en fait,
on se bornera & étudier certains éléments de la distribution de l'erreur,
les moments d’ordre un et deux, éléments qui suffiront en général & nous
renseigner.

On trouvera dans ce travail un exposé général et la justification de la
méthode proposée, qu’on peut appeler I'étude stochastique de l'erreur
dans les méthodes numériques approchées; la méthode s’applique en
principe & tous les problémes linéaires, c’est-a-dire pour lesquels 1’erreur
est une fonctionnelle linéaire des données; on a traité ici les cas de
Pinterpolation, de la quadrature numérique, de ’approximation linéaire
par une base incompléte et de l'intégration approchée d’une équation
différentielle par une équation aux différences. Les calculs effectifs sont
en général assez longs (ce qui tient en fait non pas & la méthode proposée
mais au probléme lui-méme); une publication ultérieure donnera les
résultats de ces calculs et les conclusions qu’on en peut tirer.

§ 1. Moyenne et variance de P’erreur

Nous ne considérerons que des problémes et des méthodes linéaires
(ce qui est essentiel) et, pour ne pas charger inutilement 1’exposé, nous
supposerons que ces problémes comportent la donnée d’une seule fonc-
tion, fonction numérique réelle sur un ensemble &. L’évaluation de
Perreur que nous ferons consiste a considérer cette fonction comme une
fonction aléatoire réelle &(t), ¢ étant un «point» de &. Nous supposerons
Pexistence des moments d’ordres un et deux de &(t), et de plus

EEE)=0;
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nous poserons

EE@)-£¢) =r(t, 1)) ;

cette fonction r(¢,t’) est la covariance de £(f). La dérivation, 1'inté-
gration (au sens de Riemann) et d’'une fagon générale la notion de limite
seront toujours prises en moyenne quadratique?). Dans le cas ou £ est
un segment (a,b), les opérations de dérivation et d’intégration sur
&(t) induisent des opérations sur la covariance, dont nous retiendrons les
suivantes?) :

I. Pour que la dérivée &'(t) de &(t) existe dans &, il faut et il suffit
que r(t,¢) ait une dérivée seconde généralisée pour ¢ =1t"; alors
9 02

d
4 by r_ s 2 oz
r(t,t") posséde dans &x & des dérivées 5% 5 5o

et les opérateurs £

et —gt— sont permutables.

b
II. Pour que I'intégrale [ £(t)dt existe, il faut et il suffit que
o
fdtfr,¢)dt
existe. @ @

ITI. (Intégrale de Stieltjes.) Soit une fonction aléatoire 7(t) avec

Eqn@)n@')=s(t,t) ;

b
J &) dn(t)

pour que

existe, il faut et il suffit que

bb
Jfr@, thazs@,t)
existe. @ a
IV. Soit T
E(T) = fE@)dn(t) ;
sa covariance est

TT
ffr@, t)dese, t')
T

et les opérateurs E et | sont permutables.

1) Nous ne rappellerons pas ici la définition de la fonction aléatoire; nous renvoyons
& la Note que M. M. Loéve a rédigée et qui se trouve & la fin de I’ouvrage de M. P, Lévy,
Processus stochatiques et mouvement brownien (Gauthier-Villars 1948). Les renvois & cette
Note sont désignés ci-dessous par «Loéves,

%) Voir «Loéve», p. 314.
3) Voir «Lodve», p. 315 et suiv.
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Dans le cas ol & est un segment d’un espace euclidien & n dimensions,
il est aisé d’étendre les propriétés précédentes.

Le probléme considéré et la méthode approchée étudiée étant linéaires,
Perreur elle-méme est une fonctionnelle linéaire des données. Nous
sommes donc amenés & étudier la distribution en probabilité de fone-
tionnelles linéaires de £(¢). Soient donc

m = L, {£(8)} , Ny = L, {E(t,)}

deux fonctionnelles linéaires ; nous supposons que les opérations L, et
L, sont permutables avec E ; cela aura certainement lieu si ces opéra-
tions consistent en combinaisons linéaires de valeurs, en dérivations et
en intégrations ; on a

Eny=EBL {50} = L{EEW)}
Eny=E L {§(t")} = L {E £(t)}

et ces moyennes sont nulles en vertu de ’hypothese faite sur E &(t);
ensuite

E nyny = B L {£()}- L, {4(¢')}
= L, L,{E §(®)(t')}

donc
Enyn, =L, Lz{r(t,t')} ) (I)

ou L, porte sur ¢ et L, sur t’. Cette relation résout complétement le pro-
bléme de 1’évaluation de la variance de l’erreur. La suite de ce travail
est consacrée & son application & des opérateurs particuliers.

Remarquons encore qu’il sera souvent commode d’introduire une hypo-
thése supplémentaire sur la fonction £(¢): nous la supposerons station-
naire d’ordre deuz, c’est-a-dire telle que la covariance r(t,t’) ne dépende
que de la différence ¢ — t’; on écrira alors

r(t,t'y=R(@t —1t) .

Il n’y a cependent pas d’intérét & faire cette restriction dans une étude
générale (car elle implique non seulement une restriction sur la fonction,
mais aussi sur son domaine de définition).

Le choix de la fonction de covariance r(t,t’) est en principe assez
arbitraire : il revient & fixer en partie la distribution en probabilité de
I’ensemble des données pour un probléme considéré. Lorsqu’on suppose
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que la fonction est stationnaire d’ordre deux, et si & est un segment &
une dimension, il semble assez raisonnable de choisir la fonction
sina(t —¢')

ait —t') ’

r(t,t') = A

c’est en effet la covariance d’une fonction stationnaire dont le spectre
est limité & la bande (— a, + a), et constant dans cette bande. Les
méthodes approchées ont toutes pour effet de supprimer la partie du
spectre située en dehors d’une certaine bande : il est donc assez justifié
de négliger cette partie du spectre. Pour le reste, comme il n’y a a priori
aucune raison de choisir une autre distribution, nous prenons un spectre
constant. Ainsi choisie, la covariance contient encore deux paramétres
A et a dont la détermination dans un cas particulier est un probléme
d’estimation statistique sur lequel on reviendra plus loin.

§ 2. Erreur d’interpolation

Considérons une formule d’interpolation, qui consiste & donner la
valeur f(¢) d’une fonction par une combinaison linéaire

5 a,(0)f (¢

de valeurs de cette fonction. Pour une fonction aléatoire &(t), l'erreur
d’interpolation est la fonction

n(t) = &(@t) — Zwi(t) () ;
pour abréger, posons
n(¢) = D) ;

par la relation I du § 1, on a immédiatement

En@)n(t") = DDy r(t,t)
donc, en explicitant,

En@ne) =1, ¢) = ZanOr,t) — Zalt)r, 1
+ %‘Z’ak(t)ai(t’)r(tk, t) ; 2.1)

i, en particulier, ¢ =/, et en tenant compte de l'identité évidente
T(t, t,) = T(t’, t),

En2@t) =r(,t) —2 %‘a'k(t)r(tk, t) + zk: Zak(t)ai(t)r(tk’ t;)
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Ces relations sont valables quel que soit le nombre de dimensions du
domaine de définition de la fonction £&(f), Considérons maintenant en
particulier I'interpolation linéaire sur un intervalle (0,a). On a

a—1

D0 = 0 —[“ L £0 +~ £

et
Boi(t) =r(t,0) —— [(@ — 1) r(0, ) + t7(@, ]

i %[(a — £)27(0,0) + 2t(a — ) (0, @) + 2r(@, )] . (2.2)

Si la fonction &(t) est stationnaire d’ordre deux, on a simplement

@) =1+ (27 + (2) | RO + 2572 Rew

a

~ 2 e — ) R@) + ¢ Rl — 1] . (2.3)

Prenons également une interpolation parabolique dans lintervalle
(— a, + a), On aici

By () =53 1t —a)

ay(t) = — (a* — )
By () = 5oz b+ ) ,
d’ou
Erpt)=r(t,1)— —%[t(t;“) r(—a, 0+ (@—mr,n+ LEY, (a,t)]

+ LD o 0,0 4 2D

+ {(t—a) (a®—1t?) r (—a, 0)+ t (t+a) (a®2—12) r(0,a) + %t"’(t?——a?)r(——a,a)];

pour une fonction stationnaire d’ordre deux, on a plus simplement

t? (t—}-a)2

+ 212 (a? — 12) B + MR(2a)

a4

_.?}2_[“; _a)B(t + a) + 2(a® — )R(t) + t(t + @) R(t — a)] ,
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ou, en posant ¢t = u-a,

En*(ua) = (2 —3% u? +3 u*) R(0) + 2u2(1 — u?) R(a)
—3u(1 — u?)R(2a) + u(1 — w)R(a + au)
—2(1 —u®*)R(ua) —u(l + u)R(a — ua) .

La relation (2.1) exprime en somme que K 7(t)%(t') est Perreur pour
la double interpolation sur r(t,¢’), en (¢,t). Pour évaluer cette co-
variance, il convient donc tout d’abord d’interpoler r(t,t’), relative-
ment & t’, par la formule considérée, pour ¢t =¢, ¢,,...,¢,, puis d’inter-
poler les valeurs trouvées, toujours avec la méme formule, et cette fois
relativement & ¢.

Considérons ’exemple suivant : on demande la variance £ 7?(t) pour
une interpolation parabolique dans lintervalle (— 1,4 1), la co-
variance de &(¢) étant

sin (¢ —t)

R(tl_t)= t,—t H

calculer en particulier cette variance pour ¢ = 0,5; on commence par
calculer l'interpolation de R(¢' — ¢) relativement & ¢’ dans (—1, +1),
pour t = —1,0,+1. Soit ainsi

s(t,t')y = D, r(t,t)

Perreur commise dans une interpolation, selon la formule choisie et
relativement & ¢t’. Comme on a

R (0) = 1,000 0000 R (1,5) = 0,664 9967
R (0,5) = 0,958 8511 R (2) = 0,454 6487 ,
R(1) = 0,8414710
il vient

s(—1,3) = —0,0115998 ,

3(0,3) = — 0,001 5166 ,

s4,4)  =00044171

s(1,3) = 0,009 5789

d’ol, en interpolant paraboliquement par rapport & la premiére variable,
une erreur pour ¢’ =1, avec une variance

E n*(3) = 0,000 5125 .
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Ce résultat nous donne une mesure de la dispersion de l’erreur (autour
d’une moyenne égale & zéro) pour une interpolation faite dans les condi-
tions indiquées.

Un calcul analogue permettrait par exemple d’étudier I’erreur dans
une interpolation linéaire sur I'intervalle (0, 1); en reprenant la méme
covariance, on aurait alors

E () = 0,003 03 .

On remarque que les calculs précédents ne font pas intervenir les
dérivées des fonctions envisagées, mais seulement la covariance, et cela
quelle que soit la formule d’interpolation envisagée. La comparaison de
diverses formules d’interpolation devient ainsi directement possible :
pour une covariance donnée, il est possible de dire alors quelle est en
moyenne la meilleure formule.

Il reste naturellement, dans un cas particulier donné, & choisir con-
venablement la fonction de covariance ; si ’on adopte la forme

sina(t —t')
at —1t)

rt,t')= A

il reste encore & estimer (au sens de la statistique) les paramétres 4 et a.
Pour une fonction particuliére, on peut le faire assez bien au moyen des
erreurs d’interpolation linéaire ou, ce qui revient au méme, par la
moyenne quadratique des différences secondes. En effet, pour des entrées
tabulaires de pas %, on a pour les différences premiéres 4, la variance

E A2 =2R(0) — 2R(h) ;
done, avec la fonction R choisie, un dévelopement limité en A :
EM=Aah(} — ka*ht +- ) ;
ensuite, pour les différences secondes 4,,
E A2 = 6 R(0) — 4 R(R) + 2R(2h) ,
donc, avec-la fonction R choisie,
EM=Aa' W3} —La2l2+.-0) .

En faisant le calcul de ces moyennes, on obtient, avec une plus ou
moins grande précision, une estimation des parameétres.
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§ 3. Intégration approchée

Considérons une formule d’intégration numérique approchée sur un
domaine D par une combinaison linéaire de valeurs de la fonction

j.f(t)dt D Y af(t)
b B
pour une fonction aléatoire £(t), l'erreur est une variable aléatoire
i &= ,ff(t)dt — X a;E(t) ;
b i

calculons la covariance de cette variable aléatoire et d’une autre variable
', égale & P’erreur commise par ’emploi d’une seconde formule d’inté-
gration numérique, relative & un domaine D’

n' = [EM)dt — X a; &)
D’ i
posons, pour abréger,
= Lt{g(t)} ’ 7], = L;'{E(t,)} )
les opérateurs L et L’ sont linéaires et permutables avec E, d’ol

E n 7], = Lt L;:T(t, t’) .
En explicitant, on a

Enng ={fr@t dtdt’+2a a7 (t;, ty)

DD’

——Za jr(t,,t' Za,k_fr(t t,)dt . (3.1)

Les considérations précédentes sont valables pour des intégrales mul-
tiples quelconques ; si on a plus particuliérement des intégrales simples,
si la fonction &(t) est stationnaire d’ordre deux, et si I'on pose (avec
D= (a,b), D'=(a,bd))

r(t,t') = R(@t —1t) , s(t)=fR(z)dz ,
o
il vient
b
Enn' = flstt —a') — st —b)]dt + ,z;aia;r(t.-, k)
’ b
- Zai[‘g(ti —a') — s, — b)) — %'a’k j.r(ta t;)dt

233



ou encore

Eny = [j?s(t —a’)dt — Zast; — a’)]
— [j?s(t — b')dt — 2ags(t; — b')]
b
— %’a;{jR(t —t)dt — T a,R(t, — t})] .

Si la fonction R(h) posséde des dérivées d’ordre assez élevé, il est
possible de borner par le procédé classique les trois parenthéses [] de
cette expression ; on a donc ainsi facilement une borne pour E 75 7'.

Cherchons maintenant la variance de 1’erreur pour une formule donnée :
il suffit de faire ci-dessus D = D’, a; = a;, t,=1t;. En particulier,
pour une intégrale simple sur (@,b), et pour une fonction stationnaire
d’ordre deux,

En® = j?s(t — a)dt — Za,-s(t,- — a)
— [j?s(t — b)dt — Za,-s(ti — b)] (3.2)
b
— %’ak [JR(t —t)dt — X a,R(t; — )] .

Ceci permet facilement de comparer entre elles, au point de vue adopté
ici, diverses formules de quadrature numérique.

§ 4. Approximation linéaire d’une fonction

Nous allons maintenant étudier, toujours au méme point de vue,
Perreur que I’'on commet en remplacant une fonction par une certaine
approximation linéaire au moyen d’une base incompléte. Reprenons
donec une fonction aléatoire £(f) définie sur un domaine €; nous sup-
posons encore que sa moyenne est nulle et nous désignons sa covariance
par r(t,t’). Soit, sur &, un systéme de n fonctions (non aléatoires)

uy (), ..., u,(t)

linéairement indépendantes. Nous supposons qu’'on a défini sur ce
systéme et sur £ une opération de produit scalaire, qui fait correspondre
a deux fonctions f et ¢ un nombre désigné par (f,g), dépendant bili-
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néairement de f et de g. On supposera que les u; sont orthonormées par
rapport & ce produit et on pose

Vi = (E:ui) >

les ; sont des variables aléatoires ; soit alors la fonction aléatoire

@) = L () = £() — 2 pou,(0) 5

c’est I'erreur dans ’'approximation en moyenne quadratique de &(t) par
les ;. On a E n(t) = 0, et, par la relation (I) du § 1,

Eqt)n,) = Lt1 Lt, 7(ty, Lo) (4.1)

pour autant que le produit soit permutable avec E, ce que nous sup-
poserons. On peut donc évaluer de cette maniére I’erreur quadratique
moyenne pour une approximation linéaire. Pour effectuer le calcul, on
formera tout d’abord
8(ty,8a) = Ly, 7(ty, )

c’est-a-dire
8(ty, 85) = r(ty, b)) — 2 wi(ts) (r(ty, 8'), ui(t'))
puis ¢

En(t) n(t) = s(ty, t) — 2 u; (ty) (s(t, ty), us () (4.2)

1

ce qui résout le probleme.
L’hypothése que les fonctions u; sont orthonormées n’est pas essen-
tielle. Dans le cas d’un systéme quelconque de fonctions %,, on a simple-

ment n(t) = @) — Z;; @i, we () (6(E), ui(t))

et la suite des calculs se fait de la méme maniere.

Remarquons encore que 'opération L est la projection sur la variété
linéaire des fonctions orthogonales & 1’ensemble des fonctions wu,(t). Si
’on posséde une base compléte dans cette variété, le calcul de L se fait
directement.

Prenons maintenant le cas particulier ou le domaine de définition des
fonctions est l'intervalle (a,b), le produit scalaire étant simplement
Vintégrale du produit sur cet intervalle. Si les fonctions %; sont ortho-
normées, on a

n b
() =LER) = &@1) — {7 u;(t) § £(2) u;(2)dz
donc " - ¥
s(t, ') =r(t, t') — X u,(t') frt, 2) u,(z)dz
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puis

Eqt)n) = s, t’)——zfu,(t)js(z ') uy(2)dz .

k=1

Si on prolonge la suite des u,; de fagon & obtenir un ensemble complet
sur (a,b), ona
s(t,t') = Zui(t’)jr(t z) u;(2)dz
nil
Inﬁs a b
En@)nt') = X us(t) fo(z, ') up(2)dz ;

k=n+1 a

ces expressions pourront étre plus commodes pour un calcul approché
de E n(t)n(t').

Prenons un exemple: soit I'intervalle (0,1) et une seule fonction
u,(t) = 1; choisissons
sina(t —t')

rit.t) = a(t —1t')

et posons, pour simplifier I’écriture,

sin ¢

¢
go(8) = e g-1(2) =!go(z)dz )

¢
g_o(t) = 6“ g_,(z)dz ;

la fonction g¢g_, est la transcendante connue (et tabulée) Sit; par un
calcul simple, on a ¢ _,(!) =¢8Sit 4 cost — 1; alors

8, ') = golat — at’) — - [g_a(at) + g_y(a — a1)
E () nt') = go(at — at') — - [g_l(at) +g.1(a — at)]
— "‘[9—-1(‘” ) +g-ile —at')] + — re 9—-2(“) ;

en particulier, pour la variance de #(¢),

Enit)=1—— [g-l(at) + 9@ —at)l + 5 9—-2(“)
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Il est intéressant de chercher quel est ’ordre de grandeur en fonction
dea.On a

at 20 i
Enz(t)z«l—é—(l—-—zt)z—{— 61 [6t(¢t —1)(@2—¢t+1)—114--- ;

donc, si ¢t #1, ona
En*(t) = O(a?)

tandis que si ¢t =4, on a
En*t) =0(a%) ;

ainsi I'ordre de grandeur de ’erreur moyenne quadratique est un, sauf
si t =14, ot il est deux. Cela ne signifie toutefois pas que cette erreur,
pour une valeur donnée de a, est sensiblement plus petite pour ¢ =1
que pour les valeurs voisines (la fonction £ 7%(t) est continue); cela
confirme en particulier la remarque qu’une évaluation d’erreur qui se
borne & l'ordre de grandeur donne souvent une idée fausse, surtout
lorsqu’on désire comparer divers résultats.

L’approximation linéaire d’une fonction est une méthode fréquem-
ment utilisée, par exemple dans I'intégration d’équations différentielles.
Les considérations précédentes permettent toujours d’étudier, au point
de vue stochastique, I’erreur commise.

§ 6. Equations aux différences

La substitution d’une équation aux différences & une équation diffé-
rentielle est un procédé trés commode pour l'intégration approchée : il
semble étre méme le seul utilisable dans de nombreuses circonstances.
Nous allons étudier 'erreur correspondante, en nous plagant encore au
point de vue stochastique.

Considérons une équations différentielle linéaire

D &) = o(2) (5.1)
avec des conditions «aux limites » linéaires
M, E(t) = p,(t) p=1,...,n (5.2)

fixant exactement la solution; ¢ désigne symboliquement une variable
définie dans un domaine &, & un nombre quelconque de dimensions, les
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conditions portant sur une partie # de & seulement ; on suppose que le
probléme posé est possible et posséde une solution et une seule. Soient
D Popérateur aux différences qu’on va substituer & D, M) celui qu’on
substitue & M,. La solution approchée est alors solution des équations
linéaires

D° £*(t,) = @ (tx) t, € &° } (5.3)

M: E*(t) = v, (t) t, € F0

oll &° est un réseau choisi sur & et #° une partie de &°.
Les équations aux différences ont une solution

Ex () = X ags 9 (t) + Z Z b v, (t.)
t p 1

done

() = Zan D E() + Z Z R M, (L) ;
les coefficients a,; et b sont tels que, pour toute fonction f(¢),
Do%_j a; [ (8) = f(t)
M"p‘i‘_‘,' a ft) =0
D° I3 b2 f,(t) = 0
P i

My ZX0Q f,(t)=f,(t) ;
P 1

(5.4)

Perreur est donc
(k) = E(t) — Zag DER) — ZEOF) M, 6() ;
or par les relations (5. 4) v o
D® n(t) = (D"— D) &(t,) ,
M n(t) = (M) — M,) () .

Soit al
et E 5ty n(t) = ulty, ;) ;

I'opération’ E est permutable avec D, D°, M, et M ; on a donc (I'in-
dice indiquant la variable sur laquelle opérent les D et les M),
ng -D(t,,; u(tksti) =k ng n(tk) -D(t)i n (ti)
= E (Dg, — Dyy) n(ts) (Dg;— Dy,) n(t;)
- (D(t)k""'Dtk) (Dg{'_"'-Dti) r(tkvti)
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et une relation analogue pour les M, ; donc

Do 'D u(tluti) i (Do _Dtk) (DO —D@) r (tk,ti) } (5 5)
M: tk p t u(tk: i) - (Mp tk p tk) (Mp ti Mp,t-i) r (tk:ti) .

Posons alors
Dgi u(te, b)) = v(be, 1) }
MP ti u(tk’ti) - wp(tk, ti) >

on a alors, par (7),

Do (tk’ t') = (Do - tk) (Do - t;') r (tkati) ’ ] (5 6)
p tr v(tk’ z) - (Mp tr ~ p tk) (D Dti) r(tks t:’) ’ '
ot
Wy (b, ;) = (DO, ""‘Dtlc) (Mp T I’,ti) (b bs) } (5.7)
MO >tk w (tk’t ) - (Mp tp ~ p tk) (Mp t; p,t,') r(tk’ ti) . .

Ainsi pour calculer une valeur de wu (¢, ¢,), il faut

1. déterminer la fonction v(t,,¢;), pour tout ¢,€ &°, ce qui résulte
des équations (5.6), dont la résolution est identique & celle du systéme
(5.3);

2. déterminer les fonctions w, (¢, ;) pour tout ¢; € F°, & partir des
équations (5.7), qui sont aussi de la forme (5. 3)

3. enfin calculer u(t,,?;), ce qui comporte une fois de plus la résolu-
tion d’un systéme linéaire algébrique qui ne différe des précédents que
par les seconds membres.

La détermination de la fonction (¢, ;) se fait donc en principe par
la résolution des mémes équations aux différences que la fonction &*
elle-méme ; il semble, & premiére vue, que cela implique une somme
considérable de calculs. Il faut toutefois remarquer que la précision re-
quise étant moindre que pour &*, il est possible en général de prendre
un réseau plus grossier, ce qui entraine des allegements.

Voyons en particulier ce qui se passe lorsque les conditions aux limites
portent sur les valeurs de la fonction inconnue elle-méme (et non sur des
dérivées) ; les équations (5.2) se réduisent &

Et) = y(1) sur F
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donc n =1, M,=1 et M) =1; alors les équations (5.5) sont
Dt, Dy w(te,t) = (ng""‘Dtk) (D?‘.-——- Dy) r (&, t;) dans &°
u(t,t;) =0 sur AV

on pose alors
Dggu(tk’ti) = v(k, ;) ,
et on a
D, v(t,t) = (D, — Dy,) (Dy;— Dy) r(te, t)) dans &°

v(tt) =0 pour ¢, € A0

Dans ce cas, on déterminera successivement v(t,,?,), puis %(¢,,?,),
toujours par la résolution des mémes équations aux différences (aux
seconds membres prés).

Pour fixer les idées, considérons la résolution du probléme de Dirichlet
dans un domaine plan &, de frontiére 7. L’opérateur D est alors le la-
placien, D°® est un opérateur aux différences, défini sur un réseau &°
étendu sur &; pour simplifier, nous supposerons que la frontiére #de &
est constituée par des arétes du réseau £° et que I'on a ainsi #° = 7;
le choix de D° comporte un certain arbitraire, et nous ne préciserons pas
quel est ce choix. Le probléme est donc

DEt)y=0 dans &,
E(t) = y(1) sur 7,
et le probléme approché
DO Ex(t,) = 0 t, € &0,
£*(t) = v (t:) ty € Z,

d’oli, en résolvant un systéme linéaire,
5*(tk)=2:bki7(ti) t, € C° ;€ F,
done

‘5*(tk) = Z bki‘f(ti) .

Soit alors #(f,) l'erreur en £, c’est-a-dire

n(t) = &) — %’ bre £(t)
puis
u(ly, t;) = E n(te) n(t:)
et
V() = D?{ u(tks L) ;
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on détermine d’abord cette fonction v par les équations
D(t)k Ve, ) = (ng - Dtk)(Dg,- - Dt,') r(ty,t) , t,€C°,
'v(tk,ti)zo 5 tkEj—,

cela pour tout couple (¢,?;); on remarque que les seconds membres
sont liés & l’erreur que 'on commet en remplacant 1'opérateur D par
Popérateur D° sur la fonction de covariance. On a ensuite w(t,,t;) par
le systéme linéaire (qui ne se distingue du précédent que par les seconds
membres)

D?iu(tlwti) = v(ly, t,) tieeo )

u(tk,ti) :0 tiEj.

Ces considérations permettent de comparer entre eux les divers opéra-
teurs D° que I'on a proposés. Elles permettent également fort bien de
comparer, en ce qui concerne la précision, les méthodes d’équations aux
différences avec d’autres méthodes de résolution approchée du probléme
de Dirichlet (par exemple les méthodes de résolution par une approxima-
tion linéaire).

Le choix de la fonction de covariance, dans le cas d’un domaine & deux
dimensions, pourrait se faire de la maniére suivante : en supposant la
fonction aléatoire stationnaire d’ordre deux, on choisit une covariance
dont le spectre du Fourier (& deux dimensions), se réduit & une constante
dans un cercle et est nul & I’extérieur de ce cercle. On a alors

2J(aV h2+ b2
aV hi+h}

R(hh hz) =4

Il est clair en outre que tout ce qui a été dit ci-dessus s’étend sans
autre & un nombre quelconque de dimensions.

(Regu le 21 mai 1952.)
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