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Etude stochastique de Terreur
dans un calcul numérique approché

par Chables Blanc, Lausanne

On sait qu'il est nécessaire d'user de méthodes approchées dans la
grande majorité des problèmes numériques posés par les applications;
cela explique l'intérêt qu'il y a à posséder des renseignements sur l'erreur
qu'entraîne l'emploi de ces méthodes. Dans un problème particulier, ces

renseignements permettent de mesurer la valeur du résultat approché ;

d'autre part, la comparaison de diverses méthodes pour une classe de

problèmes doit également tenir compte (outre les questions de commodité

et de plus ou moins grande généralité) des erreurs plus ou moins
grandes sur les résultats.

Pour un problème donné et pour une méthode approchée de résolution,

on a en général abordé le problème de l'évaluation de l'erreur en
cherchant une borne de cette erreur pour une certaine classe de données :

ainsi, lorsque le problème comporte la donnée d'une fonction /, on a
cherché une borne de l'erreur pour tous les cas où la fonction / appartient
à un certain ensemble ; par exemple, on connaît une borne de Terreur

b

commise en évaluant par la formule de Simpson l'intégrale §f(x)dx si
a

f(x) appartient à l'ensemble des fonctions dont la dérivée quatrième a

une borne M dans (a, 6).
Cette façon d'aborder le problème de l'étude de l'erreur ne peut donner

entière satisfaction. Tout d'abord, dans de nombreux cas, on n'aboutit
à aucun résultat pratiquement utilisable. En outre, les ensembles de

fonctions que l'on est amené à considérer ne sont pas très intéressants
en général et peu en relation avec le problème considéré : ainsi l'ensemble
des fonctions dont la dérivée quatrième a une certaine borne dans un
intervalle n'est pas naturellement lié au problème du calcul d'une
intégrale définie; cet ensemble est beaucoup trop restreint et il est du
reste souvent inutilement compliqué de s'assurer si une fonction donnée

lui appartient. Pour cette raison, de nombreuses évaluations d'erreur
sont inutilisables, par les hypothèses trop restrictives qu'elles impliquent.
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Enfin, il est en général impossible d'utiliser ces évaluations pour une
étude comparative des diverses méthodes : en effet, elles font intervenir
des ensembles différents de données, comme on peut le voir très facilement

déjà pour les formules de quadrature.
Or le problème de l'évaluation de Terreur peut être abordé d'une

manière toute différente, plus féconde semble-t-il. Il suffit pour cela de

doter d'une distribution en probabilité l'ensemble des fonctions qui
figurent dans les données, plus précisément, de considérer ces fonctions
comme des fonctions aléatoires ; l'erreur devient alors une variable
aléatoire, dont on étudie la distribution en probabilité. En d'autres termes, le

problème se présente ainsi : choisir, d'une manière plausible, l'ensemble
des données, avec sa distribution en probabilité, puis en déduire la
distribution de l'erreur, pour la méthode approchée considérée ; en fait,
on se bornera à étudier certains éléments de la distribution de l'erreur,
les moments d'ordre un et deux, éléments qui suffiront en général à nous
renseigner.

On trouvera dans ce travail un exposé général et la justification de la
méthode proposée, qu'on peut appeler l'étude stochastique de l'erreur
dans les méthodes numériques approchées ; la méthode s'applique en
principe à tous les problèmes linéaires, c'est-à-dire pour lesquels l'erreur
est une fonctionnelle linéaire des données ; on a traité ici les cas de

l'interpolation, de la quadrature numérique, de l'approximation linéaire

par une base incomplète et de l'intégration approchée d'une équation
différentielle par une équation aux différences. Les calculs effectifs sont
en général assez longs (ce qui tient en fait non pas à la méthode proposée
mais au problème lui-même) ; une publication ultérieure donnera les

résultats de ces calculs et les conclusions qu'on en peut tirer.

§ 1. Moyenne et variance de Terreur

Nous ne considérerons que des problèmes et des méthodes linéaires
(ce qui est essentiel) et, pour ne pas charger inutilement l'exposé, nous

supposerons que ces problèmes comportent la donnée d'une seule fonction,

fonction numérique réelle sur un ensemble <5. L'évaluation de

l'erreur que nous ferons consiste à considérer cette fonction comme une
fonction aléatoire réelle £(t), t étant un «point» de €. Nous supposerons
l'existence des moments d'ordres un et deux de Ç(t), et de plus
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nous poserons E Ht).Ht') r(t,t'V) ;

cette fonction r(t,tr) est la covariance de ij(t). La dérivation,
l'intégration (au sens de Riemann) et d'une façon générale la notion de limite
seront toujours prises en moyenne quadratique2). Dans le cas où <5*est

un segment (a, b), les opérations de dérivation et d'intégration sur
f (t) induisent des opérations sur la covariance, dont nous retiendrons les

suivantes3) :

I. Pour que la dérivée Çr(t) de £(t) existe dans il faut et il suffit
que r{t,tf) ait une dérivée seconde généralisée pour t t' ; alors

t (t, t!) possède dans <5x c?des dérivées -^-, ^—,, ¦ -.-, et les opérateurs E
* ot ot otot

et -=- sont permutables.
et

b

II. Pour que l'intégrale J £(t)dt existe, il faut et il suffit que
a

fdt$r(t,t')dt'
existe. a a

III. (Intégrale de Stieltjes.) Soit une fonction aléatoire rj(t) avec

pour que

existe, il faut et il suffit que

$$r(t,t')d*S(t,t')
existe. ° °

IV. Soit T

sa covariance est T T

Sfr(
T

et les opérateurs E et Jsont permutables.

x) Nous ne rappellerons pas ici la définition de la fonction aléatoire; nous renvoyons
à la Note que M. M. Loève a rédigée et qui se trouve à la fin de l'ouvrage de M. P. Lévy,
Processus stochatiques et mouvement brownien (Gauthier-ViUars 1948). Les renvois à cette
Note sont désignés ci-dessous par «Loève».

2) Voir «Loève», p. 314.

8) Voir «Loève», p. 315 et suiv.
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Dans le cas où <2 est un segment d'un espace euclidien à n dimensions,
il est aisé d'étendre les propriétés précédentes.

Le problème considéré et la méthode approchée étudiée étant linéaires,
Terreur elle-même est une fonctionnelle linéaire des données. Nous
sommes donc amenés à étudier la distribution en probabilité de
fonctionnelles linéaires de Ç(t). Soient donc

deux fonctionnelles linéaires ; nous supposons que les opérations Lx et
L2 sont permutables avec E ; cela aura certainement lieu si ces opérations

consistent en combinaisons linéaires de valeurs, en dérivations et
en intégrations ; on a

et ces moyennes sont nulles en vertu de l'hypothèse faite sur E
ensuite

t')}
donc

ErilrJ2 L1LAr(titr)} (I)

où Lx porte sur t et L2 sur t'. Cette relation résout complètement le
problème de l'évaluation de la variance de l'erreur. La suite de ce travail
est consacrée à son application à des opérateurs particuliers.

Remarquons encore qu'il sera souvent commode d'introduire une hypothèse

supplémentaire sur la fonction Ç(t) : nous la supposerons station-
naire d'ordre deux, c'est-à-dire telle que la covariance r(t, tr) ne dépende

que de la différence t — tr ; on écrira alors

Il n'y a cependent pas d'intérêt à faire cette restriction dans une étude
générale (car elle implique non seulement une restriction sur la fonction,
mais aussi sur son domaine de définition).

Le choix de la fonction de covariance r(t9 tf) est en principe assez
arbitraire : il revient à fixer en partie la distribution en probabilité de
l'ensemble des données pour un problème considéré. Lorsqu'on suppose
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que la fonction est stationnaire d'ordre deux, et si € est un segment à
une dimension, il semble assez raisonnable de choisir la fonction

r(t,t') A

c'est en effet la covariance d'une fonction stationnaire dont le spectre
est limité à la bande (— a, + a), et constant dans cette bande. Les
méthodes approchées ont toutes pour effet de supprimer la partie du
spectre située en dehors d'une certaine bande : il est donc assez justifié
de négliger cette partie du spectre. Pour le reste, comme il n'y a a priori
aucune raison de choisir une autre distribution, nous prenons un spectre
constant. Ainsi choisie, la covariance contient encore deux paramètres
1 et a dont la détermination dans un cas particulier est un problème
d'estimation statistique sur lequel on reviendra plus loin.

§ 2. Erreur d'interpolation

Considérons une formule d'interpolation, qui consiste à donner la
valeur f(t) d'une fonction par une combinaison linéaire

2>, (<)/(<•)

de valeurs de cette fonction. Pour une fonction aléatoire £(£), Yerreur
d'interpolation est la fonction

pour abréger, posons

par la relation I du § 1, on a immédiatement

1B ïi(t)ti{t') DtDt,r(t,t')
donc, en explicitant,

Eri(t)r)(t') r(M') - E ak(t)r(tk,tf) - E«.(*>(«.*«)
k %

k i
si, en particulier, t trt et en tenant compte de l'identité évidente

r(M') '(*',*)>

Ev?(t) - r(t, t) -2E<*k(t)r(tk, t) + E E aÈ(t)a€(t)r(tk91,)
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Ces relations sont valables quel que soit le nombre de dimensions du
domaine de définition de la fonction £(£), Considérons maintenant en
particulier l'interpolation linéaire sur un intervalle (0, a). On a

Dt Ut) i(t) ™ \^~ 1(0) + \ f (a)]

et

E ri*(t) r(t,t)~-^ [(a - t) r(0, t) + t r(a, t)]

+ ^ [(a - tf r(0, 0) + 2t(a - t) r(0, a) + t*r(a, a)] (2.2)

Si la fonction £ (t) est stationnaire d'ordre deux, on a simplement

-— [(a -t)E(t) + tR(a — t)] (2.3)

Prenons également une interpolation parabolique dans l'intervalle
(— a, + a), On a ici

ty — — a t2 — 0 t3 — + a

d'où

(a2-«2)r(0,o) +J<2(<2-a2)r(-a,o) ;

pour une fonction stationnaire d'ordre deux, on a plus simplement
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ou, en posant t u-a,

Et)2(ua) (2 -%u2+%u*)R(0) + 2u2(l -u2)R(a)
—\u2{\ — u2)R(2a) + u(l — u)R(a + au)
— 2(1 — u2)R(ua) — u{\ + u)R(a — ua)

La relation (2.1) exprime en somme que Erj(t)r](tf) est Terreur pour
la double interpolation sur r(t,t')9 en (t,tf). Pour évaluer cette co-
variance, il convient donc tout d'abord d'interpoler r(t>tf), relativement

à tf, par la formule considérée, pour t t, tx,..., tn, puis d'interpoler

les valeurs trouvées, toujours avec la même formule, et cette fois
relativement à t.

Considérons l'exemple suivant : on demande la variance E rj2 (t) pour
une interpolation parabolique dans l'intervalle (—1,4-1), la co-
variance de £ (t) étant

sin {tf — t)R(t'-t) tf -t
calculer en particulier cette variance pour t 0,5 ; on commence par
calculer l'interpolation de R(tr — t) relativement à tf dans (—1, 4~ 1),

pour t — 1, 0, 4~ 1 • Soit ainsi

l'erreur commise dans une interpolation, selon la formule choisie et
relativement à tr. Comme on a

R (0) 1,000 0000 R (1,5) 0,664 9967

R (0,5) 0,958 8511 R (2) 0,454 6487

R (1) 0,841 4710

il vient
5(-l,.|) _ 0,0115998

s (0,|) - 0,0015166
*(£>î) -0,004 4171

a(l,£) =0,009 5789

d'où, en interpolant paraboliquement par rapport à la première variable,
une erreur pour t'~^, avec une variance

Erj2(^) 0,000 5125
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Ce résultat nous donne une mesure de la dispersion de l'erreur (autour
d'une moyenne égale à zéro) pour une interpolation faite dans les conditions

indiquées.
Un calcul analogue permettrait par exemple d'étudier l'erreur dans

une interpolation linéaire sur l'intervalle (0,1); en reprenant la même
covariance, on aurait alors

Er?(\) 0,003 03

On remarque que les calculs précédents ne font pas intervenir les

dérivées des fonctions envisagées, mais seulement la covariance, et cela

quelle que soit la formule d'interpolation envisagée. La comparaison de
diverses formules d'interpolation devient ainsi directement possible :

pour une covariance donnée, il est possible de dire alors quelle est en

moyenne la meilleure formule.
Il reste naturellement, dans un cas particulier donné, à choisir

convenablement la fonction de covariance ; si l'on adopte la forme

rit t\A
il reste encore à estimer (au sens de la statistique) les paramètres A et a.
Pour une fonction particulière, on peut le faire assez bien au moyen des

erreurs d'interpolation linéaire ou, ce qui revient au même, par la
moyenne quadratique des différences secondes. En effet, pour des entrées
tabulaires de pas h, on a pour les différences premières âx la variance

E A\ 211(0) -2R(h) ;

donc, avec la fonction R choisie, un dévelopement limité en h :

E A\ Aa*h% - ±a?h* + ¦ ¦) ;

ensuite, pour les différences secondes A2,

E â\ 6B(0) - ±B(h) + 2B(2h)

donc, avec la fonction R choisie,

En faisant le calcul de ces moyennes, on obtient, avec une plus ou
moins grande précision, une estimation des paramètres.
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§ 3. Intégration approchée

Considérons une formule d'intégration numérique approchée sur un
domaine D par une combinaison linéaire de valeurs de la fonction

pour une fonction aléatoire f (t), Terreur est une variable aléatoire

calculons la covariance de cette variable aléatoire et d'une autre variable
rf, égale à Terreur commise par l'emploi d'une seconde formule
d'intégration numérique, relative à un domaine D1

D'
posons, pour abréger,

les opérateurs L et V sont linéaires et permutables avec E, d'où

Erjrj' LtL't,r(t,t')
En explicitant, on a

E n n'

k D
(3-1)

Les considérations précédentes sont valables pour des intégrales
multiples quelconques ; si on a plus particulièrement des intégrales simples,
si la fonction £(t) est stationnaire d'ordre deux, et si Ton pose (avec
2>=(a,6), D; (<*',&'))

il vient

- J|>(« - a') - s(* - 6')]* + 2*ia'kr(ti9 t'h)

- S *&& - af) - s(U - b1)} -Zah Jr(I, 4)



ou encore
b

Erjri' [(8(t — ar)dt — 27«*<*(*< - «')]
a i

_[J,(*_6'),B_2; €¦«*(*<-&')]
a i

b

— 27 ak[§ R(t — 4)^ — £ a{H(ti — tk)] •

Je a i

Si la fonction R(h) possède des dérivées d'ordre assez élevé, il est

possible de borner par le procédé classique les trois parenthèses [ ] de

cette expression ; on a donc ainsi facilement une borne pour E rj rj'.
Cherchons maintenant la variance de Terreur pour une formule donnée :

il suffit de faire ci-dessus D Df, a{ a\, tt t\. En particulier,
pour une intégrale simple sur (a, 6), et pour une fonction stationnaire
d'ordre deux,

b

Erf $s(t — a)dt — 27 <*<*(*< — «)
a i

b

— [§s(t — b)dt — 27 «Mfo — b)] (3.2)
a %

-Zah [$R(t - tk)dt - 27 atR(tt - tk)]
k a i

Ceci permet facilement de comparer entre elles, au point de vue adopté
ici, diverses formules de quadrature numérique.

§ 4. Approximation linéaire d'une fonction

Nous allons maintenant étudier, toujours au même point de vue,
Terreur que Ton commet en remplaçant une fonction par une certaine

approximation linéaire au moyen d'une base incomplète. Reprenons
donc une fonction aléatoire Ç(t) définie sur un domaine 6\ nous
supposons encore que sa moyenne est nulle et nous désignons sa covariance

par r(t, tf). Soit, sur c?, un système de n fonctions (non aléatoires)

linéairement indépendantes. Nous supposons qu'on a défini sur ce

système et sur | une opération de produit scalaire, qui fait correspondre
à deux fonctions / et g un nombre désigné par (/, g), dépendant bili-
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néairement de / et de g. On supposera que les u{ sont orthonormées par
rapport à ce produit et on pose

les y){ sont des variables aléatoires ; soit alors la fonction aléatoire

r)(t) L Ht) H*) ~
i

c'est Terreur dans l'approximation en moyenne quadratique de Ht) par
les ut. On a E rj(t) 0, et, par la relation (I) du § 1,

Eri(t1)rj(t2) LhLhr(t1,t2) (4.1)

pour autant que le produit soit permutable avec E, ce que nous
supposerons. On peut donc évaluer de cette manière l'erreur quadratique
moyenne pour une approximation linéaire. Pour effectuer le calcul, on
formera tout d'abord

s(tl9tt)^Lhr(tl9t%)
c'est-à-dire

a(tl9 t%) r(tl91%) -ZuSt) (r(h, *'), ut(tf))
puis *

E v(h) fl(h) «(«i, y - E Ui(h) (s(f, h),u&f)) (4.2)

ce qui résout le problème.
L'hypothèse que les fonctions ut sont orthonormées n'est pas essentielle.

Dans le cas d'un système quelconque de fonctions u{, on a simple-
ment

ri(t) Ht) ~ E «« «*(*) (KO, «,(«'))

et la suite des calculs se fait de la même manière.
Remarquons encore que l'opération L est la projection sur la variété

linéaire des fonctions orthogonales à l'ensemble des fonctions u4(t). Si
l'on possède une base complète dans cette variété, le calcul de L se fait
directement.

Prenons maintenant le cas particulier où le domaine de définition des

fonctions est l'intervalle (a, 6), le produit scalaire étant simplement
l'intégrale du produit sur cet intervalle. Si les fonctions u{ sont
orthonormées, on a

V(t) L Ht) Ht) ~ E ut(t) f {(«) u{(z)dz
t=l a

donc „ d

s(t, t') r{t, t') - E ut(f) Jr(t, z) u({z)dz
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puis

E n(t) n{tf) s(t, tf) - E uk(t) fs(z91') uk(z)dz
A=l a

Si on prolonge la suite des u{ de façon à obtenir un ensemble complet
sur (a, 6), on a

s(t, t') E uSr) jr(t,z) Ui(z)dz
n+1 a

Puis b

Ev(t)v(t') Zuk(t) ]8{z, t') uh{z)dz ;
yfc=n+l a

ces expressions pourront être plus commodes pour un calcul approché
de Eri(t)t](t').

Prenons un exemple: soit l'intervalle (0, 1) et une seule fonction
ux(t) 1 ; choisissons

et posons, pour simplifier l'écriture,

la fonction g_x est la transcendante connue (et tabulée) Si t ; par un
calcul simple, on a g_t(t) tSit + cos t — 1 ; alors

*(*, *') 9o{at - at') - -1 [^(«0 + ^(a - al)]

et

E V(t) r)(t') go(at - at') - -i fo.^a*) + ?_x(a - al)]

- \ \g-i(»t) + 9-i(a - at')] + A jr_,(a) ;

en particulier, pour la variance de r\ (t),

E ,«(|) 1 - -i [ff.^al



Il est intéressant de chercher quel est Tordre de grandeur en fonction
de a. On a

2 a*
[6I(* 1)(*2 — e + 1) — 1] H ;

donc, si t t£ J, on a

tandis que si £ =^, on a

(a*)

ainsi Tordre de grandeur de Terreur moyenne quadratique est un, sauf
si $ \, où il est dfe^a;. Cela ne signifie toutefois pas que cette erreur,
pour une valeur donnée de a, est sensiblement plus petite pour t \
que pour les valeurs voisines (la fonction Erj*(t) est continue); cela
confirme en particulier la remarque qu'une évaluation d'erreur qui se
borne à Tordre de grandeur donne souvent une idée fausse, surtout
lorsqu'on désire comparer divers résultats.

L'approximation linéaire d'une fonction est une méthode fréquemment

utilisée, par exemple dans l'intégration d'équations différentielles.
Les considérations précédentes permettent toujours d'étudier, au point
de vue stochastique, Terreur commise.

§ 5. Equations aux différences

La substitution d'une équation aux différences à une équation
différentielle est un procédé très commode pour l'intégration approchée : il
semble être même le seul utilisable dans de nombreuses circonstances.
Nous allons étudier Terreur correspondante, en nous plaçant encore au
point de vue stochastique.

Considérons une équations différentielle linéaire

avec des conditions «aux limites» linéaires

P=l,...,» (5.2)

fixant exactement la solution ; t désigne symboliquement une variable
définie dans un domaine <?, à un nombre quelconque de dimensions, les
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conditions portant sur une partie J7~de S seulement ; on suppose que le

problème posé est possible et possède une solution et une seule. Soient
D° l'opérateur aux différences qu'on va substituer à D, Jf° celui qu'on
substitue à Mp. La solution approchée est alors solution des équations
linéaires

2>° è*(U) v(h) tneâ° \
(5.3)

où c?° est un réseau choisi sur <S et JF0 une partie de <?°.

Les équations aux différences ont une solution

donc

**) 2 a

D

y9{t4)

P i
les coefficients aki et 6($ sont tels que, pour toute fonction f(t),

p %

l'erreur est donc

v(h) Hh) -

or par les relations (5.4)

(5.4)

% Mv f (I,)

=(D° — D)Ç(tk)

Soit alors
Et)(tk)r](ti)=u(tk,t{) ;

l'opération E est permutable avec D, D", Mv et M°p ; on a donc (l'indice

indiquant la variable sur laquelle opèrent les D et les M),

D\hD% „*,) E D°tkri(tk) D°t. t, («,)

E (D°tk — Dtk) n(th) {Vit—Du) V(*ù
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et une relation analogue pour les Mp ; donc

0 0 0 } (5*5)

Posons alors

D°hu(tk9ti) v(tkJt)

on a alors, par (7)

o

tk k9 '* tk h
Q

U kf %

(5.6)

et
Dî, wJLJ.) O)0,, — D#ï) (if? # —MM 4 r(t,J.) ï

(5.7)

Ainsi pour calculer une valeur de u(tk, tt), il faut
1. déterminer la fonction v(tk, ^), pour tout ^€ c?°, ce qui résulte

des équations (5.6), dont la résolution est identique à celle du système
(5.3);

2. déterminer les fonctions wp(tk91}) pour tout t3 € J7"0, à partir des

équations (5.7), qui sont aussi de la forme (5.3);
3. enfin calculer u(tk,tt), ce qui comporte une fois de plus la résolution

d'un système linéaire algébrique qui ne diffère des précédents que
par les seconds membres.

La détermination de la fonction u(tk, tt) se fait donc en principe par
la résolution des mêmes équations aux différences que la fonction |*
elle-même ; il semble, à première vue, que cela implique une somme
considérable de calculs. Il faut toutefois remarquer que la précision
requise étant moindre que pour £*, il est possible en général de prendre
un réseau plus grossier, ce qui entraine des allégements.

Voyons en particulier ce qui se passe lorsque les conditions aux limites
portent sur les valeurs de la fonction inconnue elle-même (et non sur des

dérivées) ; les équations (5.2) se réduisent à
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donc n 1, Mt 1 et JfJ 1 ; alors les équations (5.5) sont

D^D^u^t,) (D°tk — Dik) (Dl—D^r^Ji) dans <?*

u(tkJi) 0 sur ^F>

on pose alors

D°Hu(tk,ti)=v(tkiti)
et on a

— Du)r(th,L) dans <5°

v(tk,ti) 0 pour tk € J7*

Dans ce cas, on déterminera successivement v(^,^), puis **({*,£<),
toujours par la résolution des mêmes équations aux différences (aux
seconds membres près).

Pour fixer les idées, considérons la résolution du problème de Dirichlet
dans un domaine plan <?, de frontière J?~. L'opérateur D est alors le la-
placien, D° est un opérateur aux différences, défini sur un réseau c?°

étendu sur ô\ pour simplifier, nous supposerons que la frontière J?*de ô
est constituée par des arêtes du réseau c?°, et que Ton a ainsi J7"° J7";

le choix de D° comporte un certain arbitraire, et nous ne préciserons pas
quel est ce choix. Le problème est donc

Df(<) 0 dans c?,

f(l) y(l) sur J7",

et le problème approché
D° £? (tk) 0 tk € ci?0,

£*(<*) y (h) M^>
d'où, en résolvant un système linéaire,

£*(^ 2;&*,y(*i) e.ecî?0, t.e^,
i

donc

i
Soit alors rç(£fc) Terreur en tk, c'est-à-dire

y (h) i (h) -
puis

et
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on détermine d'abord cette fonction v par les équations

D°t]t v(tk, U) (D°tk - Dtk)(D°t. - DH) r(tki t{) tk 6 c?°

v(tk,ti) o **e^\
cela pour tout couple (tk, ^) ; on remarque que les seconds membres
sont liés à l'erreur que Ton commet en remplaçant l'opérateur D par
l'opérateur D° sur la fonction de covariance. On a ensuite u(tk, ^) par
le système linéaire (qui ne se distingue du précédent que par les seconds

membres)

u(tkiti) o ^e^r.
Ces considérations permettent de comparer entre eux les divers opérateurs

D° que l'on a proposés. Elles permettent également fort bien de

comparer, en ce qui concerne la précision, les méthodes d'équations aux
différences avec d'autres méthodes de résolution approchée du problème
de Dirichlet (par exemple les méthodes de résolution par une approximation

linéaire).
Le choix de la fonction de covariance, dans le cas d'un domaine à deux

dimensions, pourrait se faire de la manière suivante : en supposant la
fonction aléatoire stationnaire d'ordre deux, on choisit une covariance
dont le spectre du Fourier (à deux dimensions), se réduit à une constante
dans un cercle et est nul à l'extérieur de ce cercle. On a alors

a Vh]+hl
II est clair en outre que tout ce qui a été dit ci-dessus s'étend sans

autre à un nombre quelconque de dimensions.

(Reçu le 21 mai 1952.)
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