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Sur les groupes
doublement transitifs continus

Par J. Tits1), Bruxelles

1. Introduction

1.1. Généralisant un résultat que j'avais obtenu antérieurement
[16], M. H. Freudenthal a récemment démontré le théorème suivant
(cf. [3] 2)):

Théorème 1. Soit G un groupe triplement transitif continu opérant sur
un espace topologique E z) localement compact, non totalement discontinu et

satisfaisant au premier axiome de dénombrabilité. Il existe un homéomor-
phisme q>de E sur la droite projective réelle ou complexe, tel que le transformé
cpGq)-1 de G par <p coïncide avec le groupe de toutes les transformations
homographiques y (a-x -f b)l(c-x + d), a-d — b-c ^ 0.

Il est naturel de se demander quels sont, sous les mêmes conditions,
tous les groupes doublement transitifs continus existants 4) La réponse
à cette question est donnée par le théorème suivant :

Théorème 2. Soit G un groupe doublement transitif continu opérant sur
un espace topologique E localement compact, non totalement discontinu et

satisfaisant au ^premier axiome de dénombrabilité. Il existe un homéomor-

phisme <p de E sur Vensemble des nombres réels, des nombres complexes ou

*) Chargé de Recherches du F. N. R. S., Bruxelles.
2) En vue de la suite, nous énonçons ce théorème sous une forme légèrement différente

de celle qui lui est donnée par M. Freudenthal ; l'équivalence des deux énoncés résulte
immédiatement d'une proposition démontrée au § 3.3.

3) La définition des groupes triplement transitifs continus opérant sur un espace topo-
logique est tout-à-fait analogue à celle des groupes doublement transitifs continus, donnée
au § 3.2. Pour une définition explicite on peut se reporter à [16].

4) Rappelons (cf. [17], chapitre IV, et aussi [16], introduction) que pour n > 3, il
n'existe aucun groupe n-uplement transitif (et a fortiori aucun groupe n-uplement transitif

continu) opérant sur un espace d'une infinité de points. Notons aussi que la recherche
des groupes simplement transitifs continus existants est équivalente à la recherche des

groupes topologiques.
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des quatemions, tel que le transformé cp G (p~l de G par cp coïncide avec le

groupe de toutes les transformations linéaires y a-x + b, a ^ 0.
Dans le cas particulier où Ton fait l'hypothèse que E est une variété

à une dimension, ce théorème est contenu dans les travaux de M. L. E. J.
Brouwer [1] ; pour les variétés à deux dimensions il a été démontré par
Kerékjârtô [7], qui a aussi obtenu, dans [8], un résultat plus précis que
celui du théorème II pour le cas unidimensionnel, à savoir :

G étant un groupe doublement transitif de transformations biunivoques et

bicontinues de la droite euclidienne, il existe un homéomorphisme cp de la
droite sur elle-même tel que le transformé <pG y1 de G par <p coïncide avec
le groupe de toutes les similitudes (c'est-à-dire avec le groupe de toutes les

transformations linéaires y a-x -f- b, a ^ 0).

L'objet principal du présent article est la démonstration du théorème II
dans le cas général. Dans cette démonstration, j'utilise essentiellement
les propriétés des groupes à deux bouts, dont la structure a été complètement

déterminée par M. K. Iwasawa [4] et indépendamment par M. Freu-
denthal [3] (qui se sert de ses résultats dans sa démonstration du théorème

1), ainsi que d'un théorème de M. F. Kalscheuer [5] caractérisant
les corps des nombres réels, des nombres complexes et des quatemions
comme étant les seuls «presque-corps»5) continus ayant le corps des

nombres réels comme corps de base.

1.2. D'après Pontrjagin [12], tout corps topologique localement
compact et connexe est isomorphe au corps des nombres réels, des

nombres complexes ou des quatemions. Au § 5, je montre, à titre d'exemple
d'application du théorème 2, que si l'on ajoute aux hypothèses de ce

théorème de Pontrjagin le premier axiome de dénombrabiHté, on peut,
sans changer le résultat, y remplacer les corps par des systèmes algébriques
plus généraux que je nomme pseudo-corps (cf. théorème 5). Si l'on se

restreint à la considération des presque-corps, qui sont cas particuliers des

pseudo-corps, le résultat précédent est susceptible d'une démonstration

B) Par presque-corps, nous entendons ici un «presque-corps complet» (vollstândiger
Fastkôrper) au sens de M. H. Zassenhaus [18], c'est-à-dire un ensemble E tel que

a) les éléments de E forment groupe par rapport à une opération d'addition + dont
nous appellerons 0 l'élément neutre;

b) les éléments non nuls de E forment groupe par rapport à une opération de multiplication

• et on pose, en outre, 0 • a a • 0 0;
c) la multiplication est distributive à gauche par rapport à l'addition: a* (6 + c)
a»b + & 'C.
Si le groupe additif de E est un groupe vectoriel sur un corps commutatif K, nous

disons, avec M. Kalscheuer, que le pseudo-corps E a K comme corps de base.
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directe, indépendante de l'hypothèse de dénombrabilité (cf. § 5.6); on
a donc le

Théorème 3. Tout presque-corps topologique localement compact et non
totalement discontinu est isomorphe au corps des nombres réels, des nombres

complexes ou des quaternions qui renferme comme cas particuliers le
théorème de Pontrjagin et, essentiellement6), le théorème de Kalscheuer
(qui est d'ailleurs utilisé dans la démonstration).

1.3. Lorsque l'espace E est de dimension finie, le théorème 1 est
susceptible d'une démonstration particulièrement simple qui fait l'objet
du § 6 ; si je reviens ici sur un cas particulier d'un théorème déjà connu,
ce n'est pas seulement pour la raison indiquée, mais aussi parce que la
démonstration en question repose sur un théorème auxiliaire, énoncé ci-
après, qui peut présenter par lui-même un certain intérêt :

Théorème 4. Soit G un groupe localement compact, connexe, de dimension

finie et satisfaisant au deuxième axiome de dénombrabilité. Si G possède

un automorphisme involutif g (a2 identité) dont Vêlement unité de G est

un point fixe isolé, G est un groupe abélien et a est Vautomorphisme qui fait
correspondre à tout élément x de G son inverse x-11).

Il peut être utile de noter que, dans tous les cas, le théorème 1 est une
conséquence presque immédiate du théorème 2.

2. Les groupes doublement transitifs: Définitions et propriétés générales8)

2.1. Définitions. Un groupe de transformations9) d'un ensemble
donné quelconque E est doublement transitif s'il existe une et une seule

transformation du groupe transformant deux éléments donnés distincts p
et q de E en deux éléments donnés distincts pf et qf de E, et cela quels

que soient les couples p, q et pf, q'.
Dans la suite, E et G désigneront respectivement un ensemble

quelconque et un groupe doublement transitif opérant sur cet ensemble. Les
éléments de E seront nommés points.

6) Pour plus de précision sur ce point, voir § 5.7.
7) Je dois l'énoncé de ce théorème à une suggestion de M. A. Borel qui m'a fait remarquer

que si un groupe de Lie jouit des propriétés indiquées, il est nécessairement abélien,
comme on s'en apperçoit immédiatement si l'on traduit ces propriétés en termes d'algèbre
de Lie.

8) La plupart des notions et des propositions de cette seconde partie sont indiquées
dans [17] (cf. chapitre II, § A 2, et § B, remarque 2).

•) Nous réserverons ici le terme «transformation» pour désigner une application bi-
univoque d'un ensemble sur lui-même.
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2.2. Une transformation appartenant à 0 sera dite involutive si elle
est cyclique d'ordre 2 ; il en est ainsi de toute transformation T de G

qui échange deux points distincts quelconques (parce que T2 conserve
alors ces deux points et est donc la transformation identique, en vertu de

la double transitive de G). Les transformations involutives seront encore
appelées involutions.

2.3. Deux involutions quelconques / et V sont conjuguées (c'est-à-
dire qu'il existe au moins une transformation T appartenant à G telle
que TIT"1 J'10)). En effet, soient p et q (respectivement p1 et qf)
deux points distincts se correspondant dans l'involution / (respectivement

/') et T la transformation de G qui transforme p en pf et q en q' ;

la transformation TIT-1 échange p1 et q\ et n'est autre que V.
En particulier, les involutions de G ont toutes un ou toutes zéro point

uni. Suivent le cas, nous dirons que le groupe G est de première ou de
seconde espèce.

2.4. Si G est de première espèce, il existe une et une seule involution
ayant pour point uni un point donné u. Supposons en effet qu'il en
existe deux, / et If, et soient p un point quelconque, distinct de u, et
T la transformation qui conserve p et qui transforme Ipen Vp ; T transforme

/ en /', donc elle conserve u ; conservant p et u elle ne peut être

que la transformation identique, et I /'.
Il résulte de la propriété précédente que si G est de première espèce,

les involutions sont simplement transitives sur E (c'est-à-dire que deux
points donnés quelconques, distincts ou confondus, sont échangés par
une et une seule involution). Cette conclusion reste valable lorsque G est
de deuxième espèce si l'on convient, dans ce cas, de considérer la
transformation identique comme une involution, ce que nous ferons toujours
par la suite.

2.5. Opérations d'addition et de multiplication associées. Choisissons dans
E deux points distincts, fixés une fois pour toute, que nous nommerons
respectivement 0 et 1. Dans la suite, /0 désignera l'unique involution
conservant 0.

Nous apellerons translations les transformations de la forme II0, où /
désigne une involution quelconque ; elles sont simplement transitives sur
E puisque les involutions le sont (cf. § 2.4).

l0) Notons, pour éviter une confusion éventuelle, que dans [14], [15] et [17], nous
employions le mot «conjugué» dans un sens différent de celui qui lui est donné ici.
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Nous apellerons encore homothéties11) les transformations de G qui
conservent 0 ; elles sont simplement transitives sur E — 0.

Soient a et 6 deux points quelconques. Il existe une et une seule translation

transformant 0 en a ; elle transforme 6 en un point que nous
nommerons somme de b et de a et que nous désignerons par b + a. Si a est
différent de 0, il existe une et une seule homothétie transformant 1 en a ;

elle transforme 6 en un point que nous nommerons produit de a et de 6

et que nous désignerons par a • b. Lorsque a 0, nous poserons par
définition a • 6 0, quel que soit b.

Les opérations de somme et de produit seront nommées respectivement
addition et multiplication.

2.6. On a 0 + a a + 0 a a-1 la et a-0 0-a 0.

2.7. y — ax (a # 0) est l'équation de l'homothétie qui transforme
l en a; y x + 6 est l'équation de la translation qui transforme 0

en 6.
Toute transformation T appartenant à G est d'une et une seule façon

produit d'une homothétie par une translation ; en effet, si U est la
translation qui transforme 0 en TO, la transformation V T-XU est une
homothétie et on a T UV. Par conséquent, y a-x + b (a =fi 0)
est l'équation de la transformation la plus générale appartenant à O.

2.8. Les homothéties forment groupe. Il en résulte que les points
différents de 0 forment groupe par rapport à la multiplication (le produit
est associatif et tout point a ^ 0 possède un inverse a-1 tel que a a,-1

a-1 a 1).

2.9. La transformée F TUT-1 d'une translation quelconque
U IIo (voir §2.5) par une homothétie T est une translation ; en effet,
/0 est conservée par T (étant l'unique involution qui conserve 0), et la
transformée de / par T est une involution. Soient U y x -f b et
T y a-x (a ^ 0) ; alors F TUT-1 transforme 0 en ab, donc
V y x + ab, et la relation TV UT peut s'écrire a.x + a-b

a-(# + 6), c'est-à-dire que la multiplication est distributive à gauche

par rapport à l'addition.

2.10. a étant un point quelconque, nous désignerons par —a son
transformé par Io et nous écrirons, quel que soit 6, & + (—a) b ~ a.
Lorsque le groupe G est de deuxième espèce (cf. § 2.3), on a — a a.

11 Les homothéties correspondent à ce que nous avions appelé dans [14] et [17]
proportionnalités.
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On a, quel que soit a, — (—a) a, et (-— \)a a«(l— 1) —a ;

en particulier (— l)2 1.
L'inverse d'une translation U II0 est une translation ; en effet, on

a [7-1 IQI (IqII0)I0, et /0//0 est une involution. De façon plus
précise, si U ~ y x -\- b, U-1 y x — b, c'est-à-dire qu'on a,
quels que soient X et b, (x + b) -— b x.

2.11. Dewx translations sont permutables si et seulement si leur produit
est une translation. En particulier, si les translations forment groupe, ce

groupe est abélien et réciproquement, si les translations sont deux à deux
permutables, elles forment groupe.

En effet, soient U II0 et Uf IfI0 les deux translations
considérées. Pour qu'on ait UUf =UfU, c'est-à-dire IIJ'I0 /'/o//o,
il faut et il suffit que II0I' I'I0I, ou encore que II0If (IIqI')'1,
c'est-à-dire que II0If soit une involution, donc que UU' II0IfIQ
soit une translation.

2.12. Notons qu'en vertu de 2.9 (loi de distributivité à gauche), si

on a (x + à) + b (x -f 6) + a, quels que soient x et b, pour une
valeur donnée non nulle de a, cette relation reste satisfaite quel que soit a.
Donc, en vertu de 2.11,

S'il existe une translation (différente de la translation identique) qui est

permutable avec toutes les autres, les translations forment groupe et ce groupe
est abélien ; Vaddition est alors commutative et associative.

2.13. Bien qu'il n'en soit pas fait usage par la suite, nous signalerons
encore la propriété suivante :

Si la multiplication associée à G est commutative, les translations forment

groupe et ce groupe est abélien.

Soient T y x + a et U y x + b deux translations
quelconques et supposons que TU ne soit pas une translation, c'est-à-dire
qu'on ait TU y (x + b)-\-a c-x-{-d, avec c ^ 1.

Soit y x + e (e ^ 0) la translation qui transforme c en 1. En
multipliant par d-e*1 les deux membres de la relation c -\- e — l, il
vient c• (d • e-1) + d d • e"1.

Il en résulte que le point d-e*1 est uni pour TU, c'est-à-dire que U
et T-1 transforment d*e~l en un même point; les translations étant
simplement transitives, on doit avoir U T-1, et TU est la transformation

identique, ce qui contredit notre hypothèse.
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3. Groupes doublement transitifs continus

3.1. Tous les espaces topologiques considérés ici seront supposés de
Hausdorff.

3.2. Définition. Soient E un espace topologique et G un groupe
doublement transitif opérant sur E.

Soit (S l'espace des couples de points distincts de E, que nous supposerons

muni de la topologie naturelle (induite par la topologie du produit
E xE, dont (g est un sous-espace). Choisissons dans (£ un élément fixe
(a, b) (couple de points de E) de référence, et considérons la correspondance

biunivoque entre G et (£ qui fait correspondre à toute transformation

T de G le couple {Ta, Tb) (élément de (g) transformé de (a, b) par T.
Nous pouvons introduire sur G une topologie caractérisée par la

condition que cette correspondance soit un homéomorphisme. Si, muni de
cette topologie, G est un groupe topologique (c'est-à-dire, si les opérations
du groupe sont continues), nous dirons que c'est un groupe doublement

transitif continu opérant sur E. Lorsqu'il en est ainsi, la topologie en
question ne dépend pas du couple (a, b) choisi, et de plus, G est un groupe
topologique de transformations de E au sens de Montgomery et Zippin
[11] (c'est-à-dire que le transformé Tx d'un point x par une transformation

T de G dépend continûment de la paire (T, x)).

3.3. Remarques concernant la définition précédente. Soient E un espace
topologique et G un groupe topologique de transformations de E (au sens
de Montgomery et Zippin), et supposons que G soit doublement transitif.
Pour que G soit un groupe doublement transitif continu opérant sur E,
au sens du § 3.2, il faut et il suffit (par définition) que la transformation T
de G qui transforme deux points distincts donnés a et b respectivement en
deux points distincts variables x et y, soit fonction continue du couple
(x, y). Nous allons montrer que cette condition peut être remplacée par
une condition plus faible ; de façon précise,

Pour que G soit un groupe doublement transitif continu opérant sur E, au
sens du § 3.2, il faut et il suffit qu'il existe au moins un couple de points
distincts (a,b) tel que la transformation de G qui conserve b et qui transforme
a en un point variable x ^ 6 soit fonction continue de x.

Nous devons seulement montrer que la condition est suffisante ;

supposons donc qu'elle soit remplie et notons immédiatement qu'elle reste
alors satisfaite lorsqu'on remplace le couple {a, b) par n'importe quel
couple de points distincts (en vertu de la double transitivité de G). Cela

étant, soient (a, b) et (x, y) deux couples de points distincts, l'une fixe,

14 Commentarii Mathematici Helvetici ùyyv



l'autre variable ; si x ^ b, la transformation Tx de G qui conserve 6 et
qui transforme x ena dépend continûment de x ; elle transforme y en un
point z qui dépend continûment du couple (x, y). De même, la transformation

Uz de G qui conserve a et qui transforme b en z dépend continûment

de z, donc du couple (x, y). Par conséquent, si x ^ 6, la transformation

T~l Uz de G qui transforme a et 6 respectivement en x et y
dépend continûment de (x, y) ; pour montrer que ceci reste vrai lorsque
x b, il suffit de remplacer le point 6 par un point différent b' dans tout
ce qui précède, et de noter que la transformation de G qui transforme a et
b respectivement en x et y est le produit de la transformation (constante)
qui conserve a et qui transforme 6 en br par la transformation qui
transforme a et bf respectivement en x et y.

Notons un corollaire important de la proposition précédente :

Soit G un groupe doublement transitif topologique de transformations d'une

espace topologique E. Si G et E sont localement compacts et satisfont au
deuxième axiome de dénombrabilité, G est un groupe doublement transitif
continu opérant sur E, ati sens du § 3.2,

Soient a et 6 deux points distincts appartenant à E. Le groupe Ga des

transformations de G qui conservent a est un sous-groupe fermé de G ;

il est donc localement compact et vérifie d'autre part le deuxième axiome
de dénombrabilité. Cela étant, considérons l'application biunivoque de

Ga sur E — a qui applique toute transformation T de Ga sur le point Tb,
transformé de b par T ; on peut montrer que cette application est un
homéomorphisme en reproduisant exactement la démonstration donnée

par exemple dans Pontrjagin [13] (cf. théorème 13, p. 65) du théorème
de Freudenthal d'après lequel tout homomorphisme continu d'un groupe
localement compact satisfaisant au deuxième axiome de dénombrabilité
sur un autre groupe remplissant les mêmes conditions est ouvert. La
démonstration s'achève par application de la proposition précédente.

3.4. Soient E un espace topologique et G un groupe doublement transitif

continu opérant sur E.
x, y, x', yr, z étant cinq points quelconques de E tels que x ^ y et

x1 ^ yf, la transformation T de G qui transforme x et y respectivement
en xr et yr dépend continûment du quadruple {x, y, x\ yr), et le
transformé Tz de z par cette transformation dépend continûment du
quintuple {x, y, xf, y', z) ; la démonstration de ces propriétés est aisée (cf. par
exemple [16], théorème 3).

3.5. x étant un point quelconque de E, nous désignerons par I(x)
Finvolution d'élément uni x (cf. 2.4); cette involution dépend continu-
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ment de x. En effet, soient a et 6 deux points fixes distincts quelconques,
et supposons qu'on ait x ^ a (restriction non essentielle vu le caractère
arbitraire du choix de a) ; I(x) est la transformée de I(b) par la
transformation de G qui conserve a et qui transforme 6 en x, et celle-ci dépend
continûment de x.

3.6. Continuité des opérations associées à G. Ayant choisi dans E deux
points distincts 0 et 1, on peut, suivant le paragraphe 2.5, définir dans E
une addition et une multiplication. Soient x et y deux points quelconques ;

l'homothétie Tx qui transforme 1 en # et l'involution Ix qui échange 0 et #
dépendent continûment de x pour tout x ^ 0 (en x 0, Tx n'eat pas
définie et Ix peut, a priori, être discontinue) ; il en résulte que, sauf peut-
être au point x 0, le produit x- y Txy et la somme y + x IxIoy
sont des fonctions continues du couple (x, y), tandis que l'inverse
x-1 ï7"11, définie seulement pour x ^ 0, est fonction continue de x.

En particulier, le groupe multiplicatif des points de E différents de 0
est un groupe topologique (dans la topologie induite par JE?).

3.7. Si le produit xy est fonction partout continue de x (pour y const)
et si G est de première espèce (cf. 2.3), la somme y + x est fonction partout
continue du couple (x, y).

Ix désignera comme précédemment l'involution échangeant 0 et x. Si

nous appelons u le point uni de l'involution Il9 le point uni de Ix est

x -u. En vertu de 3.5, Ix dépend continûment de x • u, donc aussi de x,
quel que soit x (en vertu de l'hypothèse de continuité du produit). Notre
proposition résulte alors de l'identité y + x IxIoy.

4. Démonstration du théorème 2

4.1. Soient E un espace localement compact, non totalement
discontinu et satisfaisant au premier axiome de dénombrabilité, G un
groupe doublement transitif continu opérant sur E, et 0 et 1 deux points
fixes distincts appartenant à E.

4.2. E n'est pas compact. Supposons en effet que E soit compact et soit
{av} (av =£ 0) une suite de points convergeant vers 0 ; la suite {a'1} des

inverses converge aussi vers 0, car si une sous-suite de {a"1}, soit {a"/},
convergeait vers un point p ^ 0, on aurait lim av, lim (cÇ/1)"1 p~x.

Soient Iv l'involution échangeant 1 et av, et bv le transformé de 0 par
cette involution. L'homothétie (cf. § 2.5) qui transforme 1 en a'1 transforme

0, av et bv respectivement en 0, 1 et cv a~x-bv ; elle transforme
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donc Iv en une involution Jv qui échange av
x et 1, et cv et 0. Lorsque v

tend vers oo, av et a"1 tendent vers 0, donc Iv et /„ tendent vers l'involu-
tion / qui échange 0 et 1, par conséquent bv IVQ et cv J,,0 tendent
vers 10 1, et av bv*c~l tend vers 1, ce qui est absurde.

4.3. E est connexe. Cela résulte immédiatement du fait que E n'est
pas totalement discontinu et possède un groupe doublement transitif
d'homéomorphismes.

4.4. Soit p un point quelconque de E. Les composantes connexes de

E — p sont en nombre fini, toutes ouvertes dans E, et si C désigne Vune

quelconque d'entre elles, C ^p n'est pas compact.
Nous supposerons E — p non connexe.
Soient q un point distinct de p, et O1 un ensemble non vide, ouvert et

fermé dans E — q, et ne contenant pas p. Tout ensemble 0 ouvert et
fermé dans E — p et contenant q contient Ox ; en effet, les ensembles
E — p — O et Ox ont pour frontières respectives dans E les points p et q ;

aucun d'eux ne contenant la frontière de l'autre, leur intersection est

sans point frontière dans E et est donc l'ensemble vide (E étant connexe).
Il résulte de ce qui précède que la pseudo-composante de q (c'est-à-dire,
l'intersection de tous les ensembles contenant q, ouverts et fermés) dans
E —p contient Ox, et a donc des points intérieurs ; par raison de transiti-
vité, tous les points de E — p sont intérieurs à leur pseudo-composante,
c'est-à-dire que les pseudo-composantes de E -~ p sont ouvertes et sont
donc identiques aux composantes connexes ordinaires de E — p.

Considérons un voisinage compact U de p, et soit F sa frontière. Les

composantes de E — p qui ont une intersection non vide avec F sont en
nombre fini, car E, étant compact, ne peut se décomposer en une infinité
d'ouverts disjoints. Ces composantes, que nous nommerons Ct,..., Cr
sont les seules composantes de E —- p car s'il en existait d'autres, celles-
ci seraient contenues dans U (devant être connexes et avoir p comme
point frontière), leurs fermetures seraient donc compactes ; il en serait
de même, par raison de transitivité, des fermetures des composantes
Clt..., Cr, et l'espace E U ^>C1^> ^Cr serait compact.

4.5. Le groupe multiplicatif des éléments de E différents de 0 est

isomorphe au produit du groupe additif R des nombres réels par un groupe
compact K.

Nous désignerons par C la composante connexe de 1 dans E — 0, et
nous nommerons brièvement «groupe E — 0» (respectivement «groupe
O») le groupe multiplicatif des points de E — 0 (respectivement (7).
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C étant l'espace d'un groupe localement compact, connexe et vérifiant
le deuxième axiome de dénombrabilité, il possède au maximum deux
bouts (cf. Freudenthal [2]) ; il en possède donc exactement deux car le
point 0 en est un (puisque E est connexe) et ne peut être le seul car C^O
n'est pas compact (cf. § 4.4). Il en résulte (cf. [4], théorème 5) que le

groupe C est isomorphe au produit RxK' de R par un groupe compact
connexe Kr.

Si E — 0 est connexe, notre proposition est démontrée.
Si E — 0 n'est pas connexe, E est déconnecté par chacun de ses

points ; il en est donc de même de C. Par conséquent, le groupe Kr se
réduit à son élément unité, C est isomorphe à R, et l'espace E — 0 se

compose d'un nombre fini (cf. § 4.4) de composantes homéomorphes à R.
L'espace E étant homogène, ce nombre est égal à 2 et le groupe E — 0

est isomorphe au produit du groupe R par un groupe cyclique d'ordre 2.

4.6. Si {av} et {bv} sont respectivement une suite convergeant vers 0 et une
suite convergente quelconque de points de E, la suite {av-bv} converge vers
0 ; autrement dit, en vertu de 3.6, le produit x-y est fonction partout
continue du couple {x, y).

Une suite {av} de points de E diverge (c'est-à-dire, est sans point limite)
si et seulement si la suite {a'1} des inverses converge vers 0.

Si l'espace E ~ 0 est connexe, le groupe E — 0 à deux bouts qui
sont respectivement le point 0, et le bout limite de toutes les suites
divergentes de E ; les deux propositions précédentes résultent alors de
propriétés classiques des groupes à deux bouts (cf. [2], théorèmes 8 et 10).

Si E — 0 n'est pas connexe, le groupe E — 0 est isomorphe au
produit du groupe R par un groupe cyclique d'ordre 2 (cf. § 4.5) ; il est en
particulier abélien, et nos deux propositions se démontrent aisément en
tenant compte des résultats du § 3.6.

4.7. La somme x + y est fonction partout continue du couple (x, y).
En vertu des §§ 3.7 et 4.6, il nous suffit de considérer le cas où 0 est de
seconde espèce (cf. § 2.3), c'est-à-dire, le cas où x —x est une identité.

Soient {av} une suite convergeant vers 0, bv l -\- av, et Tv, Uv
et Vv les transformations de 0 d'équations respectives

V bvx, y b~1>(x + av) et y x + av

Uv transforme les points avi 1 et bv respectivement en les points 0, 1

et 6"1. Lorsque v tend vers oo, av tend vers 0, donc Uv tend vers la
transformation identique. En vertu de la deuxième proposition du § 4.6,
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Tune au moins des deux suites {bv} et {6,,1} n'est pas divergente. Supposons,

pour fixer les idées, que {&„} possède une sous-suite convergente
{&,,,}, dont le point limite sera dénoté par 6. Il suit de la relation
Uvbv 6"1 que la suite {b~}} converge aussi vers 6, donc que 6 6~\
c'est-à-dire (puisque G est de seconde espèce) que 6 1. Par
conséquent, lorsque v tend vers oo, bv tend vers 1, Tv tend vers la transformation

identique et il en est de même de Vv TVUV, ce qui démontre
notre proposition (en vertu des résultats du § 3.6).

4.8. Soit 2?Ofl le lieu des points de E qui, dans un isomorphisme
déterminé du groupe R xK sur le groupe multiplicatif K — 0 (cf.
§ 4.5), correspond aux éléments de jR xK de la forme (r, e), où r est un
nombre réel quelconque et où e est l'élément neutre de K. R01 est
contenu dans le centre du groupe multiplicatif E — 0.

a et b étant deux points distincts quelconques de E, l'ensemble Rab,
transformé de BOtl par la transformation de G qui transforme respectivement

0 et 1 en a et b, jouit des propriétés suivantes (qui sont immédiates
lorsque a 0 et 6 1, et qui s'étendent au cas général par raison de

transivité) :

Ra b est connexe, contient 6, n'est contenu dans aucun sous-ensemble

connexe de E, et a par conséquent une intersection non vide avec la
frontière de tout voisinage compact de b ;

les transformations de G qui conservent a et qui transforment 6 en un
point de Ra b commutent avec toutes les transformations de G qui
conservent a.

4.9. L'addition est associative et commutative. a ^ 0 et 6 étant deux

points distincts quelconques de E, désignons par Tab la transformation
de G qui conserve a et qui transforme 0 en b. Si a appartient au centre
du groupe multiplicatif E — 0, l'équation de cette transformation est

y (l-&-a-i).s + 6 (1)

en effet, on a alors (en vertu de 2.8 et 2.9)

(1 - b-a-^-O + 6 6

et
(1 — 6-a-1)-» + b a-(l -a^-b) + b a - 6 + 6 a

Désignons par F la frontière d'un voisinage compact de 0, et par
{«„} une suite divergente de points appartenant tous au centre du

groupe multiplicatif E — 0 (par exemple, une suite divergente de points
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de l'ensemble R01 défini au § 4.8). Choisissons pour tout v, un point bv

appartenant à l'intersection des ensembles Rav,o et F (intersection qui
n'est pas vide en vertu des résultats du § 4.8). F est compact ; la suite
{bv} possède donc au moins un point d'accumulation b, dans F, et nous
pouvons même supposer qu'elle converge vers b, en remplaçant
éventuellement la suite {av} par une sous-suite convenable.

Soit c un point fixe quelconque. Les transformations Tav,bv et Tav,c
sont permutables (en vertu de 4.8, car b appartient à l'ensemble Rav>o) ;

mais lorsque v tend vers oo, ces transformations tendent respectivement
vers les translations y x -f- b et y x + c, comme il résulte
immédiatement de l'équation (1) et de la continuité des opérations
d'addition et de multiplication ; il en résulte que la translation y x + b

(qui est différente de la transformation identique puisque 6, appartenant

à F, est différent de 0) commute avec la translation y x + c,
donc avec toutes les translations, étant donné le caractère arbitraire
de c. Notre proposition résulte à présent de celle du § 2.12.

4.10. Le groupe additif E est un groupe vectoriel. En effet, d'après la
théorie de Pontrjagin (cf. [13], théorème 41), le groupe additif J5 est le

produit de son sous-groupe compact maximal Z par un groupe vectoriel.
Mais Z est invariant pour toutes les homothéties y ax (car celles-ci
sont des automorphismes du groupe additif i?), qui opère transitivement
sur E — 0 ; donc Z se réduit au seul point 0, sinon il s'identifierait avec
E, qui serait compact.

4.11. Nous savons à présent que les points de E forment groupe par
rapport à l'addition, que les points de E — 0 forment groupe par
rapport à la multiplication, et que cette dernière est distributive à gauche
par rapport à l'addition ; en d'autres termes, E est un presque-corps12).
De plus, le groupe additif de E est un groupe vectoriel et la multiplication
est partout continue, donc, en vertu d'un résultat de F. Kalscheuer [5],
le presque-corps E est isomorphe au corps des nombres réels, des nombres
complexes, ou des quaternions. La démonstration s'achève par application

de la conclusion du § 2.7.

5. Pseudo-corps et presque-corps topologiques

5.1. Définition. Nous nommerons pseudo-corps tout ensemble E muni
de deux opérations, une addition et une multiplication, jouissant des

propriétés suivantes :

12) Cf. note 5, p. 204.
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5.1.1. Le produit a-b et la somme a + b sont définis quel que soit
le couple (a, 6).

5.1.2. Il existe dans E un élément 0 tel qu'on ait, quel que soit a
0 + a a + 0 a et a-0 Oa 0.

5.1.3. Pour tout élément a appartenant à E, il existe au moins un
élément —a tel que a + (—a) (—a) -f- a 0.

5.1.4. Les éléments de E différents de 0 forment groupe par rapport
à la multiplication (l'élément neutre de ce groupe sera toujours désigné

par 1).

5.1.5. On a, quels que soient a, b et c, a-(b -{- c) ab + #•<*.

5.1.6. On a, quels que soient a, b et c,

(a + b) + c Q{b, c)-a + (b + c)

où q (b, c) est un élément de E dépendant uniquement de b et de c.
Si on remplace ce dernier postulat par le postulat d'associativité de

l'addition, on a la définition des presque-corps13), qui sont donc des cas

particuliers de pseudo-corps.
Les axiomes précédents n'ont pas été posés arbitrairement ; ils sont

satisfait par les opérations d'addition et de multiplications associées à un
groupe doublement transitif (cf. § 2.5, et aussi [17], p. 40), et ils assurent,
d'autre part, la validité de la proposition du § 5.3.

5.2. Propriétés. Soient E un pseudo-corps, a un élément de E, et
— a un autre élément tel que a + (—a) — a) + a 0 ; on a alors

(5.2.1) (x + a) + (~a) x ;

en effet, si a 0 c'est évident, et si a ^ 0 on a (cf. 5.1.6)

(x + a) + (~a) Q(a, ~a)>x

et en posant x — a on voit que q (a, — a) 1.
De la relation précédente, il résulte immédiatement que la seule solution

de l'équation x + a 0 est x —a.
On a (— 1) -f- 1 0; en multipliant à gauche par (—1), il vient

(— l)2 + (— 1) 0 ; d'où, en comparant avec 1 + (— 1) 0,

(5.2.2) _(_i) (-1)2= 1.

18) Cf. note 5, p. 204.
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Plus généralement, on démontre sans peine que «•(— 1) (— l)a
— a, et que — (—a) a, quel que soit a.

On posera, par définition a + (—6) a — 6.

5.3. $oi£ i? tm pseudo-corps. L'application de E sur lui-même définie
par Véquation (1) y a-x + b (a ^ 0) es£ biunivoque. L'ensemble des

applications de ce type est un groupe doublement transitif.
Cette proposition résulte des observations suivantes :

Un simple calcul montre que l'application (1) possède une inverse
d'équation

(5.3.1) y a-*.x + a-*-(-b)
et que le produit de l'application (1) par l'application y a1 - x -f b' est
l'application

(5.3.2) y Q(a'-b,b')-a'.a'X + {a'-b + bf) ;

les conditions pour que l'application (1) transforme 0 et 1 respectivement
en deux éléments donnés distincts p et q, sont

(5.3.3) b p et a + b q;
considérées comme équations en a et b, ces conditions ont pour unique
solution

(5.3.4) a q — p b p.

5.4. Définitions. Nous appellerons pseudo-corps (respectivement
presque-corps) topologique un pseudo-corps (respectivement un presque-
corps) muni d'une topologie telle que les opérations d'addition, de

multiplication et d'inversion soient continues.
Dans un pseudo-corps topologique, les fonctions —x (—\)*x et

q(x, y) (1 -f- x) + y — (x + y) (cf. 5.1.6) sont continues.
Soient E un pseudo-corps topologique et G le groupe de toutes les

transformations de E d'équation y ax + b (a^O). En vertu des

formules (5.3.3) et (5.3.4), le couple (p, q) transformé du couple (0, 1)

par la transformation y a • x + b est fonction continue du couple
(a, 6), et réciproquement ; il en résulte que si l'on choisit comme couple
de référence le couple (0, 1), la topologie définie sur G suivant le procédé
décrit au § 3.2, n'est autre que la topologie obtenue en identifiant de

façon naturelle G au produit direct (E — 0) xE, la transformation
y ax + b étant identifiée au couple (a, 6). En vertu des formules
(5.3.1) et (5.3.2), le groupe G, muni de cette topologie, est un groupe
topologique et est donc un groupe doublement transitif continu opérant sur
E, au sens du § 3.2.
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5.5. Théorème 5. Tout pseudo-corps topologique localement compact,
non totalement discontinu et satisfaisant au premier axiome de dénombrabi-
litê est isomorphe au corps des nombres réels, des nombres complexes ou des

quaternions.

Démonstration, Soit E le pseudo-corps considéré. En vertu du théorème

2 et des résultats du paragraphe précédent, il existe un homéomor-
phisme T de E sur un corps K, qui est l'un des trois corps indiqués, tel
que le transformé par T du groupe G de toutes les transformations de E
d'équations y a-x + b (a ^= 0) soit le groupe G1 des transformations
de K définies de façon analogue. Pour la clarté de l'exposé, les symboles
désignant des éléments de K seront affectés de primes ; en particulier
l'élément neutre pour l'addition (respectivement la multiplication) dans

K sera dénoté par 07 (respectivement l7).
Le groupe G1 étant doublement transitif, il est toujours possible, en

combinant T avec une transformation convenablement choisie de Gf,

d'obtenir un homéomorphisme de E sur K qui jouit des mêmes propriétés
que T et qui transforme 0 et 1 respectivement en 07 et 1; ; nous supposerons

que T lui-même réalise cette condition.
La transformation de E définie par l'équation y ax (a ^ 0),

transforme 0 et 1 respectivement en 0 et a ; sa transformée par T
transforme donc 07 et l7 respectivement en 07 et Ta, et est par conséquent
la transformation d'équation yr Taxf'; on a donc, quels que soient

«^0 et x, appartenant à E,

T{a-x) TaTx (1)

et cette relation reste évidemment valable lorsque a 0.
Posons T(~- l) ef. En vertu des relations (1) et (5.2.2), on a

ef* l7, d'où
e'= V ou -l7 (2)

La transformation de E définie par l'équation y x + 1 transforme
— 1 et 0 respectivement en 0 et 1 ; sa transformée par T transforme donc
ef et 07 respectivement en 07 et l7 et est par conséquent la transformation
d'équation y1 — e7"1 -x' + l7 ; on a donc, quel que soit x appartenant
hE,

T(x+ 1) -V-W-f l7 (3)

Posons x a~x-b (a ^ 0) et multiplions les deux membres de (3) à

gauche par Ta ; il vient, en tenant compte de (1), (2) et (5.1.5)

T(b + a) - e'-1- Tb + Ta ;
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par continuité, cette relation doit rester vérifiée lorsque a 0, c'est-à-
dire qu'on a Tb — e'^Tb, d'où e' — 1, et enfin,

a) - T6 + ^a (4)

Les relations (1) et (4) montrent que T est un isomorphisme, et notre
théorème est démontré.

5.6. Remarques

5.6.1. Si dans un pseudo-corps E muni de ses opérations d'addition
(-f) et de multiplication (•), on introduit une nouvelle addition (-\-)
définie par la relation

a -f- 6 ea -j- à

avec e + ou — 1 suivant que b ou ^ 0, cette nouvelle opération

d'addition et l'ancienne multiplication satisfont tous les axiomes du
§ 5.1 et le groupe des transformations d'équations y a • x -j- b est

identique au groupe des transformations d'équations y ax + 6.
Etant donné un groupe doublement transitif G opérant sur un

ensemble E, les seuls systèmes d'opérations d'addition et de multiplication

qui satisfont les postulats du § 5.1, et telles que G soit le groupe des

transformations d'équations y ax -f b (a =fi 0), sont le système
construit au § 2.5 (déterminé au choix des points 0 et 1 près), et celui
qu'on obtient à partir de celui-là en appliquant le procédé précédent ; ces

deux systèmes sont identiques si et seulement si le groupe G est de
seconde espèce (cf. § 2.3).

5.6.2. Pour démontrer le théorème 5, nous avons utilisé le résultat
du théorème 2, mais il est évident que nous aurions pu le démontrer
directement en reproduisant la démonstration du théorème 2 sans parler
de groupe doublement transitif. Notons cependant que dans le cas du
théorème 2, il était nécessaire de démontrer que les fonctions y -\- x et
x • y sont continues en x 0, alors que cela fait ici partie des
hypothèses. L'hypothèse de continuité de y + x en x 0 est d'ailleurs
effectivement utilisée dans la démonstration du théorème 5, car si nous
l'abandonnons (c'est-à-dire, si nous supposons seulement que la somme

y + x est partout continue sauf peut-être en x 0), le pseudo-corps E
peut être non seulement l'un des trois corps indiqués, mais encore l'un des

trois pseudo-corps obtenus à partir de ceux-là par application du procédé
décrit au début du numéro 5.6.1.

5.7. Nous allons montrer à présent que lorsque le pseudo-corps E
considéré est un presque-corps, l'hypothèse de dénombrabilité du théo-
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rème 5 peut être supprimée. En outre, nous remplacerons l'hypothèse
d'après laquelle E est un pseudo-corps topologique par l'hypothèse
suivant laquelle E est un presque-corps muni d'une topologie telle que le

produit x-y et la somme x -f y soient des fonctions partout continues
du couple {x, y) avec exceptions éventuelles aux points x 0 et y 0

pour le produit, ce que nous exprimerons en disant que E est un presque-
corps faiblement topologique. Nous adoptons ce point de vue plus général

pour les motifs suivants :

II peut être utile, dans certains cas, de considérer des presque-corps
munis d'une topologie telle que le groupe additif de tous les éléments et
le groupe multiplicatif des éléments non nuls de ce presque-corps soient
des groupes topologiques ; ce sont là des presque-corps faiblement topologiques

mais non nécessairement (du moins a priori) topologiques.
Le théorème de F. Kalscheuer [5], mentionné plus haut, n'est pas à

proprement parler un cas particulier du théorème 3 (cf. §1.2) car parmi
les hypothèses qui y sont faites ne figure pas la continuité de l'inversion
(notons cependant que celle-ci résulte immédiatement des autres
hypothèses du théorème) ; il est par contre un cas particulier du théorème
suivant, généralisant le théorème 3, et que nous allons à présent démontrer.

Théorème 3'. Tout presque-corps faiblement topologique, localement

compact et non totalement discontinu, est isomorphe au corps des nombres

réels, des nombres complexes, ou des quaternions.

Démonstration. Notons tout d'abord qu'en vertu de l'identité x y
X- (y + a) — X- a, le produit xy est fonction partout continue du

couple (a?, y) sauf peut-être pour x 0.
Si E n'est pas compact, on peut démontrer notre théorème en suivant

les raisonnements des §§ 4.3, 4.10 et 4.11 (qui peuvent aisément être
mis sous une forme analytique ne faisant pas explicitement intervenir le

groupe <?), et en se souvenant que, d'après E. R. van Kampen [6], les

résultats de Pontrjagin concernant les groupes abélien localement
compacts sont valables indépendamment de toute hypothèse de dénombrabi-
lité.

Supposons donc E compact, soient a =fi 0 un élément donné arbitrairement

dans E, et U un voisinage ouvert de a*1 ne contenant pas 0. En
vertu des propriétés de continuité de la multiplication, nous pouvons
associer à tout élément x ^ a-1 de E deux ouverts Vx et Wx, contenant
respectivement a et #, et tels que le produit Vx- Wx (au sens de la
multiplication dans E) ne contienne pas 1. L'ensemble Ç£U (complémentaire
de U dans E) est compact ; il peut donc être recouvert par un nombre
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fini d'ouverts choisis parmi les Wx ; soient W\ ces ouverts, Ft les ouverts
Vx correspondants et F U Ft l'intersection de tous les V{. Aucun des

ensembles F • Wt ne contient 1, par conséquent 1 n'est pas contenu non
plus dans l'ensemble F•(£?/, c'est-à-dire qu'on a F*1 c U ; F étant un
voisinage de a, nous voyons que la fonction x~x est continue en a.

Soit / la fonction définie de la façon suivante :

Hx) -\X~X si x * °
T{X) ~ | 0 si x 0 ;

cette fonction est partout continue ; en effet, nous avons vu plus haut
qu'elle est continue en tout point x ^ 0, et elle est aussi continue au
point 0 car si U désigne un voisinage ouvert de 0, (£Î7 est compact, donc "

f((£U) est compact, et f(U) (E/((£J7) est un voisinage ouvert de 0.
On a, pour tout x ^ 0,

x(l+f(x)) x+ 1

donc, pour tout x ^ 0 et — 1,

les deux membres de cette relation conservent un sens et sont continues
en x 0 ; les valeurs qu'ils prennent en ce point doivent donc être
égales, ce qui donne 0=1. Par conséquent E ne peut être compact.

6. Démonstration du théorème 4
et application à la démonstration du théorème 1

6.1. Démonstration du théorème 4. Soient G et a le groupe et l'auto-
morphisme satisfaisant aux conditions de l'énoncé, et soit n la dimension
de G.

Supposons tout d'abord que G soit localement connexe, et soient e

l'élément unité de G, U un voisinage de e ne contenant aucun élément
fixe de a en dehors de e, F un voisinage compact de e tel que F"1 • F c U,
et / l'application continue de G dans G définie par f(x) xa-x^1. La
restriction fv : V-> /(F) de / à F est biunivoque, car si

x^-x-1 ya-y~1 et x e F, y e F
on a

(y-1-a?)0" (y0)-1'^* y~x-x et y^-xeU
donc y~x-x e et y x, en vertu de la condition imposée à U.

V est compact, donc fv, qui est continue et biunivoque, est un homéo-
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morphisme. Il en résulte que l'ensemble /(F) a la dimension n, et
possède donc un point intérieur (cf. D. Montgomery [9], théorème 3) ;

et il en est de même, a fortiori, de f(G).
Soit b aa-a-1 un point intérieur de f(0). L'homéomorphisme

de G sur G qui transforme x en {aa)-l'X-a, conserve /((?), car on
a (aa)-1'Xa'X-1-a (a^-xy-ia^-x)-1, et transforme 6 en e ; par
conséquent e est un point intérieur de /((?). Désignons alors par Wr un
voisinage de e tel que W- Wf c /((?), et posons W W'^ (Wf)° ;

îf est un voisinage de e, et on a WWc /((?), et Wa W, Sur /(G),
Fautomorphisme a s'identifie avec l'inversion car on a (xa-x~1)a
x-ix*)-1 (#a- &-1)-1 ; donc, si a et 6 sont deux éléments de G appartenant

à W, on a a-6 (aa-b°)a (o-1^-1)-1 6-a. Dans TF, la
multiplication est donc commutative et on a aa a~1 ; notre théorème résulte
alors du fait que G, étant connexe, est engendré par W.

Si G n'est pas localement connexe, il possède un sous-groupe G' partout
dense dans G, et qui, muni d'une nouvelle topologie, plus fine que celle
induite sur G1 par G, est un groupe topologique connexe, localement
compact et localement connexe, de dimension n (cf. D. Montgomery
[10], théorème 1014) ; il résulte de la façon dont le groupe G! et sa topologie

sont définis (dans [10]), que l'un et l'autre sont conservés par tout
automorphisme bicontinu de G, et en particulier, dans le cas qui nous
intéresse, par a. La restriction de a à G' est un automorphisme involutif
de G' jouissant de toutes les propriétés énoncées ; en vertu de la partie de

théorème 4 déjà démontrée, G' est abélien, et on a, pour tout x appartenant

à G', x x~x ; le théorème 4 résulte alors du fait que Gf est partout
dense dans G.

6.2. Rappel de [15], théorème 415) : Soit G un groupe triplement transitif

opérant sur un ensemble quelconque E. Si les transformations de G qui
conservent deux points donnés de E sont deux à deux permutables, G est un
groupe projectif, c'est-à-dire qu'il est possible d'identifier les éléments de

E avec les éléments d'un corps K complété au moyen d'un élément oo, de

telle façon que les transformations de G soient les transformations d'équation

y (a-x + b)l(c-x + d), a-d — b-c^O. La réciproque est
vraie16).

14 L'emploi du sous-groupe localement connexe partout dense dans la démonstration
du théorème IV m'a été suggérée par M. le Professeur D. Montgomery lui-même; je tiens
à lui en exprimer ici mes sincères remerciements.

15) Cf. aussi [17], chapitre II B, théorème VI.
16) La proposition énoncée ici peut être démontrée aisément en faisant usage de la

proposition du § 2.13 (qui la contient d'ailleurs partiellement).
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Si E est un espace topologique et si G est un groupe triplement transitif
continu opérant sur E11), K est un corps topologique.

6.3. Application du théorème 4 à la démonstration du théorème 1 dans
le cas où Vespace E est de dimension finie.

Soient E un espace de dimension finie satisfaisant aux hypothèses du
théorème 1, G un groupe triplement transitif continu opérant sur E, 0, 1

et oo trois points de E, deux à deux distincts, et Gx le groupe des
transformations de G qui conservent 0 et oo.

En procédant comme au § 2.5, on peut, à partir des transformations
de Gl9 définir sur l'ensemble E — 0 — oo une opération de multiplication

telle que E — 0 — oo soit un groupe (et, de façon plus précise, un
groupe topologique dans la topologie induite par E) d'élément neutre 1,

dont les translations à gauche (y a-x) sont les transformations de Gx.
La transformation T de G qui échange 0 et oo et qui conserve 1 transforme

toute transformation de Gx en une transformation de G1 ; considérée
comme opérant sur E — 0 —oo, elle définit donc un automorphisme
involutif du groupe multiplicatif E — 0 — oo, automorphisme qui
possède au maximum deux points unis (en vertu de la triple transitivité
de G).

Si E — 0 — oo est connexe, le théorème 4 nous enseigne que le groupe
multiplicatif E — 0 — oo, et par conséquent aussi le groupe Gl9 est
abélien ; il en résulte que le groupe G est projectif (cf. § 6.2), et le théorème

1 résulte du théorème de Pontrjagin concernant les corps topologiques.

Si E — 0 — oo n'est pas connexe, on montre, par un raisonnement
analogue au précédent que la composante connexe C de 1 dans le groupe
multiplicatif E — 0 — oo, est un groupe abélien et est, par conséquent
isomorphe au produit d'un groupe compact connexe K par un groupe
vectoriel. Etant déconnecté par chacun de ses points, C doit être
isomorphe au groupe additif des nombres réels. On voit alors, par raison
d'homogénéité, que les composantes connexes du groupe multiplicatif
E -— 0 — oo sont au nombre de deux, d'où il résulte que ce groupe est
isomorphe au produit du groupe additif des nombres réels par un groupe
cyclique d'ordre 2, et est donc abélien. La démonstration s'achève comme
plus haut18) l9).

17) Cf. note 3, p. 203.
18) Pour les détails de démonstration qui sont omis ici, on se reportera aux §§4.4

et 4.5.
19) Ajouté aux épreuves: Depuis la présentation du présent article, MM. D. Mont-

gomery et L. Zippin ont montré (cf. Proc. Nat. Acad. Se. vol. 38, n° 5, Mai 1952), en
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utilisant un résultat récent de M. A Gleason, que tout groupe localement compact de
dimension finie est un groupe de Lie généralisé, lorsque le groupe est en outre locale
ment connexe, c'est un groupe de Lie Ces résultats rendent la démonstration du
théorème 4 beaucoup plus aisée (cf note 7, la partie de la démonstration concernant le cas
où G n'est pas localement connexe reste inchangée), ils permettent, d'autre part, de
ramener le théorème 2, dans le cas où E est de dimension finie, à une proposition
concernant les groupes de Lie, qui peut être démontrée directement par application des
résultats classiques de la théorie des groupes de Lie
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