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Sur les groupes
doublement transitifs continus

Par J. Trrs!), Bruxelles

1. Introduction

1.1. Généralisant un résultat que j’avais obtenu antérieurement
(16], M. H. Freudenthal a récemment démontré le théoréme suivant

(cf. [3]%)

Théorédme 1. Soit G un groupe triplement transitif continu opérant sur
un espace topologique E 3) localement compact, non totalement discontinu et
satisfaisant au premier axiome de dénombrabilité. Il existe un homéomor-
phisme @ de E sur la droite projective réelle ou complexe, tel que le transformé
G @' de G par ¢ coincide avec le groupe de toutes les transformations
homographiques y = (a-x + b)/(c-x + d), a-d — b-¢c # 0.

I1 est naturel de se demander quels sont, sous les mémes conditions,
tous les groupes doublement transitifs continus existants4)? La réponse
a cette question est donnée par le théoréme suivant :

Théordme 2. Soit G un groupe doublement transitif continu opérant sur
un espace topologique E localement compact, non totalement discontinu et
satisfaisant au premier axiome de démombrabilité. Il existe un homéomor-
phisme ¢ de E sur U'ensemble des nombres réels, des nombres complexes ou

1) Chargé de Recherches du F. N. R. S., Bruxelles.

%) En vue de la suite, nous énoncons ce théoréme sous une forme légérement différente
de celle qui lui est donnée par M. Freudenthal; I’équivalence des deux énoncés résulte
immédiatement d’une proposition démontrée au § 3.3.

8) La définition des groupes triplement transitifs continus opérant sur un espace topo-
logique est tout-a-fait analogue & celle des groupes doublement transitifs continus, donnée
au § 3.2. Pour une définition explicite on peut se reporter & [16].

%) Rappelons (cf. [17], chapitre IV, et aussi [16], introduction) que pour = >3, il
n’existe aucun groupe n-uplement transitif (et a fortiori aucun groupe n-uplement transi-
tif continu) opérant sur un espace d’une infinité de points. Notons aussi que la recherche
des groupes simplement transitifs continus existants est équivalente & la recherche des
groupes topologiques.
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des quaternions, tel que le transformé ¢ G p-' de G par ¢ coincide avec le
groupe de toutes les transformations linéaires y =a-xz + b, a # 0.

Dans le cas particulier o I’on fait ’hypothése que E est une variété
3 une dimension, ce théoréme est contenu dans les travaux de M. L. E. J.
Brouwer [1]; pour les variétés a deux dimensions il a été démontré par
Kerékjarto [7], qui a aussi obtenu, dans [8], un résultat plus précis que
celui du théoreme II pour le cas unidimensionnel, & savoir :

G étant un grouwpe doublement transitif de transformations biunivoques et
bicontinues de la droite euclidienne, il existe un homéomorphisme ¢ de la
droite sur elle-méme tel que le transformé @ G p-' de G par ¢ coincide avec
le groupe de toutes les similitudes (c’est-a-dire avec le groupe de toutes les
transformations linéaires y = a-x + b, a # 0).

L’objet principal du présent article est la démonstration du théoréme I1
dans le cas général. Dans cette démonstration, j’utilise essentiellement
les propriétés des groupes 4 deux bouts, dont la structure a été compléte-
ment déterminée par M. K. Iwasawa [4] et indépendamment par M. Freu-
denthal [3] (qui se sert de ses résultats dans sa démonstration du théo-
réme 1), ainsi que d’un théoréme de M. F. Kalscheuer [5] caractérisant
les corps des nombres réels, des nombres complexes et des quaternions
comme étant les seuls «presque-corps»®) continus ayant le corps des
nombres réels comme corps de base.

1.2. D’aprés Pontrjagin [12], tout corps topologique localement
compact et connexe est isomorphe au corps des nombres réels, des
nombres complexes ou des quaternions. Au § 5, je montre, & titre d’exemple
d’application du théoréme 2, que si 'on ajoute aux hypotheses de ce
théoréme de Pontrjagin le premier axiome de dénombrabilité, on peut,
sans changer le résultat, y remplacer les corps par des systémes algébriques
plus généraux que je nomme pseudo-corps (cf. théoréme 5). Si I'on se
restreint & la considération des presque-corps, qui sont cas particuliers des
pseudo-corps, le résultat précédent est susceptible d’une démonstration

5) Par presque-corps, nous entendons ici un «presque-corps complet» (vollsténdiger
Fastkorper) au sens de M. H. Zassenhaus [18], c’est-a-dire un ensemble E tel que

a) les éléments de E forment groupe par rapport & une opération d’addition (4-), dont
nous appellerons 0 1’6lément neutre; '

L) les éléments non nuls de E forment groupe par rapport & une opération de multipli-
cation (-) et on pose, en outre, 0:a = a0 = 0;

¢) la multiplication est distributive & gauche par rapport & l'addition: a-(b 4 ¢)
=a-b+a-c.

Si le groupe additif de E est un groupe vectoriel sur un corps commutatif K, nous
disons, avec M. Kalscheuer, que le pseudo-corps £ a K comme corps de base.
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directe, indépendante de I’hypothése de dénombrabilité (cf. § 5.6); on
a donc le

Théoréme 3. Tout presque-corps topologique localement compact et non
totalement discontinu est isomorphe au corps des nombres réels, des nombres
complexes ou des quaternions qui renferme comme cas particuliers le
théoréme de Pontrjagin et, essentiellement $), le théoréme de Kalscheuer
(qui est d’ailleurs utilisé dans la démonstration).

1.3. Lorsque l’espace E est de dimension finie, le théoréme 1 est
susceptible d’une démonstration particuliérement simple qui fait 1’objet
du § 6; si je reviens ici sur un cas particulier d’'un théoreme déja connu,
ce n’est pas seulement pour la raison indiquée, mais aussi parce que la
démonstration en question repose sur un théoréme auxiliaire, énoncé ci-
apres, qui peut présenter par lui-méme un certain intérét :

Théoréme 4. Soit G un groupe localement compact, connexe, de dimen-
ston finie et satisfaisant au deuxiéme axiome de dénombrabilité. Si G posséde
un automorphisme involutif ¢ (0% = identité) dont I'élément unité de Q est
un point fixe 1s0lé, G est un groupe abélien et o est 'automorphisme qui fait
correspondre a tout élément x de G son inverse x-1 7).

11 peut étre utile de noter que, dans tous les cas, le théoréme 1 est une
conséquence presque immédiate du théoréme 2.

2. Les groupes doublement transitifs: Définitions et propriétés générales?®)

2.1. Défimitions. Un groupe de transformations®) d’un ensemble
donné quelconque E est doublement transitif s’il existe une ef une seule
transformation du groupe transformant deux éléments donnés distincts p
et ¢ de E en deux éléments donnés distincts p’ et ¢’ de E, et cela quels
que soient les couples p, ¢q et p’, ¢’.

Dans la suite, £ et @ désigneront respectivement un ensemble quel-
conque et un groupe doublement transitif opérant sur cet ensemble. Les
éléments de E seront nommés points.

¢) Pour plus de précision sur ce point, voir § 5.7.

7) Je dois I’énoncé de ce théordme & une suggestion de M. A. Borel qui m’a fait remar-
quer que si un groupe de Lie jouit des propriétés indiquées, il est nécessairement abélien,
comme on s’en appergoit immédiatement si I’on traduit ces propriétés en termes d’algébre
de Lie.

8) La plupart des notions et des propositions de cette seconde partie sont indiquées
dans [17] (cf. chapitre II, § A 2, et § B, remarque 2).

%) Nous réserverons ici le terme «transformation» pour désigner une application bi-
univoque d’un ensemble sur lui-méme.
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2.2. Une transformation appartenant & G sera dite involutive si elle
est cyclique d’ordre 2; il en est ainsi de toute transformation 7' de @
qui échange deux points distincts quelconques (parce que 7'* conserve
alors ces deux points et est donc la transformation identique, en vertu de
la double transitivé de @). Les transformations involutives seront encore
appelées tnvolutions.

2.3. Deux involutions quelconques I et I’ sont conjuguées (c’est-a-
dire qu’il existe au moins une transformation 7' appartenant a G telle
que TIT-*= 1'1)), En effet, soient p et ¢ (respectivement p’ et ¢’)
deux points distincts se correspondant dans l'involution I (respective-
ment I’) et T la transformation de G qui transforme p en p’ et ¢ en ¢';
la transformation 717 -1 échange p’ et ¢’, et n’est autre que I'.

En particulier, les involutions de G' ont toutes un ou toutes zéro point
uni. Suivent le cas, nous dirons que le groupe G est de premiére ou de
seconde espeéce.

2.4. SiG est de premiére espéce, il existe une et une seule involution
ayant pour point uni un point donné «. Supposons en effet qu’il en
existe deux, I et I’, et soient p un point quelconque, distinct de u, et
T la transformation qui conserve p et qui transforme I pen I'p; 7T trans-
forme I en I’, donc elle conserve u ; conservant p et u elle ne peut étre
que la transformation identique, et I = I’.

Il résulte de la propriété précédente que si G est de premiere espéce,
les involutions sont simplement transitives sur £ (c’est-a-dire que deux
points donnés quelconques, distincts ou confondus, sont échangés par
une et une seule involution). Cette conclusion reste valable lorsque G est
de deuxiéme espéce si I’on convient, dans ce cas, de considérer la trans-
formation identique comme une involution, ce que nous ferons toujours
par la suite.

2.5. Opérations d’addition et de multiplication assoctées. Choisissons dans
E deux points distincts, fixés une fois pour toute, que nous nommerons
respectivement 0 et 1. Dans la suite, I, désignera 'unique involution
conservant. 0.

Nous apellerons translations les transformations de la forme I7,, ou
désigne une involution quelconque ; elles sont simplement transitives sur
E puisque les involutions le sont (cf. § 2.4).

10) Notons, pour éviter une confusion éventuelle, que dans [14], [15] et [17], nous
employions le mot ¢«conjugué» dans un sens différent de celui qui lui est donné ici.
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Nous apellerons encore homothéties'') les transformations de G qui
conservent O ; elles sont simplement transitives sur £ — 0.

Soient @ et b deux points quelconques. Il existe une et une seule trans-
lation transformant 0 en a ; elle transforme b en un point que nous nom-
merons somme de b et de a et que nous désignerons par b 4 a. Sia est
différent de 0, il existe une et une seule homothétie transformant 1 ena ;
elle transforme b en un point que nous nommerons produit de a et de b
et que nous désignerons par a-b. Lorsque a = 0, nous poserons par
définition a-b = 0, quel que soit b.

Les opérations de somme et de produit seront nommées respectivement
addition et multiplication.

2.6. Ona 0+a=a+0=a=a-1=1.a et a-0=0-a =0.

2.7. =a-x (@ # 0) est I’équation de 'homothétie qui transforme
lena; y=ax 4 b est 'équation de la translation qui transforme 0
enb.

Toute transformation 7' appartenant & G est d’une et une seule fagon
produit d’une homothétie par une translation ; en effet, si U est la trans-
lation qui transforme 0 en 7'0, la transformation V = 7-1U est une
homothétie et on a 7 = UV. Par conséquent, y =a-x + b (a £ 0)
est I’équation de la transformation la plus générale appartenant a G.

2.8. Les homothéties forment groupe. Il en résulte que les points
différents de 0 forment groupe par rapport & la multiplication (le produit

est associatif et tout point @ £ 0 posséde un inverse a-! tel que a-a-!
=a1l.a = 1).

2.9. La transformée V = TUT-! d’une translation quelconque
U =11, (voir § 2.5) par une homothétie 7' est une translation ; en effet,
I, est conservée par 7' (étant 1’'unique involution qui conserve 0), et la
transformée de I par 7' est une involution. Soient U =y =2 + b et
"'=y=azx (@ #0); alors V = TUT-! transforme 0 en a-b, donc
V=y=2x+ab, et la relation 7TV = UT peut s’écrire a.xz + a-b
=a-(x + b), c’est-a-dire que la multiplication est distributive & gauche
par rapport & ’addition.

2.10. a étant un point quelconque, nous désignerons par —a son
transformé par I, et nous écrirons, quel que soit b, b 4 (—a) =b — a.
Lorsque le groupe G est de deuxiéme espéce (cf. § 2.3), on a —a = a.

11) Les homothéties correspondent & ce que nous avions appelé dans [14] et [17] propor-
tionnalités.
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On a, quel que soita, —(—a)=a, et (—1)-a =a-(1—1) = —a;
en particulier (—1)2 = 1.

L’inverse d’une translation U = II, est une translation ; en effet, on
a Ul=1I1,0=1,11)I,, et I,1l, est une involution. De fagon plus
précise, si U=y=a+b, U=y =2 —0b, cest-d-dire qu'on a,
quels que soient x et b, ( + b) — b = =z.

2.11. Deux translations sont permutables si et seulement si leur produit
est une translation. En particulier, si les translations forment groupe, ce
groupe est abélien et réciproguement, si les translations sont deux & deux
permutables, elles forment groupe.

En effet, soient U = II, et U’'= 1’1, les deux translations consi-
dérées. Pour qu'on ait UU’' = U'U, c'est-a-dire [I,1'1,=1"1,11I,,
il faut et il suffit que 11,1’ = I'I,I, ouencore que II,I' = (II,I"),
c’est-d-dire que II,I’ soit une involution, done que UU’' = II,I'I,
soit une translation.

2.12. Notons qu’en vertu de 2.9 (loi de distributivité & gauche), si
on a (x+a)+ b= (x+b)+a, quels que soient » et b, pour une
valeur donnée non nulle de a, cette relation reste satisfaite quel que soit a.
Donc, en vertu de 2.11,

S’il existe une translation (différente de la translation identique) qus est
permutable avec toutes les autres, les translations forment groupe et ce groupe
est abélien ; U'addition est alors commutative et associative.

2.13. Bien qu’il n’en soit pas fait usage par la suite, nous signalerons
encore la propriété suivante :

St la multiplication associée & G est commutative, les translations forment
groupe et ce groupe est abélien.

Soient T=y=x+a et U=y =« -+ b deux translations quel-
conques et supposons que 7'U ne soit pas une translation, c’est-a-dire
quonait TU=y=(x+b)+a=c-x-+d, avec ¢ # 1.

Soit ¥y = x 4+ e (e £ 0) la translation qui transforme ¢ en 1. En
multipliant par d-e-! les deux membres de la relation ¢ +e¢ =1, il
vient c¢-(d-e1) +d =d-e1.

I1 en résulte que le point d-e-! est uni pour 7'U, c’est-a-dire que U
et 7T-! transforment d.-e-! en un méme point; les translations étant
simplement transitives, on doit avoir U = T-1, et TU est la transfor-
mation identique, ce qui contredit notre hypothése.

208



3. Groupes doublement transitifs continus

3.1. Tous les espaces topologiques considérés ici seront supposés de
Hausdorff.

3.2. Défimitron. Soient E un espace topologique et G un groupe
doublement transitif opérant sur E .

Soit € ’espace des couples de points distincts de £, que nous suppose-
rons muni de la topologie naturelle (induite par la topologie du produit
E xE, dont € est un sous-espace). Choisissons dans € un élément fixe
(@, b) (couple de points de E) de référence, et considérons la correspon-
dance biunivoque entre G et € qui fait correspondre & toute transforma-
tion 7' de G le couple (T'a, T'b) (élément de €) transformé de (a, b) par 7T'.

Nous pouvons introduire sur G une topologie caractérisée par la con-
dition que cette correspondance soit un homéomorphisme. Si, muni de
cette topologie, G est un groupe topologique (c’est-a-dire, si les opérations
du groupe sont continues), nous dirons que c’est un groupe doublement
transitif continu opérant sur E. Lorsqu’il en est ainsi, la topologie en
question ne dépend pas du couple (a, b) choisi, et de plus, @ est un groupe
topologique de transformations de £ au sens de Montgomery et Zippin
[11] (c’est-a-dire que le transformé T'x d'un point x par une transforma-
tion 7' de G dépend continument de la paire (7', x)).

3.3. Remarques concernant la définition précédente. Soient E un espace
topologique et ¢ un groupe topologique de transformations de £ (au sens
de Montgomery et Zippin), et supposons que G soit doublement transitif.
Pour que G soit un groupe doublement transitif continu opérant sur K,
au sens du § 3.2, il faut et il suffit (par définition) que la transformation 7'
de @ qui transforme deux points distincts donnés « et b respectivement en
deux points distincts variables x et y, soit fonction continue du couple
(z, y). Nous allons montrer que cette condition peut étre remplacée par
une condition plus faible ; de fagon précise,

Pour que G soit un groupe doublement transitif continu opérant sur E, au
sens du § 3.2, il faut et il suffit qu’il existe auw moins un couple de points
distincts (a, b) tel que la transformation de G qui conserve b et qui tmnsforme
a en un point variable x # b soit fonction continue de x.

Nous devons seulement montrer que la condition est suffisante ; sup-
posons donc qu’elle soit remplie et notons immédiatement qu’elle reste
alors satisfaite lorsqu’on remplace le couple (@, b) par n’importe quel
couple de points distincts (en vertu de la double transitivité de G). Cela
étant, soient (@, b) et (x, y) deux couples de points distincts, 1'une fixe,
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Pautre variable; si = 5% b, la transformation 7', de G qui conserve b et
qui transforme z en a dépend continument de z ; elle transforme y en un
point z qui dépend continument du couple (x, y). De méme, la transfor-
mation U, de G qui conserve a et qui transforme b en z dépend continu-
ment de z, done du couple (z, y). Par conséquent, si « # b, la transfor-
mation 7,;'U, de @ qui transforme a et b respectivement en z et y
dépend continument de (z, y); pour montrer que ceci reste vrai lorsque
x = b, il suffit de remplacer le point b par un point différent b’ dans tout
ce qui préceéde, et de noter que la transformation de G qui transforme a et
b respectivement en x et y est le produit de la transformation (constante)
qui conserve a et qui transforme b en b’ par la transformation qui trans-
forme a et b’ respectivement en x et y.

Notons un corollaire important de la proposition précédente :

Soit G un groupe doublement transitif topologique de transformations d’une
espace topologique E. St G et E sont localement compacts et satisfont au
deuxiéme axiome de dénombrabilité, G est un groupe doublement transitif
continu opérant sur E, au sens du § 3.2.

Soient a et b deux points distincts appartenant a £. Le groupe G, des
transformations de G qui conservent a est un sous-groupe fermé de G ;
il est donc localement compact et vérifie d’autre part le deuxiéme axiome
de dénombrabilité. Cela étant, considérons l'application biunivoque de
G,sur E — a qui applique toute transformation 7' de G, sur le point 7'b,
transformé de b par 7' ; on peut montrer que cette application est un
homéomorphisme en reproduisant exactement la démonstration donnée
par exemple dans Pontrjagin [13] (cf. théoreme 13, p. 65) du théoréme
de Freudenthal d’apres lequel tout homomorphisme continu d’un groupe
localement compact satisfaisant au deuxiéme axiome de dénombrabilité
sur un autre groupe remplissant les mémes conditions est ouvert. La dé-
monstration s’achéve par application de la proposition précédente.

3.4. Soient £ un espace topologique et G un groupe doublement tran-
sitif continu opérant sur E.

x,y,z,y’, z étant cinq points quelconques de E tels que = #~ y et
x’ +# y’, la transformation 7' de G qui transforme x et y respectivement
en z’ et y’ dépend continument du quadruple (z, ¥, «/, y’), et le trans-
formé Tz de z par cette transformation dépend continument du quin-
tuple (x, y, 2/, ¥/, 2) ; la démonstration de ces propriétés est aisée (cf. par
exemple [16], théoréme 3).

3.5. « étant un point quelconque de E, nous désignerons par I(x)
Iinvolution d’élément uni x (cf. 2.4); cette involution dépend continu-
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ment de x. En effet, soient a et b deux points fixes distinets quelconques,
et supposons qu’on ait x 7% a (restriction non essentielle vu le caractére
arbitraire du choix de a); I(x) est la transformée de I(b) par la trans-
formation de G' qui conserve a et qui transforme &b en «, et celle-ci dépend
continument de x.

3.6. Continuité des opérations associées a G'. Ayant choisi dans E deux
points distincts 0 et 1, on peut, suivant le paragraphe 2.5, définir dans E
une addition et une multiplication. Soient x et y deux points quelconques ;
I’homothétie T', qui transforme 1 en x et I'involution I, qui échange 0 et x
dépendent continument de z pour tout 40 (en =0, T, n’est pas
définie et I, peut, a priori, étre discontinue) ; il en résulte que, sauf peut-
étre au point x = 0, le produit -y =T,y et lasomme y + = = I,1,y
sont des fonctions continues du couple (x, y), tandis que l'inverse
z-1 = T;'1, définie seulement pour = # 0, est fonction continue de x.

En particulier, le groupe multiplicatif des points de £ différents de 0
est un groupe topologique (dans la topologie induite par E).

3.7. 81 le produit x-y est fonction partout continue de x (pour y = const)
et st G est de premiére espéce (cf. 2.3), la somme y -+ x est fonction partout
continue du couple (x, y).

I, désignera comme précédemment 'involution échangeant 0 et x. Si
nous appelons % le point uni de l'involution I,, le point uni de I, est
z-u. En vertu de 3.5, I, dépend continument de x-u, donc aussi de z,
quel que soit « (en vertu de I’hypothése de continuité du produit). Notre
proposition résulte alors de l'identité y + « = 1,1,y.

4. Démonstration du théoréme 2

4.1. Soient E un espace localement compact, non totalement dis-
continu et satisfaisant au premier axiome de dénombrabilité, G un
groupe doublement transitif continu opérant sur E, et 0 et 1 deux points
fixes distincts appartenant & E.

4.2. K n’est pas compact. Supposons en effet que £ soit compact et soit
{a,} (a, % 0) une suite de points convergeant vers 0 ; la suite {a,'} des
inverses converge aussi vers 0, car si une sous-suite de {a,'}, soit {a,/'},
convergeait vers un point p = 0, on aurait lim a,, = lim (a;')-* = p-1.

p/—>00 v/—>00
Soient I, I'involution échangeant 1 et a,, et b, le transformé de 0 par
cette involution. L’homothétie (cf. § 2.5) qui transforme 1 en @' trans-

forme 0, a, et b, respectivement en 0, 1 et ¢, = a,'-b,; elle transforme
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donc 7, en une involution J, qui échange a,' et 1, et ¢, et 0. Lorsque »
tend vers oo, g, et a;* tendent vers 0, done I, et .J, tendent vers I'involu-
tion I qui échange 0 et 1, par conséquent b, = 1,0 et ¢, = J,0 tendent
vers I0 =1, et a,=b,-c;! tend vers 1, ce qui est absurde.

4.3. E est connexe. Cela résulte immédiatement du fait que E n’est
pas totalement discontinu et posséde un groupe doublement transitif
d’homéomorphismes.

4.4. Soit p un point quelconque de E. Les composantes connexes de
E — p sont en mombre fini, toutes ouvertes dans K, et st C désigne l'une
quelconque d’entre elles, C v p n’est pas compact.

Nous supposerons £ — p non connexe.

Soient ¢ un point distinet de p, et O, un ensemble non vide, ouvert et
fermé dans E — q, et ne contenant pas p. Tout ensemble O ouvert et
fermé dans B — p et contenant ¢ contient O, ; en effet, les ensembles
E — p — O et O, ont pour frontiéres respectives dans ¥ les points p et ¢ ;
aucun d’eux ne contenant la frontiére de ’autre, leur intersection est
sans point frontiére dans Z et est donc ’ensemble vide (# étant connexe).
Il résulte de ce qui précéde que la pseudo-composante de ¢ (c’est-a-dire,
Pintersection de tous les ensembles contenant ¢, ouverts et fermés) dans
E — p contient O,, et a donc des points intérieurs ; par raison de transiti-
vité, tous les points de Z — p sont intérieurs & leur pseudo-composante,
c’est-d-dire que les pseudo-composantes de £ — p sont ouvertes et sont
donc identiques aux composantes connexes ordinaires de B — p.

Considérons un voisinage compact U de p, et soit F' sa frontiére. Les
composantes de £ — p qui ont une intersection non vide avec F sont en
nombre fini, car £, étant compact, ne peut se décomposer en une infinité
d’ouverts disjoints. Ces composantes, que nous nommerons C,,..., C,
sont les seules composantes de £ — p car §’il en existait d’autres, celles-
ci seraient contenues dans U (devant étre connexes et avoir p comme
point frontiére), leurs fermetures seraient donc compactes ; il en serait
de méme, par raison de transitivité, des fermetures des composantes
Cy,...,C,, etVespace E = UvC,v ... 0, serait compact.

4.5. Le groupe multiplicatif des éléments de B differents de 0 est iso-
morphe au produit du groupe additif R des nombres réels par un groupe
compact K .

Nous désignerons par C la composante connexe de 1 dans £ — 0, et
nous nommerons brievement «groupe E — 0» (respectivement «groupe
C») le groupe multiplicatif des points de E — 0 (respectivement C).
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C étant I'espace d’un groupe localement compact, connexe et vérifiant
le deuxiéme axiome de dénombrabilité, il posséde au maximum deux
bouts (cf. Freudenthal [2]); il en posséde donc exactement deux car le
point 0 en est un (puisque £ est connexe) et ne peut étre le seul car C v 0
n’est pas compact (cf. § 4.4). Il en résulte (cf. [4], théoréme 5) que le
groupe C est isomorphe au produit R XK’ de R par un groupe compact
connexe K’

Si B — 0 est connexe, notre proposition est démontrée.

Si £ — 0 n’est pas connexe, £ est déconnecté par chacun de ses
points ; il en est donc de méme de C'. Par conséquent, le groupe K’ se
réduit & son élément unité, C est isomorphe & R, et I'espace E — 0 se
compose d’un nombre fini (cf. § 4.4) de composantes homéomorphes & R.
L’espace E étant homogéne, ce nombre est égal & 2 et le groupe E — 0
est isomorphe au produit du groupe R par un groupe cyclique d’ordre 2.

4.6. Si{a,} et {b,} sont respectivement une suite convergeant vers 0 et une
suite convergente quelconque de points de B, la suite {a,-b,} converge vers
0 ; autrement dit, en vertu de 3.6, le produtt x-y est fonction partout con-
tinue du couple (x, y).

Une suite {a,} de points de K diverge (c’est-a-dire, est sans point limite)
st et seulement si la suite {a;'} des inverses converge vers 0.

Si ’espace E — 0 est connexe, le groupe £ — 0 a deux bouts qui
sont respectivement le point 0, et le bout limite de toutes les suites diver-
gentes de E ; les deux propositions précédentes résultent alors de pro-
priétés classiques des groupes & deux bouts (cf. [2], théorémes 8 et 10).

Si £ — 0 n’est pas connexe, le groupe E — 0 est isomorphe au pro-
duit du groupe R par un groupe cyclique d’ordre 2 (cf. § 4.5); il est en
particulier abélien, et nos deux propositions se démontrent aisément en
tenant compte des résultats du § 3.6.

4.7. La somme x -+ y est fonction partout continue du couple (x, y).
En vertu des §§ 3.7 et 4.6, il nous suffit de considérer le cas ot @ est de
seconde espéce (cf. § 2.3), c’est-a-dire, le cas ol * = — « est une iden-
tité.

Soient {a,} une suite convergeant vers 0, b,=1+a,, et T, U,
et V, les transformations de G d’équations respectives

y==b,x , y=>b"(x + a,) et y=x+a, .

U, transforme les points a,, 1 et b, respectivement en les points 0, 1
et b, *. Lorsque » tend vers oo, a, tend vers 0, done U, tend vers la trans-
formation identique. En vertu de la deuxiéme proposition du § 4.6,
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I'une au moins des deux suites {b,} et {b,'} n’est pas divergente. Suppo-
sons, pour fixer les idées, que {b,} posséde une sous-suite convergente
{b,,}, dont le point limite sera dénoté par b. Il suit de la relation
U,b, = b;' que la suite {b;'} converge aussi vers b, donc que b = b-1,
c’est-a-dire (puisque G est de seconde espéce) que b = 1. Par consé-
quent, lorsque » tend vers oo, b, tend vers 1, T, tend vers la transforma-
tion identique et il en est de méme de V, = T,U,, ce qui démontre
notre proposition (en vertu des résultats du § 3.6).

4.8. Soit R, ; le lieu des points de E qui, dans un isomorphisme
déterminé du groupe R XK sur le groupe multiplicatif K — 0 (cf.
§ 4.5), correspond aux éléments de R XK de la forme (r, €), ou r est un
nombre réel quelconque et ol e est I’élément neutre de K. R, , est con-
tenu dans le centre du groupe multiplicatif £ — 0.

a et b étant deux points distincts quelconques de £, I'ensemble E, ,,
transformé de R, , par la transformation de G qui transforme respective-
ment 0 et 1 en a et b, jouit des propriétés suivantes (qui sont immédiates
lorsque @ = 0 et b = 1, et qui s’étendent au cas général par raison de
transivité) :

R, , est connexe, contient b, n’est contenu dans aucun sous-ensemble
connexe de E, et a par conséquent une intersection non vide avec la
frontiére de tout voisinage compact de b ;

les transformations de G qui conservent a et qui transforment b en un
point de R, , commutent avec toutes les transformations de G qui con-
servent a.

4.9. L’addition est associative et commutative. a % 0 et b étant deux
points distincts quelconques de E, désignons par 7', , la transformation
de G qui conserve a et qui transforme 0 en b. Si a appartient au centre
du groupe multiplicatif £ — 0, 1’équation de cette transformation est

y=01—b-a)2z+b, (1)
en effet, on a alors (en vertu de 2.8 et 2.9)

(1 —56a1)0+b=0
et
1l—baV)a+b=a(1—a'b)+b=a—b+b=a.

Désignons par F la frontiére d’un voisinage compact de 0, et par
{a,} une suite divergente de points appartenant tous au centre du
groupe multiplicatif £ — 0 (par exemple, une suite divergente de points
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de I'ensemble R, , défini au § 4.8). Choisissons pour tout », un point b,
appartenant & l'intersection des ensembles Ra,,0 et F (intersection qui
n’est pas vide en vertu des résultats du § 4.8). F est compact ; la suite
{b,} posséde donc au moins un point d’accumulation b, dans F, et nous
pouvons méme supposer qu’elle converge vers b, en remplacant éven-
tuellement la suite {a,} par une sous-suite convenable.

Soit ¢ un point fixe quelconque. Les transformations 7Ta, ., et T4, e
sont permutables (en vertu de 4.8, car b appartient & 'ensemble Ra,,0);
mais lorsque » tend vers oo, ces transformations tendent respectivement
vers les translations y = x4+ b et y = x + ¢, comme il résulte im-
médiatement de I'équation (1) et de la continuité des opérations d’ad-
dition et de multiplication ; il en résulte que la translation y = x + b
(qui est différente de la transformation identique puisque b, apparte-
nant & F, est différent de 0) commute avec la translation y = z + ¢,
donc avec toutes les translations, étant donné le caractére arbitraire
de ¢. Notre proposition résulte & présent de celle du § 2.12.

4.10. Le groupe additif K est un groupe vectoriel. En effet, d’apres la
théorie de Pontrjagin (cf. [13], théoréme 41), le groupe additif £ est le
produit de son sous-groupe compact maximal Z par un groupe vectoriel.
Mais Z est invariant pour toutes les homothéties y = a-x (car celles-ci
sont des automorphismes du groupe additif Z), qui opére transitivement
sur  — 0; donc Z se réduit au seul point 0, sinon il s’identifierait avec
E, qui serait compact.

4.11. Nous savons & présent que les points de E forment groupe par
rapport & 'addition, que les points de £ — 0 forment groupe par rap-
port & la multiplication, et que cette derniére est distributive & gauche
par rapport & I'addition ; en d’autres termes, £ est un presque-corpsi2).
De plus, le groupe additif de E est un groupe vectoriel et la multiplication
est partout continue, done, en vertu d’un résultat de F. Kalscheuer [5],
le presque-corps £ est isomorphe au corps des nombres réels, des nombres
complexes, ou des quaternions. La démonstration s’achéve par applica-
tion de la conclusion du § 2.7.

5. Pseudo-corps et presque-corps topologiques

5.1. Définition. Nous nommerons pseudo-corps tout ensemble £ muni
de deux opérations, une addition et une multiplication, jouissant des
propriétés suivantes :

—

12) Cf. note 5, p. 204.
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5.1.1. Le produit a-b et la somme a + b sont définis quel que soit
le couple (a, b).

65.1.2. 1l existe dans £ un élément 0 tel qu’on ait, quel que soit a
0+a=a+0=a et a-0=0.a =0.

5.1.3. Pour tout élément a appartenant & E, il existe au moins un
élément —a tel que a + (—a) =(—a) +a = 0.

5.1.4. Les éléments de E différents de 0 forment groupe par rapport
& la multiplication (I’élément neutre de ce groupe sera toujours désigné
par 1).

5.1.5. On a, quels que soient e, betc, a-(b +¢c) =a-b + a-c.
5.1.6. On a, quels que soient a, b et c,

(@ +b)+c=p(b,c)a+ (b+c)

ou (b, c) est un élément de £ dépendant uniquement de b et de c.

Si on remplace ce dernier postulat par le postulat d’associativité de
Paddition, on a la définition des presque-corps?®), qui sont donc des cas
particuliers de pseudo-corps.

Les axiomes précédents n’ont pas été posés arbitrairement ; ils sont
satisfait par les opérations d’addition et de multiplications associées & un
groupe doublement transitif (cf. § 2.5, et aussi [17], p. 40), et ils assurent,
d’autre part, la validité de la proposition du § 5.3.

5.2. Propriétés. Soient E un pseudo-corps, ¢ un élément de £, et
—a un autre élément tel que a + (—a) = (—a) +a = 0; on a alors

(5.2.1) (+a)+ (—a)==2;
en effet, si @ = 0 c’est évident, et si @ %4 0 on a (cf. 5.1.6)

( + a) + (—a) = ola, —a)-z ,

et en posant * = —a on voit que g(a, —a) = 1.
De la relation précédente, il résulte immédiatement que la seule solution
de I’équation 2 +a =0 est z = —a.

On a (—1)+ 1 =0; en multipliant & gauche par (—1), il vient
(—1)2 4 (—1) = 0; d’ou, en comparant avec 1 + (—1) = 0,

(5.2.2) —(—1)=(—1)2=1.

13) Cf. note 5, p. 204.
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Plus généralement, on démontre sans peine que a-(—1) = (—1)-a
= —a, et que —(—a)=a, quel que soit a.
On posera, par définition a + (—b) =a — b.

5.3. Soit E un pseudo-corps. L’application de E sur lui-méme définie
par Uéquation (1) y =a-z 4+ b (a 7~ 0) est biunivoque. L’ensemble des
applications de ce type est un groupe doublement transitif.

Cette proposition résulte des observations suivantes :

Un simple calcul montre que l'application (1) posséde une inverse
d’équation

(5.3.1) y=a'lzxz+al (D),
et que le produit de 'application (1) par 'application y = a’-x + b’ est
Papplication

(5.3.2) y=op(a-b,b').a"-a-x+ (a’-b +b) ;
les conditions pour que ’application (1) transforme 0 et 1 respectivement
en deux éléments donnés distincts p et ¢, sont

(6.3.3) b=p et a+b=gq;
considérées comme équations en a et b, ces conditions ont pour unique
solution

(6.3.4) a=q—7p b=op.

5.4. Définitions. Nous appellerons pseudo-corps (respectivement
presque-corps) topologique un pseudo-corps (respectivement un presque-
corps) muni d’une topologie telle que les opérations d’addition, de multi-
plication et d’inversion soient continues.

Dans un pseudo-corps topologique, les fonctions —z = (—1)-2 et
ez, y) =1+ 2)+y — (x+ y) (cf. 5.1.6) sont continues.

Soient £ un pseudo-corps topologique et G le groupe de toutes les
transformations de E d’équation y =a-x + b (¢ 5% 0). En vertu des
formules (5.3.3) et (5.3.4), le couple (p, ¢) transformé du couple (0, 1)
par la transformation y = a-x + b est fonction continue du couple
(@, b), et réciproquement ; il en résulte que si 'on choisit comme couple
de référence le couple (0, 1), la topologie définie sur G suivant le procédé
déerit au § 3.2, n’est autre que la topologie obtenue en identifiant de
facon naturelle @ au produit direct (£ — 0) xE, la transformation
Yy=a-xz+ b étant identifiée au couple (¢, b). En vertu des formules
(5.3.1) et (5.3.2), le groupe @, muni de cette topologie, est un groupe
topologique et est donc un groupe doublement transitif continu opérant sur
E, au sens du § 3.2.
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5.5. Théoréme b. Tout pseudo-corps topologique localement compact,
non totalement discontinu et satisfarisant au premier axiome de dénombrabi-
lité est isomorphe au corps des nombres réels, des nombres complexes ou des
quaternions.

Démonstration. Soit E le pseudo-corps considéré. En vertu du théo-
réme 2 et des résultats du paragraphe précédent, il existe un homéomor-
phisme 7' de £ sur un corps K, qui est I'un des trois corps indiqués, tel
que le transformé par 7' du groupe G de toutes les transformations de E
d’équations y = a-x + b (a = 0) soit le groupe G’ des transformations
de K définies de fagon analogue. Pour la clarté de 'exposé, les symboles
désignant des éléments de K seront affectés de primes; en particulier
I’élément neutre pour ’addition (respectivement la multiplication) dans
K sera dénoté par 0 (respectivement 17).

Le groupe G’ étant doublement transitif, il est toujours possible, en
combinant 7' avec une transformation convenablement choisie de @',
d’obtenir un homéomorphisme de E sur K qui jouit des mémes propriétés
que 7' et qui transforme 0 et 1 respectivement en 0’ et 1’; nous suppose-
rons que 7' lui-méme réalise cette condition.

La transformation de E définie par 'équation y =a-x (a # 0),
transforme 0 et 1 respectivement en 0 et a ; sa transformée par 7' trans-
forme donc 0’ et 1’ respectivement en 0’ et 7'a, et est par conséquent
la transformation d’équation y’ = T'a-z’; on a donc, quels que soient
a # 0 et x, appartenant & ¥,

T@x)=Ta Tz , (1)

et cette relation reste évidemment valable lorsque a = 0.
Posons 7' (—1) =¢’. En vertu des relations (1) et (5.2.2), on a
e =1/, dou
e=1  ou —1 . (2)

La transformation de £ définie par ’équation y = = 4 1 transforme
— 1 et 0 respectivement en 0 et 1 ; sa transformée par 7' transforme done
e’ et 0’ respectivement en 0’ et 1’ et est par conséquent la transformation
d’équation y’ = —e’~1.2’ + 1’; on a done, quel que soit x appartenant
Ak,

Tx+1)=—e 1z’ 41 . (3)

Posons x = a-1'-b (a # 0) et multiplions les deux membres de (3) &
gauche par T'a ; il vient, en tenant compte de (1), (2) et (5.1.5)

Tb+a)= —e-1.Tb+ Ta ;

218



par continuité, cette relation doit rester vérifiée lorsque a = 0, c’est-a-
dire qu'on a Tb = — e’ -1.Tbh, d'ou e’ = — 1, et enfin,

TO+a)=Tb+ Ta . (4)

Les relations (1) et (4) montrent que 7' est un isomorphisme, et notre
théoréme est démontré.

5.6. Remarques

5.6.1. Si dans un pseudo-corps £ muni de ses opérations d’addition

(+) et de multiplication (-), on introduit une nouvelle addition (1)
définie par la relation

a-Lb=ca-+t+b
avec ¢ = -+ ou —1 suivant que b = ou # 0, cette nouvelle opéra-
tion d’addition et ’ancienne multiplication satisfont tous les axiomes du
§ 5.1 et le groupe des transformations d’équations y = a-x 4 b est
identique au groupe des transformations d’équations ¥y = a-x + b.
Etant donné un groupe doublement transitif G opérant sur un en-
semble K, les seuls systémes d’opérations d’addition et de multiplica-
tion qui satisfont les postulats du § 5.1, et telles que G soit le groupe des
transformations d’équations y =a-x 4+ b (@ # 0), sont le systéme
construit au § 2.5 (déterminé au choix des points 0 et 1 pres), et celui
qu’on obtient & partir de celui-14 en appliquant le procédé précédent ; ces
deux systémes sont identiques si et seulement si le groupe G est de
seconde espéce (cf. § 2.3).

5.6.2. Pour démontrer le théoréme 5, nous avons utilisé le résultat
du théoréme 2, mais il est évident que nous aurions pu le démontrer
directement en reproduisant la démonstration du théoréme 2 sans parler
de groupe doublement transitif. Notons cependant que dans le cas du
théoréme 2, il était nécessaire de démontrer que les fonctions y + x et
x-y sont continues en z = 0, alors que cela fait ici partie des hypo-
théses. L’hypothése de continuité de y + x en x = 0 est d’ailleurs
effectivement utilisée dans la démonstration du théoréme 5, car si nous
I'abandonnons (c’est-a-dire, si nous supposons seulement que la somme
Y + = est partout continue sauf peut-étre en x = 0), le pseudo-corps &
peut &tre non seulement I'un des trois corps indiqués, mais encore I'un des
trois pseudo-corps obtenus & partir de ceux-1a par application du procédé
décrit au début du numéro 5.6.1.

5.7. Nous allons montrer & présent que lorsque le pseudo-corps &
considéré est un presque-corps, ’hypothése de dénombrabilité du théo-
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réme 5 peut étre supprimée. En outre, nous remplacerons I’hypothése
d’apres laquelle E est un pseudo-corps topologique par I’hypothése
suivant laquelle £ est un presque-corps muni d’une topologie telle que le
produit z-y et la somme x 4 y soient des fonctions partout continues
du couple (x, y) avec exceptions éventuelles aux points z = 0 et y = 0
pour le produit, ce que nous exprimerons en disant que E est un presque-
corps faiblement topologique. Nous adoptons ce point de vue plus général
pour les motifs suivants :

Il peut étre utile, dans certains cas, de considérer des presque-corps
munis d’une topologie telle que le groupe additif de tous les éléments et
le groupe multiplicatif des éléments non nuls de ce presque-corps soient
des groupes topologiques ; ce sont la des presque-corps faiblement topolo-
giques mais non nécessairement (du moins a priori) topologiques.

Le théoréme de F. Kalscheuer [5], mentionné plus haut, n’est pas &
proprement parler un cas particulier du théoréme 3 (cf. § 1.2) car parmi
les hypotheéses qui y sont faites ne figure pas la continuité de I'inversion
(notons cependant que celle-ci résulte immédiatement des autres hypo-
theéses du théoréme) ; il est par contre un cas particulier du théoréme sui-
vant, généralisant le théoreme 3, et que nous allons & présent démontrer.

Théoréme 3'. Tout presque-corps faiblement topologique, localement
compact et non totalement discontinu, est isomorphe au corps des nombres
réels, des nombres complexes, ou des quaternions.

Démonstration. Notons tout d’abord qu’en vertu de l'identité =z=.y
=2z(y +a) — z-a, le produit z-y est fonction partout continue du
couple (z, y) sauf peut-étre pour = = 0.

Si £ n’est pas compact, on peut démontrer notre théoréme en suivant
les raisonnements des §§ 4.3, 4.10 et 4.11 (qui peuvent aisément étre
mis sous une forme analytique ne faisant pas explicitement intervenir le
groupe @), et en se souvenant que, d’aprées E. R. van Kampen [6], les
résultats de Pontrjagin concernant les groupes abélien localement com-
pacts sont valables indépendamment de toute hypotheése de dénombrabi-
lité.

Supposons donc £ compact, soient a 7 0 un élément donné arbitraire-
ment dans E, et U un voisinage ouvert de a-! ne contenant pas 0. En
vertu des propriétés de continuité de la multiplication, nous pouvons
associer a tout élément x # a-! de K deux ouverts Vet W, contenant
respectivement a et x, et tels que le produit V.- W, (au sens de la multi-
plication dans E) ne contienne pas 1. L’ensemble €U (complémentaire
de U dans E) est compact ; il peut donc étre recouvert par un nombre
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fini d’ouverts choisis parmi-les W ; soient W, ces ouverts, V, les ouverts
V. correspondants et V = U V; lintersection de tous les V,. Aucun des
%

ensembles V-W, ne contient 1, par conséquent 1 n’est pas contenu non
plus dans ’ensemble V-.-QU, c’est-a-dire qu'ona V-1c U; V étant un
voisinage de a, nous voyons que la fonction z-! est continue en a.

Soit f la fonction définie de la fagon suivante :

]x“l si x#£0

I(x)zlo si =0 ;

cette fonction est partout continue; en effet, nous avons vu plus haut
qu’elle est continue en tout point x # 0, et elle est aussi continue au
point O car si U désigne un voisinage ouvert de 0, €U est compact, donc -
f(€U) est compact, et f(U) = € f(CU) est un voisinage ouvert de 0.
On a, pour tout x« 0,

z(l +f(z)) =2+ 1,
donc, pour tout =z 40 et —1,

x=(z+ 1)1+ f(@)*;

les deux membres de cette relation conservent un sens et sont continues
en x = 0; les valeurs qu’ils prennent en ce point doivent donc étre
égales, ce qui donne 0 = 1. Par conséquent £ ne peut étre compact.

6. Démonstration du théoréme 4
et application & la démonstration du théoréme 1

6.1. Démonstration du théoréme 4. Soient G et o le groupe et 'auto-
morphisme satisfaisant aux conditions de ’énoncé, et soit n la dimension
de G.

Supposons tout d’abord que @ soit localement connexe, et soient e
I’élément unité de G, U un voisinage de e ne contenant aucun élément
fixe de ¢ en dehors de e, V un voisinage compact de e tel que V-1-V ¢ U,
et f Papplication continue de G dans G définie par f(z) = z°-x-!. La

restriction f, : V2 f(V) de f & V est biunivoque, car si

x®-x =y’ yl! et xeV, yeV,
on a
(ytx)0 =) tae=ytx e ylawel,

donc y-l-x =¢ et y = x, en vertu de la condition imposée & U.
V est compact, donc f;, qui est continue et biunivoque, est un homéo-
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morphisme. Il en résulte que l’ensemble f(V) a la dimension %, et
posséde donc un point intérieur (cf. D. Montgomery [9], théoréme 3);
et il en est de méme, a fortiori, de f(G).

Soit b = a’-¢-! un point intérieur de f(G). L’homéomorphisme
de G sur G qui transforme x en (a%)-'-x-a, conserve f(G), car on
a (a°) 1.2z l-a = (a'-x)° (e '-x)"!, et transforme b en e; par
conséquent e est un point intérieur de f(@). Désignons alors par W’ un
voisinage de ¢ tel que W’/ -W’'  f(G), et posons W = W'~ (W')o;
W est un voisinage de e, et ona W-W ¢ f(G), et Wo = W. Sur f(G),
Pautomorphisme o s’identifie avec l'inversion car on a (x° x-1)? =
x- (%)~ = (x°-2-1)-!; dong, si a et b sont deux éléments de G apparte-
nant &4 W,ona a-b = (a’-6°)° = (a~*-b-')-! = b-a. Dans W, la multi-
plication est donc commutative et ona a’=a-!; notre théoreme résulte
alors du fait que ¢, étant connexe, est engendré par W.

Si G n’est pas localement connexe, il posséde un sous-groupe G’ partout
dense dans ¢/, et qui, muni d’une nouvelle topologie, plus fine que celle
induite sur @’ par @, est un groupe topologique connexe, localement
compact et localement connexe, de dimension n (cf. D. Montgomery
[10], théoréme 104); il résulte de la fagon dont le groupe G’ et sa topo-
logie sont définis (dans [10]), que I'un et I'autre sont conservés par tout
automorphisme bicontinu de G, et en particulier, dans le cas qui nous
intéresse, par ¢. La restriction de o & @’ est un automorphisme involutif
de G’ jouissant de toutes les propriétés énoncées ; en vertu de la partie de
théoréme 4 déja démontrée, G’ est abélien, et on a, pour tout x apparte-
nant &4 ¢/, x = x-1; le théoréme 4 résulte alors du fait que G’ est partout
dense dans G.

6.2. Rappel de [15], théoréme 41%) : Soit G un groupe triplement tran-
sitef opérant sur un ensemble quelconque E . Si les transformations de G qur
conservent deux points donnés de B sont deux a deux permutables, G est un
groupe projectif, c’est-a-dire qu’il est possible d’identifier les éléments de
E avec les éléments d’un corps K complété au moyen d’un élément oo, de
telle fagon que les transformations de G soient les transformations d’équa-
tion y = (a-x + b)/(ccx+d), a-d —b-c #0. La réciproque est
vraiels),

14) L’emploi du sous-groupe localement connexe partout dense dans la démonstration
du théoréme IV m’a été suggérée par M. le Professeur D. Montgomery lui-méme; je tiens
& lui en exprimer ici mes sincéres remerciements.

16) Cf. aussi [17], chapitre IT B, théoréme V1.

18) La proposition énoncée ici peut étre démontrée aisément en faisant usage de la
proposition du § 2.13 (qui la contient d’ailleurs partiellement).
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Si £ est un espace topologique et si @ est un groupe triplement transitif
continu opérant sur E'?), K est un corps topologique.

6.3. Application du théoréme 4 a la démonstration du théoréme 1 dans
le cas ou Uespace E est de dimension fine.

Soient K un espace de dimension finie satisfaisant aux hypothéses du
théoréme 1, G un groupe triplement transitif continu opérant sur £, 0, 1
et oo trois points de ¥, deux & deux distincts, et G, le groupe des trans-
formations de G qui conservent 0 et co.

En procédant comme au § 2.5, on peut, & partir des transformations
de G,, définir sur ’ensemble £ — 0 —oco une opération de multiplica-
tion telle que K — 0 —oo soit un groupe (et, de fagon plus précise, un
groupe topologique dans la topologie induite par £) d’élément neutre 1,
dont les translations & gauche (y = a-x) sont les transformations de @, .

La transformation 7' de G qui échange 0 et oo et qui conserve 1 trans-
forme toute transformation de G, en une transformation de G, ; considérée
comme opérant sur K — 0 —oo, elle définit donc un automorphisme
involutif du groupe multiplicatif E — 0 —oo, automorphisme qui
possede au maximum deux points unis (en vertu de la triple transitivité
de @).

Si £ — 0 —oo est connexe, le théoréme 4 nous enseigne que le groupe
multiplicatif £ — 0 —oco, et par conséquent aussi le groupe G,, est
abélien ; il en résulte que le groupe G est projectif (cf. § 6.2), et le théo-
réme 1 résulte du théoréme de Pontrjagin concernant les corps topolo-
giques.

Si £ — 0 —oo n’est pas connexe, on montre, par un raisonnement
analogue au précédent que la composante connexe C de 1 dans le groupe
multiplicatif £ — 0 —oco, est un groupe abélien et est, par conséquent
isomorphe au produit d’un groupe compact connexe K par un groupe
vectoriel. Etant déconnecté par chacun de ses points, C' doit &tre iso-
morphe au groupe additif des nombres réels. On voit alors, par raison
d’homogénéité, que les composantes connexes du groupe multiplicatif
E — 0 —oco sont au nombre de deux, d’ou il résulte que ce groupe est
isomorphe au produit du groupe additif des nombres réels par un groupe
cyclique d’ordre 2, et est donc abélien. La démonstration s’achéve comme
plus haut8) 19),

17) Cf. note 3, p. 203.

18) Pour les détails de démonstration qui sont omis ici, on se reportera aux §§ 4.4
ot 4.5.

18) Ajouté aux épreuves: Depuis la présentation du présent article, MM. D. Mont-
gomery et L. Zippin ont montré (cf. Proc. Nat. Acad. Sc. vol. 38, n® 5, Mai 1952), en
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(Recgu le 27 mars 1952.)

utilisant un résultat récent de M. A. Gleason, que tout groupe localement compact de
dimension finie est un groupe de Lie généralisé; lorsque le groupe est en outre locale-
ment connexe, c’est un groupe de Lie. Ces résultats rendent la démonstration du théo-
réme 4 beaucoup plus aisée (cf. note 7; la partie de la démonstration concernant le cas
ol @ n’est pas localement connexe reste inchangée); ils permettent, d’autre part, de
ramener le theoréme 2, dans le cas ou £ est de dimension finie, & une proposition con-
cernant les groupes de Lie, qui peut étre démontrée directement par application des
résultats classiques de la théorie des groupes de Lie.
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