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Metrisches Feld
und vektorielles Materiefeld1)

Von W. Scherreb, Bern

§ 1. Einleitung

Der naheliegendste Versuch, Gravitation und Elektrizitât formai zu
vereinigen, kann auf das Wirkungsprinzip

ô $(R + $xFpaF°P)V:=ÏÏdz 0 (1.1)

basiert werden, wo R den Krûmmungsskalar, h die Einsteinsche Gravita-
tionskonstante, Fpo das elektromagnetische Feld und dx das Produkt der
Koordinatendifferentiale bedeutet.

Dieser Ansatz fûhrt aber schon deshalb nicht zum Ziel, weil er den
Strom Null und somit nur die Maxwellschen Gleichungen fur ein Vakuum
liefert.

Gegen aile Ansâtze, welche Gravitations- und Materiewirkung nur
additiv vereinigen, làBt sich grundsâtzlieh einwenden, daB sie auch noeh
bei Abwesenheit von Materie ein Gravitationsfeld liefern.

Ich habe daher in zwei frûhern Arbeiten2)3) das Wirkungsprinzip

f( g£) 0 (1.2,

analysiert.
Dieser Ansatz entgeht offenbar dem eben erwâhnten Einwand, seine

spezielle Gestalt war von dem Bestreben diktiert, fur den denkbar ein-
fachsten Fall eine moglichst gute Anpassung an die Metrik zu erreichen.

Die Analyse zeigt, daB die exakte Lôsbarkeit des zugehôrigen statiseh-
zentralsymmetrischen Problems sowie des kosmologischen Problems
wesentlich auf der Homogenitât des Integranden beruht.

*) Ein Keferat ûber die wichtigsten Ergebnisse dieser Arbeit wird unter dem Titel
,,Wirkungsprinzipien zur Feldtheorie der Materie" in den Helvet. phys. Acta erscheinen.

2) Ûber den EinfluB des metrischen Feldes auf ein skalares Materiefeld, Helvet. phys.
Acta XXII S. 537—551 (1949).

8) Dazu zweite Mitteilung: Helvet. phys. Acta XXIII S. 547—555 (1950).
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Der Integrand von (1.2) ist nâmlich vollstândig homogen, von der
Dimension 2 in bezug auf tp und von der Dimension 1 in bezug auf die

<v
Als Positivum kann wohl die Tatsache registriert werden, da8 eine

endliche Totalenergie resultiert. Im iibrigen aber weicht der Ansatz (1.2)
so stark von (1.1) ab, daB mir ein AnsehluB an die Elektrodynamik
nicht gelnngen ist.

Mein Bestreben war nun, den Ansatz (1.1) in analoger Weise zu homo-
genisieren.

Die Materiewirkung in (1.1) ist ebenfalls vollstândig homogen, und
zwar von der Dimension 2 in bezug auf die Potentiale &p und von der
Dimension 0 in bezug auf die Gpa. Wenn man nun nach weiteren Inva-
rianten Umschau hait, die dieselben Homogenitâtseigenschaften besitzen
und ûberdies nach bewâhrtem Vorbild hôchstens die ersten Ableitungen
der 0p und die zweiten Ableitungen der (?pa, und zwar die letzteren linear
enthalten, so findet man neben der elektromagnetischen WirkungsgrôBe
Fpa Fqp immerhin noch vier wesentlich verschiedene Invarianten.

Man kônnte nun daran denken, von diesen vier weiteren Invarianten
diejenigen auszuschalten — es sind deren zwei —, welche auch im Spezial-
fall des ebenen Raumes Zusatzglieder zum Viererstrom liefern. Doch ist
dièse tïberlegung deshalb nicht stichhaltig, weil in der Maxwellschen
Théorie der Viererstrom nur phànomenologisch definiert ist.

Es bleibt also nichts anderes iibrig, als aile Invarianten zuzulassen.
Ihre Bearbeitung bietet zum Teil einen verwickelten Aspekt, so daB ich
lângere Zeit an der Môglichkeit einer exakten Losung zweifelte. SchlieB-
lich hat sich aber herausgestellt, daB das statisch zentralsymmetrische
Problem exakt lôsbar ist. Ûber dièse Losung will ich hier nun berichten.

Die Hauptergebnisse sind folgende. Es gibt eine einparametrige Schar

von Lôsungen mit endlicher Totalenergie. Wenn man nun aber die natûr-
liche, ja wie mir scheint logisch zwingende Forderung stellt, daB nicht
nur die Energiekomponente im engern Sinne, sondern aile Energiekom-
ponenten ûber den ganzen Raum integriert einen endlichen Betrag
liefern, so sind von den gefundenen Lôsungen nur noch zwei respektive
eine zulâssig. Das Détail hàngt von einer universellen Konstanten s —

einer reinen Zahl — ab, uber die man verfûgen muB.
Der interessanteste Fall liegt vor fur e > 1 und liefert die schon er-

wàhnten zwei Lôsungen. Die Verhâltnisse im einzelnen sind recht merk-
wiirdig. Es ergeben sich zwei verschiedene scheinbar négative Massen.

Die Analyse zeigt aber, daB eine der beiden Massen ein Linienelement
erzeugt, das einer positiven Masse entspricht. Die zugeordneten totalen
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Raumladungen sind ebenfalls negativ und dem Betrage nach verschieden.
Die traditionelle Vorzeichenwahl kann also im Rahmen des vorliegenden
Ansatzes nicht maBgebend sein. Die innere Struktur der beiden Ladungs-
verteilungen ist wesentlich verschieden. Dagegen ergeben sich im AuBen-
bezirk — also fur groBe Distanzen r — angenàhert zwei Potentiale

e* e*
iiTiri ——

r r

wobei e* ein Bruchteil der Totalladung ist.
Zusammenfassend ist also zu sagen : Eine Entscheidung uber die Vor-

zeichen ist ohne weitere Lôsungen kaum môglich. Trotzdem bedeutet
dieser vektorielle Ansatz einen wesentlichen Fortschritt gegeniiber dem
skalaren Ansatz (1.2). Er liefert nàmlich eine diskrete Auswahl von
Grundlôsungen. AuBerdem steht er der klassischen Elektrodynamik sehr
nahe. Es darf daher vielleicht angenommen werden, daB seine weitere
Bearbeitung oder das Studium benachbarter Varianten grundsàtzliches
Interesse verdient.

§ 2. Die Invarianten

Nach dem was in der Einleitung gesagt wurde, handelt es sich jetzt
darum, Invarianten anzugeben, die folgende Bedingungen erfûllen.
1. Sie sind homogen von der Dimension 2 in den Potentialen 0p.
2. Sie sind homogen von der Dimension — 2 in den 0^.
3. Sie enthalten hôchstens die ersten Ableitungen der 0p.
4. Sie enthalten hôchstens die zweiten Ableitungen der Opa, und zwar nur

linear.
Das Iinienelement ist

ds* Gpadxpdza (2.1)

und als Zeichen fur die kovariante Ableitung nach der Koordinate be-
nutze ich das Symbol Dp, so daB wir also haben

h FpX0x (2.3)

Den verjiingten Krûmmungstensor schreibe ich in der Gestalt
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mit
Gpa r*(rrsM-j%r& (2.5)

Der Krûmmungsskalar ist dann gegeben durch

ReeQp* Bpa (2.6)

SehlieBlieh empfiehlt sich noch das Symbol

L^/^ (2.7)

einzufuhren, das offenbar die linke Seite der sogenannten Lorentz-
konvention darstellt.

Die antisymmetrischen elektromagnetischen Feldstârken sind gegeben
durch

Ffa Dp0o-Do9p (2.8)

und ihre symmetrischen Gegenstucke bezeichne ich mit

Epa Dp0a + Da0p (2.9)

Jetzt sind wir in der Lage folgende fiinf Invarianten anzugeben, die
den oben angegebenen Bedingungen entsprechen :

H eeR<Pp&p (2.10)

J RpG0P&a (2.11)

K =±EpuE°p (2.12)

M EppEaa (D<2>)2 (2.13)

F =%FpaF°P (2.14)

Wahrscheinlich sind dies die einzigen Invarianten, welche die angegebenen

Bedingungen erfullen.
Durch direkte Rechnung findet man

woraus

mit

folgt

K l
F =1 0o J) 0p GPa D 0 D 0T

L Dp 0° D,, 0P

(2.15)

(2.16)

(2.18)
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Da es im allgemeinen bequem ist, mit L und F statt mit K und F zu
reehnen, werde ich inskunftig folgende Invariantentafel benûtzen :

(2.19)

Die Invarianten K und M respektive L und M sind diejenigen, in der
Einleitung erwàhnten Invarianten, welche auch dann noch Zusatzglieder
zum Viererstrom liefern, wenn der Zeitraum eben ist.

§ 3. Das Wirkungsprinzip

Entsprechend den im Vorausgehenden entwiekelten Gesichtspunkten
setzen wir nun das Wirkungsprinzip an in der Gestalt

x Q (3.1)à j (H + 2f J + 2rj L + 2f M + 2eF) V^
Dabei bedeuten H, J, L, M, F die in der Tafel (2.19) angegebenen
Invarianten und £, rj, £, € universelle Konstanten, die aus dimensionellen
Griinden reine Zahlen sein mussen.

Die durch Variation der Gp° erhâltlichen Gravitationsgleichungen
lassen sich sehreiben in der Gestalt

-<3S (3.2)

und fur die durch Variation der 0p zu gewinnenden Materiegleichungen
ergibt sich

5". (3.3)

Die gotischen Buchstaben sollen wie tiblich die zu den lateinïsch ge-
schriebenen Tensoren gehôrigen Tensordichten bedeuten.

Die rechten Seiten von (3.2) und (3.3) sind naturlich aus den G
Q und

den 0p und deren Ableitungen zusammengesetzt. Doch benôtigen wir
ihre expliziten Ausdrûcke vorderhand nicht. Um zum Beispiel den
Energietensor in absolutem Ma8 zu berechnen, haben wir einfach zu
setzen

188



4 (3.4)

und den Viererstrom erhalten wir direkt aus der linken Seite von (3.3).
Hier zeigt sich der grundsatzliche Unterschied einer reinen und voll-

standigen Feldtheorie gegenûber der halbphânomenologischen Gravita-
tionstheorie, welche das Feld auf Grund der phânomenologisch be-
schriebenen Massenverteilung bestimmt.

In einer vollstàndigen Feldtheorie werden dagegen aile FeldgrôBen
simultan bestimmt. Hat man das Feld bestimmt, so kann man zur Be-
rechnung von Energie und Strom nachtrâglich je nach Bedarf die linken
oder rechten Seiten von (3.2) und (3.3) verwenden.

Es mag vielleicht befremden, daB im Wirkungsprinzip gleich vier
universelle Konstanten auftreten. Dazu môchte ich folgendes bemerken.
Es wird sich zeigen, daB die Struktur der statisch-zentralsymmetrischen
Lôsung im wesentliehen durch die Hauptinvarianten H und F und die
Konstante € bestimmt ist. Es ist recht merkwiirdig, daB dièse Struktur
durch das Einschieben der drei Invarianten J, L und M nicht gestort
wird. Fur das genannte Problem kônnte man — mit einem kleinen Vor-
behalt — ungestraft f, r\ und £ als Null annehmen. Beim kosmologischen
Problem aber spielt sicher J eine einschneidende Rolle. Die Invarianten
L und M widerum kann man verwenden, um das Bestehen der Lorentz-
konvention im Falle verschwindender Krummung zu garantieren. Es
darf daher als glûcklicher Umstand bezeichnet werden, daB man die drei
Invarianten «/, L und M als stille Reserven mitfûhren kann.

§ 4. Das statische Zentralfeld

Wir legen das Schwarzschildsche Linienelement

ds* /2 dx% - g* dr* - r*(dê* + sin2# dA2) (4.1)

zugrunde, worin / und g nur Funktionen von r sind und setzen ent-
sprechend einer dieser Symmetrie angepaBten statischen Feldverteilung

0O 0(r) 0t <pt <P3 0 (4.2)
Es folgt

(4.3)

und die F-Tafel lautet :
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ri __ //'
00 ~ g2 '

r°•* 10

ri1 n

r21 12

r31 13

~ t
g1

~ g '

_ î

_ i

r' --—

r\3 cotg#

> •* 33 —

33 — sin & cos #
(4.4)

wobei der Strich die Ableitung nach r bedeutet. Jetzt liefert die Berech-

nung ^2

B00V-G l-
' Da 0p ]/—G =¦ 2

D 0 — 0

/2 /^ 0/ r2 /2 // \I T g __2/f )sint» (4.
g g J

(4.6)

t2 g f*g )sm

•7)

(4.8)

(4.9)

(4.10)

Fur die den Invarianten der Tafel (2.19) entsprechenden Dichten er-
halten wir daher

,4.,,,

f2g fg /

(4.12)

(4.13)

(4.14)

(4.15)

Das Wirkungsprinzip (3.1) lautet daher nach Unterdrûckiing des Faktors
2 sin & und der Winkeldifferentiale
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fg fg

(4.16)

Schafft man hier mm die zweiten Ableitungen in der ublichen Weise
durch partielle Intégration weg und fuhrt hierauf als neue Unabhàngige
die Variable

s Lgr (4.17)

ein, so erhàlt man zusammenfassend schlieBlich die Gestalt

Hier bedeutet der Punkt die Ableitung nach s, und 6 ist definiert dureh

O l + Ç + ri (4.19)

In den beiden letzten Gleichungen haben wir schon den Beleg, da6
der EinfluB der Invarianten J und L keine Strukturânderung, sondern
nur eine numerische Verschiebnng bedeutet.

Variiert man jetzt in (4.18) sukzessive nach /, 0 und g und erweitert
hierauf die beiden zuerst erhaltenen Gleichungen mit f2g/<ï>2 respektive
fg/&, so ergibt sich ein System von drei Differentialgleichungen, das in
bezug auf die GrôBen /// und 0/0 von erster Ordnung ist. Es empfiehlt
sich daher, die genannten GrôBen als neue Abhângige einzufuhren gemâB

(4.18)

Das System lautet dann :

0

- Ucpxp + (e + 26) rp2

+ (20 <p -0y)+ 1) — 0
y

d <p + e f + 39 ç)2 — (e + 26) <p

(4.20)

(4.21)

(4.22)
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- 20 q>* + 20 <p ip + e y2 - 2<p + 4t%p + 1 gr2 (4.23)

Mit Hilfe von (4.23) kann man nun g aus den beiden vorausgehenden
Gleichungen eliminieren. Die Rechnung ist elementar, aber etwas um-
standHch. Das Résultat ist ûberraschend. An Stelle des zu erwartenden
bôsartigen Systems vierten Grades ergibt sich folgendes :

Falls die Konstanten der Bedingung

02 + 2(€-2)0 + e ^0 (4.24)
genûgen, erhâlt man

- g2 y, —

Aus diesen Gleichungen folgt unmittelbar

y)

(4.25)

(4.26)

wo eu eine numerische Integrationskonstante ist, und (4.23) geht ûber in

(e o>2 -f 20 a) — 20) ç>2 + 2(2ct> — 1) <p + 1 (4.27)

Diesen Umstânden haben wir es also zu verdanken, daB die restliche
Intégration explizite durchgefûhrt werden kann.

Falls aber die linke Seite von (4.24) verschwindet, fallen (4.21) und
(4.22) in eine Gleiehung zusammen und das Problem wird unterbestimmt.
Die Bedingung (4.24) ist daher unerlâfilich fur aile bestimmbaren
Varianten.

Zur sukzessiven Bestimmung von r, f und 0 als Funktionen des Para-
meters <p benôtigt man die Gleichungen (4.27), (4.25), (4.20) und (4.17).
Bezeichnet man die Nullstellen des durch (4.27) gegebenen quadratischen
Polynoms fur g2 mit a und /?, so erhâlt man vermittelst elementarer
Integrationen folgende Lôsungstafel :

g

0 C

a/?

» -M -

-P)
fi a

OC 0 Où fi
j8~£* A fi \ /5~a

•

(4.28)
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Hier ist D eine Lange, A eine reine Zahl und C von der Dimension des
elektrischen Potentials. Der Wert von A ist festgelegt durch die Forde-
rung, daB fur r =oo9 das heiBt cp 0 entsprechend dem pseudo-
euklidischen Linienelement / 1 herauskommen soll.

Um weitern AufschluB zu erhalten, mussen wir die Energie- und
Ladungsverhâltnisse analysieren.

§ 5. Der Energietensor

Da die Lôsungsfunktionen (4.28) als Variable nieht r, sondern den
Parameter cp enthalten, rechnen wir auch das Linienelement (4.1) auf <p

um und erhalten

ds2 fUx\ - h2d<p2 - r*(d&* + sin2 & dÀ2) (5.1)
mit

Es folgt
V-g i\h\r2 (5.3)

und die F-Tafel lautet jetzt

00 h? '

1 10
r
t

r'

r'

x

* 22
rr'
h* '

ni __1 33

rr2
1 33 — — sin ê cos ^

wobei nun der Strich die Ableitung nach <p bedeutet.
Fur die Berechnung der Energiekomponenten gemâB (3.4) erhâlt man

nun die Formeln
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Die Berechnung ergibt vorerst

Z)
2a|3-f 3/3-a

— a) 20-a) (<P-P)

und hierauf fur die Energiekomponente

(5.5)

(5.6)

(5.7)

Das Raumintegral ûber die Energiedichte konvergiert also sicher im
Unendlichen, das heiBt bei q> 0.

Die Berechnung der Impulsdichten zeigt nun aber, daB die entspre-
chenden Intégrale im Undendlichen dann und nur dann konvergieren,
wenn die Bedingung

(5.8)2<xp + ot + fi 0

erfullt ist.
Bei Berûcksichtigung dieser Bedingung erhâlt man

A\D

und hierauf

¦(<p-a){<p- fi) (5.9)

(?-«)

X - i»
(<p — a) {<p —

(<p — <x)(<p —

(5.10)
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Naeh (4.27) und (4.28) gilt nun offenbar

2(2ft>- 1)= - (— + —
\OL f)

oder

4eo

Die Bedingung (5.8) liefert daher

(0= 1

und (4.27) verwandelt sich in

2<p

(5.11)

(5.12)

Wir ersehen daraus, da8 die Wurzeln a und /S und damit die fur die
Energie- und Impulsdiehten maBgeblichen Werte (5.10) nur von e ab-
hângen. Hieraus folgt, daB die durch die Invarianten J und L bedingten
Anteile zur Totalenergie Null sein mussen. Im Falle des statisehen
Zentralfeldes kann man also auf J und L verzichten. Immerhin ist zu
beachten, daB bei £ — r\ 0 infolge (4.19) die Bedingung (4.24) iiber-
geht in e ^ 1. Die Intégration mu6 gefûhrt werden von <p 0 (r oo)

an bis zum Minimum von \ r \, wobei man die Wahl hat, <p durchs Positive

oder Négative laufen zu lassen. Man ûberlegt sich unschwer, daB
eine Begegnung mit einem Pol nur vermieden werden kann, wenn

^- >0 (5.13)

ist. Vermôge (5.8) folgt daraus, daB die beiden Wurzeln a und /$ nega-
tiven Realteil haben mussen.

Wir haben also zwei Falle :

oc

II.
oc

- 1

- 1

— 1

e

-iVe-1
6

e

— 1/1 - e

(5.14)

(5.15)
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Die Berechnung liefert nun im ersten Falle zwei Energiewerte und im
zweiten — da die négative ç>-Achse vermieden werden muB — einen
Energiewert :

i/:

(5.16)

!gy«-l exp /_ Arctgl/s-ÏX

il s==_*«\d\v< n + vi-*\ 2^%^/i + i/i-ehP]y^/i + t/i-e\ »y*-« /i + i/i-a
'l-e \ 1 — l/l — «/ \ 1 — l/l — e/ (5.17)

Das Verhàltnis der beiden Energien im ersten Falle

j. » - Axe <gj/«=T (6-18)^i Are tg |/e — 1

ist also durch s allein bestimmt.
In der SehluBbetrachtung komme ieh auf dièses scheinbare Auftreten

negativer Massen noch einmal zuriiek.

§ 6. Die Ladung

Wir knupfen an (3.3)

dxa
an und erhalten

oder, mit Rûeksieht auf unsere speziellen Koordinaten

Es handelt sieh also um eine râumliche Ladungsdiehte, die ûber den

ganzen Raum integriert werden muB.
Fur die zu ermittelnde Ladung e setze ich

oo n 2tt
éTte $ $ $ $odZ,8WLêdê\d<p\ (6.3)

0 0 0

unter der Annahme, daB sowohl die in s0 steckende GrôBe V—0 als
auch aile Koordinatendifferentiale positiv zu bewerten seien.
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Es folgt daher ~
gcv01

e j -——| d<p | (6.4)
0

Fur positives <p folgt also

e1=afollo+°° (6.5)
und fur négatives

Fur 3f01 erhalten wir

G" D1

also

Wir betraehten jetzt speziell den Fall I : e > 1, und erhalten im An-
schluB an (5.14)

Dabei wàhlen wir fur die Arcusfunktion ein fur allemal denjenigen
Zweig, der aus dem Hauptzweig fur ç> 0 durch stetige Fortsetzung
hervorgeht.

Speziell fur <p 0 folgt

«
l +%V* L __

*
exp[_ i Arc tg (\/e - 1)]

(6.9)

8 V~

Die Berechnung liefert dann sukzessive

(q> — a)11^ (cp — fij*1^ exp — Arc tg \£~ (6.10)

(6.11)
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und speziell fur q> 0

{-fi) -* Arc tg (\/e — 1{^l)] (6.12)

(6.13)

Wir erhalten daher die Tafel

Wegen (4.28) und (5.11) haben wir als Potential

und es ergibt sich

d<p
~

g*

Gestûtzt auf (6.7), (6.14) und (6.16) erhalten wir schlieBlich

9±

° 'D i

ex r 1 /\/s — 1\1
-1 ë\l+e<p}\

Speziell folgt daher
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GemàB (6.5) und (6.6) erhalten wir also sehlieBlich folgende Ladungs-
werte :

— -¦^-
Arc tg i/T^lL F ™ 11^MJJ (6-22)

Ûber das Vorzeichen von C lâBt sich nichts aussagen. Ja, es ist sogar
zweifelhaft, ob es zulâssig ist, C und D in beiden Formeln als gleich an-
zusetzen, da es sich doch schlieBlich uni zwei getrennte Lôsungen handelt,
die nicht miteinander in Wechselwirkung stehen.

Solange keine schlûssige Entscheidung moglich ist, wollen wir die
formai nahegelegte Gleichheit annehmen. Fiir positives C ergeben sich
dann zwei verschiedene négative Ladungen.

DaB dièses seltsame Ergebnis nicht ohne weiteres von der Hand ge-
wiesen werden kann, zeigt sich, wenn man das Potential (6.15) fur
r r^ oo approximativ entwickelt und mit dem klassischen Potential
vergleicht. Die Entwicklung auf Grund von (6.14) liefert nàmlich

Ver

Also erhalten wir als klassisches Potential

&* — (6.24)
r

mit der klassischen Ladung

Dieser Wert stimmt im Betrag also iiberein mit 501(^) g^niâB (6.11).
Nun aber ist 4:rcgol(O) gerade das Intégral der elektrischen Feldstârke,
durch das man in der klassischen Théorie den Wert 4:rce* darstellt. Es
ist daher bemerkenswert, daB der Wert | e* | in (6.21) mit dem nega-
tiven und in (6.22) mit dem positiven Vorzeichen auftritt.

Beim Wert (6.25) respektive (6.23) ist weiter folgendes zu beachten.
Wenn man von 9? zu — <p ubergeht und sinngemâB r positiv hait, so muB

man gemâB (6.14) D in — D uberfuhren. Unsere beiden Lôsungen liefern
also tatsàchlich fur das Grenzpotential (6.23) den Ladungswechsel.
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Um eine konkretere Vorstellung zu gewinnen, wollen wir uns die
Ladungsdichte

-. -
etwas nâher ansehen. Aus (6.17) folgt :

*°(<P)=-^P-- (6-26)
y

Dividiert man durch V—G, so erhâlt man fur die invariante Ladungsdichte

Entwickelt man diesen Ausdruck fur kleine <p, also im AuBenbezirk, so

ergibt sich

Die beiden Pelder unterscheiden sich also dadurch, daB das erste ein
Defizit und das zweite einen ÛberschuB gegenûber der gemeinsamen
mittleren Dichte

hat.
Man kônnte sich also vorstellen, daB zwei Teilchen immer einen Aus-

gleich auf eine mittlere Ladungsdichte anstreben. Dann wâre es plausibel,
daB gleichartige Teilchen sich abstoBen und ungleichartige sich anziehen.

Im Innenbezirk sind die beiden Dichteverteilungen sehr ungleich. Es

gilt
ds°(<p)

__
4 +

d<p g2cp
¦*°(<P)

und man findet, daB bei q> — 4/3 ein Maximum der absoluten Dichte
ist. Beim zweiten Teilchen sinkt also die Dichte gegen das Zentrum hin
wieder ab, wàhrend die beim ersten monoton ansteigt.

Auf die Berechnung des Falles II : 0 < e < 1 verzichte ich, da er
nur eine Teilchenart liefert und daher weniger intéressant zu sein scheint.
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§ 7. SchluBbetrachtung

Aus (6.14) entnimmt man, da8 fur kleine <p, also groBe r, angenàhert
gilt

und
2DB

(7.1)

(7.2)

Das heiBt, daB die erste der Lôsungen I, die dem positiven

DB
(7.3)

entspricht, im AuBenbezirk das Linienelement einer positiven Masse

StiDB
m *

xc* (7.4)

liefert, obschon nach (5.16) ihr die scheinbar négative Masse

Et ±n | D | /- Arc tg \/e — 1

\/e — 1

f Arc tg ]/^n.l
l/e-1 J

zugeschrieben werden muB.
Fûhrt man in (7.4) den ans (6.12) und (6.13) folgenden Wert

B __
1 r Arc 1g l/«- 11

~Vë expL vT=T J

ein, so ergibt sich

8aD
h c2

— exp - Arc tg |/e -|/e - 1

- 1 J '

(7.5)

(7.6)

(7.7)

Fur das absolute Verhàltnis der beiden Massenwerte folgt somit

m:
e Arc tg \/e — 1

(7.8)

Es wàre wohl verfruht, schon jetzt gestxitzt auf die Forderung | m^
1 eine genaue Bestimmung von e vornehmen zu wollen.

Zur Orientierung gentige folgende Tabelle
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m

n
T

3 Arc tg \/2
2\/2

0,785

0,956

1,209

Lâuft b von 1 bis oo, so lâuft die rechte Seite von (7.8) ebenfalls monoton
von |^nach oo.

Fur das Verhâltnis der beiden zur Lôsung I gehôrigen Massen folgt
nach(5.18)

^2 n — Arc tg (Ye—l)n — Arc tg (Ye
™>i Arc tg (\/e - 1

Aus den angegebenen Grûnden erzeugt m2 das Feld einer negativen
Masse. Da nun in den Bahngleichungen der Einsteinschen Gravitations-
théorie die Masse des sich bewegenden Kôrpers keine Rolle spielt, scheint
mir die Vorzeichenbewertung nach dem Feld die richtige zu sein. Wir
hàtten demnach eine leichtere positive und eine schwerere négative
Masse. Wie man sieht, kann m%lmx aile Werte von oo bis 1 annehmen,
wenn e von 1 bis oo lâuft.

Zusammenfassend ist zu sagen : Es liegt eine Kontinuumstheorie vor,
die auf Grund einer naturlichen Endlichkeitsbedingung ein asymmetri-
sches Teilchenpaar liefert. Es ist durchaus môglich, daB weitere Lôsungen
existieren. Von besonderem Interesse wâre natûrlich eine Lôsung, die im
AuBenbezirk das Potential 0 liefert (Neutron).

Von Interesse sind weiter folgende Fragen :

1. LâBt sich eine weitergehende Regularisierung des Linienelements
(4.1) erreichen, so daB im Quellpunkt nicht nur /, sondern auch g
einen endlichen Wert erhâlt

2. Lassen sich die hier entwickelten Gesichtspunkte mit der Wellen-
geometrie von Mimura 4) und seinen Mitarbeitern verbinden, so daB

der Spin von vornherein mitberiicksichtigt ist, aber die dort auf-
tretende willkurliche Funktion verschwindet

(Eingegangen den 12. Mârz 1952.)

4) Vgl. die Literaturangaben im Zbl. 17, S. 237 und 238.
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