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Metrisches Feld
und vektorielles Materiefeld "

Von W. SCHERRER, Bern

§ 1. Einleitung

Der naheliegendste Versuch, Gravitation und Elektrizitdt formal zu
vereinigen, kann auf das Wirkungsprinzip

Sf(R+3xF o For)V —Gdz=0 (1.1)

basiert werden, wo R den Kriimmungsskalar, » die Einsteinsche Gravita-
tionskonstante, F ,, das elektromagnetische Feld und dx das Produkt der
Koordinatendifferentiale bedeutet.

Dieser Ansatz fiihrt aber schon deshalb nicht zum Ziel, weil er den
Strom Null und somit nur die Maxwellschen Gleichungen fiir ein Vakuum
liefert.

Gegen alle Ansidtze, welche Gravitations- und Materiewirkung nur
additiv vereinigen, 148t sich grundsétzlich einwenden, daf3 sie auch noch
bei Abwesenheit von Materie ein Gravitationsfeld liefern.

Ich habe daher in zwei frithern Arbeiten?)?) das Wirkungsprinzip

2 [+ S— ot
af(Rtp + 40 GP a"p a”o)]/ Gdx = 0 (1.2)

analysiert.

Dieser Ansatz entgeht offenbar dem eben erwidhnten Einwand, seine
spezielle Gestalt war von dem Bestreben diktiert, fiir den denkbar ein-
fachsten Fall eine moglichst gute Anpassung an die Metrik zu erreichen.

Die Analyse zeigt, dal die exakte Losbarkeit des zugehorigen statisch-
zentralsymmetrischen Problems sowie des kosmologischen Problems
wesentlich auf der Homogenitét des Integranden beruht.

1) Ein Referat iiber die wichtigsten Ergebnisse dieser Arbeit wird unter dem Titel
»» Wirkungsprinzipien zur Feldtheorie der Materie‘‘ in den Helvet. phys. Acta erscheinen.

2) Uber den EinfluB des metrischen Feldes auf ein skalares Materiefeld, Helvet. phys.
Acta XXII 8. 537—551 (1949).

3) Dazu zweite Mitteilung : Helvet. phys. Acta XXTII 8. 547—555 (1950).
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Der Integrand von (1.2) ist ndmlich vollstindig homogen, von der
Dimension 2 in bezug auf ¢ und von der Dimension 1 in bezug auf die
G

pj&ls Positivum kann wohl die Tatsache registriert werden, daB eine
endliche Totalenergie resultiert. Im iibrigen aber weicht der Ansatz (1.2)
so stark von (1.1) ab, daB mir ein Anschlufl an die Elektrodynamik
nicht gelungen ist.

Mein Bestreben war nun, den Ansatz (1.1) in analoger Weise zu homo-
genisieren.

Die Materiewirkung in (1.1) ist ebenfalls vollstindig homogen, und
zwar von der Dimension 2 in bezug auf die Potentiale @, und von der
Dimension 0 in bezug auf die ¢,,. Wenn man nun nach weiteren Inva-
rianten Umschau hélt, die dieselben Homogenititseigenschaften besitzen
und iiberdies nach bewahrtem Vorbild hochstens die ersten Ableitungen
der @, und die zweiten Ableitungen der G, und zwar die letzteren linear
enthalten, so findet man neben der elektromagnetischen Wirkungsgrofie
F ,; F°r immerhin noch vier wesentlich verschiedene Invarianten.

Man konnte nun daran denken, von diesen vier weiteren Invarianten
diejenigen auszuschalten — es sind deren zwei —, welche auch im Spezial-
fall des ebenen Raumes Zusatzglieder zum Viererstrom liefern. Doch ist
diese Uberlegung deshalb nicht stichhaltig, weil in der Maxwellschen
Theorie der Viererstrom nur phéinomenologisch definiert ist.

Es bleibt also nichts anderes iibrig, als alle Invarianten zuzulassen.
IThre Bearbeitung bietet zum Teil einen verwickelten Aspekt, so daB ich
lingere Zeit an der Moglichkeit einer exakten Losung zweifelte. SchlieB3-
lich hat sich aber herausgestellt, daf das statisch zentralsymmetrische
Problem exakt l6sbar ist. Uber diese Losung will ich hier nun berichten.

Die Hauptergebnisse sind folgende. Es gibt eine einparametrige Schar
von Losungen mit endlicher Totalenergie. Wenn man nun aber die natiir-
liche, ja wie mir scheint logisch zwingende Forderung stellt, daB nicht
nur die Energiekomponente im engern Sinne, sondern alle Energiekom-
ponenten iiber den ganzen Raum integriert einen endlichen Betrag
liefern, so sind von den gefundenen Losungen nur noch zwe: respektive
eine zulissig. Das Detail hingt von einer universellen Konstanten ¢ —
einer reinen Zahl — ab, iiber die man verfiigen muf3.

Der interessanteste Fall liegt vor fiir ¢>1 und liefert die schon er-
wihnten zwei Losungen. Die Verhédltnisse im einzelnen sind recht merk-
wiirdig. Es ergeben sich zwei verschiedene scheinbar negative Massen.
Die Analyse zeigt aber, daf3 eine der beiden Massen ein Linienelement
erzeugt, das einer positiven Masse entspricht. Die zugeordneten totalen
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Raumladungen sind ebenfalls negativ und dem Betrage nach verschieden.
Die traditionelle Vorzeichenwahl kann also im Rahmen des vorliegenden
Ansatzes nicht mafigebend sein. Die innere Struktur der beiden Ladungs-
verteilungen ist wesentlich verschieden. Dagegen ergeben sich im AuBen-
bezirk — also fiir groBe Distanzen » — angeniihert zwei Potentiale
et und — L ;
r r

wobei e* ein Bruchteil der Totalladung ist.

Zusammenfassend ist also zu sagen : Eine Entscheidung iiber die Vor-
zeichen ist ohne weitere Losungen kaum moglich. Trotzdem bedeutet
dieser vektorielle Ansatz einen wesentlichen Fortschritt gegeniiber dem
skalaren Ansatz (1.2). Er liefert niamlich eine diskrete Auswahl von
Grundlésungen. Auflerdem steht er der klassischen Elektrodynamik sehr
nahe. Es darf daher vielleicht angenommen werden, daB seine weitere
Bearbeitung oder das Studium benachbarter Varianten grundsitzliches
Interesse verdient.

§ 2. Die Invarianten

Nach dem was in der Einleitung gesagt wurde, handelt es sich jetzt
darum, Invarianten anzugeben, die folgende Bedingungen erfiillen.
Sie sind homogen von der Dimension 2 in den Potentialen @,.
2. Sie sind homogen von der Dimension — 2 in den G,
3. Sie enthalten hiochstens die ersten Ableitungen der @,.
4. Sie enthalten hochstens die zweiten Ableitungen der ¢ ,,, und zwar nur
linear.
Das Linienelement ist

f—
.

ds® = @, dx, dz, (2.1)

und als Zeichen fiir die kovariante Ableitung nach der Koordinate be-
nutze ich das Symbol D, so daB3 wir also haben

D, 0, = g‘b 1,0, , 2.2)
ade
D, o’ = + I'g, * . (2.3)

Lo

Den verjiingten Kriimmungstensor schreibe ich in der Gestalt

or% oIk,
== —_ - 4
Bpp =gyt — e —Qpe (2.4)
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mit

Qe =TI} I, — I'}, TH . (2.5)
Der Kriimmungsskalar ist dann gegeben durch

R=GP R, . (2.6)
SchlieBlich empfiehlt sich noch das Symbol
1

V—-a
einzufiihren, das offenbar die linke Seite der sogenannten Lorentz-
konvention darstellt.

Die antisymmetrischen elektromagnetischen Feldstirken sind gegeben
durch

DO =D,or =

0 -
s (V=G 07) (2.7)

Fo=D,9,— D, P, (2.8)
und ihre symmetrischen Gegenstiicke bezeichne ich mit
Eo=D,0,+ D, D, . (2.9)

Jetzt sind wir in der Lage folgende fiinf Invarianten anzugeben, die
den oben angegebenen Bedingungen entsprechen :

H=Ro®, ¢ (2.10)
J =R,, O o° (2.11)
K =3E, E°r (2.12)
M = ES B} = (D D)2 (2.13)
F =4F,,For (2.14)

Wahrscheinlich sind dies die einzigen Invarianten, welche die angegebe-
nen Bedingungen erfiillen.
Durch direkte Rechnung findet man

K =D,9°D,®¢ 4 Gr° D, D, D, &* (2.15)
F=D,9°D, o* —Gr° D, P, D, D" , (2.16)
woraus folgt
K=2L-—-F
mit
L =D,9°D, o . (2.18)
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Da es im allgemeinen bequem ist, mit L und F statt mit K und F zu
rechnen, werde ich inskiinftig folgende Invariantentafel beniitzen :

| H=Ro,or
J =R,, & &°
L=D,0°D,o* (2.19)
M = (DD)
F=1F,For

Die Invarianten K und M respektive L und M sind diejenigen, in der
Einleitung erwihnten Invarianten, welche auch dann noch Zusatzglieder
zum Viererstrom liefern, wenn der Zeitraum eben ist.

§ 3. Das Wirkungsprinzip

Entsprechend den im Vorausgehenden entwickelten Gesichtspunkten
setzen wir nun das Wirkungsprinzip an in der Gestalt

Sf(H+26J +2qL+2tM+2:F)V—Gdz=0 . (3.1)

Dabei bedeuten H, J, L, M, F die in der Tafel (2.19) angegebenen In-
varianten und &, %, {, € universelle Konstanten, die aus dimensionellen
Griinden reine Zahlen sein miissen.

Die durch Variation der Gr° erhiltlichen Gravitationsgleichungen
lassen sich schreiben in der Gestalt

R — LR =— G (3.2)

und fiir die durch Variation der @, zu gewinnenden Materiegleichungen
ergibt sich
oFr

0%q

sP . (3.3)

Die gotischen Buchstaben sollen wie iiblich die zu den lateinisch ge-
schriebenen Tensoren gehorigen Tensordichten bedeuten.

Die rechten Seiten von (3.2) und (3.3) sind natiirlich aus den @ po und
den @, und deren Ableitungen zusammengesetzt. Doch benétigen wir
ihre expliziten Ausdriicke vorderhand nicht. Um zum Beispiel den
Energietensor in absolutem Maf zu berechnen, haben wir einfach zu
setzen
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1
To= —— O — 35 R) (3.4)

und den Viererstrom erhalten wir direkt aus der linken Seite von (3.3).

Hier zeigt sich der grundsitzliche Unterschied einer reinen und voll-
stindigen Feldtheorie gegeniiber der halbphinomenologischen Gravita-
tionstheorie, welche das Feld auf Grund der phinomenologisch be-
schriebenen Massenverteilung bestimmt.

In einer vollstindigen Feldtheorie werden dagegen alle FeldgroBen
simultan bestimmt. Hat man das Feld bestimmt, so kann man zur Be-
rechnung von Energie und Strom nachtriglich je nach Bedarf die linken
oder rechten Seiten von (3.2) und (3.3) verwenden.

Es mag vielleicht befremden, dafl im Wirkungsprinzip gleich vier uni-
verselle Konstanten auftreten. Dazu mochte ich folgendes bemerken.
Es wird sich zeigen, daBl die Struktur der statisch-zentralsymmetrischen
Losung im wesentlichen durch die Hauptinvarianten H und F und die
Konstante € bestimmt ist. Es ist recht merkwiirdig, dal diese Struktur
durch das Einschieben der drei Invarianten J, L und M nicht gestort
wird. Fiir das genannte Problem kénnte man — mit einem kleinen Vor-
behalt — ungestraft &, » und ¢ als Null annehmen. Beim kosmologischen
Problem aber spielt sicher J eine einschneidende Rolle. Die Invarianten
L und M widerum kann man verwenden, um das Bestehen der Lorentz-
konvention im Falle verschwindender Krimmung zu garantieren. Es
darf daher als gliicklicher Umstand bezeichnet werden, daBl man die drei
Invarianten J, L und M als stille Reserven mitfiihren kann.

§ 4. Das statische Zentralfeld
Wir legen das Schwarzschildsche Linienelement
ds? = f2dai — g® dr? — r2(d9® + sin? ¢ dA?) (4.1)

zugrunde, worin f und g nur Funktionen von r sind und setzen ent-
sprechend einer dieser Symmetrie angepafiten statischen Feldverteilung

¢o=¢(‘r) ’ ¢1=¢3=¢3=0 . (4.2)
Es folgt

V:a-=fgrzsin19 (4.3)
und die I'-Tafel lautet :
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/
Iﬂl)o:’ff—
/ /
=1 = = = — Lsinte
g 9 g 9 4 4
1 (4.4)
P§2=7, I, = — sin® cos 9
3 1 3
Pm:“;’ I';, = cotg 9

wobei der Strich die Ableitung nach r bedeutet. Jetzt liefert die Berech-

nung °
Q,, PP P = — (4.5)

RV -G = -—[—%’j—(ri’—{— 2f)sin0]’+ 2(-2—C—f~;—tj-+jg)sinz9

By 6= (“ il Rt A 212_1_2_fi) sind  (4.7) o
g p ;
Da 0" D 01V~ = 2(7-2,;'2? T ;:’29@) sin 9 (4.8)
pe=0 (4.9)
F:% (4.10)

Fiir die den Invarianten der Tafel (2.19) entsprechenden Dichten er-
halten wir daher

HV'—?'G“=[—-[%r—(rf'+2f)]’—q?—:+2(3L’f~i+fg)%}sm0 (4.11)
— [ ,,.2]://4;2 rzf’g’diz T ! P2 .

JV G_( gt T pg 27y )smﬂ (4.12)

LY =G = 2("2f;2‘3¢' _ ’2;;;@) sin & (4.13)

MYy —-G=0 (4.14)

FY—a=""2"Gns (4.15)

Iy

Das Wirkungsprinzip (3. 1) lautet daher nach Unterdriickung des Faktors
2sin ¥ und der Winkeldifferentiale
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[—~(rf’+f)] ) (2”;“ +fg) f:

o ¢ D2 2 41 o/ b2 / P2
: fz : fzg 2 — 2 ! fz )
f*g *g 9
r2f/ oD r2f'2 P2 r2 P'2

g Py )+8fg
Schafft man hier nun die zweiten Ableitungen in der iiblichen Weise

durch partielle Integration weg und fiihrt hierauf als neue Unabhingige
die Variable

4 +§(—- + dr=0 (4.16)

+217(

s=VLgr (4.17)

ein, so erhilt man zusammenfassend schlieBlich die Gestalt

"f[ + (2055 f 7+ 77) 2% (oo +275 ~ 75~ 1)@ =0

(4.18)
Hier bedeutet der Punkt die Ableitung nach s, und 6 ist definiert durch

0=1+&+7. (4.19)

In den beiden letzten Gleichungen haben wir schon den Beleg, daB
der EinfluB} der Invarianten J und L keine Strukturinderung, sondern
nur eine numerische Verschiebung bedeutet.

Variiert man jetzt in (4.18) sukzessive nach f, @ und ¢ und erweitert
hierauf die beiden zuerst erhaltenen Gleichungen mit f2g/®? respektive
fg9/®, so ergibt sich ein System von drei Differentialgleichungen, das in

bezug auf die Grofen j/f und d5/¢ von erster Ordnung ist. Es empfiehlt
sich daher, die genannten GroBen als neue Abhéngige einzufithren gemi

@
E% 576 (4:.20)
Das System lautet dann :
—20p + 0y — 30 @y + (e + 20) y?
; (4.21)
— @20+ 1N+ 0+ 2y —H%¢~0w+U;=0
0q )+ 30 @ — 20
pt+ep+309*—(e+20)py F (4.22)
+O0+2)p+(—4)y W¢+ew+)? 0
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— 209"+ 209yt ey’ — 20+ 4y +1=¢g°. (4.23)
Mit Hilfe von (4.23) kann man nun g aus den beiden vorausgehenden
Gleichungen eliminieren. Die Rechnung ist elementar, aber etwas um-
stindlich. Das Resultat ist iiberraschend. An Stelle des zu erwartenden

bosartigen Systems vierten Grades ergibt sich folgendes :
Falls die Konstanten der Bedingung

02+ 2(e—2)0+¢e#0 (4.24)
geniigen, erhilt man

g =—9%¢; py=—gy . (4.25)

Aus diesen Gleichungen folgt unmittelbar

y=o0¢, (4.26)

wo w eine numerische Integrationskonstante ist, und (4.23) geht iiber in

= (caw?+ 20w —20)¢g*+ 220 — 1) p+1. | (4.27)

Diesen Umstinden haben wir es also zu verdanken, daB8 die restliche
Integration explizite durchgefiihrt werden kann.

Falls aber die linke Seite von (4.24) verschwindet, fallen (4.21) und
(4.22) in eine Gleichung zusammen und das Problem wird unterbestimmt.
Die Bedingung (4.24) ist daher unerldBlich fiir alle bestimmbaren
Varianten.

Zur sukzessiven Bestimmung von 7, f und @ als Funktionen des Para-
meters ¢ benotigt man die Gleichungen (4.27), (4.25), (4.20) und (4.17).
Bezeichnet man die Nullstellen des durch (4.27) gegebenen quadratischen
Polynoms fiir g2 mit « und 8, so erhilt man vermittelst elementarer
Integrationen folgende Losungstafel :

wzw—2?~m
_B_ e
= D @1 — )P — RAya—8
r o (9 28 (@ —B) g (4.28)
. @ —a\B-a _ ﬁ [
fﬂA(w—-ﬂ) 4 (a)
O =Cfe.
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Hier ist D eine Liénge, A eine reine Zahl und C von der Dimension des
elektrischen Potentials. Der Wert von A4 ist festgelegt durch die Forde-
rung, daB fiir r =oco, das heilt ¢ = 0 entsprechend dem pseudo-
euklidischen Linienelement f = 1 herauskommen soll.

Um weitern Aufschluf zu erhalten, miissen wir die Energie- und
Ladungsverhéltnisse analysieren.

§ 6. Der Energietensor

Da die Losungsfunktionen (4.28) als Variable nicht r, sondern den
Parameter ¢ enthalten, rechnen wir auch das Linienelement (4.1) auf ¢
um und erhalten

ds® = frda? — hidg® — r*(d9® + sin® 9 dA?) (5.1)
mit
B+a
r — o[ P — a)2(B-w)
h——"—D 2( ) 5.2
e VaBo p— (5.2)
Es folgt L
V—g=Ff|h|r (5.3)

und die I'-Tafel lautet jetzt

!/

10 f

! b’ rr/ rr’
P(I)O'—:f’fg ’ Pil‘:'—h~9 F;2:"—“h2 ’ I’I1£3:mh2 sin 9

r’ .

I‘fg—————;, Iz, = — sin® cos 9
7./

I’i’3=7 , I'% = cotgd

wobei nun der Strich die Ableitung nach ¢ bedeutet.
Fiir die Berechnung der Energiekomponenten gemi8 (3.4) erhilt man
nun die Formeln
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o o)+ (05 5
| (VL B
S (e L AR E R

R R=R— 4R .

Die Berechnung ergibt vorerst (3.5)
2aB+38— 2af+3a—p
r? A|D e (f-a) T 2@—f)
=" @ " e (5.
und hierauf fiir die Energiekomponente
_____ 2aB+3a—8B 2aB+3B—~u
—3R=A|D|Vaf(p—a) -9 (p—p) 2@ (5.7)

Das Raumintegral iiber die Energiedichte konvergiert also sicher im
Unendlichen, das heit bei ¢ = 0.

Die Berechnung der Impulsdichten zeigt nun aber, dafl die entspre-
chenden Integrale im Undendlichen dann und nur dann konvergieren,
wenn die Bedingung

2af+a+p=0 (5.8)
erfiillt ist.
Bei Beriicksichtigung dieser Bedingung erhélt man
2  A|D
f 2o —wp—p (5.9)

R VB

und hierauf

v 1w _ _A|D|Vap
BW—3R= e =p
e A|D|VaB
= 0P 6.10
W _jn_ _AIDIVAS |
@ — )@ —f)
. 1m_  _AID|VaB
B — %= (@ — a)(p — B)
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Nach (4.27) und (4.28) gilt nun offenbar

1 1
oder
_ 2af—a—f

4o = B '

Die Bedingung (5.8) liefert daher
w=1 (5.11)

und (4.27) verwandelt sich in

PP=cg:+20+1. (5.12)

Wir ersehen daraus, daBl die Wurzeln « und f und damit die fir die
Energie- und Impulsdichten mafigeblichen Werte (5.10) nur von ¢ ab-
hingen. Hieraus folgt, dafl die durch die Invarianten J und L bedingten
Anteile zur Totalenergie Null sein miissen. Im Falle des statischen
Zentralfeldes kann man also auf J und L verzichten. Immerhin ist zu
beachten, dafl bei & = » = 0 infolge (4.19) die Bedingung (4.24) iiber-
geht in ¢ 7 1. Die Integration muf} gefithrt werden von ¢ = 0 (r =o00)
an bis zum Minimum von |7 |, wobei man die Wahl hat, ¢ durchs Posi-
tive oder Negative laufen zu lassen. Man iiberlegt sich unschwer, dafl
eine Begegnung mit einem Pol nur vermieden werden kann, wenn

cxﬂ=—2—>0 (5.13)

ist. Vermoge (5.8) folgt daraus, daB die beiden Wurzeln « und g nega-
tiven Realteil haben miissen.
Wir haben also zwei Fille :

I. 8>1. L ——-l—*—’l:l/:e‘——-———i
) (5.14)
—1—3Ve—1
B = .
I1. . R
0<exl B -l+l/1—-s
*= £
(5.15)
—1—V1—¢
B = -
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Die Berechnung liefert nun im ersten Falle zwei Energiewerte und im
zweiten — da die negative g-Achse vermieden werden mufl — einen
Energiewert :

I E,—— 47 | D | Ve Arctg)e — 1 oxp (__ Arctg)Vs — 1)
# Ve —1 Ve—1 (5.16)

47| D | m— Arctgy/c — 1 ( Arctgl/s———l)
E,— — 22121 _
: x 1/8— l/s—l =P ]/e——l
1
2n|D|1/Z(1+1/1—8) 2)1-¢ (1+]/1—s)
II. E=— — - L -
V1—¢ 1—V1—¢ g 1—V1—e/ (5.17)

Das Verhiltnis der beiden Energien im ersten Falle

E, =m—ArctgVe—1
E, Arctg Ve — 1
ist also durch ¢ allein bestimmt.

In der SchluBibetrachtung komme ich auf dieses scheinbare Auftreten
negativer Massen noch einmal zuriick.

(5.18)

§ 6. Die Ladung
Wir kniipfen an (3.3)

aai}vpa = SP
an und erhalten
01
aaii = 50 (6.1)

oder, mit Riicksicht auf unsere speziellen Koordinaten

ag()l "
o = 50 . (6.2)
Es handelt sich also um eine raumliche Ladungsdichte, die iiber den
ganzen Raum integriert werden mus.
Fiir die zu ermittelnde Ladung e setze ich

sme=| | [ 0dAsin®dd|dp| (6.3)
0 0

0

unter der Annahme, daB sowohl die in s° steckende GroBe V' —@G als
auch alle Koordinatendifferentiale positiv zu bewerten seien.
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Es folgt daher % o
e:J o ldo (6.4)
0
Fiir positives ¢ folgt also
er = F g~ (6.5)
und fiir negatives
er =" ., (6.6)

Fiir §° erhalten wir
%01 - V—-G GOO G” FOI

= - V—__—G—GOO G” .D]_ @o

. 1 dd
——-]fk?’l fzkg'za
also
0 r2  dd
=TT @ (6.7)

Wir betrachten jetzt speziell den Fall I: £>1, und erhalten im An-
schlul an (5.14)

p— o= Lteg—ile—] = g_exp ~—iArctg(—————l/£~l)]

1
) e ¢ 0 V_'”q” (6.8)
1 ) — 1 . —1
@ — ﬂ = + EQ +87' € — -;6— eXp ? AI‘ctg (T_%—W)]

Dabei wihlen wir fiir die Arcusfunktion ein fiir allemal denjenigen
Zweig, der aus dem Hauptzweig fir ¢ = 0 durch stetige Fortsetzung
hervorgeht.

Speziell fir ¢ = 0 folgt

_—1 +il/8_1 l/M exp[— ¢ Arc tg (Ve — 1)]
o (6.9)
—1 ———1:]/8—1

f =

V_ exp [i Arc tg)/ — 1)] .

&

Die Berechnung liefert dann sukzessive

(<p~—a)aﬂ ((p-—,8)°‘a83 ——exp[‘/al_ . Arctg(ll/i—g)] (6.10)
(p — oc)f‘:%‘(qo — ‘3)3%5 = —-—Vg—é—_exp [~— l/el—— = Arc tg (%})] (6.11)
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und speziell fir ¢ = 0

aB apB
4 — (__ a)'—ﬂ—:; (—ﬂ)ﬁzexp[Arctg(v E — l)]

Ve 1

_8 _* 1
B = \— B—a (— a—B — e A .
(— )P (= B) v
Wir erhalten daher die Tafel

(6.12)

(6.13)

g=V1+2p+eg

Dg 1 V'e“:i‘)]
Sl ——— Arctg (———
r Vsqgexp[ l/e——l rcg(l_*_e(p

14 ¢e9
D 1 e —1
R —— S 5 ik - A A—— .
Ve | et (V)|

f = exp {—— —17'—51—_—1—_[1.&1'0 tg (E) — Arc tg VE_:—T]]

(6.14)

Wegen (4.28) und (5.11) haben wir als Potential

®=0Cf
und es ergibt sich
dd  Cf
dp g

Gestiitzt auf (6.7), (6.14) und (6.16) erhalten wir schlieBlich

Speziell folgt daher
g1(0) = — 2L exp| - *‘V—s"l:—i'Arc Ve T,
B o) = — 2L
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Gemafl (6.5) und (6.6) erhalten wir also schlieflich folgende Ladungs-
werte :

er = — C}'};' (1 — exp[— Arclt/ge‘i‘f—"f)] (6.21)

0:/1; {exp[__ Arclt/ilflfT _eXP[Vf‘ET“' (6.22)

Uber das Vorzeichen von C 148t sich nichts aussagen. Ja, es ist sogar
zweifelhaft, ob es zuléssig ist, C und D in beiden Formeln als gleich an-
zusetzen, da es sich doch schlieBlich um zwei getrennte Losungen handelt,
die nicht miteinander in Wechselwirkung stehen.

Solange keine schliissige Entscheidung moglich ist, wollen wir die
formal nahegelegte Gleichheit annehmen. Fiir positives C' ergeben sich
dann zwei verschiedene negative Ladungen.

DaBl dieses seltsame Ergebnis nicht ohne weiteres von der Hand ge-
wiesen werden kann, zeigt sich, wenn man das Potential (6.15) fir
r ~ oo approximativ entwickelt und mit dem klassischen Potential
vergleicht. Die Entwicklung auf Grund von (6.14) liefert namlich

CcD Arctgl/e——l]
b — (O — — 6.23
Vier exp[ Ve—1 T ( )

Also erhalten wir als klassisches Potential

eg:"“"‘

* -
P* = — (6.24)

mit der klassischen Ladung

CD [ Arcthe——-l]
— exp| — .
l/e 1/8_1

Dieser Wert stimmt im Betrag also iiberein mit °(0) gemil (6.11).
Nun aber ist 47 F1(0) gerade das Integral der elektrischen Feldstirke,
durch das man in der klassischen Theorie den Wert 4me* darstellt. Es
ist daher bemerkenswert, daB der Wert |e*| in (6.21) mit dem nega-
tiven und in (6.22) mit dem positiven Vorzeichen auftritt.

Beim Wert (6.25) respektive (6.23) ist weiter folgendes zu beachten.
Wenn man von ¢ zu — ¢ iibergeht und sinngemif » positiv hélt, so muf3
man gemiB (6.14) D in — D iiberfithren. Unsere beiden Losungen liefern
also tatsiichlich fiir das Grenzpotential (6.23) den Ladungswechsel.

e* = —

(6.25)
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Um eine konkretere Vorstellung zu gewinnen, wollen wir uns die
Ladungsdichte
3301

op

50 =

etwas ndher ansehen. Aus (6.17) folgt :

)
- (6.26)

s%(p) =
Dividiert man durch V' —@, so erhilt man fiir die invariante Ladungs-

dichte
o prr—
8%(p) = m—%;g;exp [——~l/8—1_——l—Arctg (H)J . (6.27)

Entwickelt man diesen Ausdruck fiir kleine ¢, also im AuBlenbezirk, so
ergibt sich

C
$°(p) = — 59t (1 — 99) ,

C
2 (—9)= — SDz ¢*(1 + 99) .

Die beiden Felder unterscheiden sich also dadurch, daBl das erste ein
Defizit und das zweite einen UberschuB gegeniiber der gemeinsamen

mittleren Dichte

3s(p) + 8°(— )] = — ‘SDC;

hat.

Man konnte sich also vorstellen, daf3 zwei Teilchen immer einen Aus-

gleich auf eine mittlere Ladungsdichte anstreben. Dann wire es plausibel,

daB gleichartige Teilchen sich abstoBen und ungleichartige sich anziehen.

Im Innenbezirk sind die beiden Dichteverteilungen sehr ungleich. Es
gilt

ds®(p) _ 4 + 3¢ 50

dg g%

(p)

und man findet, dal bei ¢ = — 4/3 ein Maximum der absoluten Dichte
ist. Beim zweiten Teilchen sinkt also die Dichte gegen das Zentrum hin
wieder ab, wihrend die beim ersten monoton ansteigt.

Auf die Berechnung des Falles II: 0<e<1 verzichte ich, da er
nur eine Teilchenart liefert und daher weniger interessant zu sein scheint.
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§ 7. SchluBbetrachtung

Aus (6.14) entnimmt man, daf3 fiir kleine ¢, also groe r, angenihert
gilt

gt =14 2DB (7.1)
und
r=1— ZI:B : (7.2)
Das heif3t, daf die erste der Losungen I, die dem positiven
DB
P~ (1.3)

entspricht, im Auflenbezirk das Linienelement einer positiven Masse

m;" 8w DB

= (7.4)
liefert, obschon nach (5.16) ihr die scheinbar negative Masse
B, 4xm|D| Arctg Ve — 1 _ ArctgVe—1
G % c? Ve Ve — 1 °xP Ve — 1

. (7.5)
zugeschrieben werden muf.

Fiihrt man in (7.4) den aus (6.12) und (6.13) folgenden Wert

_ 1 Arctg Ve — 1
B Ve exp[ Ve T ] (7.6)

ein, so ergibt sich

ml*:——-sfc,; exp[—— Arctgl/a——l] . (7.7)
%c? Ve Ve—1
Fir das absolute Verhiltnis der beiden Massenwerte folgt somit
l m"1< _ & Arctg Ve — 1 (7.8)
ml 2 VS — 1

Es wire wohl verfriiht, schon jetzt gestiitzt auf die Forderung | m,/m* |
= 1 eine genaue Bestimmung von ¢ vornehmen zu wollen.
Zur Orientierung geniige folgende Tabelle



m,
& ml*
TT
2 ——4—_0,785
" 3Arct%1/2 — 0,956
212
27
4 = 1,209
313

Léauft ¢ von 1 bis oo, so lauft die rechte Seite von (7.8) ebenfalls monoton
von # nach co.
Fiir das Verhéltnis der beiden zur Losung I gehorigen Massen folgt
h (5.18 -
nach ( ) mz__:rt——Arctg(l/ewl)
my Arctg (Ve — 1)

Aus den angegebenen Griinden erzeugt m, das Feld einer negativen
Masse. Da nun in den Bahngleichungen der Einsteinschen Gravitations-
theorie die Masse des sich bewegenden Korpers keine Rolle spielt, scheint
mir die Vorzeichenbewertung nach dem Feld die richtige zu sein. Wir
hitten demnach eine leichtere positive und eine schwerere negative
Masse. Wie man sieht, kann m,/m, alle Werte von oo bis 1 annehmen,
wenn ¢ von 1 bis oo lauft.

Zusammenfassend ist zu sagen : Es liegt eine Kontinuumstheorie vor,
die auf Grund einer natiirlichen Endlichkeitsbedingung ein asymmetri-
sches Teilchenpaar liefert. Es ist durchaus moglich, dafl weitere Losungen
existieren. Von besonderem Interesse wire natiirlich eine Losung, die im
AuBenbezirk das Potential 0 liefert (Neutron).

(7.9)

Von Interesse sind weiter folgende Fragen :

1. LaBt sich eine weitergehende Regularisierung des Linienelements
(4.1) erreichen, so dal im Quellpunkt nicht nur f, sondern auch g¢
einen endlichen Wert erhilt ?

2. Lassen sich die hier entwickelten Gesichtspunkte mit der Wellen-
geometrie von Mimura?) und seinen Mitarbeitern verbinden, so dafl
der Spin von vornherein mitberiicksichtigt ist, aber die dort auf-
tretende willkiirliche Funktion verschwindet ?

(Eingegangen den 12. Mirz 1952.)

4) Vgl. die Literaturangaben im Zbl. 17, S. 237 und 238.
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