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Approximation
by Use of Kernels Originating from

Abel Transférais of Séries

By Ralph Palmée, Agnew, Ithaca, N. Y., (USA.)

1, Introduction. It is our main object to improve, by direct me-
thods, a theorem to which the author [3] was led by considération of
Abel power séries transforms of Tauberian séries whose partial sums
behave in a prescribed fashion with respect to given rectifiable closed

curves. Thèse curves were determined by periodic complex valued func-
tions z(t) for which t represented arc length and for which therefore
z (t) satisfied the condition

b

J| dz(t) | b — a whenever — oo<a<6<oo
a

In our new Theorem 1.1 below the restriction of periodicity is remov-
ed, and the condition on the variation of z(t) is relaxed. If z(t)

x(t) + iy{t)) is a function such that, as t increases over the interval
— oo<£<oo, the point z(t) traces in the complex plane a curve C,
bounded or unbounded, which is rectifiable over each finite segment
a^Lt^b, and if the parameter t is the product of arc length and a non-
zero constant K, the z(t) falls within the class of functions covered by
the theorem. Hence the theorem is essentially a theorem on approximation

of given locally rectifiable curves by curves determined by this
curve and a spécifie transformation.

Theorem 1.1. Let z(t) be a complex valued function of the real variable

t, defined over ~-oo<t<oo and such that for some constant M

$ -oo<a<b<oo (1.2)
a

Let q and h positive parameters, and let

(t + x)dx (1-3)
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Then

\w(q,h,t) - z(t) \£A(q)hM -oo<*<oo (1.4)

where A (q) is defined by
00

A (q) y + log q + 2 Jar1 e~* dx (1.5)

Moreover A (q) is, for each q, the best constant in the sensé that there exists
a function z(t) and a value of t such that equality holds in (1.4).

The constant y in (1.5) is Euler's constant. The function A (q) is a
minimum, and hence our estimate of the left member of (1.4) is best,
when q log 2. As is shown in [2] and [3], the minimum value of
A (q) is Ao A (log 2) .9680448. The theorem which we are im-
proving did not say that A (q) is the best constant in (1.4) ; in fact
equality cannot hold in (1.4) when z(t) is periodic and hence bounded.
In section 3 we show that the additional hypothesis that z (t) is periodic
does not imply that the constant A (q) in (1.4) can be replaced by a
smaller constant. A technique for applying the results is illustrated in
section 4. Finally, in section 5, we note that our methods can be applied
to give similar results for other transformations, the application to the
Gauss transformation being particularly simple.

2. Prooî oî Theorem 1.1. We put (1.3) in the form
00

w(qyh,t)= $K{x)z(t+ x)dx (2.1)
where ~°°

K{x) (q/h) exp [- {qe*lh - x/h)] (2.11)
and observe that ^

K(x)>0 §K(x)dz= 1 (2.12)
Hence

oo
~°°

w(q,h,t) - z(t) $K(x)[z(t + x) - z(t)]dx (2.13)
— oo

Our hypothèses imply that if a dénotes the smaller and b the greater of
the arguments t and t + x, then

b b

\z(t + x) -z(t)\ =\$dz(t)\^$\dz(t)\^M(b-a) M | x | (2.14)
a a

and
w (q,h,t) -z(t)\^M$K(x) \x\dx (2.15)

We note that equality will hold in (2.14) and (2.15) if t 0 and
z(t) M\t\.
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Defining A (q) by the formula

A(q)h $K(z) \x\dx (2.16)
— 00

we already hâve (1.4), and we see that equality holds in a spécial case.

Using (2.11) gives
00

A {q) J*fexv [~ {qe*'h -xlh)] lxldx
00

q J exp [— (qex — x)]\x\dx (2.16)
— oo

and to complète the proof of Theorem 1.1, it suffices to reduce the last
intégral in (2.16) to the tabulated functions in (1.5). Letting / and J
dénote the intégrais over x>0 and x<0 respectively we find, by
integrating by parts and changing variables of intégration, that

/ f [exp (-qev)(qe")}ydy fexp (- qeP)dy fx~l t- dx (2.17)
0 Ogand

J §[exV(-qe-v)(qe-v)]ydy

J[l - exp (-qe~v)]dy far-^l - e~x) dx (2.18)
o o

Thus we obtain A (q) in the form
q oo

/1 p—x /» p—x

— dx+ \—dx. (2.2)
X J XX

q

It is found that some straightforward calculations involving AbeFs
transformation lead to the formula for A (q) given in (2.2) and others
lead to (1.5); thus one obtains devious proofs of the formula for Euler's
constant, namely

q oo

fl p—x f* p-x
dx~\ogq- j —dx (2.3)

0 q

which we need to pass from one to the other of the formulas for A (q).
Since the formula (2.3) seems to be lacking from référence books in
which one would hope to find it, we give a direct proof of (2.3) starting
with y defined as the limit of yn where yn 1 + 1/2 + • • • + l/n — log n.

î
Putting k~l J**-1* and then t erx^n gives

o
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f l - *" a* C l-e~x x\n

0 0

Splitting the last intégral at x q gives
q oo

i &—x crin f* e,—x or In

O q

where
00

q 1 C 1
J?n log-^- + — —^ f^ log(g/ti)-log(l-c-«/n) o(l)

« (2.51)

Using the Lebesgue crïterion of dominated convergence for taking limits
under the intégral signs in (2.5), we obtain (2.3) from (2.5).

3. Periodîc functions and closed curves. We now prove two theorems
in which the conditions on z (t) imply that z (t) traverses a closed recti-
fiable curve in the complex plane as t increases over a period of z (t) and
that t represents arc length on this curve.

Theorem 3.1. // #>0 and B is a constant less ihan the constant

A(q) in (1.5), then there is a periodic function z(t) such that
b

§\dz(t)\=b — a —oo<a<b<oo (3.11)
a

and, when w(q,h,t) is the periodic function defined by (1.3),

\w(q,h,O) - z(0) \>Bh (3.12)

Let h and q be fixed, and choose e>0 such that A(q)h — e>Bh.
With K(x) still representing the function in (2.11) so that (2.1) holds,
choose a positive number L so great that

-z »
§K(x) | x | dx + (K(x) | x | dx<e/2 (3.2)

— oo L

Let z(t) be the function of period 2L for which

z(t) \t\ —L^t^L (3.3)

Thus z(t) is real and nonnegative, and z(t)^\t\ for ail values of t.
Hence
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w(q, h, 0) - z(0) §K{x)z{x)dx
— 00

^ j" K(x) \x\dx-~§ K{x) \x\dx- $K(x) \x\dx
-L -oo L

§K{x)\ x\dx~2[ JJf(*)| a; | cfo + /£(*) | * | dx] (3.4)
— oo — oo L

Using (2.16) and (3.2) we obtain

w(q,h,0) -z(O)>A(q)h- e>Bh (3.41)

This proves Theorem (3.1).
The curve generated by the function z(t) constructed in (3.3) is non-

simple, but we could easily make a small déformation of z(t) into a
function z*(t), with the same period L, which would generate a simple
closed convex curve and for which (3.5) would still hold.

In case q Iog2, we can strengthen the conclusion of (3.12) by
replacing it by (3.52) below.

Theorem 3.5. // q log 2 and B is a constant less than the constant
Ao A (log 2) .9680448, then there is a periodic function z(t) such
that b

§\dz(t)\=b — a — oo<a<b<oo (3.51)
a

and, when w(q,h,t) is the periodic function defined by (1.3),

| w(q, h,t) — 2(0) \>Bh —oo<t<oo (3.52)

Without using at présent our hypothesis that q log 2, we choose

e>0 such that A(q)h — e>Bh and choose L so great that
-L+2A(q)h oo

J K{x)dx+ J K{x)dx<8/2 (3.6)
-oo L-2A(q)h

As before, let z(t) be the real nonnegative function of period 2i for
which z(t) \t\ when —L<Lt<*L. Then z(0) 0 and w(q,h,t)
has period 2i so we can prove (3.52) by proving that

w(qihit)>Bh | t\^L (3.61)

Using (1.4) with Jf=l, we see that if \z{t) \>2A{q)h, then
w(q, h, t)>A(q)h>Bh; hence (3.61) holds when t lies in the part of
the intervall —L^t^L which lies outside the interval — 2A(q)h^t

It therefore suffices to prove that

w(q,t,h)>Bh \t\S2A(q)h (3.62)
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Assuming that 1t1 i£2A(q)h, we set a L — 2 A(q)h and find that

w(q, h, t) i> j /- J - f] K(x) 11 + x | dx
\—a — oo a J

j J-2 J°- 2 J ] #(*) 11 t + x | dx>F(t) - e (3.63)
l—oo —oo a

where ^
F(t) JJ5l(x) I ^ + x | da (3.64)

Seeking the minimum of F(t), we find that F"(t) 2K(—1)>0 and
hence that F(t)^F(T) where î7 is the unique solution of F'(T) 0,
that is, of __T ^

§K(x)dx JZ(o;)rfa; (3.65)
-oo -r

or, because of (2.12), of ^
$(x)dx=\ (3.66)

Thus exp( — qe~m) 1/2 and

îT A(logg-loglog 2) (3.67)

Noting that T 0 when (and only when) q log 2, we now use our
hypothesis that q log 2 to see with the aid of (2.16) that .F(J) ^jF(O)

^4 (g) A and hence that

w(q,h,t)>A(q)h — e>Bh (3.68)

Thus Theorem 3.5 is proved. It is of interest to observe that the funda-
mental number T for which (3.65) holds, and which is 0 only when

q log 2, is equal to another fundamental number, h log q~x, for
which F(x) assumes its maximum value lj{eh), when and only when
q (log 2)i/2.

4. Tauberian constants. To illustrate briefly a way in which the
preceding results may be useful in proving theorems involving Tauberian
constants, we use them to simplify proof of a theorem of the author [1],
[2]. The theorem is concerned with the closeness with which the partial
sums sn of a Tauberian séries 2Jun can be approximated by the Abel
power séries transform a(r) £j*Lorkuk by making best possible
choices of r.

Theorem 4.1. The constant Ao A (log 2) .9680448 is the least

constant B* having the following property P. If Zun is a séries for which
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lim sup | nun\ A, then there is a séquence rn (which may dépend upon
the terms of the séries Eun) such that 0 <rn < 1, lim rn 1,

Km sup | 2,rknuh~ sn\^B*h (4.11)
n—>o

By a method that has been and is being generalized in various directions

by several authors, it was proved in [1], [2], and [4] in a straight-
forward way that if q log 2, and tn — e~Qln, then (4.11) holds
when JS* Ao. Hence Ao has property P. To prove that Ao is the
least constant having property P, we must in some way produce, for
each B<A0, a séries Eun such that lim sup | nun \ ^h and
lim sup | o(rn) — sn\^Bh for every séquence rn such that 0<rn<l
and lim rn 1. This was done in [1] by defining a very complicated
real séries Eun such that lim sup | nun \ 1, lim sup sn L, and

o(r)^LL — B, 0<r<l. We now illustrate a greatly improved
technique for the construction of such séries.

Let z(t) and w(q,h,t) be functions of the type specified in Theo-
rems 3.1 and 3.5. Let C and Ch be the oriented curves traversed in the
complex plane by z(t) and w(q,h,t) as t increases. The author [3]
showed that if Eun is a séries such that lim | nun | h and its partial
sums sn ail lie on C and progress steadily along G in the positive direction,
then the curve Ch (which is independent of q) is precisely the set of limit
points of the Abel transform a(r) £j*L0 rkuk.

For the fonction z (t) constructed in the proof of Theorem 3.5, C is
the real Une segment O^x^L, traversed to and fro. It foliows from
(3.68) and considérations of symmetry that Bh<w(q, h,t)<L — Bh
so that Ch is included in the interval Bh^x^L — Bh. This gives the
foliowing theorem.

Theorem 4.2. // h>0 and B<A0 A (log 2) .9680448, then
there exist a number L and a real séries Sun such that lim | nun \ h,

0 lim inf 5w<lim sup sn L (4.21)
n—>oo n—>oo

and

JSAgliminf a(r)^limmp a(r)^L — Bh (4.22)

While the statement of Theorem 4.2 did not state the fact, we know
that L must be large if B is near Ao, and that our séries Eun which sa-

tisfy lim sup \nun\^h and are able to achieve (4.21) and (4.22) are
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those for which the partial sums sn run to and fro from 0 to L as rapidly
as the Tauberian condition permits. The preceding work and some heu-
ristic considérations indicate that when B is near ^40, it is not easy for a

séquence sn, bounded or unbounded but such that lim sup \nun\^h,
to achieve a situation in which the séquence sn has a limit point £ as far
distant as Bh from the nearest limit point of a(r) ; the séquences describ-
ed above seem to be the simplest ones that are able to do it. It is doubt-
less impossible for a bounded séquence sn, for which lim sup | nun | A,
to hâve its éléments maneuver so artfully in the complex plane that they
possess a limit point as far distant as Aoh from the nearest limit point
of the Abel transform o (r).

It is hoped that the results and methods of [3] and this paper will
prove to be useful in obtaining answers to such questions as the following.
How should the partial sums sn, of a séries Zun for which lim sup | nun |

^A, maneuver in the complex plane so that the Abel transform a(r)
has a limit point f as far as possible from the nearest Hmit point of the
séquence sn? Questions of this nature originate in a paper of Hadwiger [5]
where preliminary examples and inequalities are given.

5, Other kernels. In conclusion, we remark that the proof of Theo-
rem 1.1 shows very clearly that an inequality similar to (1.4) can be
obtained for each kernel K(x)9 with or without parameters, for which

J\ K(x)\\ x\dx<oo ]K(x)dx=l. (5.1)
— 00 — 00

For the case of the Gauss kernel, we find by a trivial calculation that
if a>0, if z(t) satisfies the hypothesis of Theorem 1.1, and if

w(a, t) an-1'2 $e~a*x2z(t + x)dx (5.2)
then

\w(a,t) — zWl^inrVi/àïM -oo<^<cx> (5.3)

Moreover the method of proof of Theorem 1.1 shows that the coefficient
of M in (5.3) is the best possible. The conditions (5.1) play fundamental
rôles in parts of Wiener's theory of Tauberian theorems, and our kernel

K(x) of (2.11), with the parameters q and h both equal to 1, appears
in Wiener's original book [6, p. 105] on the subject where Abel transforms
are treated.
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M —° + Sl + ' * ' + Sn

n+l
has been completely answered in the two following papers.
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