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A New Curvature Theory
for Surfaces in a Euclidean 4-Space

By Yune-CrHow WonG (Hong Kong)

1.1. Introduction

In the study of local properties of surfaces in the Euclidean 4-space R,,
our attention has so far centred on the Kommerell conic (Kommerell [7],
p- 553) and the curvature ellipse (Schouten-Struik [11], pp. 104—111).
Let &, &' be the tangent and normal planes of a surface (4) at the point 4 .
Then the Kommerell conic (K) of (4) at A is the locus of the point K of
intersection of &’ by the normal planes of (4) consecutive to &'. The cur-
vature ellipse (G), also lying in &', is obtained as follows. Let J be any
tangent unit vector of (4) at 4, and (C) any curve on (4) tangent to J
at A; then the component in &' of the curvature vector of (C) at 4, with
respect to R,, depends only on J (Meusnier’s Theorem); the locus of the
end point of this component as J takes on all the directions in £ is the
curvature ellipse (@). The conics (K) and (G) are polar reciprocal of each
other with respect to the unit circle in &'.

Analytically, the introduction of (@) into the study of surfaces in R,
is quite natural because (G) is tied up closely with the two fundamental
forms of (4) on which the Gauss-Codazzi-Ricci equations of (4) depend.
Geometrically, however, the introduction of (K) is more natural. In view
of the fact that the first curvature of a curve is defined to be the rate of
change of the angle between two consecutive tangent lines, it is rather
surprising that no systematic study has been made of the corresponding
role played by the two angles (cf. § 1.4) between a pair of consecutive
tangent planes of a surface in R,. As far as the author is aware, the only
known results in which these two angles play a direct or indirect part
are the conjugate directions, the Kwietniewski-Kommerell-Eisenhart
theorem (§ '1.3), and the ‘“‘principal directions’’ of Struik [12] on an
m-surface in a Riemannian n-space, which for a surface in R, are identi-
cal with the principal directions of the function 4 defined later in § 1.5.

The purpose of this paper is to present a curvature theory for surfaces
in R, based on the two angles between consecutive tangent planes of the
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surface. Let A, A* be two consecutive points, at a distance ds apart, of
the surface (4), and let dy,, dy, be the two angles between the tangent
planes & and &* of (4) at A and A*, and denote d/ds by d,. Then d,y,,
d.y, are functions of the point 4 and the direction 4AA*, and will be
called the two first curvatures of (4) at the point A4 for the direction 4.4 *.

The main results which will be obtained are: (i) some new characte-
ristic properties for a few well-known special types of point of the sur-
face, such as the minimal point, the focus point, the R-point, ete. (§ 1.3),
(ii) the introduction of R-directions at a point on the surface (§§ 2.3,
3.1) and (iii) the theorem (Corollary 5.1) that a given non-minimal sur-
face in R, is essentially determined by its linear element and the two
first curvatures.

It is to be pointed out that this new curvature theory also applies to,
and all the results obtained in this paper, except those in § 5, also hold
for surfaces in a Riemannian 4-space, provided that the angles between
two consecutive tangent planes &, &* at the points 4, A* of a surface
are understood to mean the angles between & and the plane obtained by
transporting &* parallelly from 4* to 4 along the arc 4*4.

1.2. Curvature ellipse (G). A family of canonical frames for (4).
(Cf. Wong [13], §§ 2.1, 2.3.)

Following Boruvka [1], we shall use Cartan’s [3, 4] method of moving
frames to find the equations of (G). A frame A — I, (¢,7,k=1,2,3, 4)
in R, is the figure consisting of four mutually orthogonal unit vectors I,
attached to a point 4. If a family of frames depends on a number of

parameters, then between two consecutive frames in the family there
are the relations:

dd = o, 1,, dI, =w,I, (1.1)

(X )
(summation over repeated indices). Here the w’s are linear differential

forms in the parameters, which satisfy ,; + w,;; = 0 and the equations
of structure for R,

dwi == [wkwm] 5 dw” == [(u,kwm] , (1.2)

where a d before a differential form denotes exterior differentiation.

Let the point A4 (u,v), depending on two parameters u, v, describe
a surface (A4), on each of whose tangent planes is assigned (in a contin-
uous manner) a positive direction of rotation. We confine ourselves to
a small enough region of the surface so that this orientation of the sur-
face is possible. Now to each point A (%, v) of (4), let us attach a frame
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A — 1, so that the unit vectors 4 —1,, A — 1, lie in the tangent
plane and the rotation from 4 —1I, to 4 — I, is positive. Then we
have a two-parameter family of frames 4 — I; for which

w3=w4=0, - (1.3)
Exterior differentiation of these gives, by (1.2),
[w, 0y3] + [wawy] =0, [w; 014] + [Wpwpe] =0,
which are equivalent to

/ !
w13=aw1+bw2, w14=aw1+bw2,

1.
w23 =bw1 + Gw2 ) 0)24 =b’w1 + c,w2 3 ( 4)

where a, b, ¢, a’, b, ¢’ are functions of u, v.
Let (C) be any curve on (4) through the point 4, and let

J =1,cosp + I,sin ¢

be the unit tangent vector of (C) at A. Then by (1.1), the component
in the normal plane & = A4 — I,I, of the curvature vector d,J of (C)
at A is

Wa3 W14 Waq

w . :
(—Ei?—cosq)-{‘ ds Slan)Ia+( 7s 989 T 5 Sm‘P)I4’

which depends only on J. Hence the equations of the curvature ellipse
(@) referred to the axes A — I, I, in the normal plane &' are, by (1.4),

z,=%(@ +¢) +3(a—c) cos2¢ + b sin2¢ ,

xy =% 4+¢)+4(@ —c)cos2¢ + b sin2¢ . (1.5)

It is obvious that for a surface (4) in R, there are infinitely many
families of frames 4 — I, satisfying the conditions (1.3). The following
theorem establishes the existence of a particular one of such families,
called a family of canonical frames, which will be used exclusively in the
rest of the paper.

Theorem 1.1. Given any surface (A) in R,, there exists a family of
canonical frames A — I, defined over (A) such that

w; =wg =0, Wy =AW, , W =0 o + b w, , (1.6)
Wy3 = CWy , Wy = b 0w, + @' w, , )
and
{a—c) =20 >0. (1.7)
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The equations of (G), referred to the axes A — I,1,, are then

z; =% (a+c)+4(a—c)cos2¢ ,

z, =a' + b’ sin2¢ , (1.8)

so that the centre of (Q) is at the point {4 (& + ¢),a’} and the major and
minor semi-axes of (G) are of lengths L (a —c), b’, respectively.

Proof. To arrive at (1.5), we have chosen I,, I, to lie in the tangent
plane £ in an assigned order (and consequently, I,, I, lie in the normal
plane &'). We first prove the theorem in the general case when (G) is not
a circle nor a line segment. As the direction J rotates from 7, in the
positive direction, ¢ increases from 0, and the corresponding point
G {x;(p), x4(p)} describes (@) in a direction which we take to be the
positive direction of (@). Let C be the centre and G,, G,, G;, G, be the
four vertices of (@) in the order in which they are encountered when we
describe (@) in the positive direction starting out from a vertex G, on
the major axis of (G). Now in &', take A — I, parallel to CG,, 4 — 1,
parallel to CG,. In &, take A —1,, A — 1, to be the directions cor-
responding, by (1.5), to the vertices G,, G|, respectively. Then since the
coordinates of G,(¢ = 0) and C are G,(a,a’), C{} (@ + ¢),1 (a' + ¢')},
we have a' =1 (a' + ¢'), a>1%(a + c¢). Therefore, a' —c¢' =0 and
a —c¢>0. Evidently, the length of the major semi-axis of (@) is
a—3%(@+c)=3(a—c). Moreover,at G,(p =0), we have dx,/dp =0,
dxz,/dp >0. Therefore, b =0, b'>0.

Since now the equations of (@) are (1.8), the ¢ for G, is the smallest
value of ¢ satisfying

t(@a+c)+4(a—c)cos2¢ =ax; =4 (a +¢) , i. e. cos 2¢ =0,
Therefore, ¢ = —Z— for @,, whose coordinates are consequently
Gy, {3(a+c),a +0b'} .

The length of the minor semi-axis of (@) being a' + b —a' =b">0,
we have that } (@ —¢)>b'>0. This finishes the proof of the theorem
for the general case.

To complete the proof, we need only observe that the cases where (G)
is a circle or a line segment correspond to the cases % (a —c¢) =b' or
b’ = 0, respectively. In the case where (G) is a circle, we shall always
take A — I, through the centre of (@) so that in (1.6) and (1.8) a' = 0.

For a given surface, the question as to how far the family of canonical
frames is determined can easily be settled but is of no importance to us.
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1.3. Special types of point on a surface in R,

There are certain special types of point on a surface in R, which we
shall meet frequently in our later work. In this section the definitions
and the most important of the known properties of these special types
of point are given. The relations in a, ¢, a’, b’ following each definition
are the conditions for a point of the surface to be of this particular type
when the surface is referred to a family of canonical frames.

(i) Minimal point is a point 4 at which the curvature ellipse (@) of (4)
has its centre at A (a 4+ ¢ =a’ =0). Eisenhart [5] proved that (4) is
a minimal (in area) surface if and only if every point of (4) is a minimal
point. A minimal point is said to be general if it is not an R-point (b’ # a,
see (iii) below).

(i1) Circle point is a point at which the (G) of (4) is a circle (a’' = 0,
1 (@ —c) =0b"). Auxial point is a special circle point at which the circle
(@) reduces to a point (@' =b' =0, a =c). An axial point 4 is said
to be special if the (@) at A reduces to the point 4 (a = 0). It is easy
to show that a surface in R, is a sphere (a plane) in an R, if and only if
every point of it is a non-special (special) axial point.

(iii) R-point is both a minimal point and circle point (¢’ =0, b’ =a
= —¢). A surface is called an R-surface if all its points are R-points.
The Kwietniewski-Kommerell-Eisenhart theorem [8, 7, 5] states that
the tangent planes of (A4) are all isocline to one another (cf. § 1.4) if and
only if (4) is an R-surface. R-surface has also been studied by Boruvka [1]
and the author (Wong [13]).

(iv) Focus point is a point A at which (G) has a focus at 4 (¢’ = b'?
+ ac = 0). Calapso [2] proved that if every point of (4) is a focus
point, then the conjugate lines on (A4) are geodesics of (4). The converse
is not always true.

(v) Line-segment point is a point at which (G) degenerates into a line
segment (b’ = 0). Perepelkine [10] called such point ‘‘semi-umbilical”
point. Fabricius-Bjerre [6] prove that (4) has no normal torsion if and
only if every point of (4) is a line-segment. point.

1.4. Angles between two consecutive planes in R,

In this section we give some formulas and definitions which will be
needed in our later work. While the theory of angles between two planes
in R, is classic (see, for example, Manning [9]), the formulas given here
are believed to be new.

156



Let A —1I,, A* —1I} be two consecutive frames connected by

dA =A* —A =w,d,, dl,=I—1I, =w,I,, (1.9)

)

where the w’s are infinitesimals, and consider the consecutive planes
E=A4—11, & =A% —1F1F. Then it is easy to show that the
angle dy between the direction J(0) = I,cos6 + I,sinf in & and its
projection in &* is given by

(sin dy)? = (w}; + @) €082 0 + 2(w;3 a3 + W140,,) sin 6 cos 6

+ (@ + w3,)sin20 (1.10)

and that the two stationary values of (sin dy)? are:

(sin d"l’l)2 =% (wfs + wi; + wga + w§4) + {} (wis + a’i - wgs - w§4)2

(sin dy,)? + 4 (w30, + w14w24)2}% . (1.11)

The angles dy,, dy,, thus determined except for signs, are called the

two angles between the planes &, &*. The two directions J(6,), J(0,)

in & giving these angles dy,, dy, will be called the angle directions of &

with respect to &*. It follows at once from (1.10) that 6,, 6, are the roots
of the equation

2 (w1353 + 014W34)

tan 20 W}y + 0]y — 05 — w5

, (1.12)

which show that the two angle directions are mutually orthogonal.

The planes & and &* are said to be isocline to each other if the dy given
by (1.10) is independent of 6. (This relation between two planes is sym-
metrical.) Obviously, a necessary and sufficient condition for this to be
the case is that

w%a + wi; = 60:3 + w§4 ’ Wy3Wp3 + WigWyy =0, (1.13)
which are equivalent to
Woq = €W,y3 , W1g = —— €Wy3 (e =4+1) . (1.13")

The bivaluedness of ¢ indicates that two planes can be isocline to each
other in one or the other of two senses. Moreover, it follows from (1.12)
and (1.13) that two consecutive planes &, &* are isocline to each other if and
only if the angle directions of one with respect to the other are indeterminate.
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1.5. Fundamental formulas
Let us define for a surface (4) in R, the following three functions:

A= (ds'l)l)z + (dsQP2)2 s u = (dawl) (dsw2) ’
v, = (dp, —edyy,)? , (e = +£1)

which, like the two first curvatures d,y,, d,, of (4) defined in § 1.1,
are functions of the point 4 and the direction AA4* of (4) at 4.

If we refer (4) to a family of canonical frames, and apply the results
of the preceding section by regarding the planes &, £* as the tangent
planes of (4) at the consecutive points 4, 4*, then on account of (1.11),
the functions 4, u, v, can be expressed in terms of the w’s as follows:

A = (0} + wi: + wgs + w3,)/(ds)? ,
p = (013055 — W1, 05)/(ds)? , (1.15)
v, = {(013 — €wy)? + (w44 + ewza)z}/(ds)z ) (e =+1),

where (ds)? = w? + 2. It is to be noted that by omitting the ambi-
guous sign in the expression for w, we have partially removed the
arbitrariness of the signs of d,yp,, dy,.

To indicate clearly that A*, £* depend on the length ds = AA* and
the angle ¢ = X AI, AA* = Arc tan w,/w,, we sometimes write them
as A*(p,ds), &*(p,ds). Now using (1.6) in (1.12) and (1.15) and
writing cos ¢, sin ¢ for w,/ds, w,/ds, we have the following explicit
formulas for tan 260, A, u, v, for the direction ¢ (at the point A4):

2{2a'b’" + (a'? + b'2 4+ ac)sin 2¢}

(1.14)

tan 26(g) = a? — c* 4+ {a® + ¢® + 2(a’? — b'%)} cos 2¢ ’ (1.16)
Alp) =1(a?+c?) + a'?+b'2+%(a? —c?) cos 2¢ + 2a’b’sin 2¢ , (1.17)
u(@) =@ —c)b'+4(@+c)b'cos2¢ + 4@ —c)a'sin2g ,  (1.18)

ve(p) =%(a® + ¢ + a'? + b2 —eb'(a —c)
+ (@ —c —2eb’) {3(@a + ¢) cos 2¢ —ea'sin 2¢} . (1.19)

These formulas are fundamental as most of our results will be derived
from them.

2.1. Angle directions at a point on a surface for a given direction

From (1.16) it follows that to every direction ¢ at a point A4 of a sur-
face (4) in R,, there correspond two mutually orthogonal directions 6,

0 4 321 , which are the limiting positions of the angle directions in the
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tangent plane £ of (4) at A with respect to its consecutive tangent plane
&*(p, ds) as ds approaches zero, the ¢ being kept fixed. We shall call

0,06+ —;i the angle directions of (4) at A for the direction ¢. Conversely,
given any pair of mutually orthogonal directions 0, 6 + z , there exist
in general two and only two directions ¢, , ¢, such that 6, 6 + g- are the

angle directions of (4) at 4 for each of the directions ¢,, ¢,. We shall
sometimes refer to them as the directions of (A4) at A giving rise to the angle

directions 0,0 +-’2-‘— .

We recall that the dy given by (1.10) is the angle that a direction 0
in the plane £ makes with its projection on the consecutive plane &*.
For our case where &, &* = £*(p, ds) are two consecutive tangent planes
of the surface (4), we have, on using (1.6) in (1.10) and writing cos 6,
sin ¢ for w,/ds, w,/ds, that

(dw)? = {(a® + a'?) cos?2 ¢ + 2a’b’ cos @ sin ¢ + b'2 sin? 0} cos? 6
+2{a'b'cos?p + (a'?+ b2+ ac)cosp sinp 4 a'b'sin%?p}cosf sin 0
+ {b'?cos? @ + 2a'b’ cos @ sin ¢ + (¢ + a’?) sin? ¢} sin% 0 .

The expression on the right is symmetric in ¢ and 6. Hence

Theorem 2.1. At a point A of a surface (A) in R,, the angle between a
direction 0 of (A) and the tangent plane &*(p, ds) is equal to the angle be-
tween the direction @ of (4A) and the tangent plane £* (0, ds).

By definition, among all the directions t in the tangent plane &, the

angle directions 0, 6 + i;— of & with respect to the tangent plane &* (¢, ds)

make stationary angles with &*(¢, ds). Therefore, using Theorem 2.1,
we have that among all the tangent planes &*(v, ds), where 7 is variable

and ds is fixed, the two tangent planes &*(0,ds) and &* (0 + —726—, ds)
make stationary angles with the direction ¢ . Hence

Theorem 2.2. For a surface (4) in R,, the angle directions 0, 0 + -275 m

the tangent plane & at any point A with respect to the tangent plane &*(p, ds)
are characterized by the property that among all the tangent planes of (A)
whose points of contact are at equal small distance ds from A, the two in the

drirections 0, 6 -+ S

5 make stationary angles with the direction ¢.
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Corollary 2.2. If &*(p,ds) 18 isocline to &, then the direction ¢ makes
the same angle with all the tangent planes of (4) whose points of contact are
at equal small distance ds from A, and conversely.

It is to be pointed out that in these theorems and in what follows,
“equal (or the same)’’ means ‘‘equal (or the same) when the second and
higher orders of the infinitesimal ds are neglected’.

2.2. Directions corresponding to the vertices of (G).

Let us refer a surface (4) to a family of canonical frames (and we shall
do this throughout the rest of this paper without specific mentioning).

Then the directions ¢ =0, % ;= —Z—, 3—}, which correspond, by (1.8),

to the two pairs of opposite vertices of (), will appear frequently in our
later work. It is therefore interesting that we have in the following theo-

rem a characteristic property for these directions in terms of the angle
directions alone.

Theorem 2.3. On a surface in R,, the directions 0,0 -+ -’21 at a point

A correspond to a pair of opposite vertices of the curvature ellipse at A if
and only if these directions have the same angle bisectors as the two directions

that give rise to the angle directions 0,0 - % .

Proof. The condition for the directions 6, 0 -+ P to have the same
. . : . 2
angle bisectors as the directions ¢,, ¢, is that

3 (e + @) =0+% :

If we double this and take the tangent of both sides, the result is

Mt 1
1 —mym,  tan26 ’ (2-1)
where m, = tan ¢,, m, = tan g,.

If 6,60+ % are the angle directions for the directions ¢, , ¢,, the m,,
m, are the two roots for m = tan ¢ of (1.16), which is now written as

(¢ + y'm?)tan 20 — (x + 2fm + ym?) =0 , (2.2)
where

Y —o =—{a®+ ¢+ 2(a'?— 0%},

Yy —«& == , 2ﬂ=2(a’2+b’2+ac) . (2.3)
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Consequently, equation (2.1) becomes

2p 1
() —a')tan 260 = tan 26

(2.4)

To solve this equation for 6, we observe first that by (2.3) the condi-
tion 28 + 9’ — &’ = 0 reduces to 4b'2 — (@ — ¢)2 = 0, and is there-
fore the condition for the curvature ellipse (G) to be a circle. "

If (G') is not a circle, equation (2.4) can only be satisfied by 6 =0, 5
or 0= —g— , —?Zf— , which are the directions corresponding to the two pairs
of opposite vertices of (G).

If (@) is a circle, equation (2.4) is satisfied by every 6. But then every
point of (G) is a vertex. Hence our theorem is completely proved.

2.3. R-directions. Characteristic properties of the focus point, a special
line-segment point, and the R-point.

On a surface (4) in R,, a direction 4A4* from the point 4 to a conse-
cutive point 4* will be called an R-direction of (A) at 4 if the tangent
plane &* at A* is isocline to the tangent plane & at 4. Two R-directions
AAY, AAS of (A) at A (if they exist) are said to be of the same or opposite
type according as the tangent planes &, &F at A, A, respectively, are
isocline to £ in the same or opposite sense.

We observe that the statements at the end of § 1.4 and in Corollary 2.2
are two characteristic properties of R-direction.

We shall now prove the following theorem.

Theorem 2.4. For a surface (4) in R,, a necessary and sufficient con-
dition for all the directions of (A) at a point A to give rise to a common pair
of angle directions is that A be one of the following types of point : (i) focus
point, (1) a povnt A at which the curvature ellipse (Q) is a line segment ending
at A, (112) a point A at which (G) is a line segment subtending a right angle
at A, and (iv) an R-point. At a point of the type (2), (i) or (iit), there exist,
respectively, no (real) R-direction, one R-direction or two R-directions; all
other directions give rise to a common pair of determinate angle directions,
which correspond to the two end points of the major axis of (G). At an
R-point, every direction 18 an R-direction.

Proof. At a point 4 of (4), all directions of (4) give rise to a common
pair of angle directions if and only if the right-hand member of (1.16)
has the same value for all ¢. Therefore, this situation can arise only in
one of the following three ways:
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a'b'#0, a?—c?*#£0, a'?4b'2+ac =0, a®4c2+2(a’'2—b'2)=0; (2.6)

a2 —c2 =0, a® 4+ ¢+ 2(a'2—0b'2%) =0; 2.7

a'b =0, a'24+b'24+ac=0. (2.8)
To each of these sets of equations, the inequality (1.7), namely,

Ja—e)>b >0 (2.9)
must be added.
Confining ourselves to real values only, simple arguments will show
that (2.6) is impossible and that (2.7) is included in (2.8).
For (2.8), three cases arise according as 1) @’ =0, b’ £ 0, 2) a’ # 0,
b' =0, 3) a' =b' =0.

Case 1. a’' =0, b’ #%0. Then b'2+ac =0. By (2.9) we have
+ (@ —c) = b'>0. Therefore, A is a focus point, and equations (1.16)
reduces to

0
ten ¢ = (@ + ¢)(a cos? ¢ — ¢ sin? @)
If a+4c+#0, 4isnot an R-point. Then since ac = —b'2<0, there

are two and only two imaginary directions & cos?@p —c¢sin2¢ =0
giving indeterminate 0. All real directions give rise to the same deter-
7

minate pair of angle directions 6 =0, 5

mities of the major axis of (G).
If a+c¢c =0, Aisan R-point. In this case, the angle directions for
every direction are indeterminate.

which correspond to the extre-

Case2. b'=0,a’ # 0. Thena'2 + ac = 0. Since by (2.9) a—c > 0,

we must have ac = — a’'2<0, a>c. Therefore, the (¢) at A is a line
segment subtending a right angle at 4, and equation (1.16) reduces to
tan 20 = 0

(@ — c)(@ cos? ¢ + csin? @)
Hence there are two and only two (real) directions ¢ =+- Arctan l/——a/c
giving rise to indeterminate 6. From the equations of ()

%3 = a cos @ - csin? @, xy =a' ,

it follows that these two directions both correspond to the foot of the
perpendicular from A4 to the line segment (G) and therefore are the direc-
tions corresponding to the smallest normal curvature at 4. All the direc-
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tions other than these two give rise to the same determinate pair of

angle directions 6 = 0, izt— , which correspond to the two end points
of (@).

Case 3. a'’ =b' =0. Then ac =0. Since a —c¢ >0 by (2.9), we
have two subcases according as a >0, ¢ =0 or a =¢ = 0.

If a>0, ¢ =0, the (G) at 4 is a line segment ending at 4, and
equations (1.16) reduces to tan 20 = 0/a? cos? ¢. Therefore, there is

one and only one real direction ¢ = —725 giving rise to indeterminate 0.

This direction corresponds to the end point A4 of the line segment (G). All
7

other directions give rise to the same pair of angle directions 6=0, 5

If a =c¢ =0, the (@) at A is the point A. Every direction gives rise
to indeterminate angle directions.
Thus our theorem is proved.

3. Existence of R-directions

In the last section we came across some results concerning the R-direc-
tions. In this section we shall study the R-directions directly by regard-
ing them as the real zero-directions of the invariant », (cf. (1.19)):

v,=3(a®+¢%) +a'24+b'2—eb(a—c)
+ (@ —c —2eb’){3(a + ¢) cos 2¢p — ea’ sin 2¢} (3.1)
where eis + 1 or —1.

It is easy to show that the zero-directions of v, are given by

tang, |  —a/ {20 —e(la—c)} 4+ V' —1{a’2 + (a —eb)(c +eb')}
tan g, | a'? 4 (¢ 4 eb’)? 3 2;

Therefore, each », has two zero-directions, which are in general distinct
and imaginary. But when the two zero-directions of », coincide, they
coincide in one (real) R-direction ¢, (= ¢,). The condition for this is

a'?+ (@ —eb)(c+eb) =0,
that is,

a'?—b'?2+ac+eb(a—c)=0. (3.3)

We remember that i(a —c¢) and b' are the lengths of the semi-axes
of (&). Also, as a consequence of the Gauss equation for the surface (4),
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a'? —b'? 4 ac is equal to the Gaussian curvature K of (4) (cf. Wong
[13], formula (3.6) and Theorem 2.2). Therefore, a geometric interpre-
tation of (3.3) is

(Power of A with respect to the director circle of (G) at A)
= (Gaussian curvature of (4) at 4) (3.4)

— — 2 (Avea of (@)) .
Hence 7

Theorem 3.1. At a point A on a surface (4) in R,, there exists in
general no R-direction. There exists an R-direction if and only if the area
of the curvature ellipse (@) at A is equal to 3 n times the numerical value of
the Gaussian curvature of (4) at A.

Let us suppose that there exist at A two R-directions of the same type.
Then for ¢ = +1 or —1, (3.3) holds and furthermore, the right hand
member of (3.2) is indeterminate. Therefore, we have

a'?+ (a —eb)(c+eb) =a'{2b' —e(a—c)} =a'2+ (c+eb')2 =0,

that is,
a =c+eb =0.

But then », =}(a —eb’)(1 + cos 2¢), and it has to be zero for two
directions. Therefore, @ —eb’ = 0, so that 4 is an R-point (and by
(1.7), e = 1). The converse is obvious. Hence

Theorem 3.2. If there exist at A two distinct R-directions of the same
type, then A i8 an R-point. Conversely, at an R-point of (A), all directions
of (A) are R-directions of the same type.

Let us now suppose that there exist at 4 two R-directions, one of
each type. Then (3.3) holds for both values of ¢, so that

a'2—b'24ac=0, b'(a—c) =0 .

Since }(a —c¢) >=b" >0 (cf. (1.7)), the above equations are equiva-
lent to b’ = 0, a'? 4 ac = 0. Therefore, the (G) at 4 is a line segment
subtending a right angle at 4. In this case, it follows from (3.2) that
the zero direction of », is given by tan ¢, = —ea'/c or is indeterminate
according as @ —c¢>0 or = 0. In the latter case, (G) is the point 4.

Suppose that @ —¢>0, then the two zero-directions ¢, (¢ = +1)
coincide if and only if @' =0 or ¢ =0. If @’ =0, then ¢ =0, ¢>0,
and (@) is a line segment ending at 4, in which case, the two zero-direc-
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tions coincide in the direction ¢ = 0. Using @’ =b' =a =0 in (1.17)
and (1.18), we see that for the direction ¢ = 0, both 4 and u are zero,
i.e. dy, =dp, = 0. Therefore, the tangent plane of (4) at a point 4*
consecutive to 4 in the direction ¢ = 0 is parallel to the tangent plane

of (4) at A (to within infinitesimals of higher order than ds = A’Z*).
The case ¢ = 0 is geometrically the same as the case a’ = 0. Hence

Theorem 3.3. There exist at A two and only two R-directions of diffe-
rent types if and only if the (G) at A is a line segment subtending a right
angle at A. When two such R-directions exist, they are equally inclined to
the two (mutually orthogonal) directions corresponding to the extremities of
the line segment (G). In particular, these two R-directions coincide if and
only if the line segment (@) has an end pornt at A; in this case, the two
R-directions coincide in the direction AA* corresponding to the end point A
of (@), and the tangent plane at A* is parallel to that at A (to within infinites-

tmals of higher order than ds = A’Z*).

4.1. Directions for which A or x has the same value

From (1.17), namely,
Alp) =%(@®+c?) +a'2+ b2+ L(a® —c?) cos 2¢ + 2a'b'sin 2¢, (4.1)

it follows easily that A(p,) = A(p,) if and only if the directions ¢,, ¢,

satisfy the equation 'y
4a'b

tan (@, + ¢,) = 22— (4.2)

Therefore, in particular, the directions giving stationary values to A(g),

i. e. the (Struik) principal directions of A(p), are given by

4a'b’
tan 2 = — " . (4.3)
For u(p) the equations corresponding to (4.1)—(4.3) are
u(@) =3@—c)b' +4(@ +c)b' cos 29 +4(@a —c)a'sin2¢ , (4.4)
(@ —
tan (¢, + @,) =‘cbi/_§“‘i‘_—*_% ) (4.5)
__a'(a—c¢)
tan 2¢ ——bm . (4.6)

A consequence of the preceding equations is
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Theorem 4.1. At a point on a surface in R, the two principal direc-
tions of A(p) {or u(p)} are mutually orthogonal. And A(p,) = A(gp,)
{or u(py) = ulps)} if and only if the directions ., ¢, are equally inclined
to the principal directions of A(p) {or u(e)}.

From (1.16) it is easy to show that the pair of directions giving rise
to the angle directions 0, 6 + —Z— are mutually orthogonal if and only if
tan 20 = 4a'b'/(a? — c?). Hence, comparing this with (4.3), we have

Theorem 4.2. At a point on a surface in R,, there are in general two
and only mutually orthogonal directions giving rise to the same pair of angle
directions. The angle directions for this pair of mutually orthogonal direc-
tions are the principal directions of A(yp).

4.2. Characteristic properties of minimal point and axial point

The following facts, which are evident from the definitions (1.14) of
A(p) and p(p), will be found useful.

If Mgy = A(p) and p(p,) = ulp,), then the values of dy,, dgp,
for the direction @, are equal to those for the direction @,, and conversely.
In particular, if A(p), pu(p) are both independent of ¢, so also are dy,,
dy,, and conversely.

Now it follows from (4.2) and (4.5) that

4a'b’  a'(a — o)

at —c2  b'(a + ¢

i8 the condition for the existence of a pair (and therefore, of infinitely

many pairs) of directions ¢,, @,, such that A(p,) = A(p,) and u(ep,)
= u(p;) hold at the same time.

If neither side of equation (4.7) is indeterminate, the equation can be
satisfied only in one of the following three ways: a’' =0, or a + ¢ =0,
or (@ —c)2 =4b'2 If &' =0, the major axis of (¢) passes through 4,
and ¢, + ¢, =0. If a 4+ ¢ = 0, the minor axis of () passes through

(4.7)

A4, and ¢, + o, ——--—231. If (a —c)2=4b'2 (G) is a circle, in which case

we may suppose a’ = 0 (cf. end of § 1.2). Therefore, this case is included
in the first case.
If both sides of (4.7) are indeterminate, we have
a+c¢c=a =0, (4.8)
or
a—c =050 =0, (4.9)
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which are respectively the conditions for the point A4 to be minimal or
axial.

Since in all cases, an axis of () passes through A, we have

Theorem 4.3. In order that there may exist at a point A of a surface
(4) in B4 a pair of directions ¢, , ¢, such that the angles between the tangent
plane & of (A) at A and the consecutive tangent plane &*(p,, ds) are equal
to those between & and the consecutive tangent plane &*(g,, ds), it is neces-
sary that an axis of the (G) at A passes through A . Conversely, if an axis of
the (G) at A passes through A, then any pair of directions equally inclined
to the two mutually orthogonal directions corresponding to the extremities of
this axis of (G) has the above-mentioned property.

It follows from (4.2), (4.5) that A(p), u(p) are both independent of
@ if and only if (4.8) or (4.9) is satisfied. This can also be proved directly
from (4.1) and (4.4). Hence we have the following characteristic pro-
perty of the minimal and the axial points:

Theorem 4.4. A necessary and sufficient condition for a point A of a
surface (4) in R, to be minimal or axial is that the two first curvatures
dy,, dp, of (A) at A are both independent of the direction at A, <. e. that
the tangent plane & of (A) at A makes the same angles with all the consecu-
tive tangent planes &*(p,ds) whose points of contact are at equal small
distances ds from A. At a minimal point, the two first curvatures of (A) are
numerically equal to the lengths of the semi-axes of (G). At an axial point,
one of the two first curvatures is zero, and the other is numerically equal to
the distance of the point (G) from A.

The last part of this theorem follows from (4.1) and (4.4), which give,
for a minimal point,

Alp) =a® 4 b2, © () =ab’,
and for an axial point,
Alg) =a*, n(p) =0 .

The following theorem may be considered as a companion for Theo-
rem 4.4:

Theorem 4.5. At a point A of a surface (4) in Ry, dy, + dy, has
the same value for all the directions of (A) at A if and only if A is a minimal
or an axial point. At a point 4 of (4), dy, — d,p, has the same value for
all the directions of (4) at 4 if and only if A is a minimal point or a circle
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point (the latter including the axial point as special case). At a circle point,
dp, — dp, ts numerically equal to the distance from A to the centre of (G).

Proof. From (3.1) and (1.7), it follows that »_, is independent of ¢
if and only if (4.8) or (4.9) holds; and that »_, is independent of ¢ if
and only if (4.8) or @ — ¢ = 2b’ holds. In the last case, where (@) is a
circle, we may suppose a' = 0 so that »_, = {}(a + ¢)}2. This proves
the theorem.

Another characteristic property of a minimal or an axial point is
given in the following theorem.

Theorem 4.6. At a point A on a surface (4) in R, (¢) the reflection of
any direction @ of (4) about the two mutually orthogonal directions corre-
sponding to the extremities of the major axis of (G) is an angle direction of
(A) for the direction @ if and only if A is a general minimal point; and (i1)
any direction @ of (A) is itself an angle direction of (A) for the direction ¢ if
and only if A is a non-special axial point.

Proof. For a general minimal point, or for a non-special axial point,
we have, respectively, (4.8) and b’ 4 a, or (4.9) and a #% 0. There-
fore, equation (1.16) becomes tan 26 = T tan 2¢, which proves the
necessity of the conditions. The sufficiency of the conditions can be
proved by demanding that the right member of (1.16) be equal to
F tan 2¢ identically in ¢.

b. Isometrie correspondence of surfaces in R, preserving angles between
consecutive tangent planes

Let the surfaces (4), (4), described by the points A (u,w), 4 (u,v),
where %, v; wu,v are parameters, be in such a correspondence. Then u,
v are some functions of u, v. We choose the orientations in the tangent
planes of (4), (4) so that they agree with those induced by the isometric
correspondence, and then refer (4), (4) to families of canonical frames.
Take any pair of corresponding points 4,, 4,, and displace (4) so that
A, coincides with 4,, and the oriented plane 4, — I, I, with the orient-
ed plane A, — I, I,. Then the normal planes A, — I, I,, A, — I, I,
coincide. Rotate A, — I, in the plane A, — 1,1, about A4, = A4,
until 4, — I, coincides with 4, — I;. Then A4, — I, either coincides
with or is opposite to A4, — I,. It suffices to consider only the former

case as the latter can be reduced to it by a reflection about the 3-plane
Ao - I 1 I 2 I g
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Since (A4), (4) are in isometric correspondence in which the orienta-
tions 4 — I,1,, A — 1,1, in the corresponding tangent planes cor-
respond, we have

®, = w, CO8t — w,8in t ,

W, = w,8in t + wycost (5.1)

B a*—as—K—K=b?—a?—ac, (5.2)

where ¢ is some function of %, v, and K is the Gaussian curvature of (4)
(cf. Wong [13], formula (3.6)).

From (1.14) and (1.15) it follows that the condition for the correspon-
dence to preserve angles between consecutive tangent planes is that

—9 — — —9 2 2 2 2
W3 + O + Wy + Wy = wj; + Wy + W3 + Wy

a’_136"24 — w14523 = e(W30y4 — Wy4W,y3) (e = £1),

(5.3)

be satisfied at all corresponding points and for all corresponding direc-
tions at the corresponding points. Since (4), (4) are referred to families
of canonical frames, we have

w13 = awl 3 w14 = a, 0)1 + b’ w2 Iy (5. 4:)
w23 - ng , w24 == b, 0)1 + a, w2 ’
fla—0)=0' >0, (5.5)

and similar barred equations (5.4), (5.5) for (4).

A rather lengthy but elementary discussion of the system of equations
(6.1) — (5.5), (5.4) and (5.5), which will be omitted here, will show
that either the surfaces (4), (4) are congruent, or we have

b =b', a—c=a—c¢, a' =a' =0, a+c¢c=a-+c¢c=0, sin2¢£0,

which characterize a pair of minimal surfaces with equal curvature el-
lipses at corresponding points. Hence

Theorem b5.1. In order that there may exist, between two surfaces (A4),
(4) in R,, an isometric correspondence preserving angles between consecu-
tive tangent planes, it is necessary and sufficient that either (A), (4A) are
obtainable from each other by a displacement or a displacement together
with reflection about a 3-plane, or (A), (A) are minimal surfaces with equal
curvature ellipses at corresponding poinis.

Minimal surfaces in R, in isometric correspondence and with equal
curvature ellipses at corresponding points have been considered before
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but from different points of view. We refer the reader to Eisenhart [5]
and Theorem 4.6 of Wong [13].

An important consequence of Theorem 5.1 is the following

Corollary 5.1. A4 given non-minimal surface in R, is completely deter-
mined, except for a displacement or displacement with reflection about a
3-plane, by its linear element and the two first curvatures.
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