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Uber Ringe mit
gemeinsamer multiplikativer Halbgruppe

Von L. REpEI und O. STEINFELD in Szeged (Ungarn)

§ 1. Unter einer Halbgruppe verstehen wir wie iiblich eine multipli-
kative assoziative Struktur. In einem Ring R bilden die Elemente so-
wohl eine Halbgruppe R* als auch einen Modul R+, diese nennen wir
kurz die Halbgruppe bzw. den Modul von R.

Es ist eine wichtige Frage, wie weit B durch die eine der Strukturen
R+, RX bestimmt ist. Genauer gesprochen, es lafit sich bei einem gegebe-
nen Modul M bzw. bei einer gegebenen Halbgruppe H nach allen Ringen
R fragen, fiir die

Rt =M (1)
bzw.

R*x =H (2)
gilt.

Bei jedem M ist stets mindestens ein Ring R mit (1) vorhanden, nim-
lich der Zeroring mit dem Modul M. (Unter einem Zeroring versteht
man einen Ring, in dem alle Elementenprodukte gleich 0 sind.) Nach
Szele!) gibt es nur ganz wenige Moduln M, fiir die (1) nur den Zeroring
zur Losung hat. Man weill auch, daB im allgemeinen geeignete Unter-
ringe des vollen Endomorphismenringes von M Losungen von (1) liefern.

Problem (2) scheint schon auf den ersten Blick viel schwieriger zu sein.
Vor allem gibt es offenbar sehr viele Halbgruppen H, fiir die (2) keine
Losungen hat, ferner scheint es, dafl bei vielen H (bis auf Isomorphie)
nur ein R mit (2) vorhanden ist2).

1) T. Szele, Zur Theorie der Zeroringe, Math. Ann. 121 (1949) 242—246.

) Entsprechend dem abstrakt-algebraischen Standpunkt betrachten wir zwei iso-
morphe Ringe R, § mit RX = 8X = H als gleiche Losungen von (2). Hieriiber bemerken
wir folgendes. Bezeichne R eine Losung von (2). Man nehme einen Automorphismus A
von H und ersetze die Addition a + f in R durch

a@f = Ad1a+ A1) .

So entsteht ein zu R isomorpher Ring S (dabei wird R auf § durch a—> Aa isomorph
abgebildet), der ebenfalls eine Losung von (2) ist, und alle zu R isomorphen Loésungen S
von (2) entstehen (eventuell mehrmals) auf diese Weise.
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In Paragraph 2 betrachten wir ein interessantes Beispiel fiir den Fall,

daB (2) nur eine Losung R hat. In Paragraph 3 machen wir einige weitere
Bemerkungen iiber Problem (2).

§ 2. Satz. Bezeichne R den Restklassenring der ganzen Zahlen mod p¢
(p #%= 2 Primzahl, e=1). Wenn e % 2, so gibt es bis auf I1somorphie nur
etnen Ring 8 mit 8% = RX%, ndmlich S = R. Wenn e = 2, so gibt es
genau zwei nichtisomorphe Lésungen, ndmlich R und einen anderen Ring S.
(Im Beweis werden wir diesen S genau angeben, und so wird sich heraus-
stellen, daB fiir ihn auch schon R+, S+ nichtisomorph sind.)

Wir bemerken, dafl die zweite Hélfte des Satzes auch fiir p = 2 rich-
tig ist, und es scheint uns, dafl das auch fiir die erste Hilfte zutrifft, wir
haben aber verzichtet, diese Frage genau zu untersuchen, da wir das nur
mit sehr vielen Rechnungen machen konnten.

Zum Beweis des Satzes bezeichne § einen zu R nichtisomorphen Ring
mit

8% = Rx . (3)

Wir haben zu zeigen, daBl S nur im Fall ¢ =2 existiert und dann bis
auf Isomorphie eindeutig bestimmt ist. Der Fall e = 1 ist trivial, wes-
halb wir

e=2

annehmen. Die Elemente von R bezeichnen wir mit kleinen griechischen
Buchstaben ; diese sind dann wegen (3) auch die Elemente von S. Kleine
lateinische Buchstaben bezeichnen ganze Zahlen. Die Summe von « und
p bezeichnen wir in 8§ mit « 4 8, das Produkt diirfen wir wegen (3) in
beiden Ringen mit «f bezeichnen. Wenn wir a« schreiben, so soll das
stets in S gedeutet werden (in R hitte aa einen anderen Sinn). Be-
zeichne ¢ das gemeinsame Einselement.

Die reguliren Elemente von R bilden eine zyklische Gruppe von der
Ordnung p¢ — p*~1. Deshalb gibt es ein Element « mit

Y aPl =¢ ., (5)

In einem beliebigen kommutativen Ring 7T bilden die nilpotenten Ele-
mente einen Unterring, der mit 7'y bezeichnet werden soll. Offenbar gilt
O(R,) = p*1. Wegen (3) ist auch S kommutativ, deshalb existiert der
Ring S,. Dieser besteht wieder wegen (3) aus denselben Elementen wie
R,, folglich gilt

0(8,) =p* . (6)
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Wir bezeichnen mit ,, ..., o, eine unabhingige Basis des Moduls S;
und setzen

ot(w;) = p* [ =1,...,8), (7)

wobei o+ die additive Ordnung der Elemente in S bezeichnet. Dann
gilt wegen (6)
ey +:--+e, =e—1. (8)
Dabei diirfen wir
(- 2e,(21) (9)
annehmen.
Wegen (6) hat S; den Index p in S+, deshalb gilt peeS,. Anderer-
seits nimmt o*(g) (o € §) sein Maximum fiir ¢ = ¢ an, folglich 148t sich
nach (7), (9

o+(e) = p° , e,<e<e, +1 (10)
setzen.
Da 8, nilpotent ist, gibt es ein n mit S;> 85> - - - > 85 =0. (Es lieBe
sich n=e—1 zeigen.) Dies und (6) ergeben O(S¥)<pe* (k=1,...,e).
Wegen o! ¢ S folgt hieraus

ot (wF) S pet (t=1,...,8; k=1,...,¢) . (11)
Wegen (5) ist o kein Element von 8, folglich 146t sich nach obigem
x =ae(mod w,, wy,...) (pfa) (12)

setzen (dabei diirfte man sogar 0 <a<p vorsehrelben) Wir behaupten
ftir £ =0,1,

aﬂkz—apks(mod...,ptwgk-’,...) G=1,...,8;t=0,...,k), (13)

wobei man fiir ¢ und ¢ voneinander unabhingig alle angeschriebenen
Werte einzusetzen hat. Fir & = 0 stimmt (13) mit (12) iiberein. Man
nehme (13) fiir ein £ an. Das bedeutet

k k—t
a?? =aP* e 4 3 pt wl* oy,

mit irgendwelchen Elementen «;,(e §). Erhebt man diese Gleichung zur
p-ten Potenz, so folgt aus dem Polynomialsatz sofort die Richtigkeit
von (13) fiir k¥ + 1, also auch allgemein.

Wir zeigen, daB es ein Paar ¢, ¢ mit

pt Pt £ 0 6=1,...,8; t=0,...,e —2) (14)
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gibt. Sonst wire ndmlich nach (13)
aP’? = qPlg |
Dies und (5,), (10,) ergeben
a?? = 1 (mod p°) .
Andererseits folgt aus voriger Gleichung und aus (5,), (10,)
a?! =1 (mod p?) .

Beide ergeben e=e¢. Wegen O(S) = p* muB e=<e gelten, somit haben
wir ¢ = e. Das bedeutet nach (10), daB S+ zyklisch ist mit dem Er-
zeugenden ¢. Dann ist aber S isomorph zu R, mit diesem Widerspruch
wurde die Behauptung iiber (14) bewiesen.
Aus (14) folgt

O+(w?e—2—t)_>_=pt+1 , (15)
also nach (11)

e—ptt=t 41 .

Schreibt man dies in der Form
14+ (e—2—t)zp2t,

so sieht man, dall wegen p=3 nur ¢ — 2 — ¢t = 0, dasheillt t =e — 2,
moglich ist. Dies in (15) eingesetzt besagt

ot (w;) =p*t .

Wegen (6) mull hier = gelten. Mit (7), (8) zusammen ergibt dies s =1,
e, = e — 13), ferner muf} nach (10)

ot () = p*! (16)

gelten, da o+(g) = p¢ wie schon bemerkt unmoglich ist. Man schreibe
einfacher w, = w, so haben wir nach vorigem

ot(w) =pt, (17)

dabei ist S, der durch w erzeugte zyklische Modul.
Wegen peeS, gilt
pe =cw .

3) Wiare p = 2, so konnte man auf éhnlichem Wege nur auf e—4<e¢, < e—1
schlieen, und dann miite man wegen (8) noch eine Anzahl Fallunterscheidungen machen.
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Hieraus und aus (16), (17) folgt p|c, also ¢ =pd, p(e — dw) =0,
ot(e —dw)<p .

Nun ist aber ¢ — dw ein regulires Element von S, und alle reguliren
Elemente haben dieselbe additive Ordnung wie ¢, folglich gilt o+ () <p.
Dies mit (4), (16) zusammen besagt

e =2, (18)
ot(e) =p , (19)
ferner gilt nach (17) auch
ot(w) =p . (20)

AuBerdem folgt noch aus (11) fir £+ = 2
. @ =0 . (21)
Endlich ist durch die Bedingungen (19) bis (21) der Ring S mit den

Basiselementen ¢, w und dem Einselement ¢ bis auf Isomorphie voll-
stindig charakterisiert. Seine Elemente sind die

B=ae+bow (@a,b =0,...,p—1) .

Man hat noch zu zeigen, daB S* isomorph zu R* und S nichtisomorph
zu R ist. Die verschiedenen Elemente von 8 lassen sich auch in der Form

(ge + w), lw k=1,...,02—p; 1l =0,...,p—1)

annehmen, wobei g eine feste primitive Zahl mod p? bezeichnet, die
man auch primitiv mod p? annehmen darf. Werden dann diesen Ele-
menten bzw. die Restklassen

g*, pl (mod p?)

zugeordnet, so ist das offenbar eine isomorphe Abbildung von §* auf RX.
Andererseits ist S+ nach (19), (20) nichtzyklisch, also nichtisomorph zu
R+. Den Satz haben wir bewiesen.

§ 3. Als eine direkte Folgerung aus dem Satz von Wedderburn iiber
die endlichen Schiefkérper bemerken wir folgendes :

Bezeichne H eine endliche Halbgruppe, die aus einer Gruppe und einem
Nullelement besteht. Dann und nur dann hat (2) eine Losung R, wenn die
genannte Gruppe zyklisch von der Ordnung p® — 1 st (p Primzahl).
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Wenn das gilt, so hat (2) zur einzigen Losung R den endlichen Korper mit
p™ Elementen.

Wir bemerken noch folgende Tatsachen, von denen 1), 2), 4) trivial
sind und sich auch 3) leicht beweisen liele :

Bezeichne K einen absolut algebraischen Zahlkorper n-ten Grades, r, und
27, die Anzahl der reellen bzw. komplexen Konjugierten von K (r, + 27,
=n), edie Anzahl der Einheitswurzeln in K, K, den Ring der (algebraisch)
ganzen Elemente von K, € die (absolute) Idealklassengruppe von K, und
J(€) das Invariantensystem von €. Bis auf Isomorphie ist bzw.

1) KX durch e |,

2) K+t durch n ,

3) K, durch e , 7, 4 7,J(Q),
4) K+t durch n

eindeutig bestimmi. (Beziiglich 2) und 4) gilt noch mehr, und zwar wei3
man, dafl K+ und K, der n-dimensionale Vektorraum iiber dem Kéorper
der rationalen Zahlen bzw. iiber dem Ring der ganzen Zahlen ist.)

Da zwei Korper K dann und nur dann isomorph sind, wenn sie konju-
giert sind, ferner entsprechendes auch fiir die Ringe K, gilt, so bekommt
man hieraus eine Fiille von Beispielen fiir Halbgruppen H, fiir die (2)
mehrere (sogar eventuell unendlich viele) nichtisomorphe Losungen R
hat, darunter auch solche nichtisomorphen Losungen R, S,..., fir die
R+, 8+,... isomorph sind. So zum Beispiel sind nach 1), 2) fiir alle
totalreellen K vom n-ten Grad (fiir diese gilt e = 2) sowohl die ent-
sprechenden K* als auch die K+ miteinander isomorph ¢). Die meisten
Ringe R scheinen uns aber wie gesagt durch R* (bis auf Isomorphie)
eindeutig bestimmt zu sein.

(Eingegangen den 28. Juni 1951, umgearbeitet den 6. Februar 1952)

4) Darauf hat uns freundlichst Herr Professor de Rham mit dem Beispiel der durch
V2, V3 erzeugten Zahlkdrper aufmerksam gemacht.
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