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tîber Ringe mît
gemeinsamer midtiplîkativer Halbgruppe

Von L. Rédei und O. Steinfeld in Szeged (Ungarn)

§ 1. Unter einer Halbgruppe verstehen wir wie ûblich eine multipli-
kative assoziative Struktur. In einem Ring jR bilden die Elemente so-
wohl eine Halbgruppe Rx als auch einen Modul R+, dièse nennen wir
kurz die Halbgruppe bzw. den Modul von iî.

Es ist eine wichtige Frage, wie weit R durch die eine der Strukturen
j?+, Rx bestimmt ist. Genauer gesprochen, es lâBt sich bei einem gegebe-
nen Modul M bzw. bei einer gegebenen Halbgruppe H nach allen Ringen
R fragen, fur die

R+=M (1)
bzw.

Rx £T (2)
gilt.

Bei jedem M ist stets mindestens ein Ring iî mit (1) vorhanden, nâm-
lich der Zeroring mit dem Modul M. (Unter einem Zeroring versteht
man einen Ring, in dem aile Elementenprodukte gleich 0 sind.) Nach
Szele1) gibt es nur ganz wenige Moduln M, fur die (1) nur den Zeroring
zur Lôsung hat. Man weiB auch, da6 im allgemeinen geeignete Unter-
ringe des vollen Endomorphismenringes von M Lôsungen von (1) liefern.

Problem (2) scheint schon auf den ersten Blick viel schwieriger zu sein.
Vor allem gibt es offenbar sehr viele Halbgruppen H, fiir die (2) keine
Lôsungen hat, ferner scheint es, dafi bei vielen H (bis auf Isomorphie)
nur ein R mit (2) vorhanden ist2).

l) T. Szele, Zur Théorie der Zeroringe, Math. Ann. 121 (1949) 242—246.
2) Entsprechend dem abstrakt-algebraischen Standpunkt betrachten wir zwei

isomorphe Ringe JR, S mit Rx Sx H als gleiche Lôsungen von (2). Hierûber bernerken
wir folgendes. Bezeichne R eine Lôsung von (2). Man nehme einen Automorphismus A
von H und ersetze die Addition a + f$ in M durch

a + A-1 fi)
So entsteht ein zu R isomorpher Ring S (dabei wird R auf S durch a-> Aa isomorph
abgebildet), der ebenfalls eine Lôsung von (2) ist, und aile zu R isomorphen Lôsungen S
von (2) entstehen (eventuell mehrmals) auf dièse Weise.
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In Paragraph 2 betrachten wir ein intéressantes Beispiel fur den Fall,
dafi (2) nur eine Lôsung R hat. In Paragraph 3 machen wir einige weitere
Bemerkungen ûber Problem (2).

§ 2. Satz. Bezeichne R den Restklassenring der ganzen Zafden mod pe

(p ^ 2 Primzahl, e ^ 1). Wenn e^2, so gibt es bis auf Isomorphie nur
einen Ring 8 mit Sx Rx, namlich S R. Wenn e 2, so gibt es

genau zwei nichtisomorphe Lôsungen, namlich R und einen anderen Ring 8.
(Im Beweis werden wir diesen 8 genau angeben, und so wird sich heraus-
stellen, daB fur ihn aueh schon R+, S+ nichtisomorph sind.)

Wir bemerken, daB die zweite Hâlfte des Satzes auch fiir p 2 rich-
tig ist, und es scheint uns, daB das auch fur die erste Hàlfte zutrifft, wir
haben aber verzichtet, dièse Frage genau zu untersuchen, da wir das nur
mit sehr vielen Rechnungen machen kônnten.

Zum Beweis des Satzes bezeichne 8 einen zu R nichtisomorphen Ring
mit

S* R* (3)

Wir haben zu zeigen, daB 8 nur im Fall e 2 existiert und dann bis
auf Isomorphie eindeutig bestimmt ist. Der Fall e 1 ist trivial, wes-
halb wir

annehmen. Die Elemente von R bezeichnen wir mit kleinen griechischen
Buchstaben ; dièse sind dann wegen (3) auqh die Elemente von 8. Kleine
lateinische Buchstaben bezeichnen ganze Zahlen. Die Summe von a und
P bezeichnen wir in S mit a + /?, das Produkt durfen wir wegen (3) in
beiden Ringen mit ocfi bezeichnen. Wenn wir a oc schreiben, so soll das
stets in S gedeutet werden (in R hâtte a oc einen anderen Sinn).
Bezeichne e das gemeinsame Einselement.

Die regulâren Elemente von R bilden eine zyklisehe Gruppe von der
Ordnung pe — p0-1. Deshalb gibt es ein Elément a mit

o^-2 =£ e a**-1 s (5)

In einem beliebigen kommutativen Ring T bilden die nilpotenten
Elemente einen Unterring, der mit TQ bezeichnet werden soll. Offenbar gilt
O(R0) pe-1. Wegen (3) ist auch S kommutativ, deshalb existiert der
Ring 80. Dieser besteht wieder wegen (3) aus denselben Elementen wie
l?0, folglich gilt

=^~1- (6)
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Wir bezeichnen mit col5..., co8 eine unabhangige Basis des Moduls Sq

und setzen

o+(œt) pe* (i 1,...,«) (7)

wobei o+ die additive Ordnung der Elemente in 8 bezeichnet. Dann
gilt wegen (6)

ex + • • • + e8 e - 1 (8)
Dabei durfen wir

^•••èef(èl) (9)
annehmen.

Wegen (6) hat 8^ den Index p in S+, deshalb gilt pe € So. Anderer-
seits nimmt o+(q)(q c S) sein Maximum fur g e an, folglich laBt sich
naeh (7), (9)

o+(e)=p7, e1^-ê<^e1+ 1 (10)
setzen.

Da $0 nilpotent ist, gibt es ein n mit So } SI d • • • )SJ O. (Es heBe

sich n e— 1 zeigen.) Dies und (6) ergeben 0(Sq)^pe~k (k 1,..., e)

Wegen cof c S$ folgt hieraus

(*=1,...,«; fc l,...,e). (11)

Wegen (5) ist a kein Elément von $0, folglieh laBt sich nach obigem

oc ae (mod co^ co2,...) (p^a) (12)

setzen (dabei durfte man sogar 0<a<p vorschreiben). Wir behaupten
fur k =0, 1,...
aP*=a»*e (mod..., p'cof*-',...) (t 1,.. .,«;« 0,. ..,*), (13)

wobei man fur i und / voneinander unabhangig aile angeschriebenen
Werte einzusetzen hat. Fur k 0 stimmt (13) mit (12) uberein. Man
nehme (13) fur ein k an. Das bedeutet

otP* a^k e + E Vf wf"1 oclt

mit irgendwelchen Elementen att(€ S). Erhebt man dièse Gleichung zur
p-ten Potenz, so folgt aus dem Polynomialsatz sofort die Riehtigkeit
von (13) fur k + 1, also auch allgemein.

Wir zeigen, daB es ein Paar i, t mit

p* «;*-*-« ^0 (*=1,...,«; *=0,...,e-2) (14)
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gibt. Sonst wâre nàmlich nach (13)

ape-2 =ape-2€ m

Dies und (5!), (10j) ergeben

a?*"2 fé 1 (mod p7)

Andererseits folgt aus voriger Gleichung und aus (52),

Beide ergeben e^e. Wegen 0(8) — pe muB e^e gelten, somit haben
wir e e. Das bedeutet nach (10), dafi 8+ zyklisch ist mit dem Er-
zeugenden e. Dann ist aber 8 isomorph zu R, mit diesem Widerspruch
wurde die Behauptung uber (14) bewiesen.

Aus (H) folgt
o+(cof-2-')^;p'+1 (15)

also nach (11)
e _ p'-*-t^t + 1

Schreibt man dies in der Form

1 + (e — 2 - t)^-*-*
so sieht man, daB wegen p ^ 3 nur e — 2 — t 0, das heiBt t e — 2,
môglich ist. Dies in (15) eingesetzt besagt

Wegen (6) muB hier gelten. Mit (7), (8) zusammen ergibt dies s 1,
ex — e, — 13), ferner muB nach (10)

o+(e) =pe~x (16)

gelten, da o+(e) pe wie schon bemerkt unmôglich ist. Man schreibe
einfacher cox oj, so haben wir nach vorigem

o+(co) =p*-i (17)

dabei ist 8q der durch œ erzeugte zyklische Modul.
Wegen pe e SQ gilt

pe ça)

3) Wàre p 2, so kônnte man auf âhnlichem Wege nur auf e — 4:^et^ e — 1

schlieBen, und dann mûÛte man wegen (8) noch eine Anzahl Fallunterscheidungen machen.
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Hieraus und aus (16), (17) folgt p | c, also c pd, p(e — dm) 0,

o+(e —

Nun ist aber e — dco ein regulâres Elément von S, und aile regulâren
Elemente haben dieselbe additive Ordnung wie e, folglich gilt o+ (e)gp.
Dies mit (4), (16) zusammen besagt

e 2 (18)

o+(e) =p (19)
ferner gilt nach (17) auch

=p (20)

AuBerdem folgt noch aus (11) fur k 2

<o2 0 (21)

Endlich ist durch die Bedingungen (19) bis (21) der Ring 8 mit den
Basiselementen e, co und dem Einselement e bis auf Isomorphie voll-
stàndig charakterisiert. Seine Elemente sind die

(} a s -\- b co (a, b 0,..., p — 1)

Man hat noch zu zeigen, dafi Sx isomorph zu 12X und S nichtisomorph
zu R ist. Die verschiedenen Elemente von 8 lassen sich auch in der Form

(ge + co)k, la) (i= l,...,p*-p; I 0,. ..,p - 1)

annehmen, wobei g eine feste primitive Zahl mod^2 bezeichnet, die
man auch primitiv mod p2 annehmen darf. Werden dann diesen Ele-
menten bzw. die Restklassen

gk,pl

zugeordnet, so ist das offenbar eine isomorphe Abbildung von 8X auf Bx.
Andererseits ist S+ nach (19), (20) nichtzyklisch, also nichtisomorph zu
iî+. Den Satz haben wir bewiesen.

§ 3. Als eine direkte Folgerung aus dem Satz von Wedderburn ûber
die endlichen Schiefkôrper bemerken wir folgendes :

Bezeichne H eine endliche Halbgruppe, die ans einer Gruppe und einem
Nullélement besteht. Dann und nur dann hat (2) eine Losung R, wenn die

genannte Gruppe zyklisch von der Ordnung pn — 1 ist (p Primzahl).
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Wenn das gilt, so hat (2) zur einzigen Losung R den endlichen Kôrper mit
pn Elementen.

Wir bemerken noch folgende Tatsachen, von denen 1), 2), 4) trivial
sind und sich auch 3) leicht beweisen lieBe :

Bezeichne K einen absolut algebraischen Zahlkorper n-ten Grades, rx und
2r2 die Anzahl der reellen bzw, komplexen Konjugierten von K (rt + 2r2

n), e die Anzahl der Einheitswurzeln in K, Kg den Ring der (aigebraisch)

ganzen Elemente von K, (£ die (absolute) Idealklassengruppe von Kg und
J ((£) das Invariantensystem von (£. Bis auf Isomorphie ist bzw.

1) Kx durch e

2) K+ durch n

3) K% durch e rx + r2,J(&)
4) K+ durch n

eindeuiig bestimmt. (Beziiglich 2) und 4) gilt noch mehr, und zwar weiB

man, dafi K+ und K* der n-dimensionale Vektorraum tiber dem Kôrper
der rationalen Zahlen bzw. iiber dem Ring der ganzen Zahlen ist.)

Da zwei Kôrper K dann und nur dann isomorph sind, wenn sie konju-
giert sind, ferner entsprechendes auch fur die Ringe Kg gilt, so bekommt
man hieraus eine Fûlle von Beispielen fur Halbgruppen H, fur die (2)
mehrere (sogar eventuell unendlich viele) nichtisomorphe Lôsungen R
hat, darunter auch solche nichtisomorphen Lôsungen R, 8,..., ftir die
R+, 8+,... isomorph sind. So zum Beispiel sind nach 1), 2) fiir aile
totalreellen K vom n-ten Grad (fur dièse gilt e 2) sowohl die ent-
sprechenden Kx als auch die K+ miteinander isomorph4). Die meisten
Ringe R scheinen uns aber wie gesagt durch Rx (bis auf Isomorphie)
eindeutig bestimmt zu sein.

(Eingegangen den 28. Juni 1951, umgearbeitet den 6. Februar 1952)

4) Darauf hat uns freundlichst Herr Profeseor de Rham mit dem Beispiel der durch

r 2, r 3 erzeugten Zahlkorper aufmerksam gemacht,
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