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Sur les théorèmes de de Rham
Par André Weel (Chicago)

La démonstration actuellement la plus satisfaisante des célèbres
théorèmes de de Rham est celle qui résulte de la théorie de l'homologie de

H. Cartan, qui les renferme, ainsi que le théorème de dualité de Poin-
caré, comme cas particuliers. Mais cette théorie n'a fait l'objet que de

publications partielles sous forme de notes de cours miméographiées1).
A son origine se trouvent d'ailleurs, d'une part un mémoire de Leray,
et d'autre part justement une démonstration des théorèmes de de Rham
que je communiquai à Cartan en 1947. A défaut d'autre utilité, celle-ci
peut encore servir d'introduction aux méthodes de Cartan; et c'est
avant tout à ce titre que je la présente ici, avec des améliorations dont
je dois quelques-unes à G. de Rham et à N. Hamilton ; j'y joins une
démonstration (datant aussi de 1947) du fait que tout espace possédant
un recouvrement d'un certain type (dit «topologiquement simple») a
même type d'homotopie que le nerf de ce recouvrement.

§ 1. Construction d'un recouvrement simple

Soit (Xi)i€l une famille de parties d'un espace E, à ensemble
d'indices / quelconque ; on dit, comme on sait, que cette famille est localement

finie si tout point de E a un voisinage qui ne rencontre qu'un
nombre fini des X{ ; si E est localement compact, il revient au même de
dire que toute partie compacte de E ne rencontre qu'un nombre fini des

Xit Nous conviendrons une fois pour toutes, si (Xi)i€l est une famille
localement finie et si Jc /, de poser Xj =.fl X{; l'ensemble N des

parties non vides J de I telles que Xj ne soit pas vide s'appelle le nerf
de la famille (X{) ; si J€N, J est finie.

L'objet de notre étude sera une variété difîérentiable V de dimension

n, «paracompacte» c'est-à-dire dont toute composante connexe est
dénombrable à l'infini ; il revient au même de dire que V admet un
recouvrement localement fini par des «cartes», c'est-à-dire par des parties
ouvertes munies chacune d'un isomorphisme différentiable sur une partie

*) Cours de Harvard, 1948; Séminaire de l'E. N. S., Paris 1948—1949 et 1950—1951.
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ouverte de Rn. Le mot «différentiable» sera toujours pris au sens
«indéfiniment différentiable» (ou «de classe Cw»). Cela n'est pas vraiment
une restriction si on tient compte du théorème de Whitney d'après lequel
toute variété de classe Cn, pour n ^ 1, admet un homéomorphisme de
classe Cn sur une variété de classe C°° ; d'ailleurs la méthode qui va être
exposée s'applique aussi aux variétés de classe Cn pour n ^ 2.

Notre outil principal sera un recouvrement U (Î7t)i€j localement

fini de V par des ensembles ouverts U{ relativement compacts, qui devra
avoir de plus la propriété suivante : chaque ensemble non vide Uj .H C7t.

possède une «rétraction différentiable» c'est-à-dire une application
différentiable (fj de UjXR dans Uj telle que <fj(x, t) x chaque fois que
xEUj et que t ^ 1, et que <pj soit constante sur Uj x ]—oo, 0]. Un tel
recouvrement, muni de la donnée des rétractions <pj3 sera dit différen-
tiabhment simple.

Pour construire un tel recouvrement, on peut, comme le fait de Rham2),
se servir d'un ds2, mais il est peut-être plus élémentaire de procéder
comme suit. Partons d'un recouvrement localement fini de F par des

cartes ouvertes relativement compactes Ft ; à Vi sera donc attaché un
isomorphisme différentiable de V{ sur une partie ouverte de Rn au moyen
de «coordonnées locales» t^\ ...,fl*K On peut alors, pour chaque i,
définir des ouverts Wi} W^ et une fonction fi différentiable sur F de
manière que les W{ forment encore un recouvrement de F, que l'on ait
W{ c W\ et W[ c Ft, et que f{ ait la valeur 1 sur W{ et 0 en dehors de

W^. Posons fiQ =/,-, et désignons par/^ la fonction égale à ftt(p dans
Yi et à 0 en dehors de Ft ; l'ensemble des fonctions/o pour 0 < j ^ n,
et pour toutes les valeurs de i, détermine une application de F dans
l'espace R(A\ oh A est l'ensemble des couples (i, j) ; on sait qu'on désigne
ainsi l'espace vectoriel des applications de A dans JR qui prennent la
valeur 0 partout sauf en un nombre fini d'éléments de A. De plus,
l'application (/ti) de F dans R(A) détermine sur toute partie ouverte relativement

compacte Z de F un isomorphisme différentiable de Z sur une
sous-variété d'un sous-espace vectoriel de dimension finie de JR^. On

pourra donc simplifier le langage en identifiant F avec son image dans
RlAK Sur R(A\ nous mettrons une structure d'espace métrique («pré-

Mlbertien») au moyen de la distance d(x, y) [£ (x{i — VaYr >
e^e

u
a) Cf. de Rham, Complexes à automorphismes et homéomorphie différen-

tiable, Ann. Gren. 2 (1950) p. 51. Ce dernier exposé, comme ma démonstration de 1947,
reste limité au cas compact; mais c'est de Rham qui m'a indiqué la possibilité d'étendre
l'une et l'autre méthode aux variétés non compactes.
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fait de tout sous-espace de dimension finie de R(A) un espace euclidien.
D'après ce qui précède, la distance de W{ à F — W\ est ^ 1, puisque
la coordonnée xi0 a la valeur 1 sur le premier ensemble et 0 sur le second.

Pour tout a?€ F, désignons par Tx la variété linéaire tangente à F
en a;, et par Px la projection orthogonale de R(A) sur Tx, considérée
comme application linéaire de RÏA) sur Tx; et désignons par U(x,r)
l'intersection de F avec la boule ouverte de centre x et de rayon r ; si
x€W£ et r<l, on aura U(x, r) c W\ ; donc U(x,r) est relativement
compact pourvu que r < 1.

Soit x € Wt ; soit E un espace vectoriel de dimension finie contenant
W[. En prenant dans E des coordonnées orthogonales d'origine x, les n
premiers vecteurs coordonnés étant choisis dans TX9 on voit que x
possède un voisinage ouvert U contenu dans W[ et ayant les propriétés
suivantes : (a) quel que soit y EU, Py induit sur U un isomorphisme
différentiable (c'est-à-dire une application biunivoque, partout de rang n)
de U sur son image Uy PV(U) dans Ty ; (b) quels que soient yyz1,z2
dans 77, on a d(z19 z2)< 2d(Py(z1)i Py(z2)); (c) quel que soit zo£U,
d(zo,z)2 est une fonction convexe de Py(z) dans Uy. En effet, cette
dernière condition signifie que la matrice des dérivées secondes de

d(zQ, z)2 par rapport aux coordonnées de Py(z) dans Ty est la matrice
d'une forme quadratique définie positive ; or, dès que U est assez petit,
cette matrice est aussi voisine qu'on veut de sa valeur pour y z0 z

x, valeur qui n'est autre que la matrice unité. Soit alors K une partie
compacte de F ; recouvrons K par des ensembles E7a en nombre fini
ayant les propriétés (a), (b), (c) ; et prenons r(K)>0 et < 1 tel que
U(x,r(K)) soit contenu dans l'un des C7a quel que soit x£K; ainsi
U(xy r(K)) aura les propriétés (a), (b), (c) quel que soit x£K, De plus,
pour x£K et r =r(K), la projection Px[U(x, r)] de U(x,r) sur Tx
contiendra tous les points de Tx à distance < r/2 de x ; en effet, si zr est

un point frontière de cette projection, zf sera point limite de points
z'v =Px(zv) avec zv€ U(x, r) ; U(x,r) étant relativement compact
sur F, on pourra remplacer les zv par une suite partielle ayant une limite
z sur F. Comme Px est un isomorphisme différentiable de U(x, r) sur son
image, tout point intérieur de U(x, r) se projette sur un point intérieur
de Px [U{x, r)]; donc z est un point frontière de U(x,r), et on a

d(x,z) r, d'où d(x,zf)>r/2 en vertu de (b). Montrons maintenant
que, si xEK, 0<r < r(K)/4t, et y€U(xyr), Pz induit sur U(y,r)
un isomorphisme différentiable de U(y,r) sur une partie convexe de

Tx. Comme on a U(y, r) c U(x> 2r), le seul point à démontrer est la
convexité de P% [U(y9 r)]. Or c'est là l'ensemble des points z' Px{z)
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pour z€ U(z, r(K)) et d(y, z)2<r2. Considérons deux tels points
z[ PJzJ, z'2 Px(z2) ; on a, pour h 1 et h 2, d(z^, #)< 2r,
donc d(z^, #)<2r, donc aussi d(z', #)<2r ^.r(K)/2 quel que soit 2'

sur le segment de droite qui joint z[ et z2 dans ï^ ; ce segment est donc
contenu dans Px[U(x, r(K))] ; comme d(y, z)2 est une fonction
convexe de z' Px(z) dans ce dernier ensemble, c'est une fonction
convexe de zr sur le segment qui joint z[ et z2 ; la valeur de cette fonction
étant < r2 aux extrémités du segment, elle Test aussi sur tout le segment ;

celui-ci est donc bien contenu dans Px [U(y, r)].
Cela étant, choisissons pour chaque i des points xtx de Wt, en nombre

fini, tels que les ensembles U%\ U(xtx, r{W[)ji) forment un
recouvrement de Wt ; je dis que les Ut x forment un recouvrement différen-
tiablement simple de F. Comme on a xt\£Wt et r(TF()/4<l, on a
Utxcz W[, donc les Utx sont relativement compacts et forment un
recouvrement localement fini de F. Soit x un point commun à des
ensembles Utx, Uj Ukv,..., en nombre nécessairement fini ; soit r le
plus grand des nombres r(W[), r(W'9)9 r(Wfk),... ; supposons par
exemple qu'on ait r =r(W[). Alors chacun des ensembles Utx> UJfJL,

est de la forme U(y,r'), avec yGU(x,rf) et r' <r(W^)/4; ils
sont tous contenus dans U(x, r(]¥[)), et, comme x€W[, Px induit
sur U(x, r(W[)) un isombrphisme différentiable dans lequel chacun des

Ut\, UjfA, a pour image une partie ouverte convexe de Tx d'après
ce qu'on a démontré plus haut ; Px induit donc aussi sur leur intersection
un isomorphisme différentiable sur une partie ouverte convexe U' de Tx.
Celle-ci admet la rétraction (zf, t) -> x + X(t)(zf — x), où X{t) est une
fonction différentiable sur R, égale à 0 pour t < 0 et à 1 pour t > 1 ;

en vertu de Fisomorphisme induit par Px, cette rétraction se transporte
à l'intersection des Utx, Uifl,..., ce qui achève la démonstration.

Nous n'avons fait usage en réalité que du fait que, lorsque F est
plongée dans Rf>A\ toute partie compacte de F est de courbure bornée,
ou encore que tout point de F a un voisinage qui peut se représenter
paramétriquement au moyen de fonctions de classe C1 dont les dérivées
d'ordre 1 ont leurs nombres dérivés bornés. Déjà pour une variété F de
classe C1, il ne semble pas aisé de construire un recouvrement simple
sans définir d'abord sur F une structure de classe C2 au moyen du théorème

de Whitney déjà cité ; et le problème de l'existence d'un recouvrement

simple reste ouvert en ce qui concerne les variétés de classe C° ;

bien entendu, pour une telle variété, on n'imposerait plus aux rétractions

<pj que d'être continues. En revanche, tout complexe simplicial
localement fini admet trivialement un tel recouvrement, formé des
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étoiles ouvertes de ses sommets ; en vue de ce qui va suivre, rappelons
brièvement quelques définitions relatives à ces complexes. Par un
complexe simplicial abstrait, on entend un ensemble N de parties finies non
vides d'un ensemble quelconque /, tel que, si J€N, toute partie non
vide de J appartienne aussi à N ; N est dit localement fini (ou star-fini)
si tout i € / n'appartient au plus qu'à un nombre fini d'éléments de N.
Nous conviendrons d'identifier le complexe abstrait N avec sa «réalisation

géométrique», c'est-à-dire avec l'ensemble des points x (xt)l€l
de l'espace R{1) tels que Z #» 1

> %t ^ 0 pour tout i, et que l'en-
16/

semble des i € / tels que xt ^ 0 appartienne à N. Sans restreindre la
généralité, on peut supposer que / est la réunion des ensembles de N
(sinon on remplacerait / par cette réunion) ; pour chaque i, soit et le

point de jR(J) dont la coordonnée d'indice i est 1 et les autres sont nulles ;

les éléments i de /, ou aussi les points et qui leur correspondent, seront
appelés les sommets de N. A tout J€N, on fera correspondre, d'une
part le simplexe Zj, ensemble des points x (xt) de N tels que xt 0

pour i n'appartenant pas à «7, d'autre part l'étoile ouverte Stj, ensemble
des points x (xt) de N tels que x% > 0 pour i 6 J ; si J {i}, Zj se

réduit au sommet et de JV, et Stj, qu'on écrira 8tt, est dite l'étoile ouverte
de et; pour J€N, on a Stj Ci 8tt. Si J a m éléments, donc si Zj
est de dimension m — 1, le centre de gravité (ou barycentre) de Zj
sera le point ej (xt), avec xt l/m pour i€ J, a?, 0 pour /
n'appartenant pas à J. Si la fonction X(t) est définie comme plus haut,
(x, t) ->e/ + X(t)(x—ej) est une rétraction de Stj ; les 8tt forment
donc bien un recouvrement simple de N.

§ 2. Les formes différentielles

Par une forme différentielle, on entendra toujours une telle forme dont
les coefficients, lorsqu'on exprime localement la forme au moyen de

coordonnées locales, soient des fonctions de classe C°° de ces coordonnées.
Une forme co est dite fermée si dco 0 ; elle est dite homologue à 0,
sur la variété où elle est définie, s'il existe sur cette variété une forme rj
telle que o> drj.

Soit U une partie ouverte d'une variété difîérentiable F, munie d'une
rétraction <p ; soit co une forme de degré m sur U ; considérons sur U xR
la forme a>[<p(x9t)], image réciproque de co par (p. Si, au voisinage
d'un point de U, xl9..., xn sont des coordonnées locales, on pourra
écrire :
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(o[<p(x,t)] S f(t>(x,t)dxHA ..Adx%m+ Z go)(x,t)dtAdxhA.
(*) 0)

où A désigne le produit extérieur. Dans le même voisinage, considérons
la forme I eo de degré m — 1 définie par

On vérifie immédiatement que cet opérateur est compatible avec les

changements de coordonnées locales et peut donc être considéré comme
défini globalement dans U ; si m 0, on a I co — 0. Au moyen de

l'expression locale de J, on vérifie aussitôt que l'on a co Idco + dl(o
si m > 0, si m 0, on a co Idco + co(a) si a est la valeur constante
de <p(x, t) pour t ^ 0. Il s'ensuit que, si m>0, dco 0 entraîne
a) dl co.

Supposons maintenant donné, une fois pour toutes, un recouvrement
différentiablement simple H (Ut)l€l de V, soit N le nerf de U. Si
H (t0, tj,..., ip) est une suite quelconque d'éléments (distincts ou
non) de /, on désignera par | H \ l'ensemble des iv distincts. Par un
coélément différentiel de bidegré (m, p), on entendra un système Q (odh)

(oototl t) de formes de degré m, respectivement attachées aux
suites H (i0 it... ip) de p + 1 éléments de / telles que | H | € iV,
coff étant pour tout H une forme définie dans Ulnl fl Ut Le co-

élément fi sera dit fini s'il ne comprend qu'un nombre fini de formes

o)H zfi 0 ; il sera dit alterne si coH od1q t est une fonction alternée
des indices i0,..., iv, ce qui implique que cette forme est nulle si les iv
ne sont pas tous distincts.

Si Q (cOjy) est un coélément de bidegré (m, #>), e£Q (dcoE) est
un coélément de bidegré (m + 1, p). Comme par hypothèse on s'est
donné une rétraction (pj de C/j pour tout J£N, on peut définir comme
ci-dessus, pour tout J€N, un opérateur Ij tel que cw —dljco pour
toute forme fermée co de degré m>0, définie dans Uj. Alors, si Q
(a)H) est un coélément de bidegré (m,p), IQ (I\h\ ^h) es^ un co"
élément de bidegré (m — l,p); si m>0, on a Q=IdQ + dIQ, et
par suite dQ 0 entraîne Q d/fi. Si m 0, Q (/#) est un
système de fonctions ; comme les £?# sont rétractiles et par suite
connexes, les fH seront des constantes si dû — 0 ; donc, en ce cas, Q n'est

pas autre chose qu'un système (|H) de nombres réels respectivement
attachés aux suites H de p + 1 éléments de / telles que | H \ € N ;

c'est là ce qu'on appelle, comme on sait, une cochaîne de N (à coefficients
réels), finie ou alternée si Q est fini ou est alterné. Il est clair que les
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opérateurs d, I transforment les coéléments finis en coéléments finis,
les coéléments alternés en coéléments alternés.

Soit encore Q (coH) (coio A un coélément de bidegré (m, p) ;

on appellera cobord de Q, et on désignera par ÔQ, le coélément 6Q

(rli0..A +1) ^e bidegré (m, p + 1) défini par

où il doit être entendu que chacun des termes du second membre est à

remplacer par la forme qu'il induit sur U\iot%ti j ce qui a un sens

puisque ce dernier ensemble est l'intersection des ensembles où ces termes
sont définis. De même, si co est une forme de degré m définie sur F, et si
co induit sur TJt la forme toi, on posera ôco (eof) ; ôco est donc un
coélément alterné de bidegré (m, 0), fini si co est à support compact et
dans ce cas seulement. Il est clair que à est permutable avec d et transforme

tout coélément fini en un coélément fini et tout coélément alterné
en un coélément alterné ; et on vérifie immédiatement que ô2 0.

Pour définir le dernier opérateur dont nous avons besoin, donnons-
nous une fois pour toutes une partition différentiable de l'unité
subordonnée au recouvrement lï ; on entend par là, comme on sait, une
famille (/t)i€j de fonctions différentiables et > 0 sur V, telles que
2J fi l et que le support de fi (c'est-à-dire l'adhérence de l'ensemble
i€l
où fi>0) soit contenu dans U{ pour tout i€/. Cela posé, soient

J€N, iEl et J' J\j{i}; si co est une forme définie dans £/,,, on
conviendra de désigner par /fct> la forme définie dans Uj qui est égale
à f4co dans UJf et à 0 dans Uj f) C(UJf) ; il est immédiat en effet que
c'est bien là une forme (à coefficients différentiables) dans Uj ; si J'
n'appartient pas à N, c'est-à-dire si UJf =0, cette définition entraîne
que fiCo 0. Avec cette convention, si D (coH) est un coélément de

bidegré (m,p) avec p>0, nous poserons3) KQ (£io...ip_x), avec

où les termes du second membre doivent être entendus comme il vient
d'être dit. De même, si Q (ct^) est un coélément de bidegré (m, 0),
on désignera par KQ la forme co Z fkcok, où on doit entendre par

k€l
fkcok la forme définie sur F, égale à fkcok dans Uk et à 0 en dehors de

8) Je dois l'opérateur K à N. Hamilton. Ma démonstration primitive se servait, au lieu
de K, du théorème de prolongement de Whitney.
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Uk ; co est donc une forme définie sur F. Si Q est de bidegré (m, p) et
est fini, KQ est fini si p>0, et est une forme à support compact si

p 0 ; si 42 est alterné et p>0, KQ est alterné. On vérifie immédiatement

qu'on a Q KôQ + ôKQ, donc que <5!2 0 entraîne i2
ôKQ, pour 2? ^ 0 ; si co est une forme, on a &> Kôœ, et <5co 0

entraîne donc co 0.
Dans ces conditions, considérons toutes les suites (co, Do, ûl9...,

i2m_!, 5) où co est une forme de degré m > 0 sur F, £?A un coélément
de bidegré (m — h — 1, h) pour 0<A^m — 1, et S1 un coélément
de bidegré (0,m), satisfaisant aux relations

<5co dQ0 ; ôQh cLQft+1 (0 < A < m — 2) ; c^^ S (I)

S'il en est ainsi, on a dàQh 0 pour 0 < h ^ m — 1, dS 0 et
ôS 0, et <îdco 0 d'où da> Kôdo 0. Donc co appartient à

l'espace vectoriel $m (sur JE) des formes fermées sur F ; Qh appartient
à l'espace vectoriel gTO ft des coéléments de bidegré (m — h — 1, h) qui
satisfont à dôQ 0; quant à S, puisqu'on a dS 0, on peut, comme
on a vu, le considérer comme une cochaîne de N ; comme àS 0,
c'est un cocycle ; donc S appartient à l'espace vectoriel des cocycles de
dimension m de N (à coefficients réels). Supposons Qh donné dans 8fw>ft,
et h < m — 1 ; alors la relation ôûh dQh+1 est satisfaite pour Oh+1

IàQh. Supposons que Qh soit dans la somme $mth des sous-espaces de

Cm,* respectivement déterminés par les conditions dQ 0 et ôQ 0 ;

on aura donc Qh X + Y, dX 0, ôY 0 ; comme X est de

bidegré (m — h — 1, h), et qu'on a m — h — l>0, dX 0 entraîne
X dIX ; on aura donc ôQh ôd(IX), d'où dZ 0 en posant
Z jO^, — <5/X ; comme on a Qh+1 <5(JX) + Z, c£Z 0, ÛH1 est
dans §m)fc+1. Exactement de même, on voit que, si Qh+1 est donné dans

5m,h+i> la relation ôQh =dûh+1 est satisfaite par Qh KdQh+1, puis
que Qh+i€£)m,h+i entraîne &h€£)mth* ^ s'ensuit que la relation
ôiih dQh+1 détermine un isomorphisme entre les espaces vectoriels

De même, si û0 est donné dans 3r*n, o> on satisfera à âco dÛ0 en
prenant co =KdQ0; si £?0 est dans §mï0> on aura jQ0 =X+ ^,
dX=0, dF=O, d'où r=«(JfF), et 'ôa> dY =: ôd(KY), d'où,
en posant rj KY, ô(co—dr\) =0, donc co =drj. Réciproquement,
si co est donnée dans $m, on satisfera à ôco dûoen prenant Do Iôco;
si co —drj, on aura ôd^ =dQQ, donc, en posant X jO0 — ô?7,

i30 X + (5??, dX 0, donc Qo e§m0. En désignant par §TO l'espace
vectoriel des formes de degré m homologues à 0 sur F, on voit donc que
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la relation ôœ dQ0 détermine un isomorphisme entre le «groupe de
de Rham» %m/%m et 5m,o/£m,o- Enfin, si Qm_1=X+Y, dX=0,
ôY 0, on a S ôX, et X est une cochaîne de N, donc S est un
cobord de N ; réciproquement, si S est donné et ôS 0, on satisfait
à ôQm_1 S en prenant i3w_! K S; si S ôX, où X est une
cochaîne c'est-à-dire un coélément satisfaisant à dX 0, on aura
Qm_1 X + Y, dX 0, c5r=0. Donc la relation dQmr,1 S
détermine un isomorphisme entre 5w?,w-i/Ôw,m-i e^ ^e groupe de cohomo-
logie Hm(N) de dimension m de N à coefficients réels. En définitive,
(I) établit donc un isomorphisme entre le groupe de de Rham %ml$t)m de F,
et le groupe Hm(N) ; et cet isomorphisme est canoniquement déterminé par
la seule donnée du recouvrement simple lt.

On voit de plus que, si on se donne la forme fermée co, on peut prendre
Qh (/ô)h+1 co, S ô(Iô)mco ; réciproquement, si on se donne le cocycle
S £io im), on pourra prendre Qh K (dK)m ~h -1 S, co K (dK)m S,
c'est-à-dire :

m(m—1)

o> (-l) 2

.^v iJio...imfimdfioA...Adfim_i

Pour m 0, on substituera aux relations (I) l'unique relation
ôco S, d'où on déduit trivialement les mêmes résultats.

Il n'y a rien à changer à ce qui précède si on désire considérer exclusivement

des coéléments et cochaînes alternés. Il n'y a rien à y changer
si, au lieu des formes, on désire considérer les «courants» (ce sont les
formes dont les coefficients, quand on les exprime au moyen de coordonnées

locales, sont des distributions au lieu d'être des fonctions différen-
tiables). Enfin, il n'y a rien à y changer non plus si on désire considérer
exclusivement les coéléments et cochaînes finis et les formes à support
compact ; en ce cas, bien entendu, on n'aboutit pas en général aux
mêmes groupes que précédemment, mais on obtient un isomorphisme
entre les groupes de de Rham à support compact et les groupes de coho-
mologie de N relatifs aux cochaînes finies.

Enfin, supposons qu'on se soit donné deux formes fermées co, co' de
degrés respectifs m, r, et qu'on ait formé deux suites (co, QQ,..., £?w_i, S)
et (co', Qf0,..., £?£_!, E') satisfaisant à (I). On peut alors former, sans
nouvelle intégration, une suite (co\ Dq, i2^+r_15 S") satisfaisant
à (I) et commençant par le produit extérieur co" co/\co'. Posons en
effet û»=K*...<ik), B (eio...im), et de même pour Q'k, E' ; on
pourra alors prendre :
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«...<* A a/) (0<*<m-l)

c'est-à-dire S" S^>Sf. Si on s'était servi exclusivement de coélé-

ments alternés, les formules ci-dessus seraient à modifier ; la manière la
plus simple de le faire est d'ordonner une fois pour toutes les i € / et de
convenir que les Qm+Jc et S" sont alternés et ont leurs composantes
données par les formules ci-dessus pour i0 < ix < • • • < im+r ; cela donne
le «cup-product» de Whitney.

§ 3. Les cycles singuliers

Les hypothèses et notations restant les mêmes qu'au § 2, nous
passons maintenant à l'étude des cycles singuliers différentiables.

Dans un espace affine, considérons w+1 points a0,..., am ; soit K
le plus petit ensemble convexe contenant les a^, et soit L la variété

m

linéaire qui porte K ; L est l'ensemble des points 2J %fiau pour £ x^ 1,

et K est l'ensemble des points de cette forme pour lesquels £ %fl l et

xp ^ 0 pour tout ii. Si L est de dimension m, K est un «simplexe
euclidien» de dimension m, de sommets a0,..., am. En particulier, si e^ est
le vecteur dans Kw+1 dont la /<-ième composante est 1 et les autres sont
nulles, on notera JJm Ie simplexe de sommets e0,..., em, c'est-à-dire
l'ensemble des x (x^) de R™*1 tels que £ xli 1 et a:^ ^ 0 pour
tout//. **

Par un simplexe singulier différentiable de dimension m dans F, on
entendra, suivant S. Eilenberg 4), la restriction à 2Jm d'une application
différentiable / dans F d'un voisinage de £m ; f(£m) sera dit le support
de ce simplexe. Si de plus K et L sont définis comme ci-dessus à partir
de points a0,..., am, et que / soit une application différentiable dans
F d'un voisinage de K (dans l'espace ambiant ou seulement dans L),
l'application (x0,..., xm) -+f(2J x^a^), restreinte à 2Jm> est un sim-

plexe singulier différentiable qui sera noté [/ ; a0... am] ; il est dégénéré
si L est de dimension < m.

Le mot «différentiable» sera en général sous-entendu dans ce qui suit.
Par une chaîne (ou plus explicitement une chaîne singulière différen-

*) S» Eilenberg, Singular homology in différentiable manifolds, Ann. Math. 48
(1947) p. 670.
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tiable) de dimension m dans F, à coefficients dans un groupe abélien G,
on entendra toute expression de la forme t Z cq #q >

oh les ce sont
Q

dans G et les sQ sont des simplexes singuliers de dimension m dans F dont
les supports forment une famille localement finie ; une telle expression
sera dite réduite si tous les sQ sont distincts et tous les cQ sont ^0.
Toute chaîne possède une expression réduite et une seule ; le support | t1
d'une chaîne t sera la réunion des supports des simplexes figurant dans

l'expression réduite de t ; on dira que t est contenue dans une partie U
de F si | 11 c U. Une chaîne est dite finie si son expression réduite est

une somme finie, ou, ce quirevient au même, si son support est compact.
Si t Z cq8q e&î> ™e chaîne finie, on posera deg (t) £ cQ.

Q Q

Si s [f; ao...am] et qu'on pose ^ [/; a0.. .a^a^.. .am],

la chaîne finie bs £ (—1)^^ s'appelle le bord de s; cet opérateur

s'étend aux chaînes par linéarité ; une chaîne de bord nul s'appelle un
cycle ; on a 62 0, ce qui permet de définir des groupes d'homologie
de F au moyenne b et du groupe des chaînes (ou encore du groupe des

chaînes finies) à coefficients dans G. Si t est de dimension 0, on a bt =0,
mais on posera bQt deg (t) si t est fini ; on a bQbt 0 si t est de
dimension 1. Plus généralement, on a deg (6£) deg (t) si t est de dimension

m paire >0, et deg (6£) 0 en tout autre cas.

Soit 8 un simplexe singulier défini par une application différentiable /
dans F d'un voisinage W de 2Jm ; si œ est une forme de degré m dans F,
son image réciproque co [/(#)] par / est une forme de degré m dans W,
dont l'intégrale sur £m e»t par définition l'intégrale Jco de co sur s;

8

cette définition s'étend par linéarité aux chaînes finies à coefficients
réels, et même à toutes les chaînes à coefficients réels si co est à support
compact. On a la formule de Stokes §da) — jco, valable chaque fois

t bt

que t est une chaîne finie ou que co est à support compact. Au moyen
de Jo>, qui est une forme bilinéaire en t et co, les chaînes finies sont

mises en dualité avec les formes, et les chaînes avec les formes à support
compact, ce qui permet de transposer aux chaînes, par dualité, les

opérations et les résultats du § 2 ; mais nous allons en donner un exposé
indépendant, de manière à ne pas avoir à supposer G R.

Soit d'abord U une partie ouverte de F munie d'une rétraction
différentiable <p ; soit p la valeur constante de q>(x, t) pour t ^ 0. On
désignera par sm le simplexe dégénéré [f;aa...a] de dimension m, où
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f(a) p, ou, ce qui revient au même, le simplexe défini par la restriction

à Xm de l'application constante de Bm+1 sur p ; on a b sm sm_1

si m est pair et > 0, 6 sm 0 si m est impair ou 0. Considérons un
simplexe singulier s [f ; a0... am] dans C7, les a^ étant des points
d'un espace affine E ; désignons par a° a* les points (a^, 0) et (a^, 1)
de E xR. Par définition, / est une application différentiable dans U
d'un voisinage du plus petit ensemble convexe K contenant les a^ ;

alors, si on pose f'(z,t) <p [f(x), t], f est une application différentiable

dans U d'un voisinage de KxR. Posons, dans ces conditions :

et étendons cet opérateur par linéarité aux chaînes finies dans U. Un
calcul facile donne bPs + Pbs s pour m>0 et bPs -{- Pbs s —s0
pour m 0, donc, pour toute chaîne finie de dimension m, t bPt -f
Pbt si m>0 et £ 6P£ + (M) ^o si wi 0. Donc bt 0 entraîne
£ &P£ si m>0, et bot 0 entraîne 2 6P£ si m 0.

Par un U-simplexe, on entendra un simplexe singulier contenu dans
l'un au moins des ensembles U{ du recouvrement U ; par une U-ehaîne,
on entendra une chaîne dont tous les simplexes sont des U-simplexes.
L'application de notre méthode exige qu'on se restreigne aux Xt-chaînes ;

d'après un théorème de S. Eilenberg 5), cela ne change rien aux groupes
d'homologie ; rappelons les points principaux de sa démonstration. Soit
s [/ ; a0 am] un simplexe singulier. Posons 1^ {0, 1,..., fx)

pour 0 < fi < m ; et, si I {[xx,..., /ik} est une partie quelconque
k

de Im) posons a1 £ (1/JfcJa^. Alors on appelle subdivision barycen-

trique de * la chaîne finie

o*= 2 *«[/', «»(/,) • • • «*</„,)]

où la somme est étendue à toutes les permutations n de Im, et où en

± 1 suivant que n est paire ou impaire ; on étend l'opérateur aux chaînes

par linéarité; on vérifie qu'on a ba =ob. D'autre part, Eilenberg
(loc. cit., note 5, p. 429) définit un autre opérateur g, analogue mais
dont l'expression explicite serait plus compliquée, tel que bg + Qb

a—1 ; qs est une chaîne finie de dimension m + 1, somme de termes de
la forme ± [/ ; b0... bm+1], où chacun des b^ est l'un des ax. Cela posé,
si s est un simplexe singulier, on peut trouver un entier v assez grand
pour que ov s soit une U-chaîne; soit v(s) le plus petit entier ayant
cette propriété ; soit r l'opérateur défini sur les simplexes singuliers par

6) S. Eilenberg, Singular homology theory, Ann. Math. 45 (1944) p. 407.
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et étendu aux chaînes par linéarité. Alors, si on pose comme plus haut
bs Z (—l)^5^ on vérifie immédiatement qu'on a

{bx + xb)s (*"<•> — l)s — E (— l)*4 £ e*%,
ce qui montre que (1+6t + t6)5 est une U-chaîne finie, de support
contenu dans celui de s. Donc, si t est une chaîne, t (1 + 6r -f rb)t
est une U-chaîne, finie si t est finie. Si t est un cycle, on a t t -{- brt,
donc t est un cycle et t est homologue à De plus, la formule ci-dessus
montre que (6r -f r&)s 0 si v(s) 0, c'est-à-dire si 5 est un U-sim-
plexe, donc t t si t est une It-chaîne. Supposons qu'une U-chaîne t'
soit le bord d'une chaîne t ; on aura t' bt, et bt bt + bxbt ?'

— £', donc t' est aussi le bord d'une U-chaîne. Il s'ensuit bien que la
restriction aux U-chaînes ne change rien aux groupes d'homologie ;

désormais nous ne considérerons que celles-là, et pour abréger nous
dirons «chaîne» au heu de «U-chaîne».

Par un élément singulier de bidegré (m, p), on entendra un système
T (tH) (tiotmA de chaînes finies tH de dimension m respectivement
attachées aux suites H (i0... ip) de p + 1 éléments de / telles que
| H | EN, tH étant contenue dans U\E\ pour tout H. L'élément T sera
dit fini si les tH sont tous nuls à l'exception d'un nombre fini d'entre eux,
alterné si tio A est une fonction alternée de ses indices.

Si T (tH) est un élément de bidegré (m, p), bT (bTH) est un
élément de bidegré (m — 1, p), fini si T est fini, alterné si T est alterné ;

on a b2 0. Si de plus m 0, 60T (botH) fait correspondre à tout
H un élément 60^H du groupe de coefficients G ; c'est là ce qu'on appelle
une chaîne de N à coefficients dans Si m 1, on a bobT 0.

Le recouvrement U étant simple, on peut, au moyen des rétractions
<Pj attachées à tout JEN, définir dans les Uj des opérateurs Pj ayant
les propriétés décrites plus haut, et tels en particulier que, si t est une
chaîne finie de dimension m>0 dans Uj9 bt 0 entraîne t bPt.
Alors, si T (tH) est un élément de bidegré (m, p), on posera PT
(P\h\ Ih) \ c'est un élément de bidegré (m -f- 1, p) ; si m>0, bT 0

entraîne î7 6PÎ7 ; si m 0, 60T 0 entraîne î7 6PÏ7 ; en général,

ona bPT + PbT si m>0 ; Pî7 est fini si T est fini, alterné
si T est alterné.

D'autre part, si T (£$0...<J est un élément de bidegré (m, p), et
si p>0, nous définirons un élément dT (uîq ipi) de bidegré
(m, p — 1) au moyen de la formule
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0pi 0iupifj,,k

où la sommation doit être étendue aux valeurs de /*, h pour lesquelles
I H • • • V-i&V * ' * V-i I € i>T ; ces valeurs sont en nombre fini, et tous les

termes du second membre sont des chaînes finies dans U^io { _t
donc

ces formules définissent bien un élément dT9 qui est fini si T est fini.
De même, si T (t{) est un élément de bidegré (m, 0), on posera
dT £ h >

^jF est alors une chaîne, finie si T est fini. On a 92 0, et
k

d est permutable avec 6. D'autre part, on peut aussi, dans la formule
qui définit dT, interpréter T comme une chaîne de N, les tH étant alors
des éléments de G ; cette formule, où la sommation est étendue aux
mêmes valeurs de p, k que tout à l'heure, définit alors dT comme chaîne
de N ; les groupes d'homologie de N sont ceux qui sont définis au moyen
des chaînes de N et de l'opérateur 9, ou encore au moyen des chaînes
finies de N et de 9. Dans ces conditions, 9 est permutable avec 60.

On va définir un opérateur L tel que dT 0 entraîne T dLT.
Pour cela, convenons de choisir une fois pour toutes, pour tout Xt-sim-

plexe s, l'un des Uf dans lesquels il est contenu ; soit Uf(9) cet ensemble.
Soit T (tH) un élément de bidegré (m, p) ; soit tH Z ce8q l'ex>

Q

pression réduite de tH. Si H (iQ... ip), on posera iH (ii0. ip).
Alors on définira un élément LT (%,) de bidegré (m, p + 1) en
posant viH X clr5e chaque fois que \iH \EN; cela veut dire que

la somme est étendue à toutes les valeurs de q telles que f{8Q) i.
Puisque tH est une somme finie, viH en est une aussi ; et chaque sim-
plexe s6 figurant dans viH est contenu dans U\H\ parce qu'il figure dans

tB, et dans V\ parce que i —f(sQ), donc aussi dans U\iH\; LT est
donc bien un élément, fini si T est fini. De même, si t £ cQ8Q est

Q

l'expression réduite d'une lï-chaîne de dimension m, on définit, au
moyen de vt ]? cQ8Q, un élément Lt (v{) de bidegré (m, 0), fini

si * est finie. Ona 7= dLT + LdT si T est un élément, et t
si £ est une chaîne. Si donc T est un élément tel que dT 0, on a

Il n'est pas vrai que LT soit alterné chaque fois que T est alterné. Si
on veut se servir exclusivement d'élément alternés, il faut substituer
à 9, L les opérateurs 9', 27 qui, avec les mêmes notations que ci-dessus,
sont définis par les formules
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où la sommation est étendue aux k tels que | ki0... ip_x | € N, et

'£ A { ip+ise).

On vérifie facilement qu'ils possèdent des propriétés semblables à celles
de 3 et L lorsqu'on les applique à des éléments alternés et qu'ils
transforment ceux-ci en éléments alternés.

Considérons maintenant toutes les suites (t, To,..., Tm ,Z), où t
est une chaîne de dimension m>0 de V, Th un élément de bidegré
(m — h, h) pour 0 < h < m, et Z une chaîne de dimension m de JV,

satisfaisant aux relations

t=BT0; bTh=dTh+1 (0<A<m — 1) ; b0Tm=Z. (II)

S'il en est ainsi, on a bdTh 0 (0 < h < m — 1), 60d2\n °> 6* °
et dZ 0. Donc £ appartient au groupe (£m des cycles singuliers diffé-
rentiables à coefficients dans 0 sur F, et Z au groupe des cycles de JV

à coefficients dans G ; Th appartient au groupe (£m h des éléments de

bidegré (m —h, h) qui satisfont à bdT 0 pour h<rn et à bodT — O

pour h m. Soit 3?m le groupe des bords dans F, c'est-à-dire le groupe
des éléments de (£m de la forme bt' ; soit 93m>ft, pour 0 < h < m, le

groupe des éléments de t£mth de la forme &Jl + dY, où X, Y sont des

éléments de bidegrés respectifs (m — h + l,h) et (m — h, h + 1). On
satisfera à la relation bTh dTh+1 en prenant Th PdTh+1 si 5rA+1

est donné dans Sm>^+i, et Th+1 LbTh si ï\ est donné dans &mth;
on satisfera à t dT0 en prenant TQ Lt si t est donné dans (£m ;

enfin il est clair qu'on peut former Tm satisfaisant à b0Tm Z si Z est
donné. Si î\€93m h, donc si Th bX + dY, on aura, en posant
U Th+1—bY, 317=0, d'où U=d(LU) et ^+1 6F + d(L*7)
€ 33mjft+1 ; de même, si Th+1 6 F + 3 F, on aura 6JF 0 en posant
W Th — dY, d'où Tf 6PTF puisque ÏF est de bidegré (m—h, h) et
que m—h>0; on a donc Th=b(PW)+ dYeS&mh. Donc la relation
bTh=dTh^.1 détermine un isomorphisme entre (£w >ft/S8m^ et {£mth+ifàm,h+v
De même, si t 3T0 et To 6Z + 3F, on a / 6(3Z)€©W ; si

t=btf, et qu'on pose U T0—b(Ltf), ona3ï7 0, donc U =dLU,
et yo 6(i^) + 3(iC7)€Sm>o. Si b0Tm=Z et rw 6Z + 3F, on
a Z 3(6OF), donc Z est homologue à 0 ; et, si Z 3Z' et ôoT' Zf,
on aura, en posant X î7^ — Sî7', 60Z 0, donc Z 6PX et
rm b(PX) + 3Î7' € 5Bm>w. En définitive, on voit que les relations (II)
établissent un isomorphisme entre le groupe d'homologie singulière diffé-
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rentiable (£w/5Bm de V et le groupe d'homologie des chaînes de N, pour la
dimension m et le groupe de coefficients G ; et cet isomorphisme est cano-
niquement déterminé par la donnée du recouvrement simple Xt.

Pour m 0, on partira des relations t dT0, b0T0 Z, où To est
un élément de bidegré (0, 0), et on arrive au même résultat par des

raisonnements analogues mais plus simples.
Il n'y a rien à changer à ce qui précède si on veut considérer exclusivement

les éléments et chaînes finis; on obtient ainsi un isomorphisme
entre les groupes d'homologie de F et de N obtenus au moyen de chaînes
finies. Il n'y a rien à y changer si on veut se servir de chaînes de classe C*,
c'est-à-dire dont les simplexes sont définis par des applications k fois
continûment différentiables, h étant un entier quelconque ; en ce cas, il
suffit que les rétractions cpj soient elles-mêmes de classe Ck ; pour
k 0, on voit qu'on obtient les mêmes résultats au moyen de chaînes

singulières continues, les cpj étant alors seulement assujetties à être
continues ; ce résultat s'applique en particulier au recouvrement simple
d'un complexe simplicial localement fini par les étoiles ouvertes des

sommets (voir § 1), et contient donc une démonstration de l'invariance
topologique des groupes d'homologie combinatoires d'un tel complexe,
qui d'ailleurs ne diffère qu'en apparence de la démonstration classique.
Il n'y a rien à changer non plus à ce qui précède si l'on veut se servir
exclusivement d'éléments alternés, et de chaînes alternées de N, sauf

qu'il faut substituer df, L' à d, L.
Si on prend G R, les opérateurs qu'on a défini sur les éléments

singuliers sont en dualité avec ceux qu'on a défini sur les coéléments
différentiels. Soient en effet Q (coH) et T (tH) un coélément
différentiel et un élément singulier, tous deux de bidegré (m, p), dont l'un
soit fini ; on posera alors

(T, Q) Z J coH

et, s'ils sont tous deux alternés :

où Ef indique qu'on prend une fois seulement chaque combinaison

i0,.. •, ip de p + 1 éléments de /, rangés dans un ordre quelconque ;

c'est de (T, Q)f qu'il faut se servir dans la théorie alternée. La formule
de Stokes donne (6Î7, Q) (T, dQ) ; et on vérifie facilement qu'on a

(dT, Q) {T, àQ), et de même (d'T, Q)' {T, àQ)' si T, Q sont alternés

; de même, si co est une forme de degré m sur F et T un élément de
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bidegré (m, 0), et que co soit à support compact ou T fini, on a (T, ôco)

J co. Enfin, si T est un élément de bidegré (0, p)f et S un coélément
dT

de bidegré (0, p) satisfaisant à dS 0 ou autrement dit une eochaîne
de N, et si T ou S est fini, on a (î7, S) (b0 T, S), où dans le second
membre figure le produit scalaire des chaînes et cochaînes de N défini
par (Z, S) 27 zH %h Pour % (%)> *^ (iH) ; ces formules sont à

modifier d'une manière évidente dans la théorie alternée.
Considérons alors deux suites (co,Qo,...,i2m_!, S) et (t, To,..., Tm, Z),

satisfaisant respectivement aux relations (I) du § 2 et aux relations (II)
ci-dessus ; supposons co à support compact et les Qh et 3 finis, ou t, les

Th et Z finis. Au moyen des formules ci-dessus, on obtient immédiatement :

J a. (To, dQ0) • • • (Z^, <*£>„_,) (rm) ^m_t) (Z, 5) IJ}1
t

II s'ensuit que les groupes de de Rham et les groupes d'homologie singulière

à coefficients réels de V ont entre eux les mêmes relations de dualité
que les groupes de cohomologie et d'homologie de N. En particulier, il
existe toujours une forme fermée a> sur V telle que J co soit une fonction

t
linéaire arbitrairement donnée sur le groupe d'homologie singulière finie
de V, ou autrement dit soit égale à une fonction linéaire L(t) donnée
sur l'espace vectoriel des cycles finis de V, nulle sur les bords de chaînes
finies. D'autre part, si une forme fermée co à support compact sur F est
telle que J co 0 pour tout cycle t, fini ou non, de F, elle est de la

t
forme co drj, où r\ est à support compact ; de même, si une forme
fermée co est telle que J co 0 pour tout cycle fini t, elle est de la

t
forme co dr\. En effet, d'après ce qui précède, il suffit, pour obtenir
ces résultats, de vérifier les résultats analogues pour N, ce qui est
immédiat.

Les espaces vectoriels dont il s'agit ici sont en général de dimension
infinie si F n'est pas compacte ; on ne peut donc espérer établir entre
eux de relations de dualité tout à fait satisfaisantes à moins d'y introduire

des topologies convenables ; c'est là un terrain sur lequel nous ne
nous engagerons pas. En revanche, si F est compacte, le recouvrement lt
est fini ; ce qui précède montre donc que tous les groupes d'homologie
de F sont alors de type fini, et s'annulent au-dessus d'une certaine
dimension ; sur JR, en particulier, tous ces groupes sont des espaces
vectoriels de dimension finie. On conclut alors de ce qui précède que la fonc-
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tion bilinéaire J a> met en dualité le groupe de de Rham de degré m et

le groupe d'homologie différentiable de dimension m à coefficients réels.
On peut compléter ces résultats au moyen des remarques suivantes,

que nous bornerons au cas compact, où toute chaîne est finie. Il est
immédiat que toute chaîne t à coefficients réels peut se mettre sous la forme
t £ iiti, où les t€ sont des chaînes à coefficients entiers et les |t sont

i
des nombres réels linéairement indépendants sur le corps Q des rationnels

; alors bt 0 entraîne bt{ 0 pour tout i, donc tout cycle réel
est combinaison linéaire de cycles entiers ; et, si un cycle entier t' est le
bord bt d'une chaîne réelle t, alors, en mettant t sous la forme ci-dessus,

on voit que l'un des Ç{, par exemple |1? doit être rationnel et qu'alors
on a tr 6(^ tx), donc qu'un multiple entier de t' est le bord d'un cycle
entier. Le groupe d'homologie entière de dimension m étant de type fini,
il est somme directe d'un groupe fini et d'un groupe abélien libre
engendré par des classes d'homologie entière en nombre fini ; soient tx,..., tr
des cycles entiers appartenant respectivement à ces classes ; d'après ce

qui précède, les classes d'homologie réelle de tx,..., tr forment alors
une base du groupe d'homologie réelle de dimension m considéré comme
espace vectoriel sur R ; et on peut identifier les formes linéaires sur ce
dernier groupe avec les homomorphismes dans R du groupe d'homologie
entière, une telle forme ou un tel homomorphisme étant complètement
déterminé par ses valeurs sur les classes des cycles t{.

Par une période d'une forme co, on entend son intégrale J co sur un
t

cycle entier t ; pour un choix déterminé des cycles tl9..., tr, on appelle
souvent «périodes fondamentales» de o les intégrales de a> sur les tt.
On voit donc qu'il revient au même de se donner, soit la forme linéaire
J co sur le groupe d'homologie réelle de F, soit l'homomorphisme J co

t t
du groupe d'homologie entière de V dans R, soit les périodes fondamentales

de co. On a donc retrouvé les «théorèmes de de Rham» sous leur
forme classique :

Sur une variété différerUiable contacte F, il existe des formes fermées
dont les périodes fondamentales sont arbitrairement données; toute forme
fermée dont les périodes fondamentales sont nulles est homologue à 0 sur F.

Quant au «troisième théorème de de Rham», une partie en est
contenue dans le résultat de la fin du § 2, d'après lequel le «cup-product»
des cocycles de N correspond au produit extérieur des formes sur F.
Pour passer de là à l'énoncé classique du même théorème, il faut se

servir de la dualité de Poincaré établie par le nombre d'intersection
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entre les cycles réels de dimensions m et n — m, ou encore (ce qui au
fond revient au même) passer au produit de la variété par elle-même,
puis à la diagonale dans ce produit. Je n'insisterai pas sur ces questions
déjà classiques ; mais il ne sera pas superflu de faire apparaître une
conséquence importante de nos résultats, qui d'habitude se déduit du
troisième théorème de de Rham. Bornons-nous toujours au cas compact ;

considérons une forme co sur V dont toutes les périodes sont entières ;

soit S un cocycle de N correspondant à co, cocycle qui est bien déterminé

à un cobord arbitraire près. Alors (Z, S) est entier pour tout
cycle entier Z. Mais le groupe des cycles entiers de N est le sous-groupe
du groupe des chaînes entières déterminé par les conditions dZ 0,
donc toute chaîne entière dont un multiple est un cycle est elle-même

un cycle ; d'après la théorie des diviseurs élémentaires, le groupe des

chaînes entières est donc somme directe du groupe des cycles entiers et
d'un autre groupe, de sorte qu'on peut étendre au groupe des chaînes

tout homomorphisme donné sur le groupe des cycles. Comme tout homo-
morphisme du groupe des chaînes entières dans le groupe additif des

entiers peut s'écrire sous la forme Z -> (Z, 30), où So est une cochaîne
entière, on voit qu'il existe une cochaîne entière 30 telle que (Z, 30)

(Z, S) pour tout cycle entier Z, donc aussi pour tout cycle réel Z,
II s'ensuit que 30 — S est le cobord d'une cochaîne réelle, donc que
5*0 est, aussi bien que S, un cocycle correspondant à co. Par suite, pour
qu'une forme co corresponde à un cocycle 3 à coefficients entiers, il faut et

il suffit que toutes ses périodes soient des entiers. De là et du résultat final
du § 2, on conclut que, si <o et m' sont à périodes entières, il en est de même
de leur produit extérieur œ A co'. Bien entendu, on peut obtenir aussi ce
même résultat en passant au produit de F par elle-même et en se servant
du théorème de Kunneth.

§ 4. La dualité de Poincaré

Tout ce que nous avons fait jusqu'ici repose en réalité sur une seule

propriété du recouvrement U : c'est que les Uj sont homologiquement
triviaux, c'est-à-dire ont l'homologie d'un espace réduit à un point.
Nous nous sommes servis, il est vrai, des rétractions <pj, mais seulement

pour obtenir un exposé à la fois plus élémentaire et plus élégant grâce
à la possibilité de définir explicitement les opérateurs / et P. L'exposé
ci-dessus renferme donc, du moins pour l'homologie singulière, une
démonstration du théorème de Leray d'après lequel, si un recouvrement IX

d'un espace X est tel que les Uj soient homologiquement triviaux,
l'homologie de X est la même que celle du nerf N de XI.
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En revanche, puisque tout complexe simplicial admet un recouvrement

simple, il est évident que l'existence d'un tel recouvrement
n'entraîne pas le théorème de dualité de Poincaré. Pour obtenir ce théorème
sur une variété au moyen du recouvrement U, il faut mettre en œuvre
une propriété des Uj qui n'est pas encore intervenue, à savoir que leur
homologie modulo leur frontière est triviale dans toutes les dimensions
sauf la dimension n de F. Ce n'est pas là une propriété «élémentaire»
sauf en ce qui concerne les formes différentielles ; aussi nous bornerons-
nous à celles-ci, et par conséquent à la dualité de Poincaré à coefficients
réels. Pour les formes, la propriété en question des Uj n'est autre que le
résultat suivant, qui est bien connu et facile à démontrer élémentaire-
ment :

Soit co une forme différentielle à support compact contenu dans une partie
ouverte convexe U de Rn. Alors, pour que œ soit la différentielle drj d'une
forme r\ à support compact contenu dans U, il faut et il suffit qu'on ait
dco 0 si co est de degré <n, et qu'on ait J co 0 si co est de degré n.

Comme les ensembles Uj formés au moyen de notre recouvrement
simple U de F sont différentiablement isomorphes à des parties ouvertes
convexes de Rn, le résultat ci-dessus leur est applicable.

On supposera F orientable ; dans le cas contraire, il faudrait se servir
de formes «de deuxième espèce» au sens de de Rham, c'est-à-dire à

«coefficients locaux» qui sont les «réels tordus»; cela ne fait aucune
difficulté mais entraîne quelques complications de langage qu'il vaut
mieux éviter ici puisqu'il ne s'agit que de résultats bien connus par
ailleurs. On supposera donc tous les Uj orientés d'une manière cohérente

au moyen d'une orientation de F choisie une fois pour toutes ; c'est sur
les Uj ainsi orientés qu'on intégrera les formes différentielles de degré n
à supports contenus dans ces ensembles.

Par un élément différentiel de bidegré (m, p) on entendra un système
0 (QH) de formes de degré m respectivement attachées aux suites H
de p + 1 éléments de / telles que | H \ EN, 0H étant pour tout H
une forme à support compact contenu dans U^H^; l'élément 0 sera dit
fini si les 0H sont nuls sauf un nombre fini d'entre eux. On pose d0
(d6H) ; c'est là un élément de bidegré (m + 1, p). Si 0 (0H) est un
élément de bidegré (n, p), on désignera par J(9 la chaîne Z (zH)
de N définie par zH J 6H f 0H. On a d2 0, et $d0 0

v ulHl
si 0 est de bidegré (n — 1, p). Pour que l'élément 0 de bidegré (m, p)
soit de la forme d0r, où 0r est de bidegré (m — 1,2?), il faut et il suffit
que d0 =0 si m<n, et que J0 O si m —n,
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Si 0 (##) (6%o est un élément de bidegré (m, p), on
définira pour p>0 un élément dO (77^ t x) de bidegré (m, p — 1)

au moyen de la formule

où la sommation est étendue aux valeurs de /j, & pour lesquelles on a
| *o • • • V-1^V * * • **>-i1 e ^ ' ces va^eurs son^ en nombre fini, et chaque
terme du second membre est une forme à support compact contenu dans

^h0 t _i|> donc cette formule définit bien un élément d&, qui est fini
si 0 est fini. De même, si 0 (0J est de bidegré (m, 0), on posera
dO £ 0k ; d& est alors une forme sur F, à support compact si 0 est

k
fini. On a d2 0 ; et 3 est permutable avec d et J.

Si (/J désigne de nouveau une partition différentiable de l'unité
subordonnée à Xt, on désignera par L l'opérateur qui, à tout élément 0
(0H) de bidegré (m,p), fait correspondre l'élément L0 (£#,) de

bidegré (m, p + 1) défini par ÇlH =ft0H; de même, si 6 est une forme
de degré m sur F, on désignera par L d l'élément de bidegré (m, 0) défini
par Ld (ft0); on a alors d =dL6. Si 0 est un élément, on a
<9 dL0 + Ld0 ; donc d0 0 entraîne 0 dL<9.

Cela posé, la théorie du § 3 s'applique sans aucun changement si on
substitue les éléments différentiels de bidegré (n — m, p) aux éléments

singuliers de bidegré (m, p), les formes de degré n — m aux chaînes
de dimension m, et les opérateurs d, J, d aux opérateurs 6, 60, d. On

partira donc des relations

d 96>0 ; rf<9A 96>A+1 (0 < A < m — 1) ; J <9m Z (III)
où d est une forme de degré n — m, (9^ un élément différentiel de bidegré

(n — m + h, h) pour 0 ^ h ^ m, et Z une chaîne de JV de dimension

m à coefficients réels ; et on conclut, comme au § 3, que (III) établit
un isomorphisme entre le groupe de de Rham de F de degré n — m et
le groupe d'homologie de JV de dimension m à coefficients réels. Il n'y a
rien à changer si on se borne aux formes à support compact sur F et aux
éléments et chaînes finis. On pourrait aussi, naturellement, se servir
d'éléments alternés en modifiant d et L comme il a été dit au § 3.

Enfin, la dualité établie au § 3 entre coéléments différentiels et
éléments singuliers se transporte ici aux coéléments et éléments
différentiels. Si Q (coH) est un coélément différentiel de bidegré (m, p),
et 0 (0H) un élément différentiel de bidegré (n—m,p), et que
l'un d'eux soit fini, on posera (0,Q) £ J 0H/\oyH; on a alors

H U\H\
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(d@, û) (0, AQ), mais la formule de Stokes donne cette fois (d&, Q)
(—l)n~m(9, dû) si 0 est de bidegré (n — m — 1, p) et Q de bi-

degré (m, p), de sorte qu'on a, pour deux suites satisfaisant respeetive-
mnl m(m-l)

ment à (III) et à (I), J 6A <*> (—1) 2 (Z, S). La conclusion

est que les relations de dualité entre l'homologie et la cohomologie de N
se transportent aux groupes de de Rham de dimensions complémentaires
sur F. En particulier, si F est compacte, on voit que la forme bilinéaire

6/\co met en dualité les groupes de de Rham de degrés n — m et m,t
respectivement.

A titre d'exemple, considérons les groupes relatifs aux dimensions 0 et
n ; pour simplifier le langage, supposons F connexe, le cas général se

déduisant trivialement de là par formation de sommes directes ou de

produits, suivant qu'il s'agit des groupes à support compact ou non. Les

groupes de dimension 0 se déterminent immédiatement ; le groupe
d'homologie finie de F de dimension 0 est libre et engendré par la classe

d'un cycle réduit à un point ; si F n'est pas compacte, le groupe d'homologie

infinie de dimension 0 s'annule ; le groupe de de Rham de degré 0
à support quelconque est engendré par la forme 1, et le même groupe à

support compact s'annule si F n'est pas compacte. D'après les résultats
du présent §, on en conclut que le groupe de de Rham de degré n
à support compact est engendré par la classe d'une forme co0 de

degré n telle que J coQ 1, et que le groupe de de Rham de degré

n à support quelconque s'annule si F n'est pas compacte ; et, pour
qu'une forme co de degré n à support compact puisse s'écrire co drj,
avec yj à support compact, il faut et il suffit que J co 0. Au moyen des

résultats du § 3, on peut alors conclure qu'il existe un cycle singulier diffé-
rentiable t0 de dimension n tel que J co0 1 ; alors, si co est à support

compact, on a co ccd0 + drj avec c J co et t] à support compact,

donc f a) c, et par suite on a J co j* co quel que soit co à support
t0 t0 v

compact, ce qui entraîne que le support de t0 est F ; on peut conclure
aussi que tout cycle fini t tel que J co0 0 est le bord d'une chaîne

t
finie ; donc le groupe d'homologie de dimension n à support compact, à
coefficients réels, s'annule si F n'est pas compacte. Si on suppose F
compacte, on peut conclure de plus que le groupe d'homologie de F de dimension

n, à coefficients réels, est engendré par t0. Mais nous n'avons pas
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prouvé qu'on puisse prendre pour t0 un cycle entier, ni que ce cycle
engendre le groupe d'homologie de V de dimension n à coefficients
entiers ; pour cela il faudrait faire usage, soit d'une triangulation de V, soit
d'une théorie du degré d'application pour les applications différentiables,
soit de moyens topologiques plus puissants tels que ceux que fournit la
théorie de Cartan, qui contient bien entendu les résultats en question.

§ 5. Le théorème d'homotopie
Comme on Ta remarqué, le fait que le nerf N de lt a même homologie

que V dépend seulement des propriétés homologiques des ensembles Uj.
Si on tient compte du fait qu'ils sont homotopiquement triviaux, on
obtient un résultat beaucoup plus précis ; c'est que N a même type d'homotopie

que F. Il s'ensuit que N peut être substitué à V dans tout problème
qui ne dépend que du type d'homotopie, et par exemple dans la plupart
des questions concernant les espaces fibres de base V ; dans de telles
circonstances, le nerf d'un recouvrement simple de V peut donc souvent
servir aux mêmes usages qu'une triangulation de V ; il semble qu'on ait
là un outil élémentaire très maniable dans l'étude des variétés. C'est ce

que montre aussi l'application qu'en a faite récemment G. de Rham à

l'étude des invariants dits de torsion 6) ; il est remarquable que ce ne sont
pas là des invariants du type d'homotopie. Il se peut donc que les nerfs
des recouvrements simples aient des propriétés encore plus précises que
celle qui va être indiquée maintenant.

Le résultat qui va suivre est de nature purement topologique. Pour
l'énoncer, rappelons qu'on dit qu'un espace B a la 'propriété d'extension
si toute application continue dans B d'une partie fermée X d'un espace
normal A peut être prolongée à une application continue de A dans B.

Soit alors lt (Ui)i€j un recouvrement localement fini d'un espace
E par des ouverts Î7t ; soit N son nerf. On dira que U est topologiquement
simple si, pour tout J€N, l'ensemble Uj fll E^ possède la
propriété d'extension.

Notre théorème s'énonce alors comme suit7) : si E est un espace tel que
E x E x [0, 1] soit normal, et si U est un recouvrement topologiquement
simple de E,le nerf N de lt a même type d'homotopie que E.

La démonstration s'appuyera sur le lemme suivant :

6) loc. cit., note 2.
7) Dans le travail déjà cité (note 2), de Rham reproduit une partie de la démonstration

qui suit, réduite à ce qui suffit au cas particulier qu'il a en vue. Un résultat apparenté au
nôtre a été publié par K. Borsuk pour les espaces de dimension finie (On the imbedding
of Systems of compacta in simplicial complexes, Fund. Math. 35 (1948) p. 217);
les démonstrations n'ont, semble-t-il, rien de commun.
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Lemme. Soit E un espace tel que E xE x [0, 1] soit normal Soit (X{)i€l
une famille localement finie de parties fermées de E ; soit N son nerf; pour
JeN, soit Xj =.fljXf. Soit (Uj)j€N une famille de parties de E telle

que, pour tout J&N, Uj ait la propriété d'extension et contienne Xj9 et

qu'on ait Ujc Ujr, chaque fois que Jz> Jf, JEN, J'ÇN. Alors il
existe une application continue F(x, y,t) de S* (X{ xX{ x [0, 1]) dans E
telle que, pour tout JtN, x€Xj et y€Xj entraîne F(x,y,t)€Uj et

F(xy x,t) x quel que soit t, F(x, y, 0) x, et F(x, y, 1) y.

Pour toute partie N' de N, posons Y(N') U (Xj X Xj X [0, 1]) ;

considérons toutes les applications continues F' d'ensembles Y(Nf)
dans E qui satisfont, là où elles sont définies, à toutes les conditions du
lemme; on les ordonnera en disant que Ff)>F" si Y(Nf) z> Y(N")
et si F' coïncide avec F" sur Y(N"). En tenant compte du fait que (X{)
est localement finie, et que par suite tout x € E a un voisinage qui ne
rencontre qu'un nombre fini des Xj, on voit immédiatement qu'on peut
appliquer auxF' ainsi ordonnées le théorème de Zorn. Soit donc F' une telle
application maximale c'est-à-dire non prolongeable, définie sur Y(N').
Supposons qu'il existe J € N tel que Xj x Xj x [0,1] ne soit pas contenu dans

Y(Nl ; parmi les Jf EN en nombre fini qui contiennent J, prenons-en un
qui ait la même propriété et qui ait le plus grand nombre possible
d'éléments ; en remplaçant J par celui-ci, on voit qu'on peut supposer de plus
que Xj, x XJf x [0, 1] c Y (N' pour tout Jf =£J tel que J' 3 J. Comme

Xj xXj X [0, 1] est une partie fermée de E x E x[0, 1], c'est un
espace normal ; les points (x, y,t) de cet espace qui satisfont à x y,
à £=0 et à £ 1 en forment des parties fermées ; son intersection
avec Y (N' est fermée aussi en raison du caractère localement fini de la
famille (X{) ; il s'ensuit qu'il y a une application continue O(x, y,t) de

Xj x Xj x [0, 1] dans Uj qui coïncide avec F' sur l'intersection de cet
ensemble avec Y(N') et qui satisfasse à O(x, x, t) x, O(x,y,0) x,
G(x, y, 1) y. Montrons que la fonction qui coïncide avec Ff sur
Y(N') et avec G sur Xj xXj x[0, 1] a toutes les propriétés énoncées

dans le lemme, contrairement à l'hypothèse que F' n'est pas prolongeable.
Le seul point à vérifier est que, si J1 €N et si x et y sont dans Xj n XJt,
G(x, y,t) est dans UJf ; c'est évident si J'cJ, puisqu'alors UJf 3 Uj ;

dans le cas contraire, posons J" J U J' ; on aura J" ^ J et J" € N,
donc, en vertu de l'hypothèse faite sur J\Xjn xXjn x [0, 1] c Y(N'),
donc Ff(x,y,t)EUj,,czUj,, d'où la conclusion annoncée puisque G

coïncide avec F' en (x,y,t). Donc, quel que soit JZN, on a
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Xj X Xj x [0, 1] c Y (Nr), et en particulier ItxItX[0,l]cr (N')
pour tout i € / ; F' est donc la fonction F qu'il s'agissait de construire.

Corollaire. Les hypothèses étant celles du lemme, soient f, /' deux
applications continues d'un espace A dans E, telles que, quel que soit u€A, il
y ait un i€l pour lequel f(u) EXt et f (u) € Xt. Alors f etf sont homo-

topes.
En effet, F (f(u), /' (u), t) est une homotopie joignant / à /'.

Nous pouvons passer maintenant à la démonstration de notre théorème.
Soit d'abord U (Ut) n'importe quel recouvrement localement fini
d'un espace normal E par des ouverts Ut ; alors il y a une partition (/t)
de l'unité subordonnée à U; posons, pour pGE, f(p) (ft(p)) ; / est
une application continue de E dans le nerf N de U, réalisé géométriquement

conformément aux définitions rappelées à la fin du § 1. Si p€E,
et si J est l'ensemble des i € / tels que p€Ut, f(p) est dans le simplexe

Zj de N ; si donc (f[) est une autre partition de l'unité subordonnée à

U, le segment de droite joignant f(p) et ff(p) est contenu dans ZJy
donc dans N ; par suite, l'application p -> (1 — t)f(p) + tf'(p) est une
homotopie joignant / à /' ; la classe d'homotopie de / est donc
complètement déterminée par la donnée de lt.

Supposons maintenant que les Uj fl C7t, pour JEN, aient tous
leurs groupes d'homotopie nuls ; autrement dit, toute application
continue dans l'un des Uj de la frontière d'un simplexe de dimension m
peut se prolonger à tout le simplexe ; pour m 1, cela veut dire que Uj
est connexe par arcs. Pour tout JEN, soit e, le centre de gravité de

Uj. Considérons toutes les suites croissantes JoaJ1c: • • • aJm
d'éléments tous distincts de N ; pour une telle suite, soit U' (Jo,..., Jm) le

simplexe de sommets eJo,..., eJm ; N est la réunion de tous ces sim-
plexes, qui en forment la subdivision barycentrique. On va définir par
récurrence une application continue g de N dans E telle que
g(£f(Jo,...,Jm))(zUjo pour toute suite J0,...,Jm. On prendra
9(ej) quelconque dans Uj pour tout J€N. Supposons g définie sur les

simplexes de la subdivision barycentrique de N de dimension ^ m — 1 ;

alors g est définie sur la frontière du simplexe 2Jf(J0j..., Jm), qui est
la réunion des simplexes U^ Ef (Jo,..., J^-i, Jp+i, • • •, Jm) pour
0 ^ [a, ^m. D'après l'hypothèse de récurrence, on a g(£o) (zUj <zUj
et g{E'll) dUjQ pour 1 < ii < m ; donc on peut prolonger g à une
application de Zf(J0,..., Jm) dans UJq. Si d'ailleurs g' est une autre
application de N dans E satisfaisant à la même condition, on peut, par
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une récurrence tout à fait analogue, construire une homotopie joignant
g à g' ; la classe d'homotopie de g est donc bien déterminée par la condition

qu'on s'est imposée.

Montrons que, dans ces conditions, f o g est une application de N
dans N homotope à l'application identique. Soit en effet Ft la réunion
des images par g de tous les simplexes Z1 (Jo,..., Jm) pour lesquels
i € Jo ; comme ces simplexes sont en nombre fini, Ft est une partie
compacte de Ut. Pour chaque i, soit U^ une partie ouverte de Ut contenant
F{, telle que U^ c U{, et que les U^ forment encore un recouvrement
de E ; puisque le choix de la partition (ft) subordonnée à U est sans
influence sur la classe d'homotopie de /, on peut la supposer choisie de

telle sorte que ft > 0 sur Fi et ft =0 en dehors de U[, pour tout i € /.
Soit x (x{) un point de N ; choisissons un i tel que x{ ma,xi€l(xi) ;

alors x est dans un simplexe de la subdivision barycentrique de N ayant
un sommet en et, et on a donc g (x) € F{, d'où /, (g (x)) > 0. Pour tout i € /
et tout x — (x{)£N, posons ç>t(#) min[xiJfi(g(x))]; les tp{ sont des

fonctions continues > 0 sur N, et on a <Pi(x) 0 si xi 0, c'est-à-dire si

x n'appartient pas à 8t4,; de plus, d'après ce qu'on vient de montrer, il y a

pour tout x£N un i tel que <pi(x)>0. Il s'ensuit que tp £ (p{ est
i

une fonction continue partout >0 sur N, et par suite que les At (pjq>

forment sur N une partition de l'unité subordonnée au recouvrement
(8tt) ; si donc on pose h (x) {h4(x))9 h est une application de JV" dans N.
Si, pour x€N, J est l'ensemble des i€/ tels que hi(x)>0, on aura,
pour tout i€J, xt>0 et fi(g(x))>0; alors A(#) est dans UJ} et a; et
f(g(x)) sont tous deux dans 8tj9 de sorte que les segments de droite
qui joignent h(x) & x d'une part et à f(g(x)) d'autre part sont contenus
dans N ; comme tout à l'heure on conclut de là que h est homotope à

l'application identique d'une part, et à f o g d'autre part.
Enfin, soit pEE, et soit J l'ensemble des i£l tels que fi{p)>0;

on aura donc pSU^ pour tout i£J; on aura f(p)€Zj, donc f(p)
appartiendra à un des simplexes de la subdivision barycentrique de Zj ;

mais ce sont là, avec les notations employées plus haut, les simplexes
£' (Jo,... ,Jm) avec JmczJ; si alors on prend i€J0, on aura
g (f(p)) € JFt. ; donc p et g (f(p)) sont tous deux dans TJ\. Posons X{ T3\ ;

soit Nf le nerf de la famille (X4) ; on aura Nr czN. Si de plus on suppose
maintenant que les Uj ont la propriété d'extension, c'est-à-dire que Xt

est topologiquement simple, on voit que les familles (X<)<€/ et (Uj)j€Nt
satisfont à toutes les conditions du lemme de tout à l'heure ; d'après le

corollaire de ce lemme, on peut donc affirmer que g o f est homotope à
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l'application identique de E pourvu que E X E x [0, 1] soit normal. Le
théorème annoncé est donc complètement démontré.

Supposons en particulier que l'un des Ut soit recouvert par la réunion
des autres, donc qu'on ait Ut U Utj, et que Ut X Vt x [0, 1] soit

normal. Alors les Ut) non vides forment un recouvrement topologique-
ment simple de Ut, dont le nerf a donc même type d'homotopie que Ut ;

ce type est trivial, puisque Ut a la propriété d'extension et est donc
contractile. Si on omet Ut dans le recouvrement XI, ce qui reste est

encore un recouvrement Uf de E en vertu de l'hypothèse ; le nerf Nr de

W se déduit de N en en retranchant 8tt; et la frontière de 8tt n'est
autre que le nerf du recouvrement (UtJ)j;zfl de Ut, donc est un
complexe fini homotopiquement trivial (c'est-à-dire contractile) ; comme on
le voit facilement, cela équivaut à dire qu'il existe une rétraction de

l'adhérence 8tt de 8tt sur sa frontière 8ttïïNr, donc une rétraction de

N sur N', et même qu'il existe une telle rétraction dépendant continûment

d'un paramètre, c'est-à-dire une application continue F(x,t) de

Nx [0, 1] dans N telle que F(x, 0) x et F(x, l)eN' pour tout
xEN, F(x,t) x quel que soit t pour tout x€Nf, et F(x,t)€Stt
quel que soit t pour tout x€Stt. En particulier, de Rham a montré
(loc. cit., note 6) que, si on se borne à considérer la famille des recouvrements

simples qu'il appelle « convexes » d'une variété différentiable
compacte, on peut toujours passer de l'un à l'autre de ces recouvrements par
insertions et omissions successives d'ensembles superflus ; le résultat que
nous venons de démontrer indique, d'une manière un peu plus précise

que ne le faisait de Rham, l'effet de ces opérations sur les nerfs des

recouvrements correspondants.

(Reçu le 22 novembre 1951.)
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