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Sur les théorémes de de Rham
Par AxprE WEIL (Chicago)

La démonstration actuellement la plus satisfaisante des célébres théo-
rémes de de Rham est celle qui résulte de la théorie de I’homologie de
H. Cartan, qui les renferme, ainsi que le théoréme de dualité de Poin-
caré, comme cas particuliers. Mais cette théorie n’a fait ’objet que de
publications partielles sous forme de notes de cours miméographiées?).
A son origine se trouvent d’ailleurs, d’une part un mémoire de Leray,
et d’autre part justement une démonstration des théorémes de de Rham
que je communiquai a Cartan en 1947. A défaut d’autre utilité, celle-ci
peut encore servir d’introduction aux méthodes de Cartan; et c’est
avant tout & ce titre que je la présente ici, avec des améliorations dont
je dois quelques-unes & G. de Rham et 4 N. Hamilton; j’y joins une
démonstration (datant aussi de 1947) du fait que tout espace possédant
un recouvrement d’un certain type (dit «topologiquement simple») a
méme type d’homotopie que le nerf de ce recouvrement.

§ 1. Construction d’un recouvrement simple

Soit (X,);; une famille de parties d’un espace £, & ensemble d’in-
dices I quelconque ; on dit, comme on sait, que cette famille est locale-
ment finie si tout point de £ a un voisinage qui ne rencontre qu’un
nombre fini des X, ; si & est localement compact, il revient au méme de
dire que toute partie compacte de E ne rencontre quun nombre fini des
X,. Nous conviendrons une fois pour toutes, si (X;),.; est une famille
localement finie et si J I, de poser X =N X,; l'ensemble N des

parties non vides J de I telles que X; ne soit pas vide s’appelle le nerf
de la famille (X,); si JEN, J est finie.

L’objet de notre étude sera une variété différentiable V de dimen-
sion », «paracompacte» c’est-a-dire dont toute composante connexe est
dénombrable & l'infini; il revient au méme de dire que ¥ admet un re-
couvrement localement fini par des «cartes», c’est-a-dire par des parties
ouvertes munies chacune d’un isomorphisme différentiable sur une partie

1) Cours de Harvard, 1948; Séminaire de I'E. N. 8., Paris 1948—1949 et 1950—1951.
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ouverte de R”. Le mot «différentiable» sera toujours pris au sens «indé-
finiment différentiable» (ou «de classe C*»). Cela n’est pas vraiment
une restriction si on tient compte du théoréme de Whitney d’apreés lequel
toute variété de classe C», pour » > 1, admet un homéomorphisme de
classe O sur une variété de classe C*; d’ailleurs la méthode qui va étre
exposée s’applique aussi aux variétés de classe C™ pour n = 2.

Notre outil principal sera un recouvrement U = (U,);c; localement
Jint de V par des ensembles ouverts U, relativement compacts, qui devra
avoir de plus la propriété suivante : chaque ensemble non vide U, = N U,
posséde une «rétraction différentiable» c’est-a-dire une application diffé-
rentiable ¢, de U; X R dans U, telle que ¢,(z,?) = x chaque fois que
z€U; et que ¢t > 1, et que ¢, soit constante sur U, X ]—oo, 0]. Un tel
recouvrement, muni de la donnée des rétractions ¢;, sera dit différen-
tiablement simple. ’

Pour construire un tel recouvrement, on peut, comme le fait de Rham2),
se servir d’'un ds?, mais il est peut-étre plus élémentaire de procéder
comme suit. Partons d’un recouvrement localement fini de V par des
cartes ouvertes relativement compactes V,; a V, sera donc attaché un
isomorphisme différentiable de V, sur une partie ouverte de R® au moyen
de «coordonnées locales» ¢, ..., ", On peut alors, pour chaque 1,
définir des ouverts W,, W/ et une fonction f; différentiable sur V de
maniére que les W, forment encore un recouvrement de V, que l'on ait
W,cW; et W,cV,, et quef; ait la valeur 1 sur W, et 0 en dehors de
W;. Posons f,, =f;, et désignons par f;, la fonction égale & f,#" dans
V,et & 0 en dehors de V;; I’ensemble des fonctions f,,; pour 0 <j < =,
et pour toutes les valeurs de i, détermine une application de V dans
Pespace R“4), ou1 A est ’ensemble des couples (z, §) ; on sait qu’on désigne
ainsi l’espace vectoriel des applications de 4 dans R qui prennent la
valeur 0 partout sauf en un nombre fini d’éléments de 4. De plus, I'ap-
plication (f;;) de V dans R4’ détermine sur toute partie ouverte relative-
ment compacte Z de V un isomorphisme différentiable de Z sur une
sous-variété d’un sous-espace vectoriel de dimension finie de R“). On
pourra donc simplifier le langage en identifiant V avec son image dans
R, Sur R“), nous mettrons une structure d’espace métrique («pré-

hilbertien») au moyen de la distance d(x, y) =[X (2;; — ¥; j)2]§; elle
i”‘

%) Cf. @. de Rham, Complexes & automorphismes et homéomorphie différen-
tiable, Ann. Gren. 2 (1950) p. 581. Ce dernier exposé, comme ma démonstration de 1947,
reste limité au cas compact; mais c’est de Rham qui m’a indiqué la possibilité d’étendre
I'une et 'autre méthode aux variétés non compactes.
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fait de tout sous-espace de dimension finie de R4’ un espace euclidien.
D’aprés ce qui précéde, la distance de W, 4 V — W/ est > 1, puisque
la coordonnée z;, a la valeur 1 sur le premier ensemble et 0 sur le second.

Pour tout x€V, désignons par T, la variété linéaire tangente & V
en z, et par P, la projection orthogonale de R“) sur 7',, considérée
comme application linéaire de R“) sur T, ; et désignons par U(x, r)
Iintersection de V avec la boule ouverte de centre x et de rayon r; si
z€W, et r<1, onaura U(x,r)c W}; donc U(x,r) est relativement
compact pourvu que r<1.

Soit x€W,; soit E un espace vectoriel de dimension finie contenant
W;. En prenant dans E des coordonnées orthogonales d’origine z, les n
premiers vecteurs coordonnés étant choisis dans 7', on voit que x pos-
séde un voisinage ouvert U contenu dans W) et ayant les propriétés
suivantes: (a) quel que soit y€ U, P, induit sur U un isomorphisme
différentiable (c’est-a-dire une application biunivoque, partout de rang =)
de U sur son image U, = P,(U) dans 7T',; (b) quels que soient y, z,, 2,
dans U, on a d(z,,2,)< 2d(Py(2,), Py(25)); (c) quel que soit z,€ U,
d(zy, 2)> est une fonction convexe de P,(z) dans U,. En effet, cette
derniére condition signifie que la matrice des dérivées secondes de
d (24, 2)? par rapport aux coordonnées de P,(z) dans 7', est la matrice
d’une forme quadratique définie positive ; or, dés que U est assez petit,
cette matrice est aussi voisine qu’on veut de sa valeur pour y =2z, =2
= gz, valeur qui n’est autre que la matrice unité. Soit alors K une partie
compacte de V; recouvrons K par des ensembles U, en nombre fini
ayant les propriétés (a), (b), (¢); et prenons r(K)>0 et <1 tel que
U(z, r(K)) soit contenu dans I'un des U, quel que soit z€ K ; ainsi
U(z,r(K)) aura les propriétés (a), (b), (c) quel que soit € K. De plus,
pour x€ K et r = r(K), la projection P, [U(x,r)] de U(z,r) sur 7,
contiendra tous les points de 7', & distance < /2 de x; en effet, si 2’ est
un point frontiére de cette projection, 2’ sera point limite de points
2, = P.(z,) avec 2,€U(z,r); U(x,r) étant relativement compact
sur V, on pourra remplacer les z, par une suite partielle ayant une limite
z sur V. Comme P, est un isomorphisme différentiable de U (x, r) sur son
image, tout point intérieur de U (x, r) se projette sur un point intérieur
de P,[U(x,r)]; donc z est un point frontiére de U(x,r), et on a
d(z,z) =r, dou d(z,2z')>r/2 en vertu de (b). Montrons maintenant
que, si €K, O<r <r(K)/4, et yeU(x,r), P, induit sur U(y, )
un isomorphisme différentiable de U(y,r) sur une partie convexe de
T,.. Comme on a U(y,r)c U(z,2r), le seul point & démontrer est la
convexité de P, [U(y,r)]. Or c’est 14 ’ensemble des points 2’ = P,(z)
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pour z€U(z,r(K)) et d(y,z)?<r?. Considérons deux tels points
2, = P,(2)), 2, = P,(2,); ona,pour h =1 et h =2, d(z,, z)<2r,
donc d(z;, x)<2r, donc aussi d(2/, x)<2r <r(K)/2 quel que soit 2’
sur le segment de droite qui joint z; et 2 dans 7', ; ce segment est donc
contenu dans P, [U(x,r(K))]; comme d(y,z2)? est une fonction con-
vexe de 2z’ = P,(z) dans ce dernier ensemble, ¢’est une fonction con-
vexe de 2’ sur le segment qui joint z; et 2} ; la valeur de cette fonction
étant <r? aux extrémités du segment, elle I’est aussi sur tout le segment ;
celui-ci est donc bien contenu dans P, [U (y, r)].

Cela étant, choisissons pour chaque i des points x,, de W, en nombre
fini, tels que les ensembles U,y = U(x;), r(W;)/4) forment un re-
couvrement de W, ; je dis que les U, forment un recouvrement différen-
tiablement simple de V. Comme on a z;3€ W, et r(W))/4<1, on a
U,yc W;, donc les U,, sont relativement compacts et forment un re-
couvrement localement fini de V. Soit z un point commun & des en-
sembles U,,, U, a Ug,,..., en nombre nécessairement fini; soit r le
plus grand des nombres r(W;),r(W;),r(W;),...; supposons par
exemple qu’on ait 7 = r(W,). Alors chacun des ensembles U,,, U, e

., est de la forme U(y,r'), avec yeU(x,r') et ' <r(W))/4; ils
sont tous contenus dans U (z,7(W;)), et, comme z€W;, P, induit
sur U(z, r(W})) un isomorphisme différentiable dans lequel chacun des
Uix» Uju, ... a pour image une partie ouverte convexe de 7', d’aprés
ce qu’on a démontré plus haut ; P, induit donc aussi sur leur intersection
un isomorphisme différentiable sur une partie ouverte convexe U’ de 7,.
Celle-ci admet la rétraction (2',t) -2 + A(t)(?' — x), ou A(¢) est une
fonction différentiable sur R, égale & 0 pour ¢ <0 et & 1 pour ¢t >1;
en vertu de I'isomorphisme induit par P,, cette rétraction se transporte
a P'intersection des U,,, U, us - ce qui achéve la démonstration.

Nous n’avons fait usage en réalité que du fait que, lorsque V est
plongée dans R“), toute partie compacte de V est de courbure bornée,
ou encore que tout point de ¥ a un voisinage qui peut se représenter
paramétriquement au moyen de fonctions de classe C* dont les dérivées
d’ordre 1 ont leurs nombres dérivés bornés. Déja pour une variété V de
classe (!, il ne semble pas aisé de construire un recouvrement simple
sans définir d’abord sur V une structure de classe C? au moyen du théo-
réme de Whitney déja cité ; et le probléme de I'existence d’un recouvre-
ment simple reste ouvert en ce qui concerne les variétés de classe C°;
bien entendu, pour une telle variété, on n’imposerait plus aux rétrac-
tions ¢; que d’étre continues. En revanche, tout complexe simplicial
localement fini admet trivialement un tel recouvrement, formé des
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étoiles ouvertes de ses sommets; en vue de ce qui va suivre, rappelons
brievement quelques définitions relatives a ces complexes. Par un com-
plexe simplicial abstrait, on entend un ensemble N de parties finies non
vides d’un ensemble quelconque I, tel que, si J€N, toute partie non
vide de J appartienne aussi & N ; N est dit localement fini (ou star-fini)
si tout <€ n’appartient au plus qu’a un nombre fini d’éléments de N.
Nous conviendrons d’identifier le complexe abstrait N avec sa «réalisa-
tion géométrique», c’est-a-dire avec I'ensemble des points = = (x;);;
de l'espace RY) tels que Y #; =1, z, >0 pour tout 7, et que I'en-
1€l

semble des ¢€/ tels que z; = 0 appartienne a N . Sans restreindre la
généralité, on peut supposer que I est la réunion des ensembles de N
(sinon on remplacerait I par cette réunion); pour chaque 7, soit e; le
point de R® dont la coordonnée d’indice ¢ est 1 et les autres sont nulles ;
les éléments ¢ de I, ou aussi les points ¢; qui leur correspondent, seront
appelés les sommets de N. A tout J€N, on fera correspondre, d’une
part le simplexe 2;, ensemble des points = (x,) de N tels que z; =0
pour ¢ n’appartenant pas a J, d’autre part I’étoile ouverte S¢,, ensemble
des points = = (x,) de N tels que z,>0 pour ¢€J; si J = {1}, 2, se
réduit au sommet e, de N, et St;, qu’'on écrira St,, est dite I'étoile ouverte
de e;; pour JEN, ona St; =0 8t,. Si J a m éléments, donc si 2;
est de dimension m — 1, le centre de gravité (ou barycentre) de 2,
sera le point e; = (z;), avec xz,=1/m pour ¢€J, x; =0 pour j n’ap-
partenant pas a J. Si la fonction A(f) est définie comme plus haut,
(x,t) —>e; + A(t)(x —e;) est une rétraction de Si;; les S¢; forment
done bien un recouvrement simple de N.

§ 2. Les formes différentielles

Par une forme différentielle, on entendra toujours une telle forme dont
les coefficients, lorsqu’on exprime localement la forme au moyen de
coordonnées locales, soient des fonctions de classe C* de ces coordonnées.
Une forme o est dite fermée si dw = 0; elle est dite homologue & 0,
sur la variété ou elle est définie, s8’il existe sur cette variété une forme 7
. telle que w = dy).

Soit U une partie ouverte d’une variété différentiable ¥, munie d’une
rétraction ¢ ; soit @ une forme de degré m sur U ; considérons sur U X R
la forme w[p(x,t)], image réciproque de w par . Si, au voisinage
d’'un point de U, x,,..., z, sont des coordonnées locales, on pourra
écrire :
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olp(x,t)]=2X f(i)(x,t)dx,-l/\ o ANz + X g (2, t)diAdz; A .. Ndz,,
(%) (¢)]

ou A désigne le produit extérieur. Dans le méme voisinage, considérons
la forme Iw de degré m — 1 définie par

1
ILo =X (g, t)dt)dze, A...Ndx,;, .
(H o

On vérifie immédiatement que cet opérateur est compatible avec les
changements de coordonnées locales et peut donc étre considéré comme
défini globalement dans U; si m =0, ona I w =0. Au moyen de
Iexpression locale de I, on vérifie aussitét que 'on a w = Idw + dl w
si m>0; si m=0, ona w=Idw + w(a) sia est la valeur constante
de ¢(x,t) pour t << 0. Il s’ensuit que, si m>0, dw = 0 entraine
w=dwo.

Supposons maintenant donné, une fois pour toutes, un recouvrement
différentiablement simple U = (U,);; de V; soit N le nerf de I[. Si
H = (i5,%,...,1,) est une suite quelconque d’éléments (distincts ou
non) de I, on désignera par | H| l'’ensemble des ¢, distincts. Par un
coélément différentiel de bidegré (m, p), on entendra un systéme Q = (wg)
= (@;,;,...i;;) de formes de degré m, respectivement attachées aux
suites H = (i4%,...%,) de p -+ 1 éléments de I telles que | H |€N,
wg étant pour tout H une forme définie dans U g, =0<9<pUiv . Le co-

élément Q2 sera dit fime §’il ne comprend qu'un nombre fini de formes
wg # 0; il sera dit alferné si wg = w; ;, est une fonction alternée
des indices ¢,,...,1,, ce qui implique que cette forme est nulle si les ¢,
ne sont pas tous distincts.

Si 2 = (wgy) est un coélément de bidegré (m, p), d2 = (dwyg) est
un coélément de bidegré (m + 1, p). Comme par hypothése on s’est
donné une rétraction ¢; de U, pour tout J €N, on peut définir comme
ci-dessus, pour tout J €N, un opérateur I, tel que w =dl;w pour
toute forme fermée w de degré m >0, définie dans U,. Alors, si 2 =
(wg) est un coélément de bidegré (m,p), 12 = (I;5, wy) est un co-
élément de bidegré (m — 1,p); si m>0, ona 2 =1d2 +dIQ2, et
par suite df2 =0 entraine Q =dIQ. Si m =0, 2 = (fy) est un
systéme de fonctions; comme les Uy sont rétractiles et par suite con-
nexes, les f; seront des constantes si df2 = 0; done, en ce cas, 2 n’est
pas autre chose qu'un systéme (£5) de nombres réels respectivement
attachés aux suites H de p + 1 éléments de I telles que |H |€EN;
c’est 13 ce qu’on appelle, comme on sait, une cochaine de N (& coefficients
réels), finie ou alternée si 2 est fini ou est alterné. Il est clair que les
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opérateurs d, I transforment les coéléments finis en coéléments finis,
les coéléments alternés en coéléments alternés.

Soit encore £ = (wg) = (w;,  ;,) un coélément de bidegré (m, p);
on appellera cobord de 2, et on désignera par 62, le coélément 62 =
(Miy...ip4,) de bidegré (m,p + 1) défini par

p+1

nio...’ip+1 = Eo(——]‘)vwio-..iv—l yt1...9p41
Y=

ou il doit étre entendu que chacun des termes du second membre est &
remplacer par la forme qu’il induit sur U ; ;. , ce qui a un sens
puisque ce dernier ensemble est 'intersection des ensembles o ces termes
sont définis. De méme, si w est une forme de degré m définie sur V, et si
o induit sur U, la forme w;, on posera dw = (w;); Jw est donc un
coélément alterné de bidegré (m, 0), fini si w est & support compact et
dans ce cas seulement. 1l est clair que 6 est permutable avec d et trans-
forme tout coélément fini en un coélément fini et tout coélément alterné
en un coélément alterné ; et on vérifie immédiatement que 6% = 0.
Pour définir le dernier opérateur dont nous avons besoin, donnons-
nous une fois pour toutes une partition différentiable de I'unité sub-
ordonnée au recouvrement ll; on entend par la, comme on sait, une
famille (f;);c; de fonctions différentiables et >0 sur V, telles que
2 [:=1 et que le support de f; (c’est-a-dire I’adhérence de 1’ensemble
1€l
ou f;>0) soit contenu dans U, pour tout <€7. Cela posé, soient
JEN, 1€l et J' =JU{i}; si o est une forme définie dans U,., on
conviendra de désigner par f;w la forme définie dans U; qui est égale
a f,o dans U;, et 4 0dans U,NC(U;,); il est immédiat en effet que
c’est bien 13 une forme (& coefficients différentiables) dans U, ; si J' n’ap-
partient pas & N, c’est-a-dire si U, = g, cette définition entraine
que f;w = 0. Avec cette convention, si 2 =(wg) est un coélément de
bidegré (m,p) avec p>0, nous poserons®) KQ = ({; ., ), avec

Cio...ip_l = kawkio...ip_l )
kel
ou les termes du second membre doivent étre entendus comme il vient
d’étre dit. De méme, si 2 = (w,;) est un coélément de bidegré (m, 0),

on désignera par K la forme w =} f,w,, ou on doit entendre par
kel

Jr o la forme définie sur V, égale & f,w, dans U, et & 0 en dehors de

3) Je dois 'opérateur K & N. Hamilton. Ma démonstration primitive se servait, au lieu
de K, du théoréme de prolongement de Whitney.
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U,; o est donc une forme définie sur V. Si 2 est de bidegré (m, p) et
est fini, K est fini si p>0, et est une forme & support compact si
p =0; siQestalternéet p>0, K2 est alterné. On vérifie immédiate-
ment qu'on a 2 = KdR2 + K2, donc que 62 =0 entraine Q =
0KQ, pour p > 0; si w est une forme, on a w = Kdw, et dw =0
entraine donc w = 0.

Dans ces conditions, considérons toutes les suites (w,2,, 2,,...,
0, 1, =) ou w est une forme de degré m >0 sur V, £, un coélément
de bidegré (m —h —1,h) pour 0 <h <m —1, et 5 un coélément
de bidegré (0, m), satisfaisant aux relations

b =dQy; 60, =d2,,, O<h<m—2); 02,,=8. (I

S’il en est ainsi, on a ddéR2, =0 pour 0 <h<m—1, d5 =0 et
05 =0, et ddw =0 dou dowo = Kddw = 0. Donc o appartient &
I’espace vectoriel §,, (sur R) des formes fermées sur V; 2, appartient
a Pespace vectoriel §,, , des coéléments de bidegré (m —h — 1, k) qui
satisfont & dd62 = 0; quant & &, puisqu’'on a d= = 0, on peut, comme
on a vu, le considérer comme une cochaine de N; comme 65 =0,
c’est un cocycle ; done =& appartient a I’espace vectoriel des cocycles de
dimension m de N (& coefficients réels). Supposons £, donné dans §,, ;,
et h<m — 1; alorslarelation 02, =dQ,,, estsatisfaite pour 2,, , =
16Q,. Supposons que £, soit dans la somme $),, , des sous-espaces de
&m, » Tespectivement déterminés par les conditions d2 = 0 et 62 = 0;
on aura donc 2, =X+ Y, dX =0, 6Y =0; comme X est de
bidegré (m —h —1,k), et qona m —h —1>0, dX = 0 entraine
X =dIX; on aura donc 682, = 6d(/X), dou dZ=0 -en posant
Z=0,,—0lX; commeona 2,,=06lIX)+2Z, dZ =0, Q,,, est
dans §,, ;,,. Exactement de méme, on voit que, si Q,,, est donné dans
m. ne1> la relation 62, =dQ,,, est satisfaite par Q, = KdQ,,,, puis
que 2,.,€¢9H, 5., entraine 2,¢$, ,. Il s’ensuit que la relation
02, = df,,, détermine un isomorphisme entre les espaces vectoriels
;}m, h/gm, h et %m. h+1/$m, h+1-

De méme, si 2, est donné dans §, ,, on satisfera & dw =d2, en
prenant w = KdQ,; si £, est dans §, o, on aura 2, =X + 7,
dX =0, Y =0, dot Y =4d§(KY), et dw =dY = d6d(KY), dol,
en posant § = KY, 6(w —dy) =0, donc w =dn. Réciproquement,
si w est donnée dans §,,, on satisfera & dow = dQ,en prenant 2, = I dw ;
si o =dn, on aura ddn =df2,, donc, en posant X = Q, — o7y,
2y =X+ 01, dX =0, donc 2y¢9H, . En désignant par §,, 'espace
vectoriel des formes de degré m homologues & 0 sur V, on voit donc que
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la relation dw = df2, détermine un isomorphisme entre le «groupe de
de Rham» &,./Dm €t &im,0/Dm,o- Enfin,si Q,  , =X+47Y, dX =0,
0Y =0, on a &5 =0X, et X est une cochaine de N, donc = est un
cobord de N ; réciproquement, si = est donné et 65 = 0, on satisfait
a 02, ,=2E enprenant 2, , =K ZE; si E =0X, ou X est une
cochaine c’est-a-dire un coélément satisfaisant & dX = 0, on aura
2,,=X+4+Y, dX =0, 6Y =0. Donc la relation 62, , = 5 dé-
termine un isomorphisme entre &, ,—1/9m m-1 €t le groupe de cohomo-
logie H™(N) de dimension m de N a coefficients réels. En définitive,
(I) établit donc un isomorphisme entre le groupe de de Rham {,./9,, de V,
et le groupe H™(N); et cet i.somorphisme est canoniquement déterminé par
la seule donnée du recouvrement simple .

On voit de plus que, si on se donne la forme fermée w, on peut prendre
Q,=I6)""w, E=46(0)™w; réciproquement, si on se donne le cocycle
E = (&, ...in), on pourra prendre Q, = K(dK)"-"*-1Z, o =K(dK)"E,
c’est-a-dire:

w:(_ 1) 2 . E . Eio...imf’imdfio/\"'/\dfim..l ¢

Pour m = 0, on substituera aux relations (I) 1'unique relation
dw = E, d’ou on déduit trivialement les mémes résultats.

Il n’y a rien & changer & ce qui précéde si on désire considérer exclusi-
vement des coéléments et cochaines alternés. Il n’y a rien & y changer
si, au lieu des formes, on désire considérer les «courants» (ce sont les
formes dont les coefficients, quand on les exprime au moyen de coordon-
nées locales, sont des distributions au lieu d’étre des fonctions différen-
tiables). Enfin, il n’y a rien & y changer non plus si on désire considérer
exclusivement les coéléments et cochaines finis et les formes & support
compact ; en ce cas, bien entendu, on n’aboutit pas en général aux
mémes groupes que précédemment, mais on obtient un isomorphisme
entre les groupes de de Rham & support compact et les groupes de coho-
mologie de N relatifs aux cochaines finies.

Enfin, supposons qu’on se soit donné deux formes fermées w, ' de de-
grés respectifs m, r, et qu’on ait formé deux suites (w, £2,,...,92,,_;, &)
et (o', 2,,...,8Q,_,, E') satisfaisant & (I). On peut alors former, sans
nouvelle intégration, une suite (o”,Q2g,..., 2., ,, ") satisfaisant
a (I) et commengant par le produit extérieur w” = wAw’. Posons en
effet Q, = (0} ), E=(&, i), e de méme pour £}, E'; on
pourra alors prendre :
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m+k = (5 imw,k 1m+k) (O

fed/4 /
= = (E’io. .im fim. " .'im+7) H

c’est-a-dire E” = Z v E’. Si on s’était servi exclusivement de coélé-
ments alternés, les formules ci-dessus seraient & modifier ; la maniére la
plus simple de le faire est d’ordonner une fois pour toutes les €1 et de
convenir que les 2, ., et E” sont alternés et ont leurs composantes
données par les formules ci-dessus pour %,<¢;<-::: <t,,,; cela donne
le «cup-product» de Whitney.

& = (wb A O<h
<k

§ 3. Les cycles singuliers

Les hypothéses et notations restant les mémes qu’au § 2, nous pas-
sons maintenant & I’étude des cycles singuliers différentiables.

Dans un espace affine, considérons m + 1 points a,,...,a,; soit K
le plus petit ensemble convexe contenant les a,, et soit L la variété

linéaire qui porte K ; L est ’ensemble des points 2 T, pour 2x,=1,
et K est I’ensemble des points de cette forme pour lesquels )_',' z,=1 et

z, 2 0 pour tout u. Si L est de dimension m, K estun «slmplexe eucli-
dien» de dimension m, de sommets a,,...,a,. En particulier, si e, est
le vecteur dans R™+! dont la u-iéme composante est 1 et les autres sont
nulles, on notera 3™ le simplexe de sommets e,,...,e,, c’est-a-dire
I'ensemble des z = (z,) de R™+! tels que Z' x, =1 et x, >0 pour
tout u.

Par un simplexe singulier différentiable de dimension m dans ¥V, on
entendra, suivant S. Eilenberg 4), la restriction & 3™ d’une application
différentiable f dans ¥V d’un voisinage de }™; f(2'™) sera dit le support
de ce simplexe. Si de plus K et L sont définis comme ci-dessus a partir
de points a,,...,a,, et que f soit une application différentiable dans
V d’un voisinage de K (dans l’espace ambiant ou seulement dans L),
Papplication (xz,,..., z,) = f( Z restreinte & 3™, est un sim-

plexe singulier différentiable qui sera noté [f; ag...a,]; il est dégénéré
si L est de dimension <m.

Le mot «différentiable» sera en général sous-entendu dans ce qui suit.
Par une chaine (ou plus explicitement une chaine singuliére différen-

4) S. Eilenberg, Singular homology in differentiable manifolds, Ann. Math. 48
(1947) p. 670.
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tiable) de dimension m dans V, & coefficients dans un groupe abélien G,
on entendra toute expression de la forme ¢ = Y c,s,, ou les ¢, sont

dans ¢ et les s, sont des simplexes singuliers de dimension m dans V dont
les supports forment une famille localement finie; une telle expression
sera dite réduite si tous les s, sont distincts et tous les ¢, sont #0.
Toute chaine posséde une expression réduite et une seule ; le support |t |
d’une chaine ¢ sera la réunion des supports des simplexes figurant dans
Pexpression réduite de ¢; on dira que ¢ est contenue dans une partie U
de Vsi |t|cU. Une chaine est dite finie si son expression réduite est
une somme finie, ou, ce qui revient au méme, si son support est compact.
Si t =3 c,8, est une chaine finie, on posera deg (f) = 3 ¢,.

e

e
Si s=[f;a...a,] et qu'on pose $, =[f; G- .y 18y .. .0y,

m

la chaine finie bs = 3’ (—1)*s, s’appelle le bord de s; cet opérateur
p=90
g’étend aux chaines par linéarité; une chaine de bord nul s’appelle un

cycle; on a b? =0, ce qui permet de définir des groupes d’homologie
de ¥V au moyen-de b et du groupe des chaines (ou encore du groupe des
chaines finies) & coefficients dans G. Si ¢ est de dimension 0, ona bf = 0,
mais on posera byt = deg (t) sit est fini; on a bybt = 0 sit est de di-
mension 1. Plus généralement, on a deg (bt) = deg (¢) sit est de dimen-
sion m paire >0, et deg (bt) = 0 en tout autre cas.

Soit s un simplexe singulier défini par une application différentiable f
dans ¥V d’un voisinage W de 3™ ; si w est une forme de degré m dans V,
son image réciproque w [f(z)] par f est une forme de degré m dans W,
dont l'intégrale sur }'™ est par définition I'intégrale j'co de w sur s;

8

cette définition s’étend par linéarité aux chaines finies & coefficients
réels, et méme a toutes les chaines & coefficients réels si @ est & support

compact. On a la formule de Stokes (dw = fw, valable chaque fois
t bt
que ¢ est une chaine finie ou que w est & support compact. Au moyen

de fw, qui est une forme bilinéaire en ¢ et w, les chaines finies sont
¢

mises en dualité avec les formes, et les chaines avec les formes & support
compact, ce qui permet de transposer aux chaines, par dualité, les
opérations et les résultats du § 2; mais nous allons en donner un exposé
indépendant, de maniére & ne pas avoir & supposer G = R.

Soit d’abord U une partie ouverte de ¥V munie d’une rétraction diffé-
rentiable ¢ ; soit p la valeur constante de ¢(x,t) pour ¢ < 0. On dé-
signera par s, le simplexe dégénéré [f; aa...a] de dimension m, ol
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f(@) = p, ou, ce qui revient au méme, le simplexe défini par la restric-
tion & Y™ de I'application constante de R™+*! sur p; ona b S = Spm

si m est pair et >0, bs,, =0 si m est impair ou 0. Considérons un
simplexe singulier s =[f; a,...a,] dans U, les a, étant des points
d’un espace affine E ; désignons par o’ aL les points (a,,0) et (a,, 1)
de E xR. Par définition, f est une application différentiable dans U
d’un voisinage du plus petit ensemble convexe K contenant les a, ;
alors, si on pose f'(x,t) = ¢@[f(x),t], f est une application différen-
tiable dans U d’un voisinage de K X R. Posons, dans ces conditions :

m
/. ,0 0
PSZE(’_I)”[.f y g ... 0,0 [L m]+8m+1’
w=0
et étendons cet opérateur par linéarité aux chaines finies dans U. Un

calcul facile donne bPs + Pbs = s pour m>0 et bPs + Pbs = s — s,
pour m =0, donc, pour toute chaine finie de dimension m, ¢ =bPt 4
Pbtsi m>0 et t =bPt + (byt)s, si m = 0. Donc bt = 0 entraine
t =bPt si m>0, et byt =0 entraine ¢ =bPt si m = 0.

Par un U-simplexe, on entendra un simplexe singulier contenu dans
I'un au moins des ensembles U, du recouvrement U ; par une U-chaine,
on entendra une chaine dont tous les simplexes sont des U-simplexes.
L’application de notre méthode exige qu’on se restreigne aux U-chaines ;
d’aprés un théoréme de S. Eilenberg ®), cela ne change rien aux groupes
d’homologie ; rappelons les points principaux de sa démonstration. Soit
8 =[f;a...a,] un simplexe singulier. Posons I, ={0,1,...,u}
pour 0 <pu<<m; et,si I ={u,,...,u, est une partie quelconque

k

de I,,, posons a; = X (1/k)a,,. Alors on appelle subdivision barycen-
K=1

trique de s la chaine finie
g8 = 2 8,”. [f; GW(IO) e e e aw(Im)] ,
mw

ol la somme est étendue & toutes les permutations = de 7,,, et ol ¢, =
-+ 1 suivant que 7 est paire ou impaire ; on étend I’opérateur aux chaines
par linéarité; on vérifie qu'on a bo = ob. D’autre part, Eilenberg
(loc. cit., note 5, p. 429) définit un autre opérateur g, analogue mais
dont I’expression explicite serait plus compliquée, tel que bp + b=
6—1; ps est une chaine finie de dimension m - 1, somme de termes de
la forme + [f; by...b,,,], olt chacun des b, est I'un des a;. Cela posé,
si 8 est un simplexe singulier, on peut trouver un entier » assez grand
pour que o”s soit une U-chaine; soit »(s) le plus petit entier ayant
cette propriété; soit v I'opérateur défini sur les simplexes singuliers par
5) S. Eilenberg, Singular homology theory, Ann. Math. 45 (1944) p. 407.

130



18 =9p(l4+0+---+0"¥ s,

et étendu aux chaines par linéarité. Alors, si on pose comme plus haut
bs = X (—1)*s,, on vérifie immédiatement qu’on a

K v (8)—1
(bt+1b)s=("" —1)s— X (—1F X gols,,
© J=v(8y)

ce qui montre que (1 + bt + 7 b)s est une U-chaine finie, de support
contenu dans celui de s. Donc, si ¢ est une chaine, ¢ = (1 4 b7t + 7b)¢
est une U-chaine, finie si ¢ est finie. Si £ est un cycle, on a t =¢ + brt,
donc ¢ est un cycle et ¢ est homologue & ¢. De plus, la formule ci-dessus
montre que (bt + tb)s =0 si »(s) = 0, c’est-a-dire si s est un U-sim-
plexe, donec ¢t =1 sit est une U-chaine. Supposons qu’une U-chaine ¢’
soit le bord d’une chaine ¢; on aura ¢ = bt, et bt==5bt + btrbt =1’
=1', donc ¢’ est aussi le bord d'une U-chaine. Il s’ensuit bien que la
restriction aux -chaines ne change rien aux groupes d’homologie ;
désormais nous ne considérerons que celles-la, et pour abréger nous
dirons «chaine» au lieu de «1[-chaine».

Par un élément singulier de bidegré (m, p), on entendra un systéme
T = (tg) = (¢4,...;,) de chaines finies {5 de dimension m respectivement
attachées aux suites H = (4,...1¢,) de p 4 1 éléments de I telles que
| H| €N, ty étant contenue dans U g, pour tout H. L’élément T' sera
dit fini si les ¢ sont tous nuls & ’exception d’un nombre fini d’entre eux,
alterné si ¢; _; est une fonction alternée de ses indices.

Si T = (ty) est un élément de bidegré (m, p), bT = (bTy) est un
élément de bidegré (m — 1, p), finisi 7' est fini, alterné si 7" est alterné ;
ona b2 =0. Sideplus m =0, b,T = (byty) fait correspondre & tout
H un élément b,t; du groupe de coefficients G ; c’est 1a ce qu’on appelle
une chaine de N & coefficients dans @. Si m =1, on a b,b7 = 0.

Le recouvrement Ul étant simple, on peut, au moyen des rétractions
@, attachées a tout J € N, définir dans les U, des opérateurs P; ayant
les propriétés décrites plus haut, et tels en particulier que, si ¢ est une
chaine finie de dimension m>0 dans U,, bt =0 entraine ¢ = bPs.
Alors, si T = (tz) est un élément de bidegré (m, p), on posera PT =
(B ty); c’est un élément de bidegré (m 4 1,p); si m>0, bT =0
entraine 7' =bPT; si m =0, b7 = 0 entraine T = bPT ; en géné-
ral, on a T = bPT + PbT si m>0; PT est fini si T est fini, alterné
si T est alterné.

D’autre part, si T = (¢;,  ;,) est un élément de bidegré (m, p), et
si p>0, nous définirons un élément 07 = (u ) de bidegré
(m, p — 1) au moyen de la formule

'l.«o. . .'ip._l
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uio-..ip..1 :::”,Ek (-- l)“ tio...ip..lk“p,...ip_l ’

ol la sommation doit étre étendue aux valeurs de u, k pour lesquelles

| %o+ -8u_1k%,...9,_; |€N; ces valeurs sont en nombre fini, et tous les

termes du second membre sont des chaines finies dans U); ;  , donc

ces formules définissent bien un élément 97', qui est fini si 7' est fini.

De méme, si 7' = (¢;) est un élément de bidegré (m,0), on posera

0T = }3't,; 9T est alors une chaine, finie si 7" est fini. On a 92 = 0, et
k

0 est permutable avec b. D’autre part, on peut aussi, dans la formule
qui définit 07", interpréter 7' comme une chaine de NV, les ¢; étant alors
des éléments de G ; cette formule, ou la sommation est étendue aux
mémes valeurs de u, ¥ que tout & I’heure, définit alors 07" comme chaine
de N ; les groupes d’homologie de N sont ceux qui sont définis au moyen
des chaines de N et de l'opérateur 9, ou encore au moyen des chaines
finies de NV et de d. Dans ces conditions, @ est permutable avec b,.

On va définir un opérateur L tel que 97 = 0 entraine 7' = oLT.
Pour cela, convenons de choisir une fois pour toutes, pour tout U-sim-
plexe s, 'un des U, dans lesquels il est contenu ; soit U, ,, cet ensemble.
Soit T = () un élément de bidegré (m, p); soit ¢ty = 3 c§s, l'ex-

e

pression réduite de ¢5. Si H = (1,...1,), on posera tH = (895...%,).
Alors on définira un élément LT = (vg,) de bidegré (m,p + 1) en
posant v;; = ¥ c§}s, chaque fois que |iH |€N ; cela veut dire que
/(sg)=i
la somme est é%endue 4 toutes les valeurs de p telles que f(s,) =¢.
Puisque £ est une somme finie, v;5; en est une aussi; et chaque sim-
plexe s, figurant dans v;5 est contenu dans Uy, parce qu’il figure dans
ty, et dans U, parce que ¢ = f(s,), donc aussi dans U|;g ; LT est
donc bien un élément, fini si 7' est fini. De méme, si ¢ = Y c,8, est

Pexpression réduite d’'une U-chaine de dimension m, on (iéﬁnit, au

moyende v, = ¥ c,8,, un élément Lt = (v;) de bidegré (m, 0), fini
f(sg)=1

si ¢ est finie. Onoa, T =oLT 4 LoT si T est un élément, et ¢t = oLt

si ¢ est une chaine. Si donc 7' est un élément tel que 7' =0, on a

T =0LT.

Il n’est pas vrai que L7 soit alterné chaque fois que 7' est alterné. Si
on veut se servir exclusivement d’élément alternés, il faut substituer
4 @, L les opérateurs ', L' qui, avec les mémes notations que ci-dessus,
sont définis par les formules

a,T = (kz tk‘o...ip..‘) ’
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ol la sommation est étendue aux k tels que | kiy...%, ,|€EN, et

p+1
L'T= (;Eo ,(.Q)Eﬂ,‘(_ 1)"030...¢,,_1 iptr.n ipt1Se) -
On vérifie facilement qu’ils possédent des propriétés semblables a celles
de 2 et L lorsqu’on les applique a des éléments alternés et qu’ils trans-
forment ceux-ci en éléments alternés.
Considérons maintenant toutes les suites (¢, 7,,...,7T,,,Z), ou i
est une chaine de dimension m >0 de V, T, un élément de bidegré

(m —h,h) pour 0 < h <m, et Z une chaine de dimension m de N,
satisfaisant aux relations

t =0Ty; oI, =0T,, O<h<m—1); bT,=2. (II)
S’il en est ainsi, ona 497, =0 (0 <h <m —1), b,0T,, =0, bt =0
et 0Z = 0. Donc ¢t appartient au groupe €, des cycles singuliers diffé-
rentiables & coefficients dans G sur V, et Z au groupe des cycles de N
a coefficients dans G'; T, appartient au groupe G, , des éléments de
bidegré (m — h, h) qui satisfont & 97 = 0 pour h<m et & b,07T =0
pour b =m. Soit B,, le groupe des bords dans V, c¢’est-a-dire le groupe
des éléments de G, de la forme b¢'; soit B,, ,, pour 0 <<h <m, le
groupe des éléments de €, , de la forme bX 4 9Y, ol X, Y sont des
éléments de bidegrés respectifs (m —h + 1,h) et (m —h,h + 1). On
satisfera & la relation b7, =0T, , en prenant T, = PoT,,, si T,
est donné dans G, ,,,, et T, , = LbT, si T, est donné dans €, ,;
on satisfera & ¢ = 07, en prenant 7', = Lt si ¢ est donné dans ¢, ;
enfin il est clair qu’on peut former 7',, satisfaisant & b,7",, =Z si Z est
donné. Si 7T,€B,, ,, donc si T, =bX + 0Y, on aura, en posant
U=T,,—bY, oU =0, dotv U =9(LU) et T,,, =bY + 9(LU)
€B,, ry1; de méme,si T, =bY 4 0V, on aura bW = 0 en posant
W=T,—0Y, doi W =bPW puisque W est de bidegré (m —h, h) et
que m—h>0; onadonec 7T,=b(PW)4-0Y€B,, ,. Donc la relation
bT,=0T,,, détermine unisomorphismeentre €, ,/B,, , et €, ,.,/Bn rs1-
De méme, si ¢t =07, et Ty =0X +0Y, ona ¢t =>0(0X)€B,,; si
t =bt, et qu'on pose U =7T,—b(Lt'), ona U =0, donc U =0oLU,
et Ty=0(Lt')+0(LU)EB,,,. Si bT,=7Z et T,=0X+0Y, on
a Z=29(b,Y), donc Z est homologue &4 0; et,si Z=0Z' et b, T =2,
on aura, en posant X =7, — 07", b,X =0, donc X =bPX et
T,=0b(PX)+ 0T'€B,, ,. En définitive, on voit que les relations (II)
établissent un isomorphisme entre le groupe d’homologie singuliére diffé-
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rentiable §,,/B,, de V et le groupe d’homologie des chaines de N, pour la
dimension m et le groupe de coefficients G ; et cet isomorphisme est cano-
niquement déterminé par la donnée du recouvrement simple U .

Pour m = 0, on partira des relations ¢ = 07y, b,7, =Z, ou T, est
un élément de bidegré (0, 0), et on arrive au méme résultat par des
raisonnements analogues mais plus simples.

Il n’y a rien & changer & ce qui précéde si on veut considérer exclusive-
ment les éléments et chaines finis; on obtient ainsi un isomorphisme
entre les groupes d’homologie de ¥V et de N obtenus au moyen de chaines
finies. Il n’y a rien & y changer si on veut se servir de chaines de classe C¥,
c’est-a-dire dont les simplexes sont définis par des applications % fois
continument différentiables, k étant un entier quelconque ; en ce cas, il
suffit que les rétractions ¢, soient elles-mémes de classe C*; pour
k = 0, on voit qu'on obtient les mémes résultats au moyen de chaines
singuliéres continues, les ¢, étant alors seulement assujetties a étre
continues ; ce résultat s’applique en particulier au recouvrement simple
d’un complexe simplicial localement fini par les étoiles ouvertes des
sommets (voir § 1), et contient donc une démonstration de l'invariance
topologique des groupes d’homologie combinatoires d’un tel complexe,
qui d’ailleurs ne différe qu’en apparence de la démonstration classique.
Il n’y a rien & changer non plus & ce qui précéde si I'on veut se servir
exclusivement d’éléments alternés, et de chaines alternées de N, sauf
qu’il faut substituer o', L' & 9, L.

Si on prend G = R, les opérateurs qu’'on a défini sur les éléments
singuliers sont en dualité avec ceux qu’on a défini sur les coéléments
différentiels. Soient en effet Q = (wy) et T = (t5) un coélément dif-
férentiel et un élément singulier, tous deux de bidegré (m, p), dont l'un
soit fini ; on posera alors

(T;‘Q) ::2 _"wH ’
H tgy

et, 8’ils sont tous deux alternés :

ll)y (T’g)=21§wfl

7,0 =

ou 2" indique qu’on prend une fois seulement chaque combinaison
gy +-+,1, de p 4+ 1 éléments de I, rangés dans un ordre quelconque ;
c’est de (7', 2)' qu’il faut se servir dans la théorie alternée. La formule
de Stokes donne (b7, Q) = (7,dR2); et on vérifie facilement qu’on a
(0T, 2) = (T, 69Q), et de méme (0’7, Q) = (T, 6L2) si T, 2 sont alter-
nés ; de méme, si w est une forme de degré m sur V et T' un élément de
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bidegré (m, 0), et que w soit & support compact ou 7 fini, on a (7', dw)
= j w. Enfin, si T est un élément de bidegré (0, p), et & un coélément
orT

de bidegré (0, p) satisfaisant & d5 = 0 ou autrement dit une cochaine

de N, et si T ou £ est fini, on a (7, &) = (b, T, E), ou dans le second

membre figure le produit scalaire des chaines et cochaines de N défini

par (Z,E) = XY zyz &y pour Z = (zy), 5 = (£y); ces formules sont &
H

modifier d'une maniére évidente dans la théorie alternée.

Considérons alors deux suites (w,2,,...,Q,,_,,5) et ¢,T,,...,T,,,Z),
satisfaisant respectivement aux relations (I) du § 2 et aux relations (II)
ci-dessus ; supposons w & support compact et les Q, et £ finis, ou ¢, les

T, et Z finis. Au moyen des formules ci-dessus, on obtient immédiatement :

4

fo =(T,dQ) =+ + = (Tps, d2p) = (T, 8@,) = (2, 5) (I
t

11 s’ensuit que les groupes de de Rham et les groupes d’homologie singu-

liére & coefficients réels de V ont entre eux les mémes relations de dualité

que les groupes de cohomologie et d’homologie de N. En particulier, il

existe toujours une forme fermée w sur V telle que j' o soit une fonction
t

linéaire arbitrairement donnée sur le groupe d’homologie singuliére finie

de V, ou autrement dit soit égale & une fonction linéaire L(f) donnée

sur ’espace vectoriel des cycles finis de V, nulle sur les bords de chaines

finies. D’autre part, si une forme fermée w & support compact sur V est

telle que j w = 0 pour tout cycle ¢, fini ou non, de V, elle est de la
t

forme ® =dn, ol 7 est & support compact; de méme, si une forme
fermée w est telle que j ®w = 0 pour tout cycle fini ¢, elle est de la
t

forme o = dn. En effet, d’aprés ce qui précéde, il suffit, pour obtenir
ces résultats, de vérifier les résultats analogues pour N, ce qui est im-
médiat.

Les espaces vectoriels dont il s’agit ici sont en général de dimension
infinie si V n’est pas compacte; on ne peut donc espérer établir entre
eux de relations de dualité tout a fait satisfaisantes & moins d’y intro-
duire des topologies convenables ; c’est 14 un terrain sur lequel nous ne
nous engagerons pas. En revanche, si V est compacte, le recouvrement [
est fini; ce qui précéde montre donc que tous les groupes d’homologie
de V sont alors de type fini, et s’annulent au-dessus d’une certaine
dimension ; sur R, en particulier, tous ces groupes sont des espaces vec-
toriels de dimension finie. On conclut alors de ce qui précéde que la fone-
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tion bilinéaire j o met en dualité le groupe de de Rham de degré m et
t

le groupe d’homologie différentiable de dimension m & coefficients réels.

On peut compléter ces résultats au moyen des remarques suivantes,
que nous bornerons au cas compact, ou toute chaine est finie. Il est im-
médiat que toute chaine ¢ & coefficients réels peut se mettre sous la forme
t =2 &t,, oules ¢, sont des chaines & coefficients entiers et les £; sont

t

des nombres réels linéairement indépendants sur le corps Q des ration-
nels; alors bt = 0 entraine b¢; = 0 pour tout 7, donc tout cycle réel
est combinaison linéaire de cycles entiers ; et, si un cycle entier ¢’ est le
bord bt d’une chaine réelle ¢, alors, en mettant ¢ sous la forme ci-dessus,
on voit que I'un des &;, par exemple &,, doit étre rationnel et qu’alors
ona t' =b(§t;), donc qu'un multiple entier de ¢’ est le bord d’un cycle
entier. Le groupe d’homologie entiére de dimension m étant de type fini,
il est somme directe d’'un groupe fini et d’'un groupe abélien libre en-
gendré par des classes d’homologie entiére en nombre fini ; soient ¢,,...,¢,
des cycles entiers appartenant respectivement & ces classes; d’aprés ce
qui précéde, les classes d’homologie réelle de ¢,,...,¢, forment alors
une base du groupe d’homologie réelle de dimension m considéré comme
espace vectoriel sur R; et on peut identifier les formes linéaires sur ce
dernier groupe avec les homomorphismes dans R du groupe d’homologie
entiére, une telle forme ou un tel homomorphisme étant complétement
déterminé par ses valeurs sur les classes des cycles ¢;.

Par une période d’une forme w, on entend son intégrale f @ sur un

t

cycle entier ¢ ; pour un choix déterminé des cycles ¢,,...,¢,, on appelle
souvent «périodes fondamentales» de w les intégrales de w sur les ¢;.
On voit done qu’il revient au méme de se donner, soit la forme linéaire
f @ sur le groupe d’homologie réelle de V, soit I’homomorphisme fo
2 t

du groupe d’homologie entiére de V dans R, soit les périodes fondamen-
tales de w. On a donc retrouvé les «théorémes de de Rham» sous leur
forme classique :

Sur une variété différentiable compacte V, il existe des formes fermées
dont les périodes fondamentales sont arbitrairement données; toute forme
fermée dont les périodes fondamentales sont nulles est homologue & 0 sur V.

Quant au «troisiéme théoréme de de Rham», une partie en est con-
tenue dans le résultat de la fin du § 2, d’aprés lequel le «cup-product»
des cocycles de N correspond au produit extérieur des formes sur V.
Pour passer de 1a & I’énoncé classique du méme théoréme, il faut se
servir de la dualité de Poincaré établie par le nombre d’intersection
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entre les cycles réels de dimensions m et m — m, ou encore (ce qui au
fond revient au méme) passer au produit de la variété par elle-méme,
puis & la diagonale dans ce produit. Je n’insisterai pas sur ces questions
déja classiques ; mais il ne sera pas superflu de faire apparaitre une con-
séquence importante de nos résultats, qui d’habitude se déduit du troi-
siéme théoréme de de Rham. Bornons-nous toujours au cas compact ;
considérons une forme w sur V dont toutes les périodes sont entiéres ;
soit & un cocycle de N correspondant & w, cocycle qui est bien déter-
miné & un cobord arbitraire prés. Alors (Z, Z) est entier pour tout
cycle entier Z. Mais le groupe des cycles entiers de N est le sous-groupe
du groupe des chaines entiéres déterminé par les conditions 0Z = 0,
donc toute chaine entiére dont un multiple est un cycle est elle-méme
un cycle; d’aprés la théorie des diviseurs élémentaires, le groupe des
chaines entiéres est donc somme directe du groupe des cycles entiers et
d’un autre groupe, de sorte qu’on peut étendre au groupe des chaines
tout homomorphisme donné sur le groupe des cycles. Comme tout homo-
morphisme du groupe des chaines entiéres dans le groupe additif des
entiers peut s’écrire sous la forme Z — (Z, 5,), ou &, est une cochaine
entiére, on voit qu’il existe une cochaine entiére Z, telle que (Z, &)
= (Z, E) pour tout cycle entier Z, donc aussi pour tout cycle réel Z.
11 s’ensuit que E, — & est le cobord d’'une cochaine réelle, donc que
), est, aussi bien que =, un cocycle correspondant & . Par suite, pour
qu'une forme w corresponde @ un cocycle = a coefficients entiers, «l faut et
ol suffit que toutes ses périodes soient des entiers. De 1a et du résultat final
du § 2, on conclut que, st w et w’ sont & périodes entiéres, il en est de méme
de leur produit extérieur o A w'. Bien entendu, on peut obtenir aussi ce
méme résultat en passant au produit de ¥V par elle-méme et en se servant
du théoréme de Kiinneth.

§ 4. La dualité de Poincaré

Tout ce que nous avons fait jusqu’ici repose en réalité sur une seule
propriété du recouvrement U : c’est que les U, sont homologiquement
triviaux, c’est-a-dire ont I’homologie d’un espace réduit & un point.
Nous nous sommes servis, il est vrai, des rétractions ¢;, mais seulement
pour obtenir un exposé & la fois plus élémentaire et plus élégant grace
a la possibilité de définir explicitement les opérateurs I et P. L’exposé
ci-dessus renferme done, du moins pour ’homologie singuliére, une dé-
monstration da théoréme de Leray d’aprés lequel, si un recouvrement U
d’un espace X est tel que les U, soient homologiquement triviaux,
I’homologie de X est la méme que celle du nerf N de 1.
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En revanche, puisque tout complexe simplicial admet un recouvre-
ment simple, il est évident que l'existence d’un tel recouvrement n’en-
traine pas le théoréme de dualité de Poincaré. Pour obtenir ce théoréme
sur une variété au moyen du recouvrement 1, il faut mettre en ceuvre
une propriété des U, qui n’est pas encore intervenue, a savoir que leur
homologie modulo leur frontiére est triviale dans toutes les dimensions
sauf la dimension n de V. Ce n’est pas 14 une propriété «élémentaire»
sauf en ce qui concerne les formes différentielles ; aussi nous bornerons-
nous a celles-ci, et par conséquent & la dualité de Poincaré & coefficients
réels. Pour les formes, la propriété en question des U, n’est autre que le
résultat suivant, qui est bien connu et facile & démontrer élémentaire-
ment :

Soit w une forme différentielle a support compact contenu dans une partie
ouverte convexe U de R™. Alors, pour que w soit la différentielle dn d’une
forme n a support compact contenu dans U, il faut et il suffit qu’'on ait
do =0 8t westde degré <mn, et qu'on ait j'w =0 8t w est de degré n.

U

Comme les ensembles U, formés au moyen de notre recouvrement
simple U de V sont différentiablement isomorphes & des parties ouvertes
convexes de R”, le résultat ci-dessus leur est applicable.

On supposera V orientable ; dans le cas contraire, il faudrait se servir
de formes «de deuxiéme espéce» au sens de de Rham, c’est-a-dire a
«coefficients locaux» qui sont les «réels tordus»; cela ne fait aucune
difficulté mais entraine quelques complications de langage qu’il vaut
mieux éviter ici puisqu’il ne s’agit que de résultats bien connus par
ailleurs. On supposera donc tous les U; orientés d’une maniére cohérente
au moyen d’une orientation de V choisie une fois pour toutes; c’est sur
les U, ainsi orientés qu’on intégrera les formes différentielles de degré »
a supports contenus dans ces ensembles.

Par un élément différentiel de bidegré (m, p) on entendra un systéme
O = (0y) de formes de degré m respectivement attachées aux suites H
de p -+ 1 éléments de I telles que | H |€N, 0Oy étant pour tout H
une forme & support compact contenu dans U, g ; I'élément @ sera dit
fini si les 65 sont nuls sauf un nombre fini d’entre eux. On pose d@ =
(d0g) ; c’est 1a un élément de bidegré (m + 1,p). Si @ = (0g) est un
élément de bidegré (n,p), on désignera par ‘f © la chaine Z = (zg)
de N définie par zg5 = | 6y =t§ 0. Ona d>=0, et (dO =0

v 5|

si @ est de bidegré (n — 1, p). Pour que I'élément @ de bidegré (m, p)
soit de la forme d@’, o @' est de bidegré (m — 1, p), il faut et il suffit
que d@ =0 si m<n, et que (O =0 si m =mn.
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Si @ = (0g) = (0;,.. ;) est un élément de bidegré (m,p), on dé-
finira pour p>0 un élément 00 = (n, ) de bidegré (m,p —1)
au moyen de la formule

Nig.. ipoy = = (—1)0
n.k

ipy

Go. - ipor Kip...ip_1

ou la sommation est étendue aux valeurs de u, k pour lesquelles on a
| %o+ -%y_1ki, .. .5, ,|€N; ces valeurs sont en nombre fini, et chaque
terme du second membre est une forme a support compact contenu dans
Ui,...ip.|» done cette formule définit bien un élément 06, qui est fini
si © est fini. De méme, si O = (0,) est de bidegré (m, 0), on posera

00 = 3 0, ; 00 est alors une forme sur V, & support compact si @ est
k

fini. On a 92 = 0; et 0 est permutable avec d et j' :

Si (f;) désigne de nouveau une partition différentiable de 'unité sub-
ordonnée & U, on désignera par L I'opérateur qui, & tout élément @ =
(0y) de bidegré (m, p), fait correspondre l’élément LE = ({g) de
bidegré (m,p -+ 1) défini par {5 = f;0y; de méme, si 0 est une forme
de degré m sur V, on désignera par L0 I’élément de bidegré (m, 0) défini
par LO = (f,0); on a alors 6 =0dL60. Si @ est un élément, on a
© =0LO -+ Lo@; donc 0@ = 0 entraine @ = oL6O.

Cela posé, la théorie du § 3 s’applique sans aucun changement si on
substitue les éléments différentiels de bidegré (n — m, p) aux éléments
singuliers de bidegré (m, p), les formes de degré » — m aux chaines
de dimension m, et les opérateurs d, j' , 0 aux opérateurs b, b,, 9. On
partira donc des relations

0 =20,; dO,=00,, O<h<m-—1); (6,=27, (I1I)

ol 0 est une forme de degré » — m, @, un élément différentiel de bide-
gré (m —m -+ h,h) pour 0 < h < m, etZ une chaine de N de dimen-
sion m & coefficients réels ; et on conclut, comme au § 3, que (III) établit
un isomorphisme entre le groupe de de Rham de V de degré n —m et
le groupe d’homologie de N de dimension m & coefficients réels. Il n’y a
rien & changer si on se borne aux formes & support compact sur V et aux
éléments et chaines finis. On pourrait aussi, naturellement, se servir d’élé-
ments alternés en modifiant 0 et L comme il a été dit au § 3.

Enfin, la dualité établie au § 3 entre coéléments différentiels et élé-
ments singuliers se transporte ici aux coéléments et éléments diffé-
rentiels. Si 2 = (wy) est un coélément différentiel de bidegré (m, p),
et O = (05) un élément différentiel de bidegré (n — m, p), et que
I'un d’eux soit fini, on posera (©,Q) =) j g Awg; on a alors

H U
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(00, Q) = (0, 62), mais la formule de Stokes donne cette fois (d@, Q)
= (—1p-"(@,d2) si O est de bidegré (n —m — 1, p) et Q de bi-

degré (m, p), de sorte qu’on a, pour deux suites satisfaisant respective-
ad m(m—1)

ment & (IT1) et & (I), jB/\w = (———l)m * (2, E5). La conclusion
14

est que les relations de dualité entre I’homologie et la cohomologie de N
se transportent aux groupes de de Rham de dimensions complémentaires
sur V. En particulier, si V est compacte, on voit que la forme bilinéaire
§ 6 A @ met en dualité les groupes de de Rham de degrés n —m et m,
14

respectivement.

A titre d’exemple, considérons les groupes relatifs aux dimensions 0 et
n ; pour simplifier le langage, supposons V connexe, le cas général se
déduisant trivialement de la par formation de sommes directes ou de
produits, suivant qu’il s’agit des groupes & support compact ou non. Les
groupes de dimension 0 se déterminent immédiatement; le groupe
d’homologie finie de V de dimension 0 est libre et engendré par la classe
d’un cycle réduit & un point ; si ¥ n’est pas compacte, le groupe d’homo-
logie infinie de dimension 0 s’annule ; le groupe de de Rham de degré 0
a support quelconque est engendré par la forme 1, et le méme groupe a
support compact s’annule si V n’est pas compacte. D’aprés les résultats
du présent §, on en conclut que le groupe de de Rham de degré n
& support compact est engendré par la classe d’une forme w, de
degré n telle que j' wo, =1, et que le groupe de de Rham de degré

14

n & support quelconque s’annule si V n’est pas compacte; et, pour

qu'une forme « de degré » & support compact puisse s’écrire w = dn,

avec 7 & support compact, il faut et il suffit que j' o = 0. Au moyen des
v

résultats du § 3, on peut alors conclure qu’il existe un cycle singulier diffé-

rentiable ¢, de dimension n tel que j' wo = 1; alors, si w est & support
to
compact, on a w =cwy, + dn avec ¢ = j w et n & support compact,
v

done fw =c¢, et par suiteona [ = [ w quel que soit w & support
to ty 1 4
compact, ce qui entraine que le support de ¢, est ¥ ; on peut conclure

aussi que tout cycle fini ¢ tel que j wo = 0 est le bord d’une chaine
t

finie ; donc le groupe d’homologie de dimension »n & support compact, &
coefficients réels, s’annule si V n’est pas compacte. Si on suppose V com-
pacte, on peut conclure de plus que le groupe d’homologie de V de dimen-
sion n, & coefficients réels, est engendré par f,. Mais nous n’avons pas
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prouvé qu’on puisse prendre pour f, un cycle entier, ni que ce cycle
engendre le groupe d’homologie de V de dimension n & coefficients en-
tiers ; pour cela il faudrait faire usage, soit d’une triangulation de V, soit
d’une théorie du degré d’application pour les applications différentiables,
soit de moyens topologiques plus puissants tels que ceux que fournit la
théorie de Cartan, qui contient bien entendu les résultats en question.

§ 6. Le théoréme d’homotopie

Comme on I’a remarqué, le fait que le nerf N de i a méme homologie
que V dépend seulement des propriétés homologiques des ensembles U, .
Si on tient compte du fait qu’ils sont homotopiquement triviaux, on ob-
tient un résultat beaucoup plus précis ; c’est que N a méme type d’homo-
topie que V. Il s’ensuit que N peut étre substitué & V dans tout probléme
qui ne dépend que du type d’homotopie, et par exemple dans la plupart
des questions concernant les espaces fibrés de base V; dans de telles
circonstances, le nerf d’un recouvrement simple de ¥V peut done souvent
servir aux mémes usages qu’'une triangulation de V ; il semble qu’on ait
la un outil élémentaire trés maniable dans 1’étude des variétés. C’est ce
que montre aussi ’application qu’en a faite récemment G. de Rham &
I'étude des invariants dits de torsion ) ; il est remarquable que ce ne sont
pas 1& des invariants du type d’homotopie. Il se peut donc que les nerfs
des recouvrements simples aient des propriétés encore plus précises que
celle qui va étre indiquée maintenant.

Le résultat qui va suivre est de nature purement topologique. Pour
I'énoncer, rappelons qu’on dit qu’un espace B a la propriété d’extension
si toute application continue dans B d’une partie fermée X d’un espace
normal A4 peut étre prolongée & une application continue de 4 dans B.

Soit alors U = (U,);; un recouvrement localement fini d’un espace
E par des ouverts U, ; soit N son nerf. On dira que U est fopologiquement
simple si, pour tout J€EN, l'ensemble U, = 0 U; posséde la pro-
priété d’extension.

Notre théoréme s’énonce alors comme suit?) : si B est un espace tel que
EXxE x[0,1] soit normal, et si W est un recouvrement topologiquement
simple de E , le nerf N de W a méme type d’homotopie que E .

La démonstration s’appuyera sur le lemme suivant :

%) loc. cit., note 2.

7) Dans le travail déja cité (note 2), de Rham reproduit une partie de la démonstration
qui suit, réduite & ce qui suffit au cas particulier qu’il a en vue. Un résultat apparenté au
notre a été publié par K. Borsuk pour les espaces de dimension finie (On the imbedding

of systems of compacta in simplicial complexes, Fund. Math. 35 (1948) p. 217);
les démonstrations n’ont, semble-t-il, rien de commun.
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Lemme. Soit E un espace tel que E X E X [0, 1] soit normal. Soit (X,);;
une famille localement finie de parties fermées de E ; soit N son merf; pour
JEN, soit X; =0 X,. Soit (Uj)sen une famille de parties de E telle

que, pour tout J €N, U, ait la propriété d’extension et contienne X, et
guon it U,c U,;,, chaque fois que J>oJ';, JEN, J' €N. Alors il
existe une application continue F(x, y,t) de iEI(X,- X X,; x[0,1]) dans E
telle que, pour tout JEN, x€X, et y€X, entraine F(x,y,t)eEU; et
F(x,z,t) =« quel que soitt, F(x,y,0) =z, et F(zx,y,1) =y.

Pour toute partie N’ de N, posons Y (N') :lejv (X, xX;x[0,1]);
€ ’

congidérons toutes les applications continues F’ d’ensembles Y (N')
dans F qui satisfont, 14 ol elles sont définies, & toutes les conditions du
lemme; on les ordonnera en disant que F’'>F" si Y(N') D> Y(N")
et si F' coincide avec F” sur Y (N"). En tenant compte du fait que (X,)
est localement finie, et que par suite tout z€ E a un voisinage qui ne
rencontre qu’un nombre fini des X ;, on voit immédiatement qu’on peut
appliquer aux F' ainsi ordonnées le théoréme de Zorn. Soit donc F' une telle
application maximale c¢’est-a-dire non prolongeable, définiesur Y (N'). Sup-
posons qu’il existe J € N tel que X; X X; X [0, 1] ne soit pas contenu dans
Y (N'); parmiles J' € N en nombre fini qui contiennent J, prenons-en un
qui ait la méme propriété et qui ait le plus grand nombre possible d’élé-
ments ; en remplagant J par celui-ci, on voit qu’on peut supposer de plus
que X; X X;, x[0,1]c Y(N’) pour tout J' £ J tel que J' o J. Comme
X; xX;x[0,1] est une partie fermée de E X E x[0, 1], c’est un es-
pace normal ; les points (x, y,t) de cet espace qui satisfont &4 = =y,
& t =0 et & ¢t =1 en forment des parties fermées; son intersection
avec Y (N') est fermée aussi en raison du caractére localement fini de la
famille (X,); il s’ensuit qu’il y a une application continue G(z, y,t) de
X; XX,;x[0,1] dans U, qui coincide avec F' sur I'intersection de cet
ensemble avee Y (N') et quisatisfasse & G(x, z,t) =z, G(x, y, 0) =z,
G(z,y,1) =y. Montrons que la fonction qui coincide avec F’ sur
Y(N') et avec G sur X; XX, X[0, 1] a toutes les propriétés énoncées
dans le lemme, contrairement & I’hypothése que F' n’est pas prolongeable.
Le seul point, & vérifier est que,si J'€ N etsizet ysontdans X; nX,,,
G(z,y,t) est dans U,, ; c’est évidentsi J' < J, puisqu’alors U,, D U, ;
dans le cas contraire, posons J” =JUJ’; onaura J" #£J et J'EN,
donc, en vertu de ’hypothése faite sur J,X;» X X,;, X [0, 1]c Y(N'),
donec F'(z,y,t)eU,,cU,,, d’ou la conclusion annoncée puisque G
coincide avec F' en (xz,y,t). Donc, quel que soit JEN, on a
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X;xX;x[0,1]cY(N'), et en particulier X,x X, x[0,1]cY(N')
pour tout €1 ; F’'est donc la fonction F qu’il s’agissait de construire.

Corollaire. Les hypothéses étant celles du lemme, soient f, f' deux appli-
cations continues d’'un espace A dans E | telles que, quel que soit w€ A, il
y ait un €1 pour lequel f(u)€X,; et f'(u)€X,. Alors fetf' sont homo-
topes.

En effet, F(f(u),f'(u),t) est une homotopie joignant f a f'.

Nous pouvons passer maintenant a la démonstration de notre théoréme.
Soit d’abord U = (U,;) n’importe quel recouvrement localement fini
d’un espace normal E par des ouverts U, ; alors il y a une partition (f;)
de 'unité subordonnée & U ; posons, pour p€E, f(p) = (fi(p)); f est
une application continue de £ dans le nerf N de U, réalicé géométrique-
ment conformément aux définitions rappelées a la fin du § 1. Si p€E,
et siJ est 'ensemble des ¢ €1 tels que p€U,, f(p) est dans le simplexe
Y, de N ; si donc (f) est une autre partition de 1'unité subordonnée &
U, le segment de droite joignant f(p) et f'(p) est contenu dans };,
donc dans N ; par suite, application p — (1 —¢)f(p) + tf'(p) est une
homotopie joignant f & f’; la classe d’homotopie de f est donc com-
plétement déterminée par la donnée de .

Supposons maintenant que les U, = AU, pour JEN, aient tous

leurs groupes d’homotopie nuls; autrement dit, toute application con-
tinue dans I'un des U, de la frontiére d’un simplexe de dimension m
peut se prolonger & tout le simplexe ; pour m = 1, cela veut dire que U,
est connexe par arcs. Pour tout J €N, soit e; le centre de gravité de
2.;. Considérons toutes les suites croissantes JocJ,c .- cJ, délé-
ments tous distincts de N ; pour une telle suite, soit 2’ (J,,...,dJ,,) le
simplexe de sommets e; ,...,e;,.; N est la réunion de tous ces sim-
plexes, qui en forment la subdivision barycentrique. On va définir par
récurrence une application continue g de N dans E telle que
9(2"(Jo,...,Jp))cU; pour toute suite Jo,...,J,. On prendra
g(e;) quelconque dans U, pour tout J € N. Supposons g définie sur les
simplexes de la subdivision barycentrique de N de dimension << m —1;
alors g est définie sur la frontiére du simplexe 2’ (J,,...,J,,), qui est
la réunion des simplexes 2 =2X"(Jo,..-,Juq, pyae -5 J,) pour
0 < < m. D’aprés I'hypothése de récurrence, on a g(Xg) c U, c Uy,
et g(2 ;) cU;, pour 1 <u<m; donc on peut prolonger g & une
application de 2" (J,,...,J,) dans U, . Si d’ailleurs g’ est une autre
application de N dans E satisfaisant & la méme condition, on peut, par
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une récurrence tout & fait analogue, construire une homotopie joignant
g & g'; la classe d’homotopie de g est donc bien déterminée par la condi-
tion qu’on s’est imposée.

Montrons que, dans ces conditions, fog est une application de N
dans N homotope & P'application identique. Soit en effet ¥, la réunion
des images par g de tous les simplexes 2'(J,,...,J,) pour lesquels
1 €J,; comme ces simplexes sont en nombre fini, F'; est une partie com-
pacte de U,. Pour chaque ¢, soit U; une partie ouverte de U, contenant
F,, telle que U;c U,, et que les U, forment encore un recouvrement
de E ; puisque le choix de la partition (f;) subordonnée & U est sans in-
fluence sur la classe d’homotopie de f, on peut la supposer choisie de
telle sorte que f;>0 sur F;et f; = 0 en dehors de U, pour tout <€1.
Soit z = (x,) un point de N ; choisissons un ¢ tel que x; = max;;(z;);
alors x est dans un simplexe de la subdivision barycentrique de N ayant
un sommet en e,, et onadonc g(z)€F,, d’ou f; (g(x)) >0. Pourtout 1€7
et tout x = (x,)€ N, posons ¢,(x) = min[x,, f;(9(x))]; les p, sont des
fonctions continues >0 sur N, et ona ¢,(x) =0 si ,=0, c’est-a-dire si
x n’appartient pas & St,; de plus, d’aprés ce qu’on vient de montrer,ily a
pour tout x€N wun ¢ tel que @,(z)>0. Il s’ensuit que ¢ = ¢, est

i

une fonction continue partout >0 sur N, et par suite que les A; = @,/p
forment sur N une partition de 1'unité subordonnée au recouvrement
(St,) ; si donc on pose h(x) = (h,(x)), h est une application de N dans N .
Si, pour €N, J est ’ensemble des ¢€I tels que k,(x)>0, on aura,
pour tout ¢€J, x,>0 et f,(g(x))>0; alors h(x) est dans X;, et x et
f(g(x)) sont tous deux dans S¢;, de sorte que les segments de droite
qui joignent k(x) & x d'une part et & f(g(x)) d’autre part sont contenus
dans N ; comme tout & ’heure on conclut de 14 que kA est homotope &
Papplication identique d’une part, et & fo g d’autre part.

Enfin, soit p€E, et soit J ’ensemble des 1€ tels que f;(p)>0;
on aura donc p€ U pour tout ¢€J; on aura f(p)€2,, donc f(p)
appartiendra 4 un des simplexes de la subdivision barycentrique de 2 ;
mais ce sont 14, avec les notations employées plus haut, les simplexes
2'Jey ., d,) avec J,cJ; si alors on prend :€J,, on aura
g (f(p))€F,; done pet g (f(p)) sont tous deux dans U;. Posons X, =U;;
-80it N’ le nerf de la famille (X,); on aura N'c N. Si de plus on suppose
maintenant que les U, ont la propriété d’extension, c’est-a-dire que U
est topologiquement simple, on voit que les familles (X;);c; et (Ujy)yen
satisfont & toutes les conditions du lemme de tout & 1’heure ; d’aprés le
corollaire de ce lemme, on peut donc affirmer que g o f est homotope &
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Papplication identique de E pourvu que E X E X [0, 1] soit normal. Le
théoréme annoncé est donc complétement démontré.
Supposons en particulier que I'un des U, soit recouvert par la réunion
des autres, donc qu’on ait U, =_g‘ Uy, et que U, xU;x[0,1] soit
iz

normal. Alors les U,; non vides forment un recouvrement topologique-
ment simple de U,, dont le nerf a donc méme type d’homotopie que U, ;
ce type est trivial, puisque U, a la propriété d’extension et est donc
contractile. Si on omet U, dans le recouvrement U, ce qui reste est
encore un recouvrement U’ de £ en vertu de ’hypothése ; le nerf N’ de
U’ se déduit de N en en retranchant S¢;; et la frontiére de S¢, n’est
autre que le nerf du recouvrement (U,;);.; de U,, donc est un com-
plexe fini homotopiquement trivial (c’est-a-dire contractile) ; comme on
le voit facilement, cela équivaut a dire qu’il existe une rétraction de
I'adhérence St, de St, sur sa frontiére St,N N’, donc une rétraction de
N sur N', et méme qu’il existe une telle rétraction dépendant continu-
ment d’'un paramétre, c’est-a-dire une application continue F(x,t) de
N x [0,1] dans N telle que F(x,0) =z et F(x,1)€EN' pour tout
€N, F(x,t) =2 quel que soit ¢ pour tout x€N’, et F(x,t)€St,
quel que soit ¢ pour tout z€St,. En particulier, d¢ Rham a montré
(loe. cit., note 6) que, si on se borne & considérer la famille des recouvre-
ments simples qu’il appelle «convexes» d’une variété différentiable com-
pacte, on peut toujours passer de I'un & I’autre de ces recouvrements par
insertions et omissions successives d’ensembles superflus ; le résultat que
nous venons de démontrer indique, d’une maniére un peu plus précise

que ne le faisait de Rham, l’effet de ces opérations sur les nerfs des re-
couvrements correspondants.

(Regu le 22 novembre 1951.)
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