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Uber Wachstumseigenschaften
gewisser Klassen
von subharmonischen Funktionen

Von AvLrFrED HUBER, Ziirich

Einleitung

Die vorliegende Arbeit besteht aus zwei Teilen. Im ersten Teil werden
einige Fragen aus folgender allgemeiner Problemstellung heraus behan-
delt : Eine Reihe von Satzen iiber den Betrag einer analytischen Funk-
tion f(z) konnen als Aussagen iiber die subharmonische Funktion
log | /() | gedeutet werden, und man kann fragen, ob solche Sitze auf
allgemeinere subharmonische Funktionen ausgedehnt werden konnen.

Unter der Ordnung g einer in der ganzen endlichen z-Ebene subharmo-
nischen Funktion % (z) verstehen wir die Grofle

b

T log M ()
¢ = lm sup =g r

wobei M (r) = max u(z).
lz|=r .
Zunichst erweitern wir zwei Sitze von A. S. Besicovitch [2] iiber den

Minimalbetrag ganzer analytischer Funktionen der Ordnung o<1 auf
allgemeine in der ganzen Ebene subharmonische Funktionen derselben
Ordnung (Sédtze 2 und 3). Dabei gehen wir von einem Darstellungssatz
von M. Heins [10, p. 203] aus. Bis zu Hilfssatz D beniitzen wir den Leit-
gedanken des Wimanschen Beweises [22] einer Vermutung von Little-
wood. Eine zusitzliche MaBbetrachtung, die sich im Spezialfall der ganzen
analytischen Funktionen sehr vereinfachen wiirde, liefert dann die ob-
genannten Sitze. Eine teilweise Ubertragung der Sitze von A. S. Bes:-
covitch auf eine spezielle Klasse von subharmonischen Funktionen hat
A. Dinghas [8] im Jahre 1937 versffentlicht, wobei er eine Abschitzungs-
methode von 7'. Carleman [4] verwendete.

Dann beschrinken wir uns auf eine spezielle Klasse von Funktionen
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der Ordnung 0, indem wir die zusétzliche Voraussetzung M (r) = O (log r)
einfithren. Es zeigt sich, daB iiber diese Funktionenklasse — die unter
anderem die Funktionen der Form log| P(z)| (P(2) = Polynom) in
sich schlieBt — eine besonders weitgehende Aussage gemacht werden
kann (Satz 6).

Im zweiten Teil beschéftigen wir uns mit Problemen vom Phragmén-
Lindelofschen Typus im R, (n = 2). Wir betrachten dabei ein willkiir-
liches, sich ins Unendliche erstreckendes Gebiet und beniitzen eine Ab-
schiatzungsmethode, die fir » = 2 von T. Carleman eingefiihrt, von
A. Dinghas [6], [7], [8] und A. Pfluger [18] weiterentwickelt wurde. Wir
wenden eine fiir den Fall harmonischer Funktionen im R; von H. Keller
[12] zuerst hergeleitete, zur Beziehung von 7. Carleman [4] analoge
Differentialungleichung (Formel 21) an und erweitern Sitze fiir den R,
von A. Dinghas [6] und A. Pfluger [18] auf den R, (n = 2)'). Die
Spezialisierung auf den Fall geniigend regulir berandeter Kegelgebiete
liefert uns die Moglichkeit, die erhaltenen Resultate mit den Satzen von
L. Ahlfors und M. Heins [1], J. Deny und P. Lelong [5] und J. Lelong-
Ferrand [14], [15] zu vergleichen.

Die Begriffe ,,monoton wachsend“ bzw. ,,monoton fallend” sind stets
im schwachen Sinne — ,nicht abnehmend® bzw. ,nicht zunehmend*“ —
aufzufassen.

Unter mE (F = meBbare lineare Punktmenge) verstehen wir das
lineare Lebesguesche Ma@, unter m, E (E = beliebige lineare Punkt-
menge) das dullere lineare Lebesguesche Maf3 von % .

Die in dieser Arbeit giiltige Definition des ,,Graphs® einer monotonen
Funktion wurde dem Lehrbuch von C. Carathéodory entnommen (3,
p. 161].

Fiir die Anregung zur vorliegenden Arbeit, sowie fiir viele wertvolle
Ratschldge wihrend ihrer Entstehung, bin ich Herrn Prof. Dr. A. Pfluger
zu herzlichem Dank verpflichtet.

I. Uber die in der ganzen endlichen Ebene subharmonischen Funktionen,
deren Ordnung kleiner als 1 ist

% (z) sei eine in der ganzen endlichen z-Ebene subharmonische Funk-
tion der Ordnung ¢ (0<p<1). Ohne Einschriankung der Allgemeinheit
diirfen wir im folgenden stets annehmen, dafl « () in einer gewissen Um-

1) Vor kurzem — nach beendigter Redaktion der vorliegenden Arbeit — hat A. Dinghas
eine Verallgemeinerung seiner Abschatzung auf héherdimensionale Réume verdffent-
licht [9].
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gebung des Nullpunktes harmonisch und dal %(0) = 0 sei [10, p. 202].
M. Heins [10, p. 203] hat bewiesen, dafl sich dann %(z) in folgender
Form durch ein Stieltjes-Integral darstellen 1483t :

z

% (2) -——-flog : du(er) .

Die Integration ist iiber die ganze {-Ebene zu erstrecken. u(e;) ist eine
fiir alle beschréinkten Borelmengen der {-Ebene definierte, endliche, posi-
tive, vollstindige additive Mengenfunktion. Neben %(z) betrachten wir
die Funktion

1 —

7 = [log| 142 dut)

0
wobei u(t) = uf | {|<t]. u(z) ist ebenfalls subharmonisch in der gan-
zen endlichen z-Ebene und besitzt dieselbe Ordnung wie % (z). Um letzte-
res zu zeigen, beachte man, dafl einerseits die Ungleichung o=p un-
mittelbar aus der Definition von % (z) folgt, und andrerseits die Beziehung
o <o leicht aus der von M. Heins [10, p. 202] hergeleiteten Formel

p(t) = 0(°*°) (1)

(giiltig fiir beliebiges ¢>0) erhalten werden kann.
Es bezeichne

M (r) = max u () m(r) = inf u(2)
lz| =7 2| =r
M (r) = max % (2) m(r) = inf % (2)
lz|=r lz| =7
Hilfssatz A. Behauptung :
m (r) i m(r) (2)
M(r) = M(r)
Bewers. Es ist
2 2 2
— = 1 — | < 1 e
log |1 é,Hglog C‘Slog + ;

m(r) =flog

Also m(r)<m(r)<M(r)< M (r). Daraus folgt (2).

1= |2 duter) w0 < [

1—{—I%Hdu(eg)=ﬂ—l(fr) .

Auf Grund dieses Hilfssatzes diirfen wir uns in den folgenden Beweisen
(mit Ausnahme desjenigen von Satz 5) stets von vornherein auf Funk-
tionen beschrinken, deren Massenbelegung ganz auf der negativen reellen
Achse liegt :
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u(z) :flog 1 +«Hdﬂ(t)
0
Wir definieren fiir 4 =0 eine monoton wachsende und nach oben
halbstetige Funktion ¢(x), indem wir setzen :

t(ug) = sup ¢, .
Bto)=po

w(2) 1aBt sich damit durch das Riemann—Integral

u(z) = f log
darstellen.

Nun sei ¢’ eine beliebige, aber fest gewihlte Zahl aus dem offenen
Intervall (¢, 1). Es bezeichne ferner A eine vorldufig beliebige positive
Konstante. Es sei a>0 so gewihlt, daB u(a)>0. Wir definieren :

FEERPS

0 fir O0<i<a
*(f: q) =
(¢54) { At fir t=a

und betrachten die subharmonische Funktion

*(z; 4) :flog
0

l—l—-j—ld,u*(t;l) .

Es ist
wim. | T .lr. 1 Amre . ,
M*(r; 2) ,.j log | 1+ | dp*(t5 2) = s + 20 (r¥)
0
m*(r; A) :J log 1———:- du*(t; A) = Anre.ctg o' + A-0(r?) .

Daraus folgt : Unabhéngig von A existiert eine Zahl R, derart, daB :

m*(r; A)>(cosmo' — &) M*(r; 4) (3)
fir r=R,. _
Sei R =max[a + 1, R,]
und
Ay = max [M} . (4)
0<t<R g

Von nun an bis und mit Hilfssatz D bedeute A zunichst eine feste
Konstante aus dem Intervall 0<A=<4,. Wir verzichten infolgedessen
wihrend dieser Betrachtungen darauf, die Abhéngigkeit vom Parameter
A durch die Bezeichnung zu betonen.
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Wir bezeichnen mit ¢*(u) die fir u>0 eindeutige Umkehrfunktion
von u*(t). Aus (4) folgt:

t*(u)2t(p) fir O<pu=sp*(R), (5)
Aus (1) folgt, daB fiir geniigend groBle u die Ungleichung gilt :
t*(m)=t(p) (6)
Hilfssatz B. Es existiert eine Zahl R mit folgenden Eigenschaften
(R)
| [ 1+
1) log——F—duz0  (u<p(R)) (7)
P
I M
Lt 5
2) log ——5—du<0  (pzp(R)) (8)
uR) t* (1)
3) - u(R) = p*(R) (9)

Beweis. Es gibt eine Zahl u, derart, daB erstens aus 0<u<u, stets
die Giiltigkeit von (5) folgt und zweitens u, die groBte Zahl mit dieser
Eigenschaft ist. Ferner existiert eine Zahl u, derart, daBl erstens aus
u>u, die Giiltigkeit von (6) folgt und zweitens u, die kleinste Zahl mit
dieser Eigenschaft ist. Wir fiihren folgende Abkiirzungen ein :

1A
D (A, f(n); m) -‘—*—*———f%')— )
1+ -t—;@—)-
Ry =1t*(uy) ,  Byp = t*(u,) .
Man sieht leicht ein, daB fiir beliebiges R >0 gilt:
flog ®(R, t;p)duz0  (n=p) (10)
und ““
flog ®(R, t; p) du<0  (n=p,) (11)

H2
Ist p; = u,, so ist nichts mehr zu beweisen. Sei also u;<<pu,. Dann
bilden diejenigen Punkte des Intervalls u, <p <<u,, fir die #(u) <t* (u)
ist, eine nicht leere offene Menge 0, denn die Funktion ¢(u) — t*(u) ist
nach oben halbstetig. 0 kann als Vereinigungsmenge von abzéhlbar
vielen offenen Intervallen aufgefaBt werden. Zu jeder vorgegebenen
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natiirlichen Zahl n gibt es eine aus endlich vielen dieser Intervalle be-
stehende offene Punktmenge 0,, die folgende Bedingung erfiillt :

1

m(0 — 0,) < i
n-log(l + RH)
I

(12)

Wir definieren :
t*(u) auf 0—0, ,

() = { t(u) sonst.

t,(u) wichst monoton. Wir zeigen nun zunéchst : Es gibt ein R, der-
art, dall 5,

f log®(R,,t,;m)du=0  (u=pu(R,)), (13)
©
®
( )10g¢(Rmtn;#)dM§0 (n=u(R,)) . (14)
wiLn

Zu diesem Zwecke betrachten wir die Funktion

m
flu) = j'log D(Ry, 5 1) du (=p=p,) .
[}

In einer gewissen Umgebung von y, ist
fw)=0 . (15)

Gilt (15) im ganzen Intervall (u,, u,), so brauchen wir nur R, = R,
zu setzen, und die Ungleichungen (13) und (14) sind erfiillt. Andernfalls
sei u, die untere Grenze aller x mit der Eigenschaft, daB f(u)>0. Wie

man leicht einsieht, muBl u, auf der abgeschlossenen Hiille _(-)n von 0,
liegen. Es sei 4, der vom Nullpunkt weiter entfernte Endpunkt desjenigen

Intervalls von 0,, dem u, angehort. Es ist
Ha
Jlog ®(R;,t,; ) du=0  (p=p,) .
m

Daraus folgt

e
Jlog @ (t*(ua), tus p)du=0  (u=p,) . (16)
Denn es ist

HKa
Ha Ry (_1_ ....__1_)
ngloglﬁ(RI,tn;,u)dp= log| 1+ ” du
®

K K
-2
= S U7 (=) -
I

1+

m
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Somit kel 1

t,  t*
f‘*“‘“ﬁdﬂgo (u=pq) . (17)
Da die Funktion 1
£* (1)
] L 2 )
+ £ (1)

im Intervall 0 <u =<y, monoton wachsend, positiv und beschrinkt ist,
folgt aus (17) unter Anwendung des zweiten Mittelwertsatzes der Inte-

gralrechnung
K 1 1
Z‘_—F du=0 (U=, (18)
(1+t*w4))(1 f_z_) = =t
4 t*
© n
(18) ist dquivalent mit
K
R () B <
) Iz
wobei

() — Er) (3 — )
Pl = m ‘*‘1‘4’)(:+ Rt)

I
t t,
22
Jlog (1+9(w)du=0  (n=p,) .
m

Esist 1 4 y(u)>0. Wir diirfen also schlieen

Also
Mg Ha
Jlog @ (t*(ug), tus ) du= [ log @(Ry, b, ) du=0  (u=py)
p p
womit (16) bewiesen ist. Wir betrachten nun
3
g(u) = [log @ (t*(ua), t,s p)dp .
e

Ist g(u)<0 fir u,<u=u,, so brauchen wir nur R, = t*(u,) zu
setzen, und es gelten die Beziehungen (13) und (14). Andernfalls wieder-
holen wir unsere SchluBweise. Da die Menge 0, aus endlich vielen Inter-
vallen besteht, finden wir nach endlich vielen Schritten ein R, derart,
daB (13) und (14) erfiillt sind.

Aus (13) folgt
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#(Rp) 1+ ;Ril'_

4
[ 108 0B, b5 1) du + log——"du=0 (u< p(R,).
3 14 =n
l
[0—0x,1 A (1, 1 (Rp))
Unter Anwendung von (12) schlieBt man
# (Bn) 1
Jlog ®(R,,t; p)duz= — — (n=p(R,)) . (19)
»®
Ganz analog erhidlt man aus (12) und (14):
K 1
log (Rt ) =+ (nZp(R) - (20)
#(Bn
Die beschrinkte Zahlenfolge {R,} enthilt eine konvergente Teilfolge
{Ru}. Sei R = lim R,, . (21)
NE—> 00

Da die Funktion log @(R,t; u) beschrankt ist, folgt aus (19) und (21)
die Beziehung (7) und aus (20) und (21) die Ungleichung (8). u(¢) ist im
Punkte ¢ = R stetig und es gilt (9), da sich sonst leicht ein Wider-
spruch zu (7) oder (8) konstruieren laf3t.

Hilfssatz C. Voraussetzungen. R sei die im Hilfssatz B auftretende
Zahl. Die Zahl « erfiille folgende Bedingung

Behauptungen :
L(R) 1 1
T tr
I ———duz0  (usp(R) (22)
w1
gl | 1
>t
— g =20 (1= (R)) (23)
14 =
p(R) ¢
II. Es gibt ein >0 derart, daBl aus | — R| < folgt:
p(t) — p(R)
PR <3x .
— Pk
I11. l t(;u(‘)u) __f gt ) ist beschrankt fir u % u(R).

IV. Ist u(t) im Punkte t = R diﬁerenzierbar,iso gilt auflerdem :

 du du*
0= *C_B—L_-.Rg[ dt ]t=R )
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Bewers. 1. Die Ungleichung (7) 1a8t sich in folgender Form schrei-

ben ©(R) 1 1
R(‘z “’F)
log | 1+— du=0 . (r=u(R)) .
T
B

Daraus folgt unmittelbar (22). Analog erhilt man (23) aus (8).

II. Der Beweis erfolgt in-
direkt und unter getrennter
Stegung & Behandlung der beiden Fille
Steigung 5 {<R und t>R.

/ a) t<R.
Ty —
TP 2 ////// Sei t(ﬂ)r—%‘-[u*u(R)HR.

Falls die Behauptung nicht
stimmt, gibt es beliebig nahe
2 " bei u(R) u-Werte (u<p(R))
O derart, daf der Punkt (u, ¢(u))
- ' - in den in Fig. 1 schraffierten
0 Na®' u(R) b Winkelraum fillt. Dann exi-
stiert aber ein y’, das folgende
Bedingungen erfiillt :

1

At t

R
1) e <u' <u(R) . 3) 2«

>2  4) () <t(w) fir W'Sp=u(R) .

+1<4 fir pg/'=p=su(R) .

rR) 1 ®(R) 1 1

= du< t(u +;A) t(u) du
— 4+ 1 — 1
A b £ ()

1“’“4 1 1 1 hev 1 1
T P e
to Nt 24 i) 2”,;!“ ' +24)  t(w)

x A2
4R — A2 °

<___.

Dies widerspricht aber (22).
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b) t>R.

Falls die Behauptung falsch ist, gibt es beliebig nahe bei u(R) u-Werte
(#>mn(R)) derart, daB der Punkt (u,¢(x)) in den in Fig. 1 schrafﬁerten
abgeschlossenen Winkelraum fillt. Dann existiert aber ein u”, das fol-
genden Bedingungen geniigt :

) w(Ry<p’<u(R)+ Rx  3) 2;%)—+1>§— fir w(R)susu”
2) .t"‘—'i’,,—)“-—ﬁ’ffll>2 R fir u(R)<p<u’
Sei 4=2F ' —3” (E) . Esist
| 1 L | 1
1 ) t(u(R)+ 4
ft* ;de 0 B+ d)
14— 14—
p(R) t p B t(u)
3“?“ 1 1 YR 1
<= — — = du + e = du
i) Jarz ] )
W V@) t(u(E) + 4) AU t(u(B)+4)

<A(x . 7 . 4 <0
8 | R« R 4+ 4 Rx + 34 )

Dies widerspricht aber (23).

III. Falls die Behauptung nicht richtig wire, miilte die Funktion
t(u) fiir beliebig nahe bei u(R) liegende u-Werte in den in Fig. 1 schraf-
fierten Winkelraum eindringen. Also konnte derselbe Widerspruch wie
im Beweise zu Il konstruiert werden.

IV. Falls
du du*
[ﬁ?],=n>[ dt ]

wire, miiBte fiir eine gewisse Rechtsumgebung von u = u(R) ¢(u)
kleiner als ¢*(u) sein. Damit ergibt sich ein Widerspruch zu (23).

Hilfssatz D. Voraussetzung: R sei die im Hilfssatz B auftretende
Zahl.

Behauptung :
m(R)>(cos w o' — &) M(R) . (24)
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Bewers. Sei

1
R
e ]
t(n)
Da x,(u) beschrinkt, monoton wachsend und positiv ist fir 0< u

= u(R), folgt aus (22) unter Beniitzung des zweiten Mittelwertsatzes
der Integralrechnung

Xn(p) = min | n, n=1,2,3,...).

u(R) 1 1
t ot
w1
m
1 1

A I)t“t*, (n<u(R))

<.._..__._.______
R R R|t— R
(= +1)(F )

folgt aus Hilfssatz C III die gleichmiBige Beschrinktheit der Integran-
den in (25). Somit ist

H(R) 11 b® 11
FE FE
B ! tR dy = lim —t~R—-§———xnd,ugO
Nn—rn
(= +1)(F 1) w
" p
(h=u(R)) . (26)
Sei ferner
1 1
™t
A () = min | n, B (n=1,2,3,...)
1] —
4

Da A,(u) beschrinkt, monoton fallend und positiv ist fir u=u(R),
folgt aus (23) unter Anwendung des zweiten Mittelwertsatzes der Inte-
gralrechnung

ko1 1

ot
R
14+

Aduz=0 (u=u(R);n=1,23,...). (27)

p(R)

Aus der Ungleichung

91



1 1
G 2
R2 < R2
1 — —
t2
und aus Hilfssatz C ITT folgt die gleichmiBige Beschrinktheit der Inte-
granden von (27). Daraus schliet man

| zam)

g | 1 A1 1

TR g ™t
=t T L dduz0 (uzu®)  @8)

1 — 1+

u(R) s w8 :

(26) und (28) sind &dquivalent zu

K (R) 2 (_Ri_ — ﬁ)
fﬂl—d >0, wobei ®(u)= bt
R R e =
v = B
(r=p(R)) ; i (29)
und
R* R?
® -
n(u) . _
fmdﬂgo , wobei n(u)= ' (1zp(R))
. P+ (30)
Da 1+ #(u)>0 und 1 + n(x)>0, folgt aus (29) und (30)
(R)
§ log (1 + &(u))du=0 (v =n(R)) (31)
®
7
I(R)log (1 + n(p))duz=0 (k= un(R)) (32)
®
Daraus folgen
L(R) R K1(R) R
——1 = —1
log R du= | log B du (33)
Bl | 1
0 2
flog (1—~——)du2 flog( t*z)d . (34)
K1(R) u(R)
Aus (7) und (8) folgt
©(R) R #gR) R
2flog(l+7)d,u_2_ 2] log(1+-t~;)dy, (35)
0 0
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(=] oo

——2[log(1+——€i)dyg—2flog(l+—g—)du. (36)

n(R) p(R)
Durch Addition von (33), (34) und (35) erhalten wir

m(R) + M(R)Zm*(R) + M*(R) . (37)
Addition von (33), (34) und (36) ergibt
m(R) — M(R)Zm*(R) — M*(R) . (38)
Aus (37) und (38) folgt
m(R) — m*(R) =k [M(R) — M*(B)] (—1<k<+1).  (39)

Setzt man k = cos w o' — ¢ und kombiniert man (39) mit (3), so er-
hilt man sofort (24). q.e.d.

Laft man 4 eine Nullfolge durchlaufen, so strebt R(41) gegen unend-
lich. Da man ferner o’ beliebig nahe bei ¢ und ¢ beliebig klein wéhlen
kann, erhalten wir als Korollar zu Hilfssatz D :

Satz 1. Ist u(2) eine in der ganzen z-Ebene subharmonische Funktion
der Ordnung ¢ (0=p<1), so gilt

. m(r)
1
v PP DT ()

=COSTp .

Dieser Satz ist eine Erweiterung eines bekannten Satzes aus der Theorie
der ganzen analytischen Funktionen, welcher von J. E. Littlewood ver-
mutet und von G. Valiron [21] und 4. Wiman [22] unabhéngig gleich-
zeitig zum erstenmal bewiesen wurde. Ein weiterer Beweis ist in einer
von G. Pélya [19] spiter veroffentlichten Arbeit enthalten. Die Grund-

idee unseres Beweises von Hilfssatz D ist diejenige des Beweises von
A. Wiman.

Satz 2. Sei u(z) eine in der ganzen endlichen z-Ebene subharmoni-
sche Funktion der Ordnung ¢ (0=¢<1); es sei ferner 1>p'>p. Dann
ist

Obere Dichte E {m(r)>M(r)cosmo'}=1 — e . (40)

!

0

(Anmerkung : Unter der obern Dichte einer meB3baren Punktmenge E
auf der r-Achse versteht man die Grofle

lim sup—:fm (£ ~(0,7)].)

r—>00
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Auch dieser Satz ist bekannt, wenn man sich auf Funktionen der
Form log|f(z)| (f(z) = ganze analytische Funktion) beschrinkt. Er
wurde im Jahre 1927 von 4. S. Besicovitch [2 ; Theorem 1] bewiesen. Im
Jahre 1937 gelang es A. Dinghas, einen Teil der Aussage auf eine allge-
meinere Funktionenklasse auszudehnen [8; Satz III], wobei er eine
Methode von 7'. Carleman [4] anwendete.

Zum Beweise betrachten wir in der (¢, u)-Ebene die Graphe der
Funktionen () und up*(t; 1), (0<4A=1,) (vgl. Fig. 2).

Wir definieren Anz—%"- n=1,2,3,...).

Sei t, der kleinste, ¢, , der groBte aller t-Werte, die die Ungleichung
ut — 0)Su*(t; A,)=u(t + 0) befriedigen.

Wir betrachten die Paral-
lele g, zur ¢-Achse durch den
Punkt 4, (¢,, A,t2'). Es sei
B, der Schnittpunkt von g,
mit der Parabel 1,,,t¢". Mit
1, seidie Lange des Intervalls
A, B, und mit T, dessen
Projektion auf die ¢-Achse
benannt.

Jeder Punktmenge
A c(t,,t) ordnen wir eine
Menge A* cg, zu nach fol-
gender Vorschrift: Sei P
(Abszisse ¢,) ein Punkt von
A. Wir schneiden alle die-
jenigen Parabeln, die durch

die Punkte (¢p, u),
plty — 0) < p =< pltp + 0),
gehen, mit g, und erhalten eine Menge P* cg,. Wir definieren :
A* =PI€JAP*. Diese Abbildung fithrt Intervalle in Intervalle iiber.

Fiir jedes A aus dem Intervall (4,, 4,,,) gibt es einen Wert ¢ = R(4),
fiir den die Hilfssiitze B, C und D gelten. Es sei mit D,, die Menge dieser
t-Werte bezeichnet. Aus den vorangehenden Hilfssitzen folgt: D) =
Strecke 4, B, , also

mD) =1, . (41)

Die Funktion y(t) ist monoton und deshalb fast iiberall auf (,,t,)
differenzierbar. Es sei @ die Menge derjenigen Punkte von D,,, in denen
u(¢) nicht differenzierbar ist. Es ist m @ = 0.
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Zu jedem beschrinkten Gebiet G des ersten Quadranten der (¢, u)-
Ebene, das sowohl von der ¢- als auch von der u-Achse einen positiven
Abstand besitzt, gibt es zwei positive Zahlen « und g derart, daf3 stets
a>1t>f, wobei v die Steigung der Tangente unseres Parabelfeldes in
einem beliebigen Punkte von G darstelit. Daraus und aus Hilfssatz C II
folgt :

Zu jedem Punkte Pe@® gibt es eine

A Zahl 6(P)>0 derart, daB
N —
. | ‘ pltr) — p(0) <3« fiir

! n9 P ' i tP — !

| eveld : |t —tp |<O(P) (Umgebung U (P))
l: = /J‘/ und : Ist I ein Teilintervall von U (P),
Yyl das P enthilt, so gilt
! I
| : mI*<—3—§“—mI=k-mI .
AL B
: : t} Die Konstanten x und § — und da-

te-d  te tovd mit auch £ — konnen so gewihlt wer-

Fig. 3 den, daB sie fiir alle Punkte Pe @ die-

selben sind.
Sei nun 0 eine offene Menge von beliebig kleinem Maf}, welche @ ent-
halt. 0 ist Vereinigungsmenge abziéhlbar vieler offener Intervalle:
0= IkI I,. Die Menge (I, ~ @) 1af3t sich durch abzéhlbar viele [3, p. 46]

der U (P)'s iiberdecken: {U(P,;)} (j=1,2,3,...). Wir diirfen da-
bei verlangen: P,;el, (j=1,2,3,...). Sei

R .—_—_kU_(I,cn U(Py)) -
57

R ist offen und es ist @ ¢ R ¢ 0. Also
®* ¢ R* (42)
m R<m 0 (43)

R ist Vereinigungsmenge abzihlbar vieler offener Intervalle: R =UI,.
Sei I ¢ I ein abgeschlossenes Intervall derart, daB A

1
[ 25h

I wird durch endlich viele der (I~ U(P,;)) (k,j=1,2,3,...) iiber-
deckt. Wir diirfen annehmen, da I; die entsprechenden Punkte P,

m (I}, — I3) < (1 = natiirliche Zahl) .
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ebenfalls enthilt ; durch eine eventuelle VergréBerung von I 1iBt sich
dies jedenfalls erreichen. Man iiberlegt sich leicht, daB mI}* <kmI}.
Also m(U =< Zml”* <k Z ml; = km(UI”). Fiir I »oco strebt

UI’,’,, gegen R, UI”* gegen R* und es folgt :
mRBR*<kmR . (44)
Da 0 von beliebig kleinem Maf@ sein kann, folgt aus (42), (43) und (44)

mP* =20 . (45)
Es sei

A=D,—® . (46)

Die Steigung der Tangenten des Parabelfeldes ist eine stetige Funktion
in der (¢, u)-Ebene. Wir bezeichnen mit y die Steigung der durch den
Punkt (¢p,u(tp)), (tped) gehenden Parabel in diesem Punkt. Aus
Obigem und aus Hilfssatz C IV folgt, dafl zu jedem Punkt P e A eine
Zahl 6(P)>0 existiert derart, daBl

1) das Graph der Funktion u(¢) fiir |t — ¢p | <d(P) in den in Fig. 4
schraffierten abgeschlossenen Winkelraum fillt,

2) die Steigung der Tangenten des Parabelfeldes im Rechteck 4 BCD
(siehe Fig. 4) grofer als £ y ist.

/\/,l ;
|
|

Nach leichter Abschitzung fin-
det man : Ist

I
: IcUP){|t—tp|<d(P)}

3o e, O
: il ein Intervall, das den Punkt P
! sl enthilt, dann gilt
Rkl |1 '
s 1““‘ : mI*<mlI .
A oag

Sei nun 0 eine beliebige offene
Menge, die 4 enthélt. 0 ist Ver-
einigungsmenge abzéhlbar vieler
Intervalle: 0 = IkJ I,. Die Menge

b te  tped (Ix~ 4) wird durch abzdhlbar
viele der U(P)'s iiberdeckt [3,
p.461: {U(P:,)} ((=1,2,3,...).
Wir diirfen verlangen, dafl P,;el, (j=1,2,3,...). Sei R=
kUi(I"n U(Py;)). R ist offen und es ist 4 ¢ R0, also

Y o~

Fig. 4
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4* ¢ R* | (47)
mR<mO. (48)

R ist Veremlgungsmenge abzidhlbar vieler offener Intervalle R = U I
Sei I, c I, ein abgeschlossenes Intervall derart, daB

m (I}, — I}) < +—+ (1 = natiirliche Zahl).

120
I wird durch endlich viele der Ter U(Pyy) (k,§j=1,2,8,...)
iiberdeckt. Wir diirfen annehmen, da8 I, die entsprechenden Punkte P,
ebenfalls enthilt ; durch eine eventuelle VergréBerung von I, 148t sich
dies jedenfalls errelchen Man sieht leicht ein, daB mI;* <mI,. Also

m (U I < Z’m[” < Z‘ mIy, =m(U I}). Fir I —oco strebt U I; gegen

R, U n* gegen R*, und es folgt
mR*<mR . (49)
Da (m 0 — m,4) beliebig klein gemacht werden kann, folgt aus (47),
(48) und (49) meA";gmeA . (50)
Aus (46), (50), (45) und (41) folgt
m,D, = m,4=m,4* = m,D}f =1, . (61)
Es sei B, die Menge der {-Werte, fiir die die Ungleichung
m(t) > (cos o' — &) M(t)

richtig ist. Die Mengen (0,7) ~ B, (r>0) sind meBbar. E,, bezeichne
die Menge derjenigen Punkte von E,, die die Bedingung

¢
sz<%%l§An n=1,23...)

erfilllen. E,, ist meBbar und, da D, ¢ E,,, gilt unter Beriicksichtigung
¥on () mT,=m,D,<mkKE,, .
Da, I”J E,., c E,, und da die E,, fremd zueinander sind, folgt: Obere

Dichte E.=Obere Dichte [IJ T.].

Von der letztern GroBle hat aber 4. 8. Besicovitch [2, Paragraph 10]

gezeigt, dal} sie =1 — —97 ist. Somit gilt : Obere Dichte . =1 — —-Q,— .
0 0

Hieraus folgert man leicht die Behauptung des Satzes 2.
Falls o = 0 ist, kann o' >0 beliebig klein gewdhlt werden. Wir er-
halten also als Korollar zu Satz 2 (vgl. [2; Theorem 3}):
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Satz 3. Fiir jede in der ganzen endlichen z-Ebene subharmonische
Funktion der Ordnung 0 gilt :

Obere Dichte £ {m(r)>(1 —e) M(r)} =1 .

Folgende Verschirfung eines Satzes von A. Dinghas [8; Satz II] ist
ebenfalls ein Korollar zu Satz 2:

Satz 4. Die Funktion «(z) sei in der ganzen endlichen z-Ebene sub-
harmonisch, nicht konstant und von der Ordnung ¢<%. a sei eine be-
liebige Konstante. Dann ist

Obere Dichte £ {m(r)=a}=1 — 2¢p .

Dieser Satz wird im zweiten Teil noch etwas verschirft werden
(Satz 4).

Von nun an beschrinken wir uns auf eine spezielle Klasse von Funk-
tionen der Ordnung 0, indem wir folgende Voraussetzung machen :
M(r) = O (log r). Es wird sich zeigen, daf iiber diese Funktionenklasse
eine Aussage gemacht werden kann, welche iiber Satz 3 hinausgeht
(Satz 6).

Wir benétigen vorerst einen Hilfssatz :

Hilfssatz E. Voraussetzung: y = f(x) sei eine fir x=0 definierte,
monoton wachsende Funktion, welche die Ungleichung

0<f(x)<M <o (52)

erfillle und deren Graph in der (x, y)-Ebene mit G' bezeichnet sei.
Ferner sei K eine beliebig vorgegebene positive Zahl. £ bezeichne die
Menge aller Punkte x, der x-Achse mit folgender Eigenschaft: Es
existiert ein Punkt @ (z,, yg) €G (xy # xp) so, dall

>K . (53)

i Yo —f(zp)
g — Tp

Behauptung :
ml <oo . (54)

Beweis. E ist eine Vereinigungsmenge von Intervallen und infolge-
dessen meBbar. Sei E, (respektive E,) die Menge derjenigen Punkte
xp e, bei denen fiir den in der Voraussetzung auftretenden Punkt @
zusitzlich xy>xp (respektive wxy<xp) verlangt werden darf. Es ist
E=FE, vE,, somit

mE<=m,E, + m,E, . (65)
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Zunachst zeigen wir
m, B, <oo . (56)

Wir ordnen jedem Punkt xz,e¢E, eine Zahl ¢(xp) zu nach folgender
Vorschrift : ¢(xp) = max [xy — xp], wenn @ alle Punkte von @ durch-
lauft, welche (53) erfiillen. Es ist 0<<p(xp)<—%{—. Mit 4, (n=1, 2,

3,...) werde die Menge aller Punkte x,e¢E, bezeichnet, fiir die gilt

M 1 M 1
K ni1 =) <g - (57)

Sei x, ein Punkt von 4,, der von der untern Grenze dieser Menge um

weniger als —2—4}[{'- entfernt ist. Wir definieren auf der x-Achse das Inter-

vall I,[x, — @(x,)<x <z, + ¢(2,)] und auf der y-Achse I)[f(x,)<
y<flz,) + K ¢(x;)]. Aus (52) und (57) folgt 4, ¢ I,.
Sei z, ein Punkt von A4, — (4,~ I,), der von der untern Grenze

dieser Menge um weniger als —}IE entfernt ist. Wir definieren auf der

x-Achse das Intervall I,[z, — ¢(x,)<x<x, + ¢(x,)] und auf der
y-Achse I)[f(x,)<y<f(z,) + Ko(x,)]. Sei z, ein Punkt von
2

A, — (4,~ U I,), der von der untern Grenze dieser Menge um weniger
2 2 k=1 k

als 3K entfernt ist. Wir definieren auf der z-Achse das Intervall

L[z, — p(x)<x<xy + @(x;)] und auf der y-Achse I [f(x)<y
3

<flz;) + Kop(x,)]. Aus (52) und (57) folgt: A4, ckgllk usf. Ist eine

der Mengen A4,, 4, — (A,~ I,),... leer, so fillt das zugehorige Inter-
vall I, einfach weg.

Man iiberlegt sich leicht, da@3

E, :znglAn ckgllk (58)
I,= 2 mI} 59
Aus (58), (59) und (60) folgt :
L = 2 2M
m, E1Sm(kl__JII,c)Ské,‘lmlk=——~I-{—k‘“‘___','lml,’f,< =— <oo. (61)
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Auf analoge Weise zeigt man
m, By <oco . (62)

Aus (55), (61) und (62) folgt die Behauptung.

Satz 5. Innerhalb der Klasse der in der ganzen endlichen z-Ebene
subharmonischen Funktionen von der Ordnung pg<1 ist die Aussage
M(r) = O (log r) &quivalent mit der Beschrinktkeit der Mengenfunk-
tion u(e), und zwar gilt dann M (r) ~Clogr, wobei C = lim u(¢).

t—>o0
Bewets. Sei M (r) = O (logr). Dann gilt fiir geniigend grofle  und
eine geeignete Konstante 4

fﬁi—t)»dth(r)<A-logr .
0

(Die linke Ungleichung folgt aus den Formeln (2.3) und (2.4) der Arbeit
von M. Heins [9].) Daraus folgt fiir geniigend grofe ¢ :

et
y(t)[t—logt]gfﬁg—)—dt<¢4-t .
t

Also ist u(t) beschrénkt.
" Sei umgekehrt u(f) beschrinkt und C = lim u(¢). ¢>0 sei vorge-

t~—>o00

geben. Wir wihlen r, so groB, daB u(ry)>C — 2 . Damn folgt fiir
r>ra¢e 2

M(r)gfﬁt(t—)dtg (0-—%) (log r — log r9) >(C — ¢)log r . (63)

Wir diirfen ohne Verlust an Allgemeinheit voraussetzen, dall u(z) in
einer gewissen Umgebung des Nullpunktes |z |<a, a>0, harmonisch
sei. Somit ist

M(r)=< | log
/

c
1+—§-}d,u,(t)_£__flog 1+—g—ldﬂ<(0+e)logr (64)
L]

fiir gentigend grofe r.
Aus (63) und (64) folgt M (r) ~ C logr.

Satz 6. Voraussetzung: M(r) =0 (logr). ¢ sei eine beliebig vor-
gegebene positive Zahl.

Behauptung: Es gilt m(r)>(1 — ¢) M (r) mit Ausnahme hochstens
einer Menge von 7-Werten von endlichem Ma@.
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Beweis. Wir diirfen uns nun wieder auf Funktionen beschrinken,
deren Masse auf der negativen reellen Achse liegt (vgl. Hilfssatz A). Es

sei C = lim u(t). Wirsetzen 4 =C (1 — —i) . Ferner sei R, = t(4).

t—>o0 4

Wir betrachten die Funktion ¢*(u;7) =pu — u(r) + r. Es gibt eine
Zahl R, derart, daB

c
J log
A

Denn eine leichte Rechnung ergibt fiir » — oo

f log | 1

woraus man unter Beiziehung von Satz 5 sofort (65) erhilt. Ferner
existiert eine Zahl R, derart, daB

r ] 35
1—m d,u>————2—M(1') fiir 7'>R1 . (65)

) I M—O(l)—&h)gr,

log

*W%] (1—————)]0g(1+t(A)) fir r>R, . (66)

Wir setzen
.R = max [O, .Ro, "Rl’ Rz] . (67)

Auf Grund von Hilfssatz E gilt fiir alle », mit Ausnahme von hochstens
einer Menge £ von endlichem Maf :

v

£ (u 5 7)

(s 7)

tp) fir A=p<up(r), (68)

IA

t(p) fir pr)=p=C .

Fiir alle Werte von r, die groler als R sind, und die nicht in & liegen,
gilt wegen (67), (66), (68) und (65):

f log
()

&

> M(r) (1 —~-)2—%M(r)>M(r) (1 —e¢). q- e. d.

1 —~|dy+flog

1-———‘d,u>

= | du >

1+—-id,u —i—flog

4
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II. Einige Sitze vom Phragmén-Lindelofschen Typus im R, (n = 2)

Die Problemstellung von Phragmén und Lindeléf, formuliert fiir den
Fall subharmonischer Funktionen im R, , ist bekanntlich folgende :

In einem Gebiet £ ist eine subharmonische Funktion » gegeben. Diese
sei in der Umgebung aller Randpunkte mit Ausnahme eines Punktes 4
beschrinkt. Dann ist # entweder in ganz £ beschrinkt, oder « mul} bei
geeigneter Annidherung an A mit einer gewissen Mindeststirke gegen
Unendlich streben. Dieses Mindestwachstum hingt von der Beschaffen-
heit des Gebietes 2 in der Umgebung von A4 ab.

Als Ausnahmepunkt nehmen wir hier stets den unendlichfernen Punkt
an. Es bedeutet dies keinen Verlust an Allgemeinheit, da man durch eine
Kelvin-Transformation den Fall eines im Endlichen gelegenen Rand-
punktes ohne Schwierigkeit auf den unsrigen zuriickfiihren kann.

Wir fiithren folgende Bezeichnungen ein :

OP;r)=U[Q]| PR<r] F(P;r)=U[Q| PR=r]
0,=0(0;r) F,=F@O;r)
S(P;r)=U[Q| PQ=r] S, =8(0;)

Jeder offenen Menge w auf 8, ordnen wir auf folgende Weise eine
Konstante «(w)=0 zu, die wir die charakteristische Konstante
von o nennen wollen: Sei w* irgendein reguldres (mit analytischen
Rindern versehenes) Gebiet, das in w enthalten ist. Unter A" wollen wir
den kleinsten Eigenwert des folgenden Problems verstehen: Adu 4 A*u
= 0 in w*, » = 0 auf dem Rand, u == 0, zweimal stetig differenzierbar
in w*, stetig auf dem Rand. 4 = Beltrami-Operator. 1 ist gleich dem
Minimum des Quotienten

[ | grad { [2dS,

[ras,

w*

wobei alle diejenigen stetigen und stiickweise stetig differenzierbaren
Funktionen f zur Konkurrenz zugelassen sind, welche in w* nicht iden-
tisch null sind und auf dem Rand von w* verschwinden. Wir definieren :

A, = inf 4*. Dabei soll w* alle reguliren Gebiete durchlaufen, welche in
w*

o enthalten sind. Unter der charakteristischen Konstanten «(w) soll die
nichtnegative Losung der Gleichung xz(x + » — 2) = A, verstanden
werden. (So ist beispielsweise die charakteristische Konstante einer Halb-
kugel gleich 1, diejenige einer Vollkugel gleich 0, diejenige eines Kreis-
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bogenstiickes vom Zentriwinkel ¢ im R, gleich —% usw.) Aus w, ¢ w,

folgt o(w,)=x(w,). Ist 2 ein Kegelgebiet im R,, so ist «(2~8,)
unabhingig von r, denn « ist invariant gegeniiber Ahnlichkeitstrans-
formationen.

Es stellt sich hier die Frage nach einer einfachen Charakterisierung
derjenigen offenen Mengen w, fiir die «(w) = 0. Man iiberlegt sich
leicht, daBl «(w)>0 fiir unzusammenhingende Mengen w. Also diirfen
wir uns auf Gebiete beschrinken.

Definition. Wir sagen, der Rand y des Gebietes w besitze die Kapazi-
tat null, falls folgender Sachverhalt zutrifft : Sei {w,} (k=1,2,3,...)
eine monoton wachsende Folge von reguliren Gebieten, welche o aus-
schopft ; y, sei der Rand von w,. Wir wéhlen einen Punkt P ¢ w, und
eine solche Zahl ¢>0, daB (S,~F(P;¢)) ¢ w,. ¢, sei die Losung des
folgenden Randwertproblems A, = 0 in o; = o, — (S, ~F(P;0)),
@ =0 aufy,, ¢, =1 auf (S,~8(P;p)), ¢, zweimal stetig differen-
zierbar in w; , stetig auf dem Rand, A4 = Beltrami-Operator. Die Funk-
tion ¢, — das harmonische Mal von (S,~ S(P;¢)) in bezug auf w, —
macht das Dirichletintegral I, = j’ | grad ¢, |2dS, bei den gegebenen

o
Randwerten zu einem Minimum. Die Folge 7, nimmt monoton ab. Falls
1,0, heiBle y von der Kapazitit null. Andernfalls sagen wir, y sei von
positiver Kapazitit. Diese Definition ist von der speziellen Wahl von
{w,}, P und p unabhingig (vgl. zum Beispiel R. Nevanlinna [17]).

Es sei y das Bild von y bei stereographischer Projektion von S, auf den
R,_, von einem Punkte des Gebietes w aus. ¥ ist — nach der im R, _,
iiblichen Definition — gleichzeitig mit y von der Kapazitit null bzw. von
positiver Kapazitit. Zum Beweise beachte man folgende Transforma-
tionseigenschaft des Dirichlet-Integrals : Sei f eine auf einem beschrank-
ten Gebiete @ ¢ O, des R,_, definierte und stetig differenzierbare Funk-

tion, f deren stereographische Verpflanzung auf das Gebiet G S, Es
gilt die Ungleichung

2 p2 n—3 —
(7,7{;75) fl gradflszéfI graddeSrgz"—;ﬂ gradf[2dG . (1)
¢ G

Aus capy = 0, also I, (0 fiir k£ —oo, folgt unter Anwendung von
(1), daB das Dirichlet-Integral der stereographisch verpflanzten Funktion
(Projektionszentrum P) ebenfalls gegen null streben muf3. Also cap y = 0.
Analog schlieBt man in der umgekehrten Richtung.
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Satz 1. Die charakteristische Konstante « eines Gebietes w ist dann
und nur dann gleich null, wenn die Kapazitit des Randes y von w ver-
schwindet.

Beweis. Wir diirfen den Kugelradius normieren : » = 1. Sei § = §,.
Im R, ist der Satz trivial : Schon wenn y aus nur einem Punkt besteht,
ist x =4 und capy>0. Im folgenden sei also #n=3.

I. Sei capy = 0. Unter Verwendung der oben eingefiihrten Be-
zeichnungen definieren wir

*
P a:uf Wy

1 auf (F(P;0)n ).
Es ist j'lgra,dwkl?dS jlgrad«pklzdS\O fir k -—»>oco. Da

wkz

wk
fw} dS groBer als eine von k unabhingige positive Konstante ist, gilt
@
| grad w, |2 dS
lim 2% =0
s f w3 dS
ok

und daraus folgt «(w) = 0.

II. Sei capy>0. {w,} (k=1,2,3,...) sei eine monoton wach-
sende Folge von reguliren Gebieten, welche w ausschopft. Zu w, gehoére
der Rand y,, der Eigenwert 1, und die durch die Bedingungen u%,>0,

j u% dS = 1 eindeutig festgelegte Eigenfunktion u,. Wir miissen zeigen,

daB die monoton fallende Folge {4,} nicht gegen null konvergiert. Wir
wihlen einen beliebigen Punkt P ¢ w,. Eine der beiden folgenden Aus-
sagen mul} zutreffen :

(a) Es gibt zwei positive Zahlen ¢ und » derart, da8
(F(P;Q)"S)wa >
2) w,(@=n fir Qe(F(P;0)~8) und " k=1,2,3,.

(b) Es gibt eine gegen P konvergierende Punktfolge {P,} derart,
dal lim infuk( g =0,

k—>o0
Wir betrachten zuerst den Fall (a). In o, definieren wir folgende

Funktionen :
Uy = min [u, 7]

n auf (F(P;e)~8)
n-@, auf w,’:=w,,-—(F(P;9)nS)

I

Vg
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Es ist
flegrad u, |*dS= f| grad u, [2dS = || grad ¢, |2dS=C >0 ,
Wk Wi w-)k(-;
wobei die Konstante C' als von k unabhingig gewihlt werden kann, weil

cap y > 0. Daraus folgt aber, wenn man die Normierung von «, beachtet
infA,=2C>0. gq.e.d.

k
Im Falle (b) fithren wir die Annahme 4,0 ad absurdum. Durch
Auswahl einer Teilfolge {u,,} — und die entsprechende {P,, } — konnen

wir erreichen, dal lim w,, (P,,) = 0. Wir denken uns eine solche Teil-
ng—>oo

folge ausgewihlt, die wir neu numerieren und wieder {%,} — und ent-
sprechend {P,} — nennen.

Es sollen folgende Bezeichnungen gelten: I7(M ;s) sei die (n — 2)-
dimensionale Untersphére von s mit dem Mittelpunkt M und dem
sphérischen Radius s, @(M ;s) die entsprechende abgeschlossene Ku-
gel, I(s) deren Inhalt, C,(M ;s) bzw. A,(M;s) das arithmetische
Mittel von wu, iiber II(M;s) bzw. ®(M;s), o, die Oberfliche der
n-dimensionalen Einheitskugel.

Sei M ew, ein beliebiger Punkt, s$,>0 eine solche Zahl, daf}
(M ;sy) ¢ w,. Wir wenden fiir das durch I7(M ;e) und II(M ;s,),
0<e<s,, begrenzte Ringgebiet R die Greensche Formel

. ou,, ov
‘f'(uk Av — 'UA’uk) as = f ('U'é‘?—ii— — Uy “a-—r'—?l‘z—) do (2)
R

Rand R

an, wobei wir fiir v(Q) die Greensche Funktion ¢(M ;@) — beziiglich
Au = 0 und D (M ;s,) — einsetzen:

. 1
n=3: v(Q)=g[logro——logrQ]

n>3, gerade: (@)=

n—3 2m—n-+3 2m—n+3
1 (n——3) 7o —rg

m 2m —n + 3

n >3, ungerade : v(Q) =

Op—-1 m=0
0

n—3 (n___3) r%m—n+3__ram~n+3

nl ™ m 2m —n + 3
m n;—3
. n—3
4 n — 3 | [log ro — log rq]
Op—1 9

N

(ro = tg —‘?22 , rq=1g 2Q , 8= sphirischer Abstand der Punkte M und Q) :

105



Da Au,+ Aw, =0, dv=0 in R, v=0 auf II(M;s,), ergibt (2)
fir e >0

Ay j‘ VUurd S = u, (M) — Cp(M ;5 8p) . (3)
D(M; 85)
Daraus folgt
(M)A (M 5 80) 2 Cr (M 5 ) (4)
Das Integral in (3) integrieren wir zuerst iiber s, = const. :
Ax j vu,dS = 1, jpv(r) Co(M ;8(r))dS(r)< A L, (M) (5)
D(M; 8y) 0

wobei L = Mf vdS eine von k und M unabhingige Konstante ist. Aus
i 80)

]
(3) und (5) e(rhalten wir (1 — A, L) u, (M)<Cr(M ;s,), und, da 4, (O,
schliefen wir :
Zu vorgegebenem s,>0 gibt es zwei positive Zahlen £k,(s,) und
H (s,) mit folgender Eigenschaft : Es ist

u(M)<H -C,,(M;s0)=<H-A,(M ; s,) (6)

fiir beliebiges k£ =k, und jeden Punkt M, falls nur @ (M ;s,) ¢ wy, .

Nun betrachten wir wieder den Punkt P. Es sei s,>0 so gewihlt,
dafl @(P; 3sy) ¢ w,. Ferner sei k, so groB, daB erstens k,=k,(s,), und
zweitens P, e (P ;s,) fir k=k,. Durch Anwendung der Ungleichun-
gen (4) und (6) erhalten wir fiir k=k, :

I I
el P Z A4, (Py; 280) 2 7 (‘28;’3) A,(P; 30) = 5 I(f;)so) u (P) .
Daraus folgt
lim %,(P)=0 . (7)
k—>o
Fiir einen beliebigen Punkt @ « @ (P ; 2s,) gilt
I I
w(P)Z AP 3002 7o A @380 Z s @ - (8)

Aus (7) und (8) folgt, daBB {u,} in D(P;2s,) gleichmdBig gegen 0
konvergiert.

¢>0 sei vorgegeben. Wir wihlen & so grofl, daB wu,(Q)<e fir
Q ¢ D(P; 28,).Wir definieren

0 fir Qed(P;s,)
uy (Q) = min [u,c,—g‘; (8q — 80)] fir Qe (P(P;28) — P(P;s,))
u, fir Qe (w,— P(P;2s,))
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Infolge der Normierung von u, ist
[ up?dS=1 — e1(2s,) (wf = 0, — D(P;s)) . (9)
Wl

Ferner gilt

{1 grad ui |2 as< (| gradw, [2d8 + (-?)2[1(280) —Is)] .  (10)
w}, Wk 0

Aus ¢ >0 (und damit k —oo) folgt mit der Annahme 1,\(0 sowie
den Beziehungen (9) und (10):
§ | grad u} [2dS
lim %
b Ju2dS
o
Also wiirde die charakteristische Konstante des Gebietes

l
=)

w* =0 — O(P;s,) ,

dessen Komplement beziiglich § innere Punkte enthilt, verschwinden ;
dies ist offenbar falsch. q. e. d.

Sei nun 2 ein beliebiges, sich ins Unendliche erstreckendes Gebiet im
R, mit dem Rand I'. Wir setzen zur Abkiirzung «(r) = x (2~ 8§,).

Satz 2. Voraussetzungen :
1) w(P) sei eine in £ subharmonische Funktion,
2) lim supu(P)=0.
P—>Q
Pel; Qel’

Behauptung. Es gilt entweder:

w(P)<0 inQ (11)
oder: Es existieren zwei positive Zahlen C und r, derart, daf}
Q
c r 2rj.a(€)d log §
M2(r)= " o"2e dlogo , (12)

7o

wobei M (r)= sup u(P) .

PG(.Qf\S/r)

Fir den Fall n =2 ist dieser Satz bereits bekannt. 4. Dinghas hat
die Abschétzung (12) fiir Funktionen der Form log | f(2) | (f(2) = ana-

107



lytische Funktion) in einem von zwei analytischen Kurvenbogen be-
grenzten Gebiete bewiesen [6], wobei er eine Methode von T. Carle-
man [4] beniitzte. Spiater hat A. Pfluger eine kiirzere Herleitung gefun-
den und dabei allgemeinere Gebiete betrachtet [18]2).

Unsere Beweismethode ist analog derjenigen von 7'. Carleman und
A. Dinghas. Sie beruht auf der Auswertung der Differentialungleichung
(21) fiir das durch Formel (13) definierte Mittel m (r). Die Beziehung (21)
wurde fiir den Fall harmonischer Funktionen im R, erstmals durch
H. Keller aufgestellt [12]. H. Keller hat auch das Anwachsen des ent-
sprechenden, iiber eine Schar von parallelen ebenen Schnitten erstreck-
ten Mittels untersucht und dabei unter anderem eine zu [12] analoge
Abschitzung gefunden [11, p. 34].

Nun erfordert aber diese Methode eine starke Regularitat sowohl von
der betrachteten Funktion als auch vom Rande ihres Definitionsgebietes.
Deshalb schalten wir einen Grenziibergang dazwischen : Wir betrachten
eine Folge von durch Mittelbildung regularisierten Funktionen, welche
in regulidr begrenzten Gebieten definiert sind und schlieBen dann aus den
Eigenschaften der Funktionen der Folge auf die gesuchte Eigenschaft
der Grenzfunktion.

Wir nehmen an, dafl (11) nicht erfiillt sei, und zeigen, dafl daraus die
Richtigkeit von (12) folgt.

Es gebe also einen Punkt P,eQ derart, daB «(P,)>0. Wir be-
trachten die im ganzen R, subharmonische Funktion

v — max [4 —7n,0] auff
B ) auf C Q

wobei wir im R, fiir die Konstante #n = max [R,, M (R,)] — R, sei ein
willkiirlich gewéhlter Radius derart, dal Sz ~2 #0 — und im R,

(n=3) 5= (Py) setzen. Wir definieren :

2
i 3
m(r) = ( f v2dS,| , (13)

gy, 71
2~ Sy

_20/m)"

r(3)

darstellt. m (r) ist eine monoton wachsende Funktion, denn 2 ist eben-

wobei o, die Oberfliche der n-dimensionalen Einheitskugel

%) Kiirzlich hat A. Dinghas die Formel (12) unter gewissen Regularitétsbedingungen
auch fiir allgemeine n bewiesen [9].
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falls im ganzen R, subharmonisch. Es gibt ein R >0 derart, dal
m(R)>0 . (14)

Fir »=3 folgt dies unmittelbar aus der Wahl der Konstanten 7. Wiirde
im Falle n = 2 die Funktion m (r) nie positiv werden, so wiirde daraus
die Beschrinktheit von « folgen. Dann wire aber die in der ganzen end-
lichen Ebene subharmonische Funktion

max [ — ¢,0] auf Q
0 auf CQ

beschrinkt, somit eine Konstante. Also %, = 0 fiir jedes ¢>0. Daraus
wiirde folgen: <0 in 2. Somit wére (11) erfiillt, was aber im Wider-
spruch zur Beweisannahme steht.

Sei nun R<R,<R,<--- eine gegen +oo konvergierende Folge
von r-Werten. Zu jedem Punkte von I'~ Fp gibt es eine Kugelumge-
bung, innerhalb welcher v = 0 ist. Es geniigt eine endliche Anzahl
U,,...,U, dieser Ungebungen, um I'~ Fp, zu iiberdecken. Sei C,

Uy = (e>0)

vl
der Rand von (2 ~Op) -—kgl U, und a, der (positive) Abstand von C,
und I'~ Fg,. Wir wihlen =

a .l1 a
91:%, Ql:mlnl:‘l"_éi’gla'-"gl—l] (l=2’3"")

und bezeichnen mit v, die dreifach iiber eine Vollkugel vom Radius p,
gemittelte Funktion v. (Fiir dieses Mittelungsverfahren sowie die Eigen-
schaften der gemittelten Funktionen vgl. [20, p. 11].) Die Funktionen v,

(1=1,2,3,...) sind zweimal stetig differenzierbar. Wir definieren
1
'm% (7') = —-&';;TT f 'Uzl dS,r . (15)
(2~ Sy)

Fiir 1 »oo gilt g, \( 0, somit v, \yv. Daraus folgt
my(r)y\ym(r) fir 1-—>oc0. (16)

Zu jedem Punkt von I'~ Fp, gibt es eine Umgebung, innerhalb welcher
v, = 0 ist. Eine endliche Anzahl V,,..., V, dieser Umgebungen ge-
niigt, um I'~ Fp, zu iberdecken. Sei ¢, ein regulires Gebiet im R,

m
derart, dal ((2 ~ Og,) - U V) <@, < (2~ Opg). In der folgenden Ab-

schitzung wird mehrfach stillschweigend davon Gebrauch gemacht, dal
v, und grad v, in allen Randpunkten von @, verschwinden, die nicht
zu Sp, gehoren.
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Sei r< R,;. Durch Differentiation von (15) erhalten wir

1 ov 1
my (r) m; (r) 2“(};7':1— f 'v,——a}idS,, =Gt f({ grad v, |2 4 v, 4v,) dG, .
@1~ Sp) (@1~ 0p) (17)
Somit ist
(r™1m, (r) my (r)) = ;1- f (| grad v, |2 + v, 4v,) d8S,
" @S
1 0, \?
z—- J Pi) as, + flgrad v, | dS, (18)

(Gr~ Sy) (Gr~ Sy)

denn v, 4v,;=0. Unter grad,», soll dabei die an S, tangentiale Kom-
ponente von grad v, verstanden werden. (G,~ S,) besteht aus endlich
vielen reguldren Gebieten w,,..., ,, und es gilt zufolge der Defini-
tion von «(r) :

: r? j | grad, v, |2dS,

Wi
3 ds,
wyi
Daraus folgt
f lerad,v, |2dS, = a(r) (x(r) + n — 2)r2 [ v} dS, . (19)

(G~ Sy) (G~ Sp)

>ax+n—2) (GE=1,2,...,n).

Aus (17) erhdlt man unter Anwendung der Schwarzschen Ungleichung :

(m ) w0 = (5 [ v pras)

(Gr~Sy)

1 . 1 v, \?
S (G [ as)(Gm [ (5)49).

(Gr~ Sy) (Gr~ Sp)

Also
(M) S [ (—%}’;)ds (20)

g, r"1
(G1~ Sy)

Aus (18), (19) und (20) erhalten wir
(r™ 2 my(r) my(r)) =1 (m}(r))? + x(x + n — 2) r"3 mi(r)

und nach kurzer Umformung, wobei wir beniitzen, dal m,(r)>0 in
dem Intervall, das wir spéiter betrachten werden :

m’} (r) + r(n — 1) m)(r () (x(r) +n — 2)m,(r) . (21)
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Die Transformation

e t)-(n—-2)t)
r=c¢et, my(r) = e

ergibt aus (21) nach leichter Rechnung (.= Ableitung nach ?):

D+ 2P =da(x +n —2) + (n — 2)2 .

Daraus folgt
. P\?2
(cb +75) > (20 + n — 2)2
und deshalb

. & d de®
_— = e —
(D-{—q.) 7 (log dt)=2a—|—n 2.

Wir kehren zu den urspriinglichen Variablen zuriick :

r- g_’:{]og [7'. d(mzl(gl Tn_z)]} 22x(r) +n — 2.

Nun koénnen wir leicht integrieren : "
2l a(f)dlogé

m2 (r) r*—2) _ I

mhr) 12 = (rg) 3t 4+ O e f e’ dlog o

n—2
rO

(ro<r<R,; 1=1,2,3,...). o (22)

Wir unterscheiden die Fille n = 2 und n=3:
a) n=2. Infolge der Konstruktion der Funktion v ist m(R,)=0,

2
m(R)>0. Aus (16) folgt, daBl m3}(R) — m]}(R,) > m 2(R) fir geniigend
grole 1 (1>1,). Nach dem Mittelwertsatz der Differentialrechnung gibt

es zu jedem 1>1, ein R} (R,<R<R) so, daB

4o } () — mi (R (R
(ml(r))r=R7 - - .[;——72: 0) = 2(-1;'(_ ;20) ’

Also folgt aus (22):

e e
, 2J'a(§)dlogg ’ 2fa(§)dlos§
mj (r) = (m] (T))L,R*; feR‘ d log o _Z«Cfero dlogo ,
RY To
(I>1ly; ro=r=R)) , (23)

wobei € = und 7, = R von 1 unabhingige Konstanten
sind 2(B — R,)
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b) »=3. Nach dem Mittelwertsatz der Differentialrechnung gibt
es zu jedem 1 ein R (R< R} <R + 1) derart, daB

(my (r)r" ‘2);,,7 =m (B+1) (R+1)"2*—m,(R) R** = m (R) [(R+1)"*—R"?] .

Wir wenden (22) an : .

n-2y/ r 2 [a)dlogs
9 (ml (7')7' )r=R? "t R’;
mi(r) 2 — g prns "2 dloge
! a
e

C r 2fa(§)dlog€ (24)
2 =5 fgn-—2.e"o dlogo , I=1,2,3,...; 1,<r<R)

. R n—2
wobei 0=m(R)[1——(R+1) ] und r,=R -+ 1 von 1 unab-

hingige Konstanten sind.
Aus den Definitionen von M (r), »(P) und m(r) folgt unmittelbar

M2 (ry=m?(r) . (25)
Aus (16), (23), (24) und (25) ergibt sich (12). q.e.d.

Aus der Differentialungleichung (21) schliet man unmittelbar auf
eine bemerkenswerte Eigenschaft der Funktion

uir) = (Gn :‘”_.1 w? dS,.) , wobei % = max [0, u] .
(2~ 8y
Es ist ndmlich m,(r) fir » = 2 eine konvexe Funktion von logr,
fiir n=3 eine konvexe Funktion von 7;}_3— . (Zur Verifikation ersetze

man in (21) die rechte Seite durch null.) Daraus folgt dieselbe Eigen-
schaft fiir m (r). Nun lassen wir 7 eine Nullfolge durchlaufen und erhalten
das Resultat :

wu(r) ist fir » = 2 eine konvexe Funktion von logr, fir n=3 eine

konvexe Funktion von E
Um diese Eigenschaft der Funktion u(r) zu zeigen, wire der Umweg
iiber die Beziehung (21) nicht notwendig gewesen. Aus (18) und (20)

schliet man direkt auf
(rm2m, (r) my (r)) = ™2 (my (7))?
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und damit auf:

d*m, (&)
d&2

logr fir n=2
=0, wobei &= 1
yn—2

fir n

1%
3

Damit hat man im Wesentlichen eine Methode von R. Nevanlinna [16,
p. 4] angewandst.

Im Folgenden bezeichne x» eine beliebige positive Konstante. Unter
E,, wollen wir die Menge aller »-Werte verstehen, fiir die "« (r) = ist.
D, (r) sei die charakteristische Funktion von E, . Wir fiithren das loga-
rithmische Maf} von E, ~ (r,,7,) ein:

Ae(rr, 1) = Dy (e)dlog o .
2%
Satz 3. Voraussetzungen :
1) % (P) sei subharmonisch in 2,
2) limsup »(P)=<0,
P—>Q
Pel; Qel’

3) liminf e **®0" M (r)<0.

r—>00

Behauptung: 4 <0 in Q.

Dieser Satz ist eine Erweiterung eines fiir n = 2 von 4. Pfluger [18]
ausgesprochenen Satzes auf hohere Dimensionen. Analog zum Fall der
Ebene fithren wir ihn auf Satz 2 zuriick.

Nehmen wir an, die Behauptung sei falsch. Wir wenden auf « (P) den
Satz 2 an: Es gibt zwei positive Konstanten C und r, derart, daf3

e
T 2fa(§)dlox§ r

Mz(,-) > T”C:z fen—z e’ dloggg ng fgn_zele,‘(ro,e)dlogg .

7o To

Somit gilt >

—2% (1, 10)
- — A
[e x;‘x(l»r)M(r)]zg Ce n—2e 2% x(Q‘

" dlog o

3 e

To

Ce—le,‘(l, 7o) ro n—2+2%
gn--2+2;¢[1_(7) ] (25)

denn es ist 1, (¢, 7)<logr — logp. Lassen wir r — co streben, so er-
halten wir einen Widerspruch zu Voraussetzung 3). Damit ist der Satz
bewiesen.
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Satz 3 gibt zu verschiedenen Folgerungen Anla@} (vgl. A. Pfluger [18]):
Zunichst bemerken wir, da wir fiir den Fall n = 2 eine Verschir-
fung von Satz 4 (Teil I) erhalten :

Satz 4. Die Funktion »(z) sei in der ganzen endlichen z-Ebene sub-
harmonisch, nicht konstant und von der Ordnung ¢<1. a sei eine be-
liebige Konstante. Dann ist :

Untere logarithmische Dichte £ {m(r)=a}=1 — 2p . (26)

(Unter der untern logarithmischen Dichte einer mef3baren Punktmenge
E auf der r-Achse versteht man die Groe
T
lgl_l)l;lfm " D (r)d logr ,
1

wobei @(r) die charakteristische Funktion von E bedeutet ; analog defi-
niert man die obere logarithmische Dichte.) Dieser Satz ist fiir den Fall
ganzer Funktionen erstmals von B. Kjellberg [13, p. 20] bewiesen worden.

Zum Beweis betrachte man die Funktion ¥ =v —a in dem Ge-
biet 2, in dem sie positiv ist. Wir wenden Satz 3 an (x = }). Da die
Voraussetzungen 1) und 2) erfiillt sind, die Behauptung hingegen nicht,
darf die Voraussetzung 3) ebenfalls nicht zutreffen. Dies fithrt auf die
Ungleichung (26).

Die beiden folgenden Sitze sind ebenfalls leicht zu beweisende Korol-
lare zu Satz 3 und gelten fiir alle » :

Satz 5. Ist u(P) eine in 2 subharmonische Funktion der Ordnung g,

so gilt fiir die obere logarithmische Dichte }T,‘ der Menge E,, die folgende
Ungleichung :
R T Ax (1 ) 7') < —Q‘
® h?ifgp logr = x °

Satz 6. Voraussetzungen :

1) u(P) sei eine in Q subharmonische Funktion,
2) «(r)=wne>0 fiir geniigend grofle r,

3) limsup u(P)=0,

P—>Q
Pel; Qel’

0.

4) Tim inf 2£0)

r—> 00 ree

IA

Behauptung : w(P)<0 in Q.
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Satz 6 laBt sich unter anderem auf Kegelgebiete anwenden. Da der
Fall geniigend regulir berandeter Kegelgebiete mit andern Methoden
schon eingehend untersucht worden ist, haben wir hier eine Vergleichs-
moglichkeit : Unser Satz ist eine Verschirfung einer im Jahre 1947 von
J. Deny und P. Lelong bewiesenen Aussage [5, p. 104]. Im Jahre 1949
veroffentlichten L. Ahlfors und M. Heins [1] (fir den Fall » = 2) und
J. Lelong-Ferrand [14] [15] (fiir allgemeines ») Untersuchungen, in denen
die Wertverteilung dieser Funktionen schirfer erfat wird, als dies mit
der hier verwendeten Methode moglich ist. Letztere besitzt dafiir den
Vorteil, auf willkiirliche Gebiete anwendbar zu sein.

Satz 7. Unter den in einem Kegelgebiet 2 subharmonischen und
nicht beschriankten Funktionen «, welche die Voraussetzung

limsup «(P)=<0
P—>Q; Pe®; QeI’

erfiillen, gibt es dann und nur dann solche von beliebig niedriger Wachs-
tumsordnung o, falls die Kapazitit des Randes I" von £ verschwindet.

Beweis. J.Deny und P. Lelong haben bewiesen [5, p.94], daB
cap I'= 0 im R, dquivalent ist mit cap (I'~ S) = 0 auf §, und nach
Satz 1 ist dies dquivalent mit « (2~ S) = 0.

Ist cap I'>0, also «(2~ 8)>0, so folgt aus Satz 6 die Existenz
einer positiven Mindestwachstumsordnung.

Ist capI'= 0, also «(£2~ 8) = 0, so gibt es regulére Teilgebiete w*
von (2~ 8) mit beliebig kleiner charakteristischer Konstante o«*(w*).
Sei #*(Q) die entsprechende Eigenfunktion. Setzen wir

u_[u* auf o*
I auf (2 ~8) — w*,

so erfiillt die Funktion %" - u(P) (rp=0P, P = (8~ Gerade OP)) die
Voraussetzungen und ist von der Ordnung o*. q. e. d.
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