
Zeitschrift: Commentarii Mathematici Helvetici

Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 26 (1952)

Artikel: Über Wachstumseigenschaften gewisser Klassen von
subharmonischen Funktionen.

Autor: Huber, Alfred

DOI: https://doi.org/10.5169/seals-21268

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 10.02.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-21268
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


Ùber Waehstumseigenschaften

gewîsser Klassen

von subharmonischen Funktionen
Von Alfbed Hubeb, Zurich

Einleitung

Die vorliegende Arbeit besteht aus zwei Teilen. Im ersten Teil werden
einige Fragen aus folgender allgemeiner Problemstellung heraus behan-
delt : Eine Reihe von Sâtzen ùber den Betrag einer analytischen Funk-
tion f(z) kônnen als Aussagen ûber die subharmonische Funktion
log | f(z) | gedeutet werden, und man kann fragen, ob solche Sàtze auf
allgemeinere subharmonische Funktionen ausgedehnt werden kônnen.

Unter der Ordnung q einer in der ganzen endlichen z-Ebene subharmonischen

Funktion u (z) verstehen wir die GrôBe

g lim sup logr

wobei M(r) m&xu(z).
l*l«r

Zunâchst erweitern wir zwei Sàtze von A. S. Besicovitch [2] uber den

Minimalbetrag ganzer analytischer Funktionen der Ordnung q < 1 auf
allgemeine in der ganzen Ebene subharmonische Funktionen derselben

Ordnung (Sâtze 2 und 3). Dabei gehen wir von einem Darstellungssatz
von M. Heins [10, p. 203] aus. Bis zu Hilfssatz D benlitzen wir den Leit-
gedanken des Wimanschen Beweises [22] einer Vermutung von Little-
wood. Eine zusâtzliche MaBbetrachtung, die sich im Spezialfall der ganzen
analytischen Funktionen sehr vereinfachen wiirde, liefert dann die ob-

genannten Sâtze. Eine teilweise Ûbertragung der Sàtze von ^4. S.
Besicovitch auf eine spezielle Klasse von subharmonischen Funktionen hat
A. Dinghas [8] im Jahre 1937 verôffentlicht, wobei er eine Abschàtzungs-
methode von T. Carleman [4] verwendete.

Dann beschrânken wir uns auf eine spezielle Klasse von Funktionen
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der Ordnung 0, indem wir die zusâtzliche Voraussetzung M (r) 0 (log r)
einfuhren. Es zeigt sich, da8 tiber dièse Funktionenklasse —- die unter
anderem die Funktionen der Form log | P(z) \ (P(z) Polynom) in
sich sehlieBt — eine besonders weitgehende Aussage gemacht werden
kann (Satz 6).

Im zweiten Teil beschâftigen wir uns mit Problemen vom Phragmén-
Lindelôfschen Typus im Rn (n ^ 2). Wir betrachten dabei ein willkur-
liches, sich ins Unendliche erstreckendes Gebiet und bentitzen eine Ab-
schàtzungsmethode, die fur n 2 von T. Carleman eingefuhrt, von
A. Dinghas [6], [7], [8] und A. Pfluger [18] weiterentwickelt wurde. Wir
wenden eine fur den Fall harmonischer Funktionen im Rz von H. Keller
[12] zuerst hergeleitete, zur Beziehung von T. Carleman [4] analoge
Differentialungleichung (Formel 21) an und erweitern Sàtze fur den R2

von A. Dinghas [6] und A. Pfluger [18] auf den Rn (n â 2)1). Die
Spezialisierung auf den Fall geniigend regulàr berandeter Kegelgebiete
liefert uns die Môglichkeit, die erhaltenen Resultate mit den Sâtzen von
L. Ahlfors und M. Reins [1], J. Deny und P. Lelong [5] und J. Lelong-
Ferrand [14], [15] zu vergleichen.

Die Begriffe ,,monoton wachsend" bzw. ,,monoton fallend" sind stets
im schwachen Sinne — ,,nicht abnehmend" bzw. ,,nicht zunehmend" —
aufzufassen.

Unter mE (E meBbare lineare Punktmenge) verstehen wir das
lineare Lebesguesche Ma6, unter me E (E beliebige lineare
Punktmenge) das âufiere lineare Lebesguesche MaB von E.

Die in dieser Arbeit giiltige Définition des ,,Graphs" einer monotonen
Funktion wurde dem Lehrbuch von G. Carathéodory entnommen [3,
P-161].

Fur die Anregung zur vorliegenden Arbeit, sowie fur viele wertvolle
Ratschlâge wâhrend ihrer Entstehung, bin ich Herrn Prof. Dr. A. Pfluger
zu herzlichem Dank verpflichtet.

I. tlber die in der ganzen endlichen Ebene subharmonischen Funktionen,
deren Ordnung kleiner als 1 ist

u(z) sei eine in der ganzen endlichen z-Ebene subharmonische Funktion

der Ordnung g (0^q<1). Ohne Einschrànkung der AUgemeinheit
diirfen wir im folgenden stets annehmen, daB u (z) in einer gewissen Um-

%) Vor kurzem — nach beendigter Redaktion. der vorliegenden Arbeit — hat A. Dinghas
eine Verallgemeinerung seiner Abschàtzung auf hôherdimensionale Ràume verôffent-
licht [9].
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gebung des Nullpunktes harmonisch und daB «(0) 0 sei [10, p. 202].
M.Heins [10, p. 203] hat bewiesen, daB sich dann u(z) in folgender
Form durch ein Stieltjes-Integral darstellen làBt :

u(z) =/log
Die Intégration ist iiber die ganze £~Ebene zu erstrecken. /u (e^) ist eine
fur aile besehrànkten Borelmengen der £-Ebene definierte, endliche, positive,

vollstândige additive Mengenfunktion. Neben u(z) betraehten wir
die Funktion _

-fie. dfl(t)

wobei ju(t) ju[ | C | <t]. u(z) ist ebenfalls subharmonisch in der gan-
zen endlichen 2-Ebene und besitzt dieselbe Ordnung wie u(z). Um letzte-
res zu zeigen, beachte man, daB einerseits die Ungleichung g^g un-
mittelbar aus der Définition von u (z) folgt, und andrerseits die Beziehung

q^q leicht aus der von M. Heins [10, p. 202] hergeleiteten Formel

(i)

(giiltig fur beliebiges e>0) erhalten werden kann.
Es bezeiehne

M (r) max u (z) m (r) inf u (z)
\z\ —r \z\ —r

m (r) inf u (z)
\Z\=T

M (r) max u(z)
1*1 — r

Hilfssatz A. Behauptung :

m (r) m (r)

Beweis. Es ist

log 1 -
m (r) Jlog 1 —

M(r) ~ M(r)

'-I
(2)

1 +

1 +

Z

Also m(r)^m(r)SM(r)^M(r). Daraus folgt (2).

Auf Grund dièses Hilfssatzes diirfen wir uns in den folgenden Beweisen

(mit Ausnahme desjenigen von Satz 5) stets von vornherein auf Funk-
tionen beschrânken, deren Massenbelegung ganz auf der negativen reellen
Achse liegt :
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u(z) =J log

Wir definieren fur jW^O eine monoton wachsende und nach oben

halbstetige Funktion t (fi), indem wir setzen :

t{fi0) sup t0

u(z) làBt sich damit durch das Riemann-Intégral

u(z) -/log 1 + t(n)
dfi

darstellen.
Nun sei q' eine beliebige, aber fest gewàhlte Zahl aus dem offenen

Intervall (q, 1). Es bezeichne ferner X eine vorlàufig beliebige positive
Konstante. Es sei a>0 so gewâhlt, dafi ^(a)>0. Wir definieren:

fur

und betrachten die subharmonische Funktion

Esist

M*(r;X)=jlog
o

oo

m*(r; X) j log ; X)

Daraus folgt : Unabhângig von A existiert eine Zahl Bo derart, da6 :

m*(r ; X)>(cos jïf'-fi) i/*(r ; A) (3)
fur

Sei
und

Von nun an bis und mit Hilfssatz D bedeute A zunâchst eine feste
Konstante aus dem Intervall 0<A^A0. Wir verziehten infolgedessen
wâhrend dieser Betraehtungen darauf, die Abhângigkeit vom Parameter
X durch die Bezeichnung zu betonen.

R max [a + 1, iî0]

* J
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Wir bezeichnen mit t* (/u) die fur ju > 0 eindeutige Umkehrfunktion
von //*(£)• Aus (4) folgt :

fur 0<p£fi*(B) (5)

Aus (1) folgt, daB fur genugend groBe jbt die Ungleichung gilt :

t*{p)^W (6)

Hilfssatz B. Es existiert eine Zahl R mit folgenden Eigenschaften

1) I log îM-dp^O (f*£f*(B)) (7)

2) /log ^~d^0 (/i^(B)) (8)

3) f,(R)=f**(R) (9)

Beweis. Es gibt eine Zahl//x derart, daB erstens aus 0<i«<//1 stets
die Gultigkeit von (5) folgt und zweitens nx die groBte Zahl mit dieser
Eigenschaft ist. Ferner existiert eine Zahl ju2 derart, daB erstens aus
ju>jLt2 die Gultigkeit von (6) folgt und zweitens /u2 die kleinste Zahl mit
dieser Eigenschaft ist. Wir fuhren folgende Abkiirzungen ein :

M

Man sieht leicht ein, daB fur beliebiges R > 0 gilt :

jflog 0{B, t',fJL)dfA^O (fl^fr) (10)

und ^] (11)

Ist [ji1 ju2, so ist nichts mehr zu beweisen. Sei also ia1<ia2. Dann
bilden diejenigen Punkte des IntervaUs /li1 < fz < (jl2 fur die t (fi) < t* (fx)

ist, eine nicht leere offene Menge 0, denn die Punktion t(/u) — t*(/Li) ist
naeh oben halbstetig. 0 kann als Vereinigungsmenge von abzâhlbar
vielen offenen Intervallen aufgefaBt werden. Zu jeder vorgegebenen
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naturlichen Zahl n gibt es eine aus endlieh vielen dieser Intervalle be-
stehende offene Punktmenge 0n, die folgende Bedingung erfullt :

m(0-0J< ri ^-r • (12)

Wir definieren :

sonst.

tn (ju) wachst monoton. Wir zeigen nun zunàchst : Es gibt ein Rn der-

art, da8 |4(jBfi)

J log0(Bn9tn;/i)d^O (p£p(Bn)) (13)

(14)

Zu diesem Zwecke betrachten wir die Funktion

In einer gewissen Umgebung von ju1 ist

Gilt (15) im ganzen Intervall (^l3 /u2), so brauchen wir nur Rn Rt
zu setzen, und die Ungleichungen (13) und (14) sind erfullt. Andernfalls
sei fiz die untere Grenze aller ju mit der Eigenschaft, daB /(/z)>0. Wie

man leicht einsieht, muB /^3 auf der abgeschlossenen Huile 0n von 0w

liegen. Es sei /^4 der vom Nullpunkt weiter entfernte Endpunkt desjenigen
Intervalls von 0w, dem ju3 angehôrt. Es ist

J'iog 0(BI,tn;ft)d/t^O (fi^^)
Daraus folgt

Jlog 0 {t* fa), tn; (t)dft>0 (fi^fij (16)
fj.

Denn es ist



Somit fi* i i
I —— ^—d/u^O (fji'^fJi^ (17)

Da die Funktion

im Intervall 0<ju^/i4 monoton wachsend, positiv und beschrânkt ist,
folgt aus (17) unter Anwendung des zweiten Mittelwertsatzes der Inte-
gralrechnung

11
(18)

(18) ist âquivalent mit
pi

J't
wobei

Es ist 1 + ^(//) >0. Wir dûrfen also schlieBen

}(Also **

Jlog * («*(iei4), tn ;^)d^ f log 0(i?r, tn;

womit (16) bewiesen ist. Wir betraehten nun

Ist g(ju)^O fur fi^/Lt^ju^, so brauchen wir nur i?n ^*(^4) zu
setzen, und es gelten die Beziehungen (13) und (14). Andernfalls wieder-

holen wir unsere SchluBweise. Da die Menge 0n aus endlich vielen Inter-
vallen besteht, finden wir nach endlich vielen Sehritten ein Rn derart,
daB (13) und (14) erfûllt sind.

Aus (13) folgt
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r 1 + —2.

I log |J 1 + -y1
(<JR)) '

Unter Anwendung von (12) schlieBt man

(19)

Ganz analog erhàlt man aus (12) und (14) :

Die beschrânkte Zahlenfolge {Rn} enthâlt eine konvergente Teilfolge
{R«*}- Sei R= Um iîwjfc (21)

Da die Funktion log 0(M, t ; //) beschrânkt ist, folgt aus (19) und (21)
die jBeziehung (7) und aus (20) und (21) die Ungleichung (8). /u(t) ist im
Punkte t R stetig und es gilt (9), da sich sonst leicht ein Wider-
spruch zu (7) oder (8) konstruieren lâBt.

Hilfssatz C. Voraussetzungen. R sei die im Hilfssatz B auftretende
Zahl. Die Zahl oc erfûlle folgende Bedingung

Behauptungen :

I. (22)

(23)

II. Es gibt ein S > 0 derart, daB aus 11 — R | < ô folgt :

Mt)-

III. - R

t — R

ist beschrânkt fur /j,

IV. Ist /j (^) im Punkte t R differenzierbar^so gilt auBerdem :

88



Beweis. I. Die Ungleichung (7) lâfit sieh in folgender Forai sehrei-
ben /* ç») / / j ,-

log| 1+-A1 ^
+ 1

Daraus folgt unmittelbar (22). Analog erhàlt man (23) aus (8).

£ £* £ II. Der Beweis erfolgt in-
direkt und unter getrennter
Behandlung der beiden Fâlle
t<R und t>R.

a) t<R.

Falls die Behauptung nieht
stimmt, gibt es beliebig nahe
bei fi(R) /^-Werte (/^<//(jR))
derart, da8 derPunkt (/u,t(/bt))
in den in Fig. 1 schraffierten
Winkelraum fâllt. Dann exi-
stiert aber ein jlc\ das folgende
Bedingungen erfiïllt :

fur jt

fur i

1 1 fJL(R)

2A)
R

/*' **(/«) +

4 r^* J \f (/i -f

^Zl2

Dies widersprieht aber (22).
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b) t>R.
Falls die Behauptung falsch ist, gibt es beliebig nahe bei ju (R) ^-Werte

(fi>ju,(R)) derart, daB der Punkt (ju, t(/u)) in den in Fig. 1 schraffierten
abgesehlossenen Winkelraum fâllt. Dann existiert aber ein //, das fol-
genden Bedingungen geniigt :

3) 2^-^-+l>4 fixr
t\lA) Ô

2)
t(n") - B

Sei A
*** ~J*KM/ Es ist

>2 4) t*(jj)>t{(i) fur

J 1+4 J 1+T^r

4 J \7(^) 7 ii2
8

Dies widerspricht aber (23).

III. Falls die Behauptung nieht richtig wâre, muBte die Funktion
t(jbt) fur beliebig nahe bei jbt(R) liegende /^-Werte in den in Fig. 1 schraf-
fierten Winkelraum eindringen. Also kônnte derselbe Widersprueh wie
im Beweise zu II konstruiert werden.

IV. Falls

ware, muBte fur eine gewisse Rechtsumgebung von ju, ju(R) t([x)
kleiner als t*(ju) sein. Damit ergibt sich ein Widerspruch zu (23).

Hilîssatz D, Voraussetzung : R sei die im Hilfssatz B auftretende
Zahl.

Behauptung :

m(R)> (cos n q' - e) M (R) (24)
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Beweis. Sei

Xn(ju) min n, R
Ht*)

— 1
(n=ls2,3,...)

xn(fJi) beschrânkt, monoton wachsend und positiv ist fur 0^/u
folgt aus (22) unter Benutzung des zweiten Mittelwertsatzes

der Integralrechnung

/ ±
(25)

Da
T~~~t* 1 t-t*

t — R

folgt aus Hilfssatz C III die gleichmàBige Beschrànktheit der Integran-
den in (25). Somit ist

//*<*>

1 1

//<

1

_
1

Sei ferner
(26)

JL!
n,

Da Xn(ju) besehrânkt, monoton fallend und positiv ist fur fi^
folgt aus (23) unter Anwendung des zweiten Mittelwertsatzes der Inte-
gralreehnung

1 1

i+4
Aus der Ungleichung

;n= 1,2,3,...) (27)
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1

7*2"

1 —

1

___
iî2
t*

2
< M2

t —

t — R

und aus Hilfssatz C III folgt die gleichmâBige Besehrânktheit der Inte-
granden von (27). Daraus schlieBt man

1
t2

(26) und (28) sind âquivalent zu

i
_^—______ ^;>o 9 wobei

(R R

t—f
R
t*

und
i?2

J l+»îl+ »?(i«)
(/«;

Da 1 +^(i«)>0 und 1 + rj(fi)>0, folgt aus (29) und (30)

J log (1 -

ï log (1

Daraus folgen

r^ I lo

0

00

(l - ~^ dp à Jlog (l -
Aus (7) und (8) folgt

(28)

(29)

(30)

(31)

(32)

(33)

(34)

(35)
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-2 riog(i+4 - 2

Durch Addition von (33), (34) und (35) erhalten wir #

m{R) + M(R)^m*(R) + M*(R) (37)

Addition von (33), (34) und (36) ergibt

m(R) - M(R)^m*(R) - M*(R) (38)

Aus (37) und (38) folgt

m(R) -m*(R)^k[M(R) - M*(R)] (-lg&^+l) (39)

Setzt man k cos ng' — e und kombiniert man (39) mit (3), so er-
hâlt man sofort (24). q. e. d.

LàBt man A eine Nullfolge durchlaufen, so strebt R(À) gegen unend-
lich. Da man ferner g' beliebig nahe bei q und s beliebig klein wàhlen
kann, erhalten wir als Korollar zu Hilfssatz D :

Satz 1. Ist u(z) eine in der ganzen z-Ebene subharmonische Funktion
der Ordnung q (0 ^ q < 1 so gilt

m(r)lim sup %jri > cos n g
r^oo r M (r) ~

Dieser Satz ist eine Erweiterung eines bekannten Satzes aus der Théorie
der ganzen analytischen Funktionen, welcher von J. E. Littlewood ver-
mutet und von G. Valiron [21] und A. Wiman [22] unabhângig gleich-
zeitig zum erstenmal bewiesen wurde. Ein weiterer Beweis ist in einer
von G. Pôlya [19] spàter verôfiEentlichten Arbeit enthalten. Die Grund-
idee unseres Beweises von Hilfssatz D ist diejenige des Beweises von
A. Wiman.

Satz 2. Sei u(z) eine in der ganzen endlichen 2-Ebene subharmonische

Funktion der Ordnung g (0 <£ g < 1 ; es sei ferner 1 > gf > g. Dann
ist

Obère Dichte E {m(r) >M(r) cos n gf}^ 1 - -^ (40)

(Anmerkung : Unter der obern Dichte einer meBbaren Punktmenge E
auf der r-Achse versteht man die GrôBe

lim sup —m [E ^ (0, r)]
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Auch dieser Satz ist bekannt, wenn man sich auf Funktionen der
Form log \f(z)\ (f(z) ganze analytische Funktion) beschrânkt. Er
wurde im Jahre 1927 von A. S. Besicovitch [2 ; Theorem I] bewiesen. Im
Jahae 1937 gelang es A. Dinghas, einen Teil der Aussage auf eine allge-
meinere Funktionenklasse auszudehnen [8; Satz III], wobei er eine
Méthode von T. Carleman [4] anwendete.

Zum Beweise betrachten wir in der (tf /*)-Ebene die Graphe der
Funktionen fi(t) und /u*(t;X), (O^AgAo) (vgl. Fig. 2).

Wir definieren Xn —~ (n 1, 2, 3,.
Sei tn der kleinste, t'n_x der grofite aller £-Werte, die die Ungleichung

0) befriedigen.
Wir betrachten die Parallèle

gn zur £-Achse durch den
Punkt An (tn, XJl'). Es sei

Bn der Schnittpunkt von gn
mit der Parabel Xn+1tQ\ Mit
ln sei die Lange des Intervalls
AnBn und mit Tn dessen

Projektion auf die £-Achse

qn benannt.
Jeder Punktmenge

A c (tn, t'n) ordnen wir eine
Menge A* c gn zu nach fol-
gender Vorschrift : Sei P
(Abszisse tP) ein Punkt von
A. Wir schneiden aile die-

jenigen Parabeln, die durch
die Punkte (tP, /u),

fx(tP — 0)<L jbtti ju,(tP + 0),
gehen, mit gn und erhalten eine Menge P* c gn. Wir definieren :

A* =TJ P*. Dièse Abbildung fuhrt Intervalle in Intervalle uber.

Ftir jedes X aus dem Intervall (An, Xn+1) gibt es einen Wert t R(X),
fur den die Hilfssâtze B, C und D gelten. Es sei mit Dn die Menge dieser
£-Werte bezeichnet. Aus den vorangehenden Hilfssâtzen folgt : D*
Strecke A n Bn, also *mDn =ln (41)

Die Funktion fi{t) ist monoton und deshalb fast iiberall auf (tn, trn)

differenzierbar. Es sei 0 die Menge derjenigen Punkte von Dn, in denen

ju(t) nicht differenzierbar ist. Es ist m 0 — 0.
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Zu jedem beschrânkten Gebiet G des ersten Quadranten der {t,^y
Ebene, das sowohl von der t- als auch von der /4-Achse einen positiven
Abstand besitzt, gibt es zwei positive Zahlen oc und fi derart, daB stets
<%>T>f}, wobei r die Steigung der Tangente unseres Parabelfeldes in
einem beliebigen Punkte von G darstellt. Daraus und aus Hilfssatz C II
folgt :

Zu jedem Punkte Pe 0 gibt es eine
Zahl ô(P)>0 derart, daB

»

1

1

1

1

1

> m 1

l
ml

I

1

i
i

' t

tp — t
t -tp \<Ô(P)

<3<% fur

(Umgebung U (P))

Fig.3

und : Ist / ein Teilintervall von U(P),
das P enthàlt, so gilt

3*ml <~j
Die Konstanten oc und /? — und da-

mit auch Je — kônnen so gewàhlt wer-
den, daB sie fur aile Punkte Pc 0 die-
selben sind.

Sei nun 0 eine offene Menge von beliebig kleinem MaB, welche 0 ent-
hâlt. 0 ist Vereinigungsmenge abzàhlbar vieler offener Intervalle :

0 VIk. Die Menge (Ik r> 0) lâBt sich durch abzàhlbar viele [3, p. 46]

der U(P)fs iiberdecken : {U(Pkj)} (?' 1, 2, 3,...). Wir durfen da-
bei verlangen : Pki elk (j 1, 2, 3,... Sei

(42)

(43)

R ist ofifen und es ist 0 c R c 0. Also

m R<m 0

R ist Vereinigungsmenge abzàhlbar vieler offener Intervalle : R U Ifh.
Sei l"h c Irh ein abgeschlossenes Intervall derart, daB h

m {ïh - II) <~ (1 naturliche Zahl)

Il wird durch endlich viele der (Ik^ U(Pkj)) (4,7 1,2,3,...) ûber-
deckt. Wir durfen annehmen, daB I\ die entsprechenden Punkte Pkj
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ebenfalls enthàlt ; durch eine éventuelle VergrôBerung von I"h làBt sieh
dies jedenfalls erreichen. Man iiberlegt sich leicht, daB mlnh* <kmlnh.
Also m{Vll*)^Vmll* <kYm,rh==km{Vrh). Fur l ->oo strebt

* h* h h h

Vil gegen iï,U/£* gegen JS*, und es folgt :
h h

mR*<kmR (44)

Da 0 von beliebig kleinem MaB sein kann, folgt aus (42), (43) und (44)

m 0* 0 (45)

A Dn - 0 (46)

Es sei

Die Steigung der Tangenten des Parabelfeldes ist eine stetige Funktion
in der (t, /^)-Ebene. Wir bezeichnen mit y die Steigung der durch den
Punkt (tP, jbi(tP)), (tPeA) gehenden Parabel in diesem Punkt. Aus
Obigem und aus Hilfssatz CIV folgt, daB zu jedem Punkt P e A eine
Zahl ô(P)>0 existiert derart, daB

1) das Graph der Funktion /u(t) fur | t — tP | <ô(P) in den in Fig. 4

schrafïierten abgeschlossenen Winkelraum fàllt,

2) die Steigung der Tangenten des Parabelfeldes im Rechteck ABCD
(siehe Fig. 4) grôBer als f y ist.

Nach leichter Abschàtzung fin-
det man : Ist

IcU(P){\t-tP\<ô(P)}
ein Intervall, das den Punkt P
enthâlt, dann gilt

Sei nun 0 eine beliebige offene

Menge, die A enthâlt. 0 ist Ver-
einigungsmenge abzàhlbar vieler
Intervalle : 0 U Ik. Die Menge

(Ikrs A) wird durch abzàhlbar
viele der U(P)rs ûberdeckt [3,

p.46]:{l7(Pw)}(,-==l,2,8f...).
Wir diirfen verlangen, daB Pk3 elk (j 1, 2, 3,. Sei R

U(Pki)). R ist offen und es ist A c R c 0, also



A* c R* (47)

mR^mO. (48)

R ist Vereinigungsmenge abzâhlbar vieler offener Intervalle R U Irh.
Sei /^ c Irh ein abgeschlossenes Intervall derart, daB

m (Ifh - II) < j^ (1 natûrliche Zahl).

Il wird durch endlich viele der (Ikr, U(Pkj)) (Jc,j= 1,2,3,...)
uberdeckt. Wir durfen annehmen, da6 Inh die entsprechenden Punkte Pkj
ebenfalls enthàlt ; durch eine éventuelle VergrôBerung von II lâBt sich
dies jedenfalls erreiehen. Man sieht leicht ein, daB m/^*^m/^. Also
m(V II*)^ £mll*^ £ mll m(U II). Fur l ->oo strebt U/î gegenh h h h h

R, VInh* gegen R*, und es folgt

(49)

Da (m 0 — meA) beliebig klein gemacht werden kann, folgt aus (47),
(48) und (49) A±. A; ; meA*^meA (50)

Aus (46), (50), (45) und (41) folgt

meDn rneA^m6A* meD* ln (51)

Es sei Ee die Menge der 2-Werte, fur die die Ungleichung

m (t) > (cos nq' — e) M (t)

richtig ist. Die Mengen (0, r) ^ Ee (r > 0) sind meBbar. E€n bezeichne
die Menge derjenigen Punkte von Ee, die die Bedingung

K^<Ë^)-^K («=1,2,3...)
erfullen. EBn ist meBbar und, da Dn c Een, gilt unter Berueksichtigung

Da VE£n c Ee, und da die EBn fremd zueinander sind, folgt: Obère

Dichte Es^Obère Dichte [U Tn].
n

Von der letztern GrôBe hat aber A. 8. Besicovitch [2, Paragraph 10]

gezeigt, daB sie ^1 ^- ist. Somit gilt : Obère Dichte Ee^l ~
Hieraus folgert man leicht die Behauptung des Satzes 2.

Falls q 0 ist, kann ^;>0 beliebig klein gewâhlt werden. Wir er-
halten also als Korollar zu Satz 2 (vgl. [2 ; Theorem 3]) :

7 Commentai!! Mathematici Helvetici ^



Satz 3. Fur jede in der ganzen endlichen z-Ebene subharmonische
Funktion der Ordnung 0 gilt :

Obère Dichte E {m(r) > (1 — e) M(r)} 1

Folgende Verschârfung eines Satzes von A. Dinghas [8 ; Satz II] ist
ebenfalls ein Korollar zu Satz 2 :

Satz 4. Die Funktion u(z) sei in der ganzen endlichen z-Ebene sub-

harmonisch, nicht konstant und von der Ordnung q <J. a sei eine be-

liebige Konstante. Dann ist

Obère Dichte E {m(r)^a}^l — 2q

Dieser Satz wird im zweiten Teil noch etwas verschârft werden
(Satz 4).

Von nun an beschrànken wir uns auf eine spezielle Klasse von Funk-
tionen der Ordnung 0, indem wir folgende Voraussetzung machen :

M (r) =0 (log r). Es wird sich zeigen, da8 liber dièse Funktionenklasse
eine Aussage gemacht werden kann, welche ûber Satz 3 hinausgeht
(Satz 6).

Wir benôtigen vorerst einen Hilfssatz :

Hilfssatz E. Voraussetzung: y f(x) sei eine fur x^O definierte,
monoton wachsende Funktion, welche die Ungleichung

0^/(a;)<Jf<oo (52)

erfûlle und deren Graph in der (x, t/)-Ebene mit G bezeichnet sei.

Ferner sei K eine beliebig vorgegebene positive Zahl. E bezeichne die
Menge aller Punkte xP der #-Achse mit folgender Eigenschaft : Es
existiert ein Punkt Q(xQ, yQ) eG (xQ ^ xP) so, da6

yQ-f(xP)

Behauptung :

K (53)
Xq~ XP

mE<oo (54)

Beweis. E ist eine Vereinigungsmenge von Intervallen und infolge-
dessen meBbar. Sei Ex (respektive E2) die Menge derjenigen Punkte

xP c E, bei denen fur den in der Voraussetzung auftretenden Punkt Q

zusâtzlich Xq>xp (respektive xQ<xP) verlangt werden darf. Es ist
E EX^E%, somit

mE^meE1 + meE2 (55)
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Zunâchst zeigen wir
meEx<oo (56)

Wir ordnen jedem Punkt xP*.Ex eine Zahl <p(xP) zu nach folgender
Vorschrift : <p(xP) max [xQ — xP], wenn Q aile Punkte von 0 durch-

lâuft, welche (53) erfullen. Es ist 0<w(xP)<-îr. Mit An (n 1, 2,il
3,...) werde die Menge aller Punkte xP€Ex bezeiehnet, fur die gilt

Sei #! ein Punkt von -4X, der von der untern Grenze dieser Menge um
M

weniger als —tf entfernt ist. Wir definieren auf der #-Achse das Inter-
L -t\-

vall I1[x1 — cp(x1)<x<x1 + q>(Xi)] und auf der y-Achse lt[f(.xi)<
y<f(%i) + K y (a?!)]. Aus (52) und (57) folgt A1cl1.

Sei x2 ein Punkt von A2 — (^2^/!), der von der untern Grenze
M

dieser Menge um weniger als -^f entfernt ist. Wir definieren auf der

#-Aehse das Intervall /2[#2 ~ <p(x2)<x<x2 + <p(x2)] und auf der
y-Achse I2[f(x2)<y<f(x2)-{-K(p(x2)]. Sei x3 ein Punkt von

2

A 2 — (A2r> V Ik), der von der untern Grenze dieser Menge um weniger
M k=1

als -—£r entfernt ist. Wir definieren auf der #-Aehse das Intervall
SU.

^3lxz — 9(xs)<x<xs + <p(xz)] und auf der y-Achse /* [/(xz)<y
3

</(#3) + Kq>{xz)]. Aus (52) und (57) folgt: A2 c VIk usf. Ist eine

der Mengen A1} Ax — (A2^ Ii)9 >.. leer, so fàllt das zugehôrige Intervall

Ik einfaeh weg.
Man uberlegt sich leicht, daB

E1 \J Anc\J Ik (58)1 n=l n *=1 k V ;

m/ (59)
K.

/* ^ /* 0 fur k ^ 7 (60)

Aus (58), (59) und (60) folgt :

oo oo O » O yif

^- 2T ml? g-4-<oo (61)
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Auf analoge Weise zeigt man
meE2<oo (62)

Aus (55), (61) und (62) folgt die Behauptung.

Satz 5. Innerhalb der Klasse der in der ganzen endliehen z-Ebene
subharmonischen Funktionen von der Ordnung g < 1 ist die Aussage
M (r) O (logr) âquivalent mit der Beschrànktkeit der Mengenfunk-
tion fi (e^), und zwar gilt dann M (r) ~ C log r, wobei C — lim /u (t).

t—>00

Beweis. Sei M(r) — O (log r). Dann gilt fur genugend groBe r und
eine geeignete Konstante A

t
o

(Die linke Ungleichung folgt aus den Formeln (2.3) und (2.4) der Arbeit
von M. Heins [9].) Daraus folgt fur genugend groBe t :

et

(*(t)[t-log t]£ Ç^^-
t

Also ist fx (t) beschrànkt.
Sei umgekehrt [i(t) beschrànkt und C lim^(^). e>0 sei vorge-

geben. Wir wâhlen r0 so groB, daB ju(ro)>C ~ —- Dann folgt fur
r>r*C,e *

M(r)^ ^p-dt^ \C-~ (logr- log r0) > (C - «) logr (63)

Wir diirfen ohne Verlust an AUgemeinheit voraussetzen, daB u(z) in
einer gewissen Umgebung des Nullpunktes | z \ <a, a>0, harmonisch
sei. Somit ist

c

— dp<{C + e)logr (64)
6

fur genugend groBe r.
Aus (63) und (64) folgt M(r)~C log r.

Satz 6. Voraussetzung : M (r) O (logr). e sei eine beliebig vor-
gegebene positive Zahl.

Behauptung: Es gilt m(r)>(l — e) M(r) mit Ausnahme hôehstens
einer Menge von r-Werten von endlichem MaB.
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Beweis. Wir durfen uns nun wieder auf Funktionen beschrânken,
deren Masse auf der negativen reellen Achse liegt (vgl. Hilfssatz A). Es

sei C lim p(t). Wir setzen A C 1 — — I. Ferner sei jR0 t(A).

Wir betrachten die Funktion t*(jbt ; r) /x — ^(r) + r. Es gibt eine
Zahl JRi derart, daB

Jlog 1 - - - M(r) fur r>Rx (65)

Denn eine leichte Rechnung ergibt fur r -> oo :

/log 1 —

woraus man unter Beiziehung von Satz 5 sofort (65) erhâlt. Ferner
existiert eine Zahl R2 derart, daB

log 1 - t(A)

Wir setzen
R max [C, Ro, Rx, R2]

(66)

(67)

Auf Grund von Hilfssatz E gilt fur aile r, mit Ausnahme von hôchstens
einer Menge E von endlichem MaB :

fur

fur

(68)

Fur aile Werte von r, die grôBer als R sind, und die nicht in E liegen,
gilt wegen (67), (66), (68) und (65) :

A C

m{r) -/• 1-- dfji + i log
À

— I I log
0

djit>

c

i + flog
A

1
** dp>

>M(r) (l - |j2- ~ M(r)>M(r) (1 - e) q. e. d.
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II. Einige Sâtze vom Phragmén-Lindelôfschen Typus im Rn (n ^ 2)

Die Problemstellung von Phragmen und Lindelof, formuliert fur den
Fall subharmonischer Funktionen im Rn, ist bekanntlich folgende :

In einem Gebiet Q ist eine subharmonische Funktion u gegeben. Dièse
sei in der Umgebung aller Randpunkte mit Ausnahme eines Punktes A
besehrankt. Dann ist u entweder in ganz Q beschrânkt, oder u muB bei

geeigneter Annàherung an A mit einer gewissen Mindeststârke gegen
Unendlich streben. Dièses Mindestwachstum hàngt von der Beschaffen-
heit des Gebietes Q in der Umgebung von A ab.

Als Ausnahmepunkt nehmen wir hier stets den unendlichfernen Punkt
an. Es bedeutet dies keinen Verlust an Allgemeinheit, da man durch eine
Kelvin-Transformation den Fall eines im Endlichen gelegenen Rand-
punktes ohne Schwierigkeit auf den unsrigen zuruekfûhren kann.

Wir fuhren folgende Bezeichnungen ein :

O(P ; r) U [Q \ PQ<r] F(P ;r) V[Q\ PQ^r]
Or O(O;r) Fr F(O;r)
S(P;r) U [Q \ PQ r] Sr 8(0 ; r)

Jeder offenen Menge co auf 8r ordnen wir auf folgende Weise eine
Konstante a(co)^0 zu, die wir die charakteristisehe Konstante
von a) nennen wollen : Sei co* irgendein regulâres (mit analytischen
Ràndern versehenes) Gebiet, das in co enthalten ist. Unter Af wollen wir
den kleinsten Eigenwert des folgenden Problems verstehen : Au + A*w

0 in co*, u 0 auf dem Rand, u^O, zweimal stetig differenzierbar
in co*, stetig auf dem Rand. A Beltrami-Operator. Af ist gleich dem
Minimum des Quotienten

r2j | grad/ \*dSr

wobei aile diejenigen stetigen und stuckweise stetig differenzierbaren
Funktionen / zur Konkurrenz zugelassen sind, welehe in co* nicht iden-
tiseh null sind und auf dem Rand von œ* verschwinden. Wir definieren :

Ai inf Af. Dabei soll a>* aile regulâren Gebiete durchlaufen, welehe in

a) enthalten sind. Unter der charakteristischen Konstanten oc(co) soll die
niehtnegative Lôsung der Gleichung x(x + n — 2) Xx verstanden
werden. (So ist beispielsweise die charakteristisehe Konstante einer Halb-
kugel gleich 1, diejenige einer Vollkugel gleich 0, diejenige eines Kreis-
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bogenstiickes vom Zentriwinkel <p im R2 gleich — usw.) Aus co1 c co2

folgt ^(co^^o^coa). Ist Q ein Kegelgebiet im Rn, so ist a(Q^Sr)
unabhângig von r, denn oc ist invariant gegenûber Âhnlichkeitstrans-
formationen.

Es stellt sich hier die Frage nach einer einfachen Charakterisierung
derjenigen offenen Mengen co, fur die oc(co) 0. Man uberlegt sich
leicht, daB <%(co)>0 fur unzusammenhàngende Mengen co. Also durfen
wir uns auf Gebiete beschrànken.

Définition. Wir sagen, der Rand y des Gebietes co besitze die Kapazi-
tàt null, falls folgender Sachverhalt zutrifït : Sei {cok} (k 1,2,3,...)
eine monoton wachsende Folge von regulàren Gebieten, welche co aus-
schopft ; yk sei der Rand von cok. Wir wàhlen einen Punkt P c cox und
eine solche Zahl g > 0, daB (8r ^ F(P ; g) c cox. cpk sei die Lôsung des

folgenden Randwertproblems Acpk 0 in co* cok — (8r ^ F(P ; q)),
<pk 0 auf yk, cpk 1 auf (Sr ^ S(P ; g)), <pk zweimal stetig differen-
zierbar in co%, stetig auf dem Rand, A Beltrami-Operator. Die Funk-
tion (pk — das harmonisehe MaB von (8r<^ 8(P ; g)) in bezug auf cok —

macht das Dirichletintegral Ik J | gradç?fc l2^^ bei den gegebenen
<4

Randwerten zu einem Minimum. Die Folge Ik nimmt monoton ab. Falls

Ik\0, heiBe y von der Kapazitât null. Andernfalls sagen wir, y sei von
positiver Kapazitât. Dièse Définition ist von der speziellen Wahl von
{cok}, P und g unabhângig (vgl. zum Beispiel R. Nevanlinna [17]).

Es sei y das Bild von y bei stereographischer Projektion von Sr auf den
jBw_1 von einem Punkte des Gebietes co aus. y ist — nach der im jBn_x

iiblichen Définition — gleichzeitig mit y von der Kapazitât null bzw. von
positiver Kapazitât. Zum Beweise beachte man folgende Transforma-
tionseigenschaft des Dirichlet-Intégrais : Sei / eine auf einem beschrânk-
ten Gebiete G c OM des Rn^ definierte und stetig differenzierbare Funk-

tion, / deren stereographische Verpflanzung auf das Gebiet G c Sr. Es

gilt die Ungleichung

G

Aus cap y 0, also Ik \± 0 fur k -+oo, folgt unter Anwendung von
(1), daB das Dirichlet-Integral der stereographisch verpflanzten Funktion
(Projektionszentrum P) ebenfalls gegen null streben muB. Also cap y 0.
Analog schlieBt man in der umgekehrten Richtung.
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Satz 1. Die eharakteristische Konstante oc eines Gebietes co ist daim
und nur dann gleich null, weiin die Kapazitàt des Randes y von co ver-
schwindet.

Beweis. Wir dûrfen den Kugelradius normieren : r 1. Sei 8 8t.
Im JB2 ist der Satz trivial : Schon wenn y ans nur einem Punkt besteht,
ist (x \ und cap y > 0. Im folgenden sei also n ^ 3.

I. Sei cap y 0. Unter Verwendung der oben eingefuhrten Be-
zeichnungen definieren wir

(<pk
auf a)%

1 auf (F(P;Q)r,S)
Es ist $\gradwk\2d8 $\gr&d<pk\2d8\0 fur h ->oo. Da

§\ dS grôfier als eine von k unabhângige positive Konstante ist, gilt

J | gradw& \2 dS

§\d8
und daraus folgt tx((o) 0.

II. Sei capy>0. {a)k} (k 1, 2, 3,...) sei eine monoton wach-
sende Folge von regulâren Gebieten, welche w ausschôpft. Zu cok gehôre
der Rand yk9 der Eigenwert Xk und die durch die Bedingungen uk>0,

§u\d8 1 eindeutig festgelegte Eigenfunktion uk. Wir mussen zeigen,
tojc

da8 die monoton fallende Folge {kk} nicht gegen null konvergiert. Wir
wàhlen einen beliebigen Punkt P e co1. Eine der beiden folgenden Aus-

sagen muB zutreffen :

(a) Es gibt zwei positive Zahlen q und rj derart, dafi

2) uk(Q)^tj fur Qe (F(P;q)~8) und k= 1,2,3,...
(b) Es gibt eine gegen P konvergierende Punktfolge {Pk} derart,

da8 lim inf uk{Pk) 0.
Â:->oo

Wir betrachten zuerst den Fall (a). In cok definieren wir folgende
Funktionen :

(F(P;Q)rsS)
%* \f)<p auf co% cok-
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Esist

wobei die Konstante G als von k unabhàngig gewàhlt werden kann, weil
cap y > 0. Daraus folgt aber, wenn man die Normierung von uk beachtet
infAfc^C>0. q. e. d.
k

Im Falle (b) fuhren wir die Annahme Xk "\ 0 ad absurdum. Durch
Auswahl einer Teilfolge {un]c} — und die entsprechende {PnJc} — kônnen
wir erreichen, daB lim unk(PnJc) 0. Wir denken uns eine solche Teil-

nfc—>oo

folge ausgewâhlt, die wir neu numerieren und wieder {uk} — und ent-
sprechend {Pk} — nennen.

Es sollen folgende Bezeiehnungen gelten : II(M ; s) sei die (n — 2)-
dimensionale Untersphâre von s mit dem Mittelpunkt M und dem

sphârischen Radius s, 0 (M ; s) die entsprechende abgeschlossene Ku-
gel, I(s) deren Inhalt, Ck(M;s) bzw. Ak(M;s) das arithmetische
Mittel von uk ûber II(M; s) bzw. <P(M;s), an die Oberflâche der
n-dimensionalen Einheitskugel.

Sei M € to1 ein beliebiger Punkt, so>O eine solche Zahl, daB

0(M ; s0) c o)1. Wir wenden fur das durch II(M ; e) und II(M ; s0),

0<e<s0, begrenzte Ringgebiet R die Greensche Formel

/ àv - vAuk) dS== / (-gf - % ^:) do (2)

R Rand R

an, wobei wir fur v(Q) die Greensche Funktion g(M;Q) — bezûglich
Au 0 und 0(Jf ; 5o) — einsetzen :

1
n — 3 :

' v (Q) —— flog r0 — log :

3
gerade : v (Q)

1 w~3

ungerade: v(Q) =-~ ii I

<Tn_l m=0

,2m—n+Z r2«i-n+3

2m — n + 3
n-3

rn- 31

+ -z I n - 3 I [log r0 - log rQ]

Ir0 tg -^, rQ tg-—-, sQ= sphârischer Abstand derPunkte M und Qj
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Da Auk + Xuk 0, Av 0 in R, v 0 auf /7(ilf ; s0), ergibt (2)
fur s -> 0

A J d£ (Jf C(Jf ;s0) (3)

Daraus folgt
M;s0) (4)

Das Intégral in (3) integrieren wir zuerst ûber sQ const. :

k J v%d«- Afcjv(r)Cfc(Jlf;5(r))^(r)^Afci/^(ikf) (5)
0(M;8Q) 0

wobei L f ^ ^$ eiïie von k und Jf unabhângige Konstante ist. Aus
0(M;so)

(3) und (5) erhalten wir (1 — XkL) uk(M)^Ck(M ; sQ), und, da Xk \ 0,
schlieBen wir :

Zu vorgegebenem so>O gibt es zwei positive Zahlen ko(so) und
H(s0) mit folgender Eigenschaft : Es ist

uk(M)^H-Ck(M;s0)^H-Ak(M;s0) (6)

fur beliebiges k^k0 und jeden Punkt M, falls nur &(M ; s0) c cofco.

Nun betrachten wir wieder den Punkt P. Es sei so>Q so gewàhlt,
da8 0(P; 3s0) c œ1. Ferner sei 1cx so groB, daB erstens k1^k0(s0), und
zweitens Pke&(P ;$0) fiir k^kx. Dureh Anwendung der Ungleichun-
gen (4) und (6) erhalten wir fur k^kx :

^ jj^ % (F) ¦

Daraus folgt
lim uk(P) 0 (7)

Fur einen beliebigen Punkt Q € &(P ; 2s0) gilt

J^^^{Q) (8)

Aus (7) und (8) folgt, daB {uk} in 0(P;2so) gleichmâBig gegen 0

konvergiert.
e>0 sei vorgegeben. Wir wàhlen k so groB, daB uk(Q)<e fur

Q c 0(P ; 2so).Wir definieren

0 fur Qe0(P;so)

B>7-(*g-«o)l fôr Q€(0(P;2so)-0(P;so))

uk fur Q € (cok -
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Infolge der Normierung von uk ist

J ut2dS^l -el(2so) (co* œk - &(P;s0)) (9)

Ferner gilt

f | grad ut |« dfif^ f| grad »fc |* d/Sf + (—Y[I(2s0) - /(«„)] (10)

Aus e -> 0 (und damit k ->oo) folgt mit der Annahme Kk "\ 0 sowie
den Beziehungen (9) und (10) :

0
J uk2dS

Also wurde die eharakteristische Konstante des Gebietes

dessen Komplement bezuglieh S innere Punkte enthâlt, verschwinden ;

dies ist offenbar falsch. q. e. d.
Sei nun Q ein beliebiges, sich ins Unendliche erstreckendes Gebiet im

Rn mit dem Rand F. Wir setzen zur Abkurzung oc (r) oc (Q ^ Sr).

Satz 2. Voraussetzungen :

1) u(P) sei eine in Q subharmonische Funktion,

2) lim supw(P)^0.
PeQ;Q€F

Behauptung. Es gilt entweder:

u(P)^0 inQ (11)

oder : Es existieren zwei positive Zahlen G und r0 derart, dafi
Q

r 2ja(|)dlog|

M^(r)^^ J Qn-2er° dlogQ (12)

wobei M(r)^> sup u(P)

Fur den Fall n 2 ist dieser Satz bereits bekannt. A Dinghas hat
die Absehâtzung (12) fur Funktionen der Form log \f{z)\ (/(») ana-
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lytische Funktion) in einem von zwei analytischen Kurvenbogen be-

grenzten Gebiete bewiesen [6], wobei er eine Méthode von T. Carie-

man [4] benûtzte. Spàter hat A. Pfluger eine kiirzere Herleitung gefun-
den und dabei allgemeinere Gebiete betraehtet [18]2).

Unsere Beweismethode ist analog derjenigen von T. Carleman und
A. Dinghas. Sie beruht auf der Auswertimg der Differentialungleichung
(21) fur das durch Formel (13) definierte Mittel m(r). Die Beziehung (21)
wurde fur den Fall harmonischer Funktionen im R3 erstmals durch
H. Keller aufgestellt [12]. H, Keller hat auch das Anwachsen des ent-
sprechenden, ûber eine Sehar von parallelen ebenen Schnitten erstreek-
ten Mittels untersueht und dabei unter anderem eine zu [12] analoge
Abschàtzung gefunden [11, p. 34],

Nun erfordert aber dièse Méthode eine starke Regularitât sowohl von
der betrachteten Funktion als auch vom Rande ihres Definitionsgebietes.
Deshalb schalten wir einen Grenzubergang dazwischen : Wir betrachten
eine Folge von durch Mittelbildung regularisierten Funktionen, welche
in regular begrenzten Gebieten definiert sind und schlieBen dann aus den

Eigenschaften der Funktionen der Folge auf die gesuchte Eigenschaft
der Grenzfunktion.

Wir nehmen an, da8 (11) nicht erfullt sei, und zeigen, daB daraus die

Richtigkeit von (12) folgt.
Es gebe also einen Punkt Poc£? derart, daB u(Po)>0. Wir

betrachten die im ganzen Rn subharmonische Funktion

max [u — rj, 0] auf Q
0 £

wobei wir im R2 fur die Konstante rj max [i?0, M(R0)] — RQ sei ein
willkûrlich gewàhlter Radius derart, daB 8Rq ^ Q ^ 0 — und im Rn

(n ^ 3) rj —ï~^L setzen. Wir definieren :

2(/wobei an —y—r— die Oberflâche der n-dimensionalen Einheitskugel

\ 2 /
darstellt. m(r) ist eine monoton wachsende Funktion, denn v2 ist eben-

2) Kurzlich hat A. Dinghas die Formel (12) unter gewissen Regularitâtsbedingungen
auch fur allgemeine n bewiesen [9].
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falls im ganzen Rn subharmonisch. Es gibt ein R > 0 derart, daB

m(R)>0 (14)

Fur n ^ 3 folgt dies unmittelbar aus der Wahl der Konstanten rj. Wûrde
im Falle n 2 die Funktion m (r) nie positiv werden, so wûrde daraus
die Beschrânktheit von u folgen. Dann wâre aber die in der ganzen end-
lichen Ebene subharmonische Funktion

imax
[u — e, 0] auf£?

0

beschrànkt, somit eine Konstante. Also ue 0 fur jedes e > 0. Daraus
wiirde folgen : u^O in Q. Somit wâre (11) erfiïllt, was aber im Wider-
spruch zur Beweisannahme steht.

Sei nun R < Rx < R2 < • • eine gegen + oo konvergierende Folge
von r-Werten. Zu jedem Punkte von r^FRl gibt es eine Kugelumge-
bung, innerhalb welcher v 0 ist. Es geniigt eine endliche Anzahl
Ul9...9 Un dieser Umgebungen, um F^FRl zu iiberdeeken. Sei Cx

n
der Rand von (Q ^ ORl) — U Uk und at der (positive) Abstand von Ct
und r n FRl. Wir wàhlen

^r, ^ min y
und bezeichnen mit vt die dreifach ûber eine Vollkugel vom Radius Qt

gemittelte Funktion v. (Fur dièses Mittelungsverfahren sowie die Eigen-
schaften der gemittelten Funktionen vgl. [20, p. 11].) Die Funktionen vl
(1 1,2,3,...) sind zweimal stetig differenzierbar. Wir definieren

d8r. (15)

Fur 1->oo gilt ^j\(0, somit vt\±v. Daraus folgt

ml(r)\m(r) fur 1 -> cx> (16)

Zu jedem Punkt von P^ FRl gibt es eine Umgebung, innerhalb welcher

vt 0 ist. Eine endliche Anzahl Fx,..., V^ dieser Umgebungen
geniigt, um FrsFRl zu ûberdecken. Sei Ot ein regulàres Gebiet im Rn

mi
derart, daB {{Q ^ 0^) — U Vk) c c (Q * ORl). In der folgenden Ab-

schâtzung wird mehrfach stillschweigend davon Gebrauch gemacht, daB

vt und gradvj in allen Randpunkten von Ot verschwinden, die nicht
zu 8Rl gehôren.
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Sei r^Rt. Dureh Differentiation von (15) erhalten wir

^dS
(GirsSr)

n
(Gir\Or)

Somit ist

t (r) m\ (r))f — f (| grad^|2 + i;, Avt) dSr

grads *'|2 dSr) '

denn fol âv{^§. Unter grads vt soll dabei die an 8r tangentiale Kom-
ponente von grad vx verstanden werden. (Gt ^ 8r) besteht aus endlich
vielen regulâren Gebieten a)n,..., colm und es gilt zufolge der Définition

von a (r) :

r2 J|gradst;z|2^r
""

f ^oc(oc + n- 2) (i= 1,2,...,^)

Daraus folgt

J |grad5^|2^r^^(r)((x(r) + n-2)r-2 J v\ dSr (19)

Aus (17) erhâlt man unter Anwendung der Schwarzschen Ungleichung :

%\ (r))2 I — vl -=*- d8r Im',

(Gir^Sr) (Gir^Sr)
Also K^ /(^)V. (20)

Aus (18), (19) und (20) erhalten wir

f)fM'1(m/l(r)y + oc (oc + n - 2) rn~* m\(r)

und nach kurzer Umformung, wobei wir benutzen, daB mt(r)>0 in
dem Intervall, das wir spâter betrachten werden :

r*mï(r) + r(n- l)m^(r)^a(r)(«(r) + n — 2)mt(r) (21)
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Die Transformation
%[0(t)-(n-2)t]

r ë ml (r) e

ergibt aus (21) nach leichter Rechnung (•= Ableitung nach t)

0* + 20^éot(<x + n - 2) + (n - 2)2

Daraus folgt
/• 0\2
[0 + —1 à(2<% + n -2)2
\ 0)

und deshalb

Wir kehren zu den ursprunglichen Variablen zurûck :

Nun kônnen wir leicht integrieren :

(m2lr)rn-*Y r 2J(l)og^
m\ (r) r-2 ^ mf (r0) ^~2 +

V ' ^w_2 ;f"r° J ^~2 e r° d log

i; 1= 1,2,3,...) r°
(22)

Wir unterscheiden die Fâlle n 2 und

a) n 2. Infolge der Konstruktion der Funktion v ist m(R0) 0,
m2 (R)

m(R)>0. Ans 16) folgt, da8 m](R) - m](R0)> —^ fur geniigend

groBe 1 (1 > l0). Nach dem Mittelwertsatz der DifiEerentialrechnung gibt
es zu jedem 1>1O ein Rf (R0SRfSR) so, daB

(™iW)f.«î ÎTZ7ïfQ 2(B-B.)
Also folgt aus (22) :

Q Q

j Jr

m)
j J

(r) ^ (m] (r))'fwmR* J e** d log q ^ CJ e
'° d log

(23)

wobei C p —~r- und r0 R von 1 unabhângige Konstanten
z(it — Mo)snid.
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b) %^3. Nach dem Mittelwertsatz der Differentialreehnung gibt
es zu jedem 1 ein Bf (B^Bf^B + l) derart, da8

(ro, (r)r« -%^R% m%(B+\) (S+l^-
Wir wenden (22) an :

m(r)r^y ' /
f — J ^ dl°ëQ

(24)

° ' " a *m dloge (1= 1,2, 3,.

\ I B \n-2"|
wobei G m (iî) 11 — 11 I und r0 B + 1 von 1 unab-

hangige Konstanten sind.
Aus den Definitionen von M (r), v(P) und m(r) folgt unmittelbar

(25)

Aus (16), (23), (24) und (25) ergibt sich (12). q. e. d.
Aus der Differentialungleichung (21) sehlieBt man unmittelbar auf

eine bemerkenswerte Eigenschaft der Funktion

_. J __ j uz dSr\ wobei u max [0, u]

Es ist namlich m?(r) fur n 2 eine konvexe Funktion von logr,
fur n ^ 3 eine konvexe Funktion von n_2 (Zur Verifikation ersetze

man in (21) die rechte Seite dureh null.) Daraus folgt dieselbe Eigen-
sehaft fur m(r). Nun lassen wir rj eine Nullfolge durchlaufen und erhalten
das Résultat :

fi, (r) ist fur n 2 eine konvexe Funktion von log r, fur n 2> 3 eine

konvexe Funktion von „ o

Um dièse Eigenschaft der Funktion fx(r) zu zeigen, wâre der Umweg
liber die Beziehung (21) nicht notwendig gewesen. Aus (18) und (20)
schlieBt man direkt auf
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und datait auf :

log r fur n 2

wobei f 1

rn-2
fur ^ > 3

Damit hat man im Wesentlichen eine Méthode von R. Nevanlinna [16,

p. 4] angewanât.
Im Folgenden bezeichne h eine beliebige positive Konstante. Unter

Ex wollen wir die Menge aller r-Werte verstehen, fur die *
<x (r) ^ x ist.

0X (r) sei die charakteristische Funktion von Ex. Wir fuhren das loga-
rithmische MaB von Ex ^ (rt, r2) ein :

Satz 3. Voraussetzungen :

1) u(P) sei subharmoniseh in Q,

2) limsup u(P)^09

3) liminf e~*x«iU
r—>oo

Behauptung: u^O in Q.

Dieser Satz ist eine Erweiterung eines fur n 2 von ^4. Pfluger [18]
ausgesproehenen Satzes auf hohere Dimensionen. Analog zum Fall der
Ebene fuhren wir ihn auf Satz 2 zuriick.

Nehmen wir an, die Behauptung sei falsch. Wir wenden auf u (P) den
Satz 2 an : Es gibt zwei positive Konstanten G und r0 derart, daB

Q

2ja(f)t*log£

Somit gilt

[« / qn~2e dlogç

n — 2 + 2« ],
denn es ist XH (q r) <£ log r — log ^. Lassen wir r -> oo streben, so er-
halten wir einen Widerspruch zu Voraussetzung 3). Damit ist der Satz
bewiesen.

Commentarii Mathematici Helvetici



Satz 3 gibt zu verschiedenen Folgerungen AnlaB (vgl. A. Pfluger [18]) :

Zunàchst bemerken wir, daB wir fur den Fall n 2 eine Versehàr-

fung von Satz 4 (Teil I) erhalten :

Satz 4. Die Funktion v(z) sei in der ganzen endlichen z-Ebene sub-

harmonisch, nicht konstant und von der Ordnung g < ^. a sei eine be-

liebige Konstante. Dann ist :

Untere logarithmische Diehte E {m(r)^a}^l — 2 g (26)

(Unter der untern logarithmischen Dichte einer meBbaren Punktmenge
E auf der r-Aehse versteht man die GrôBe

wobei 0(r) die charakteristische Funktion von E bedeutet ; analog defi-
niert man die obère logarithmische Dichte.) Dieser Satz ist fur den Fall
ganzer Funktionen erstmals von B. Kjellberg [13, p. 20] bewiesen worden.

Zum Beweis betrachte man die Funktion u v — a in dem Ge-

biet 42, in dem sie positiv ist. Wir wenden Satz 3 an (x -|). Da die

Voraussetzungen 1) und 2) erfullt sind, die Behauptung hingegen nicht,
darf die Voraussetzung 3) ebenfalls nicht zutreffen. Dies ftihrt auf die

Ungleichung (26).
Die beiden folgenden Sâtze sind ebenfalls leicht zu beweisende Korol-

lare zu Satz 3 und gelten fur aile n :

Satz 5. Ist u (P) eine in Q subharmonische Funktion der Ordnung g,
so gilt fur die obère logarithmische Dichte kx der Menge EK die folgende
Ungleichung :

logr h

Satz 6. Voraussetzungen:

l) u(P) sei eine in Q subharmonische Funktion,

2) a, (r) ^ oco > 0 fur genugend groBe r,
3) limsup

4) limin
r->oo T °

Behauptung : u(P)^0 in Q.
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Satz 6 lâBt sieh unter anderem auf Kegelgebiete anwenden. Da der
Fall geniigend regulâr berandeter Kegelgebiete mit andern Methoden
schon eingehend untersucht worden ist, haben wir hier eine Vergleichs-
môglichkeit : Unser Satz ist eine Verschârfung einer im Jahre 1947 von
J, Deny und P. Lelong bewiesenen Aussage [5, p. 104]. Im Jahre 1949

verôfifentlichten L. Ahlfors und M. Heins [1] (fur den Fall n 2) und
J. Lelong-Ferrand [14] [15] (fur allgemeines n) Untersuchungen, in denen
die Wertverteilung dieser Funktionen schàrfer erfaBt wird, als dies mit
der hier verwendeten Méthode môglich ist. Letztere besitzt dafûr den
Vorteil, auf willkurliche Gebiete anwendbar zu sein.

Satz 7. Unter den in einem Kegelgebiet Q subharmonischen und
nicht beschrânkten Funktionen u, welche die Voraussetzung

limsup u(P)^0
P->Q; PeQ; QeF

erfiillen, gibt es dann und nur dann solche von beliebig niedriger Wachs-

tumsordnung q falls die Kapazitât des Randes F von Q verschwindet.
Beweis. J. Deny und P. Lelong haben bewiesen [5, p. 94], daB

cap F 0 im Rn Equivalent ist mit cap (F r\ 8) 0 auf S, und nach
Satz 1 ist dies Equivalent mit <x (Q ^ S) 0.

Ist capjT>0, also <x(Qrs 8)>0, so folgt aus Satz 6 die Existenz
einer positiven Mindestwachstumsordnung.

Ist cap F 0, also oc(Q ^ S) 0, so gibt es regulare Teilgebiete co*

von (Q rs 8) mit beliebig kleiner charakteristischer Konstante <%*(&>*).

Sei u* {Q) die entsprechende Eigenfunktion. Setzen wir

| u* auf co*
U

\ 0 auf (Q ^ S) - a)*

so erfiillt die Funktion rf - u(P) (rP OP, P= (8 * Gerade OP)) die
Voraussetzungen und ist von der Ordnung a*. q. e. d.
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