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Zur elementaren Flichentheorie

Von W. SCHERRER, Bern

Die Kriimmungslinien liefern bekanntlich ein Parameternetz, dessen
man sich bei zahlreichen Fragen der elementaren Fliachentheorie mit
Vorteil bedient.

Dariiber hinaus aber erweist es sich als vorteilhaft, zur expliziten
Bearbeitung einer Raumfldche

x = x(u, v) (1)
mit der Normalen
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nicht das traditionelle Dreibein

X, %, N, (3)
sondern das Dreibein

N, N, N (4)
zu benutzen.

Dies lduft dann darauf hinaus, dafl man primdr das Normalenbild (2)
als Vektorfunktion

N = N(u, v) (5)
mit den Nebenbedingungen

N:=1; (6b) NN, =0 (6a)

vorgibt und sekunddr den Fliachenvektor (1) vermittels der Rodrigues-
schen Gleichungen bestimmt.
Da diese Methode in dem traditionellen Lehrgang nicht verwendet
wird, seien hier ihre Hauptformeln kurz zusammengestellt.
Setzen wir
2= ; ¢=N (7)

so erhalten wir folgendes System von Ableitungsgleichungen
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Ry = = R, + 2@, - (8)

RN,y = — ggum + Lo, —en

Als Integrabilititsbedingung des Systems (8) erhidlt man die Relation

G ]

welche natiirlich nichts anderes als die Gaufsche Gleichung fiir das
Normalenbild darstellt.

Nachdem so ein Normalenbild mit orthogonalem Parameternetz kon-
stituiert ist, gewinnt man nun den Ortsvektor vermittels der Rodrigues-
schen Gleichungen

— e (10)
X,= —aoN,
wobei ¢ und ¢ die Hauptkriimmungsradien bedeuten.
Als Integrabilitdtsbedingungen des Systems (10) ergeben sich
e’l)
Gu
o,= — (0 —p) =
(6 —0) g

Das System (11) zur Bestimmung von ¢ und ¢ kann separiert werden
in die Gleichungen

e

Ouy (Lg g)u Oy — [Lg (—e_:;—)]o o, =0

Die konkrete Bestimmung einer Fliche gestaltet sich nun folgender-
mafen:

(12)
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Den Ausgangspunkt bildet eine Losung von (9). Gestiitzt auf sie ge-
winnt man vermittels (8) das Normalenbild 3% und vermittels (11) respek-
tive (12) die Hauptkriimmungsradien g und o . Das System (10) schliel3-
lich liefert zuletzt den Ortsvektor x .

Durch diese Methode kann man zahlreiche Probleme der Theorie der
Raumflichen, wie etwa Minimalflichen, Flichen mit ebenen Kriim-
mungslinien, Flichen konstanter Gaufscher Krimmung usw. einheitlich
in Angriff nehmen. Als weiteres Beispiel erwihne ich die Bestimmung
aller derjenigen Flichen, fiir welche die Stiitzfunktion eine Funktion
des Radius ist. Diese Bestimmung ist ausgefiihrt in der Dissertation des
Herrn H. Schindler [Beitrige zur Theorie von Stiitzfunktion und Radius].

(Eingegangen den 21. November 1951.)
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