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Euler’sche Zahlen und Klassenanzahl

des Korpers der 4l-ten Einheitswurzeln
Von Max Gur, Ziirich

1. Inhaltsangabe und Bezeichnungen

Wir wihlen in dieser Arbeit Vorzeichen und Indexbezeichnung der
Bernoullischen und Eulerschen Zahlen so, daB

0 m v
eB‘v= E Bm v ' . v've ,

me0 m! e’ —1

bzw.
= 2]
m 2

Ev
e’ = Y E,—= —

e "m! e | e7?

Bedeutet I durchwegs eine beliebige ungerade Primzahl, so hat Kummer
bekanntlich den Satz bewiesen, dafl die Klassenanzahl des Korpers der
l-ten Einheitswurzeln dann und nur dann zu [ teilerfremd ist, wenn die

Zahler der ersten

Bernoullischen Zahlen von geradem Index,

B,, B;, By, ..., B;_;, alle zu l teilerfremd sind. Wir werden hier und
in Abschnitt 4 diesen Satz der Kiirze halber immer als den Saiz von
Kummer bezeichnen.

In folgendem beweisen wir den Satz:

Die Klassenanzahl des Korpers der 4l-ten Einheitswurzeln, wo 1 eine
ungerade Primzahl bedeutet, ist dann und nur dann zu 1 teilerfremd, wenn

die Zihler der ersten L%—l Bernoullischen Zahlen von geradem Index,

B, B,, By, ..., B, 5, und die ersten ;
geradem Index, E,, E,, E,, ..., E,_; alle zu 1 teilerfremd sind.

Eulerschen Zahlen wvon

Mit ¢ bezeichnen wir durchwegs die primitive l-te Einheitswurzel
27t

§ = e ! , mit k£ den Korper der l-ten Einheitswurzeln. Weiter bedeute
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r eine Primitivwurzel mod. I, die wir durchwegs so wihlen, dafl -1 =£ 1
(mod.! 2)und r =1 (mod 4) ist’), und S den erzeugenden Automorphis-
mus von k, also (¥ = {7, endlich k, den maximalen reellen Unterkorper
von k .

Den erzeugenden Automorphismus des GauBschen Zahlkorpers be-
zeichnen wir immer mit X', so daB ¥ = —i. Adjungieren wir i zu %,
so entsteht der Korper K der 4l-ten Einheitswurzeln, dessen maximaler
reeller Unterkorper durchwegs mit K, bezeichnet ist. Da wir K immer

als Kompositum von k£ mit dem GauBschen Zahlkorper auffassen, wird
fst

die konjugiert komplexe einer Zahl 4 von K durch A%S* gegeben.

Eine quadratische Matrix, bzw. Determinante, deren Elemente alle
Funktionen von Zahlen von K sind, und die die Eigenschaft besitzt, daB
die Elemente der zweiten Zeile aus den entsprechenden der ersten Zeile
vermoge des Automorphismus 8, die Elemente der dritten Zeile aus
den entsprechenden der ersten Zeile vermoge des Automorphismus S2,

usw. hervorgehen, wird in abgekiirzter Weise durch Angabe der Elemente
der ersten Zeile bezeichnet.

2. Die Klassenzahlen von k, und von K,
Ist x der erzeugende mod ! eigentliche Charakter, fiir welchen
x(r) =e"", (2.1)

so hat, vgl. Gut [2]?), § 1 und § 7, die Klassenzahl k, von k, den Wert:

2 2
IT 1Y — 5%%(n) log sinﬂ}
h u=1 {n=1 l
0 Rko ’
wo R, den Regulator von k, bedeutet. Ist y,,y,, ..., y, 5 hier und im
% g Y15 ¥ Y1

folgenden ein System von Grundeinheiten von k,, so ist 2

R, = 'loglyl[ log'yZ‘ ... logb},___au ,
2

1) Die erste dieser Voraussetzungen wird gebraucht beim Beweise des Satzes von
Kummer,

2) Die Nummern in eckigen Klammern beziehen sich auf das Literaturverzeichnis am
Ende der vorliegenden Arbeit.
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falls fiir die Logarithmen hier und iiberall in der ganzen vorliegenden
Arbeit die reellen Werte genommen werden, und ferner die Reihenfolge,
bzw. Normierung dieser Grundeinheiten so gewihlt wird, da die Deter-
minante positiv ist.

Unter Benutzung der Theorie derjenigen Determinanten, die man als
Zirkulanten bezeichnet, vgl. z. B. Cesaro [1], pg. 25, erhilt man fiir den
Zidhler von h, die Determinante:

w

l—

l
2 (1—3) (1—5) -5

2 hliihe
IT 1y — 2 n)logsm—«i_~ (—1) ® |log6log65log6%*...log6%*|,

u=1{n=1

(2.2)
wo 0 die positive Einheit

1—-2nQa—2m

R e N
von k, bedeutet®). Mithin ist
’ (1=3) (I-5) -5
hy — (—1) 8 . ]logh log6S log6s*...log0S"* | ‘
|log [yi| log|y.| loglys| ... log|yi_sl]

2

Ist 4, der Charakter, der eigentlich ist mod 4, so hat die Klassen-
anzahl H, von K, vgl. Gut [2], § 1 und § 10, den Wert:

=3, l

|
ot

> an n
IT | Y — x*%(n) log sin —— 1 2 — Zo(m) ¥ (n) logsin"

u=11n=1
H, =

m“l

':Un
X

wo Ry der Regulator von K, ist.

Um zunéchst den Nenner von H, umzuformen, benutzen wir folgendes
Lemma aus der Theorie der algebraischen Zahlkérper von endlichem
Grade, vgl. z. B. Hasse [5], pg. 96:

Lemma : Ist K* eine relativ-quadratische Erweiterung von k¥, R* die
Anzahl der Grundeinheiten von K*, r* die Anzahl der Grundeinheiten
von k¥, also " < R*, so gibt es bei geeigneter Wahl der Grundeinheiten

y von k* und I" von K* nur folgende drei moglichen Fille beim Ubergang
von k* zu K*:

3) Auch fir die zu 0 konjugierten Einheiten soll immer der positive Wert genommen
werden; dadurch ersparen wir uns in der vorangehenden und in der folgenden Formel
das Zeichen fiir den absoluten Betrag bei den zu 6 konjugierten Einheiten, wenn wir je
den Logarithmus einer dieser Einheiten nehmen.
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Fall A: Die Grundeinheiten %,,%,, ..., ,+ von k* gehoren auch zu
den Grundeinheiten von K*, so daBl »;, ys, .., ¥pxs I3, Loy o ooy Tper_px
ein System von Grundeinheiten von K* bilden.

Fall B: Die Einheiten 9,,%s, ..., ¥m_1, Vym gehoren zu den
Grundeinheiten von K*, so daB 9, s, ..., Vpe—_1> Ve, I, Ty, .
I'pi_,« ein System von Grundeinheiten von K* bilden.

« ey

Fall C: Die Einheiten y,,%,, ..., ¥»_1, ¥V — iy« gehoren zu den
Grundeinheiten von K*, so daB y,,%s, ..., Vpm_1, V— iy, I3,
Iy, ..., I'p«_,« ein System von Grundeinheiten von K* bilden. Dieser

Fall kann hochstens eintreten, wenn k* die vierte Einheitswurzel ¢
nicht enthiilt, K* = k*(s) ist und V2y,« eine Zahl von k* ist.

Beim Ubergang von k, zu K, gilt der Fall A unseres Lemmas. Denn
K, entsteht aus k, zum Beispiel durch Adjunktion von #({ — 1).
Nun kann der Fall B nicht eintreten, denn eine Gleichung von der Form

— (& — )60 = xovo

wo &, und B, ganze Zahlen von k, sind und y, eine Grundeinheit von %,
ist, ist nicht moglich, wie man sofort erkennt, wenn man beidseitig die
absolute Norm in %, nimmt.

Ferner kann der Fall C nicht eintreten, denn eine Gleichung von der
Form

— (€ =B = — iy

wo o, und f, wieder ganze Zahlen von k, sind und y, eine Grundeinheit
von k, ist, ergibt durch Quadrieren:

(& — N = — vooxs -

Nimmt man hier beidseitig die absolute Norm in %,, so ergibt sich ein
Widerspruch.

Da also alle 5

Grundeinheiten y,, y,, ..., ¥, , , die in R, auf-
B

als ein

— 1 . . .
weiteren Grundeinheiten Iy, [l,,...,I",

2
2
System von Grundeinheiten von K, genommen werden kénnen, wird der
Regulator Ry von K,:

treten, neben
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Ry =|log|m| ... log[y,_____allogll’,l... logII’,:EH=
2 2

1
= ——|log|y.| ... log|y,_5|log| ;| ... log|I™? |].
2

22
Da fiir jede Zahl I"' 0 von K,:

I = FH—Z' Iﬁl-—E

1—1
2

. 3 . . . . .
ist, wo I''*~ in k, liegt, erkennt man, wenn man je eine geeignete homo-

gene lineare Kombination der ersten Spalten bzw. zur ; - ten,
E;g—}« -ten, ..., letzten [(I — 2)-ten] Spalte addiert, da3 der Regulator

von K, auch so geschrieben werden kann:

1 —
RK0=-m|log|yll .. log}y,___jllogll’ll *
9 2

log{]’;__—__f_H :

2

..logll’;:fl]

L log | IO
. dog | TGP ST
. logll";;il

. — log | F(,i:’f)sl

2 2
oder auch, falls wir wie in Hulbert [7], § 139, pag. 283, zur Abkiirzung
I* = "—é— setzen :
log | 71| log|y,s|  log|In "
log |y |...log|yyx | log |I0™V5"
1% * . 1%
Ry ——L [log |7 | ...loglyi | log |1V
2 2 log]ylj ...logly,*] ——log[Pi_Z}
log{yfl ..log‘yf*] — logll“(ll_z)sl
1*—1 I*—1 sy gl*—1
logiyf [...log[y'lg* ]——log\]"(l1 1 |
I+ 1

Subtrahiert man hier die 1. Zeile von der 5

143
2

[( — 2)-ten] Zeile, so ergibt sich:

von der

-ten Zeile usf., die 5

-ten Zeile, die 2.Zeile

—3 -te Zeile von der letzten
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log | 74| log |y, | log| I} " | log| I}
j*¥—1 1¥—1 - 1*—1 — 1*¥—1
log|y, |...log|yp !10g|l"(11 =18 | 1 g‘l’l(,:Jrf)S |
L llog|5" | ...log|yp. | log| IV log| 753" |
22| ¢ 0 —210g[1“i—2| —2log|F;*_:1
0 0 —2log| IV —2log | I\ 7y
0 0 —2l0g| TP 2leg | T
oder
log|7,| log|y,c| log| I} | log | Iy ;s
*—1 l —3) gi*—1 _sygl*—1
logly; |...loglyl |log| IV ™% Lo | TRTyT
1 1 _3)gl* _ 3y sl*
_(—y|legly | . loglype | log| IV TV L leg | TS
2 0 ... 0 logll’i—'z\ ...log]F;;fl
0 c. 0 log[]"(llnz)s( ...logl]’(li:f)sl
: 0 g[8I g r
Subtrahiert man hier die ! _g 1 -te Zeile von der 1. Zeile, die l—g3 -te
Zeile von der 2.Zeile usf., die letzte [(I — 2)-te] Zeile von der L’;E_ ten
Zeile und addiert nachher die Summe der ersten—— -ten Zeilen zur
! ; -ten Zeile, so ergibt sich

— 1-3 13
Rg,=3% R, - |log|I" | log|I,""| ... log|T'_1]| -
2
Wir gehen dazu iiber, den Zihler von H, umzuformen. Das erste Pro-
dukt ist gemdfl dem Corollar, Gut [2], pg. 172 unten, gleich der linken,

also auch der rechten Seite der Formel (2.2).
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Das zweite Produkt kénnen wir wieder in der Form einer Determinante

schreiben. 11

Ist » irgend eine der Zahlen 1, 2,3, .. T so ist der Ausdruck
21 —_—
Y — %o(n) x**7* (n) log sin (2.3)
gleich =t
27—1 2l—1 h
> — xo(n) x2¥~1(n) log sin ——— + z x2%~1(n) log sin Y
n;} (mod 4) n—3 (mod 4)
2l —1 an 2{—1 an
= ¥ — x**~1(n) log sin— a T 3 y2*~1(n) log sin — 17
Z—__-—} (mod 4) 323 (mod 4)

Setzt man in der zweiten Summe n = 4] — »/ und 148t nachher bei
n’ den Strich wieder weg, so wird der Ausdruck (2.3) gleich

2l —1 41 —1

an
> — g2 1(n) log sm—- + Y — g2v-1(n) log sin 2
n=1 n=2l+1 4l
n==1 (mod 4) n=1 (mod 4)

47 —1

. TN
= ¥ — x**~1(n) log sin — .
Lo 41
n=1 (mod 4)

Da wir oben festgesetzt haben, daBl man die Primitivwurzel r =1
(mod. 4) wéhlen soll, wird der Ausdruck (2.3) gleich

1—2

3 — 72t (r) log

=0

sin o il |

2m74e

oder falls zur Abkiirzung B = e!-! gesetzt wird, gleich

-2 art
2 ﬂ(2u 1)t10g gin — | =
hue! 41
1-3
5 -2 rt'
=¥ — pu-Di]og alm + 2 pu-1 ' Jog |sin 1
t=0
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Setzt man in der zweiten Summe ¢’ = l—:2—-1— -+ ¢, so wird der Ausdruck

(2.3) gleich

1—1
SASRPE R
L sin mr
2
Beu-1 t Jog 4l
t=0 sin i
41

1—1
Nun ist » 2 =21 — 1+ 4lw, wo w ganz rational ist, mithin ist
der Ausdruck (2.3) gleich

=3
2 ¢
T
Y peu-1t]og | cotg ——| .
=i 41
Aber .
2wy
mrt 14e 4
GOtg 4] I* 2mirt
1—e #
und
27wl ¢ 2wt 11 -1
oM _ gl <r — (=1 * z)+(~1) 3 z] _
1-1 11 11
gmi|rl—(—1) 2 .1 27 2 rt—(—1) 2 .
N ] 7T &b '
= € e =1 C
Folglich ist
-1
rt—(—1)y2 .|
. 4
N nrt| | 1448
| T =y
rt—(—1)2 .}
1— it *
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Fiihrt man mithin die positive Einheit

f 1—12 _1_12
9=+V(1+¢¢4)(1—ic 4) (2.4)

ein?), so wird der Ausdruck (2.3) gleich

-3
1-1 5~

- I)T ¥ pleu-1t Jog 1= st
{=0

Das zweite Produkt im Zahler von H, wird mithin gleich

Ly =t =
-1 2

(— 1)z IT tz peu=1t]og e(1—3) st
u=1 | £=0

Unter nochmaliger Beniitzung der Theorie der Zirkulanten, vgl. z. B.
Cesaro [1], pg. 25, erhélt man fir diesen Ausdruck, falls wir zur Erleich-
terung des Formelsatzes bei der Drucklegung der vorliegenden Arbeit
voriibergehend zur Abkiirzung @'-% = @ setzen:

-3
log @ log @  log @® ... log @5
5
log ' log @ log &5 ... log ®° i
1—1 -7
Nz gi—3 Sl—2 s 2
(— 1) log @ log @ log @ log &
43 145 [,
log @5 log @5  log & log @
141 143 s
s s? s?
log @ log @ log @ .. log @

%) Auch hier soll fir die zu @ konjugierten Einheiten immer der positive Wert ge-
nommen werden, dadurch ersparen wir uns in den folgenden Formeln das Zeichen fir
den absoluten Betrag bei den zu ® konjugierten Einheiten, wenn wir je den Logarithmus
einer dieser Einheiten nehmen.
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Multipliziert man hier alle Zeilen mit Ausnahme der ersten mit — 1,
so wird diese Determinante:

-3
log @ log @° log @5° ... log (DSﬁT
i3 Lot 1
log @5 : log &° : log @° i ... log 5
s 1= 11
(—1) | log ®° i log @5 log ®° ... log &8
.................................... }_ﬂ
log @  log &°  log & log @5
-1
log ®° log @  log @ ... log @°

Fiihrt man hier die letzte Zeile in die 2. Zeile iiber, die vorletzte in die
3. Zeile usf., so wird diese Determinante unter Wiedereinfiihrung der
Einheit 0 :

(-1 -7 1-3
(-1 8 log @~ log @1—5 Jog @1—)S* log @15 * |
Zusammenfassend wird
(=1) (=) -3
go—p . (=D ° -2-]log O log Or—)5, log O~ *
’ ’ log F;—E log F;—E log ]“ll:l'>J
=1 @.5)

Hiebei ist %—" eine natiirliche Zahl, denn jedes Stiick des Hilbertschen
0

Klassenkorpers von k, gehort auch zum Hilbertschen Klassenkorper von
K,, vgl. Gut [3], Satz pg. 86 oben.

3. Hilfssitze

Um die Betrachtungen in der Folge nicht unterbrechen zu miissen,
leiten wir in diesem Abschnitt fiinf Hilfssétze her.
Wir betrachten die Summe

47
> — x(n)x®(n)-n (3.1)

n=1
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WO y, wie in Abschnitt 2 den eigentlichen Charakter mod. 4 bedeutet und

x(n) der in (2.1) definierte Charakter ist, endlich « jede der Zahlen

1,2, . ..,l—%—% bedeuten darf.

Ist 1=1 (mod. 4), so ldBt sich (3.1) durch Einfiihrung des Wertes
von y,(n) zunidchst so schreiben:

— y2(1)- 1 + 72(3): 3 — 4 - .-

— =41 —4) +gl—2-0—2) +
+o2(2)- (0 4+ 2) — p4)-(I+4) + —---

gl — 3)- (21— 3) — g — 1) (21 — 1) +

+ (1) @4 1) — £(3)- 2+ 8) 4 — -
+ a0 —4)- (Bl —4) — (@ —2)- (31— 2) +

— 2(2) - (3] + 2) + y2(4)- (31 +4) — + -
— g — 3)- (41— 3) + g — 1) (41— 1)

Dieser Ausdruck ist gleich:

2l{x2u(1) . X2u(2) . xzu(g) + x2u(4) + — + . v
+ g — 4) — g~ 3) — e — 2) + g — 1))
oder auch gleich

= (-1
1] 70) — 42) ) ) + = — ook (=1 ¢ g (C)

Da in der letzten geschweiften Klammer eine ganze Zahl des Korpers

der

-ten Einheitswurzeln steht, ergibt sich der

1. Hilfssatz. Ist die Primzahl 1 =1 (mod. 4), und darf % jede der

Zahlen 1,2, .. .,l—g—g bedeuten, so ist
Y] "
D — xo(n) x*%(m) - Y
n=1

e %{xzu(l) — 22%(2) — 42 (3) + x2(4) + — — + - --
+ =4 — M =3) — =2+ (-1

-ten Einheitswurzeln.

eine ganze Zahl des Korpers der
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Ist I =3 (mod. 4), so 148t sich (3.1) durch Einfiihrung des Wertes
von yx,(n) so schreiben:

— 22(1)- 1 + 42(3)-3 — 4 ..
+l— 90— —gmI—2-(0—2) +

“qu(z)‘(l+2) +Z‘zu(4).(l+4) —_t ...
+ (= 3)- (21— 3) — p(I —1)- (21— 1) +

+ (1) (214 1) — g24(3)- (21 + 8) + — - -
— (0l —4)- Bl —4)+ (1 —2)- 3l —2) +

+ 42(2)- (31 + 2) — y2(4)- (Bl + 4) + — -
— (0 — 3)- (41— 3) + g — 1) (41— 1)

Dieser Ausdruck ist gleich:

20 { x2(1) 4+ 22(2) — x2(3) — y2(4) + + — — -+
— xzu(l — 4) —_ xz"(l — 3} qu(l — 2} 4 xm‘(l . 1)}
oder auch gleich
I3

4170 + 242) — 243 — )+ o+ — = 0 )

Da in der letzten geschweiften Klammer wieder eine ganze Zahl des

2

Korpers der ‘ten Einheitswurzeln steht, ergibt sich der

2. Hilfssatz. Ist die Primzahl [ = 3 (mod. 4), und darf « jede der
l1—3

Zahlen 1,2, ..., —5 bedeut(?n, 80 ist

41

> — xo(n) z¥ (n) - Z’% =

n=1
=3 {21 + @) — 2@ — 2@+ + — — -
— (0 — 4) — 70— 3) + 0 — 2) + 2@ — 1)}

3 -ten Einheitswurzeln.

eine ganze Zahl des Korpers der

Weiter benotigen wir zwei Hilfssédtze iiber Eulersche Zahlen, die sich
vielleicht schon irgendwo in der umfangreichen Literatur iiber die
Theorie der Bernoullischen und Eulerschen Zahlen finden.
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In der Fundamentalformel der Theorie der Eulerschen Zahlen, vgl.
z. B. Cesaro [1], pg. 297:

2f(x) = f((« + k) + Eh) + f((x — h) + Eh)

setzenwir A = 1:

of(2) = f((z + 1) + B) +f((&—1)+ E). (3.2)

Es sei zunéichst I = 1 (mod. 4). Es wird, falls man in (3.2) sukzessive

x=1,2,3,...,1 — 1 setzt, die entstehenden Gleichungen mit der Vor-
zeichenfolge 4+ — — 4 versieht und addiert:

2{f(1) —f(2) — () + f(4) + — — + - -
+fl—49—fl—38)—fl—2)+fl—1}=
=fl+ E)+ {(B) —f(I—1)+ E) —f1+ E) .

Ist daher m eine beliebige natiirliche Zahl und setzt man

so ergibt sich der

3. Hilfssatz. Ist die Primzahl | = 1 (mod 4), m eine beliebige natiir-
liche Zahl, so gilt die Kongruenz:

1m —2m _ 3m | 4gm | . _ L ...
4+l -4 -l -3 -l -2+ —-1)"=E, (modl).

Es sei =3 (mod.4). Es wird, falls man in (3.2) sukzessive

x=1,2,3,...,1 — 1 setzt, die entstehenden Gleichungen mit der Vor-
zeichenfolge -+ 4+ — — versieht und addiert:
2{fO+f2)—fB —-fO++——--+fl—=2)4+fl—-1}=

=fl+ E)+ f(C—1) + E) + f(1 + E) + f(E) .
Setzt man wie eben fiir eine beliebige natiirliche Zahl m

f(@) = o™,
so ergibt sich der

4. Hilfssatz. Ist die Primzahl ! = 3 (mod. 4), m eine beliebige natiir-
liche Zahl, so gilt die Kongruenz:

Impam __3m __4gm._ L . ... +(l..—2)m+(L——l)mEEm(mOdl).
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Ist wie in Hilbert [7], pg. 280, T das in I aufgehende Primideal

2w

T:(l,ﬁ—“?), ﬂzel—la

des Korpers der (I — 1)-ten Einheitswurzeln, so gilt fir t=0, 1,2,...,l—2:
gty =pt=rt (modT),
mithin fiir jede der Zahlen n =1,2,...,1 —1:
y(n) =n (modl) .

Folglich ergibt sich aus dem ersten und dritten, bzw. aus dem zweiten
und vierten der vorangehenden Hilfsséitze der

5. Hilfssatz. Ist I eine beliebige ungerade Primzahl, und darf » jede

der Zahlen 1,2, ..., l;3

gruenz auf der linken Seite stehende Summe eine ganze algebraische

Zahl des Korpers der

bedeuten, so ist die in der folgenden Kon-

-ten Einheitswurzeln, und sie erfiillt die

2
Kongruenz: " _
> — sl 2" 0) - 7 = $Bay (modT)

wo [ das in ! aufgehende Primideal T= (I, — r) des Korpers der
(I — 1)-ten Einheitswurzeln bedeutet.

4. Die Klassenzahlen von &k und K

Die Klassenzahl 2 von k£ wird, da der Regulator von %, auch Regulator
von k ist, vgl. Gut [2], pg. 200/201:

h=h-h,, (4.1)
WO
l_—_-}
A T S T
hl =-'—i‘:‘3‘ H 2.1 X (7&) * l (42)
u=1 | #=

9 2
eine natiirliche Zahl ist, da jedes Stiick des Hilbertschen Klassenkorpers

von k, auch zum Hilbertschen Klassenkérper von k gehort, vgl. Gut [3],
Satz pg. 86 oben.
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Endlich ergibt sich fiir die Klassenzahl H von K, vgl. Gut [2],
pg. 200/201, falls Ry der Regulator von K ist:

H=H,-H,, (4.3)
WO
1—1
l R 41 2 4]
H,= 5 Ri;{ngl——xo( )g}g{;l—x““‘(n)%

-3
2 (4l ‘
l?{)ﬁ~yu ) 20 47 |

2. H, ist eine natiirliche Zahl, da jedes Stiick des Hilbertschen Klassen-
korpers von K, auch zum Hilbertschen Klassenkorper von K gehort,
und K zum Hilbertschen Klassenkorper von K, gehort, vgl. Gut [3], Satz
pg. 86 oben.

Vermoge des Lemmas, Gut {2], pg. 172 unten, wird der letzte Ausdruck
auch gleich

-1 1-3

l RK 2 l —2— 41 n
_— . 0 u-—l — 2u ——
H, = 22 " Rp uljl{gl } £1{n2=1 Xo(®) % (n)4l} .
Unter Beriicksichtigung von (4.2) folgt
1—3
1 R Ko 2 (4l n
Hy= ol Iﬂz—nmwwgy
2T u=1 \n=1

Trigt man diese Form des Wertes von H, und den in (2.5) angege-
benen Wert fiir H, in (4.3) ein, so wird unter Beriicksichtigung von
(4.1):

(1-1) (1—=7) -3

(—1) 8 .2. |log@1 2, log@(l—v)ST
log]I"1 ] log| 'y~ ] logllﬂ’l_1
2

1 Rpg,

-1 "Ry
22

H=h. L%

1—-3

2 (41 n
H{L — %o(n) x“(n)g} :

u=1\n=1
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Der Quotient —%—— ist jedenfalls eine natiirliche Zahl, da jedes Stiick

des Hilbertschen Klassenkorpers von & auch zum Hilbertschen Klassen-
korper von K gehort, vgl. Gut [3], Satz pg. 86 oben.

Gemill unserem Lemma in Abschnitt 2 ist ferner der dritte Faktor
Rg,
Ry’

Ebenso ist der vierte Faktor von H eine natiirliche Zahl, wie wir am
Ende des 2. Abschnittes gesehen haben.

Der letzte, fiinfte Faktor ist daher auch eine positive rationale Zahl,
folglich da dieser Faktor gem&f3 Hilfssatz 5 von Abschnitt 3 als Produkt
von ganzen algebraischen Zahlen eine ganze algebraische Zahl ist, eben-
falls eine natiirliche Zahl. Ferner geniigt diese natiirliche Zahl der Kon-
gruenz:

von H, also entweder gleich 1 oder gleich 2.

l— s
‘§§ 4 n 1 l“zj

2 - ZO(”’) x“(’n) 4l = 1—-3 H E2u(m0d l) ’
u=1 {n=1 2—2—" u=1

denn gemdf Hilfssatz 5 von Abschnitt 3 gilt diese Kongruenz jedenfalls
modulo dem dort definierten Primideal T des Korpers der (I — 1)-ten
Einheitswurzeln, folglich da beide Seiten der Kongruenz rational sind
modulo der rationalen Primzahl [.

Aus den letzten Aussagen und dem Satz von Kummer?3) folgt sofort,

2
geradem Index: B, B,, By, ..., B,_; oder eine der

daB3 wenn einer der Ziahler der ersten Bernoullischen Zahlen von

2
schen Zahlen von geradem Index: E,, K,, K,, ..., E,_; durch [l teilbar
ist, auch H durch [ teilbar ist.

Der Hauptsatz der vorliegenden Arbeit wird mithin bewiesen sein,
wenn noch folgendes gezeigt worden sein wird:

ersten Euler-

Gelten die Voraussetzung I : Die Zidhler aller ersten Bernoulli-

schen Zahlen von geradem Index: B,, B,, B, ..., B,_; sind alle zu

l teilerfremd, und die Voraussetzung II: Die ersten Eulerschen

Zahlen von geradem Index: E,, E,, E,, ..., E,_; sind alle zu [ teiler-
fremd, so ist H zu [ teilerfremd.

Aus der Voraussetzung I allein folgt aber gemidB dem Satze von
Kummer, daBl jedenfalls der Faktor 2 von H zu [ teilerfremd ist.

%) Vergleiche die Bemerkung in Abschnitt 1.
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Aus der Voraussetzung II allein folgt jedenfalls, daBl der fiinfte Faktor
von H zu [ teilerfremd ist. Im folgenden Abschnitt werden wir noch
zeigen, daf3 aus der Voraussetzung II allein folgt, daBl auch der vierte
Faktor von H zu [ teilerfremd ist. Hiermit wird dann der in Abschnitt 1
aufgestellte Satz bewiesen sein.

5. Beweis der letzten Behauptung von Abschnitt 4
Die Einheit @, vgl. Formel (2.4) liegt im Korper der 8/-ten Einheits-
wurzeln, aber ihr Quadrat ist in K. Setzt man daher zur Abkiirzung

Q = @20-2) (5.1)

so ist 2 die (1 — 2)-te Potenz einer Einheit von K| .

Bezug nehmend auf Abschnitt 3 und 4 der Arbeit Gut [4], und unter
Verwendung der dort benutzten Bezeichnungen berechnen wir zunéchst
die ,,T'akagi“-schen Exponenten fiir die Einheiten

QPu(S)

b

wo u jede der Zahlen 1,2,...,1 — 1 bedeuten darf und wo zur Er-
leichterung des Formelsatzes bei der Drucklegung der vorliegenden
Arbeit P,(S) das ganzrationalzahlige Polynom vom Grade ! — 2 in §:

S —rv

(1 -+ isﬂ) (1 —is"}“:‘lg) ,
(1 -igtfiﬁ) (1 +i§—1;4g)

also Q(1)=0Q3(1) =1, und

P,8)=—r

bedeutet. Es ist

Q) =

22w—1 " i

log Q(e®) >~ Y,

w=1

Fir w=1,2,...,1—1 wird :

L,2) = 0(modl) ,

R
L,(Q) = iggg-y (mod]) ,
folglich fir w=1,2,...,0—1; w=1,2,...,1 —1, wie sich aus

den Formeln der Seite 85, Gut [4], sofort ergibt
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L, (QP+S)) = 0 (mod 1) ,

0(modl), falls u # w,
L7 (QFPwS) =
wf ) ) g‘;:ll (mod l) , falls u=w ,
und damit

G,,(QF*®)) = 0 (mod 1) ,

0(modl?), falls u#w,
@, QD) =1 (—1e-? . (5.2)
W%Ew—l (mOd l) , falls u =w

1—3

a—n@—7n 1-3
Wir multiplizieren den vierten Faktor von H mit (—1) AL

dadurch entsteht die ganze rationale Zahl

8

1-
log Q2 log 25 ... log .QS_83
log |1 ™7 log |[I;™%| ... log |T’

1-3]
fem1 |
2

)

und es geniigt, zu zeigen, dafl diese ganze rationale Zahl unter der Vor-
aussetzung II zu [ teilerfremd ist.

Im folgenden mogen m und n immer unabhingig voneinander alle
Werte 1, 2, ..., ! ; ! annehmen diirfen, und sind t—

2
3 ) Grofen q,,,
gegeben, so setzen wir zur Abkirzung ||¢,,,|| fiir die Determinante

Han H = 2

................

Da 2 die (1 — 2')-te Potenz einer Einheit von K| ist, gelten Gleichungen
von der Form

(1—32)a l-1

Sn—-l___ (I—Z)aln (1——2)@271 1
[ Ly o rt AU Al St

n o, (5.3)
2
wo die Exponenten «a,,, alle ganz rational sind. Aus (5.3) folgt

l

5
log 077 = Yiay, log |1}

-t

(5.4)
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und daraus

-3
log 2 log 25 ... log 5%
=3 =3 = || @pn || - (5.9)
log| I ™%| log| Iy~ 7. .. log IFM |
Im folgenden sei zur Abkiirzung
Q,, = QPim-1 (5.6)

gesetzt, und wir betrachten den Quotienten

log 2, logf, ... logQ,_ |
2
log 2 log Q% ... log .Q*ST |
Da fiir t=0,1,2, .. L“z;?i gemaB (5.1)
14+ 1 Ml (L_—l : Ej) t ; t ¢
s @2(1—-2)3 T @S -8 )8t gaI-1)-8t _ o-§

gesetzt werden kann in der Formel (5.6), so wird
Q — lem Qb2m3 .Qb;;rmsz Qb -1 S 2 (5 7)
” - " ,

wo die Exponenten b, alle ganz rational sind. Aus (5.7) folgt:

i—1
log 2,, = X b,, log @5, (5.8)
t=1
und
log2, log®, ... log®,_,
rs = lbuall (5-9)
logQ log®% ... logfs°® |

erweist sich als eine ganze rationale Zahl.

Unsere Behauptung am Ende von Abschnitt 4 wird bewiesen sein,
wenn wir zeigen kénnen, dal unter der Voraussetzung II sogar das Pro-
dukt der beiden ganzen rationalen Zahlen (5.5) und (5.9) zu [ teiler-
fremd ist. Setzt man

Coin = Oy b1y + Qo by, + - - - +a ., b,
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so sind auch die Grolen c,,, alle ganz rational, und es wird das genannte
Produkt gemifl Formel (5.5) und (5.9)

log 2, log®, ... logf,,
2
—_= —_= - = HcmnH s (5'10)
logll’i 1logll’; { ... log ll’;_i l
2
endlich folgt aus (5.8) und (5.4):
1—1
13
log 2,, = Z Cem lOg [I’ | (5.11)

Zum indirekten Beweise wollen wir jetzt annehmen, da8 || c,,,|| durch

l teilbar ist. Dann gibt esl —

ganze rationale Zahlen d, , die micht

alle durch 1 teilbar sind, fiir welche aber alle

g— ganzen rationalen

Zahlen -
T2
= 2 Cmn dn
n=1
durch [ teilbar sind. Aus (5.11) folgt
1—1
dy ~d 3 .
log(gllg;,..[)z ) )etlogll" !—-——l logidio]

2
fiir eine gewisse Einheit @, von K,. Aus der letzten Gleichung folgt
di—1

Gy 072 ... Q7 =4 1= (+1)
=

Mithin muB fir w=1,3,5,...,1 —2:

i—1

2

U1
G*;,(Qf‘.og’z ) ’)_o (mod I) ,

also gemiB (5.6) :

G* (le Py(8S) + dy P3(S) + dg Ps(S) + -+ + dl_-_;_;Pl—z(S)

)E 0 (mod I)

sein. Das bedeutet aber auf Grund der Formel (5.2), daf fir
l—1

=1,2,...,——:
n sy = b 2
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1
(2n — 1)1. 24n=38

d, - Eyn-1) =0 (modl)

ist. Es ergibt sich demnach der Widerspruch, da wegen der Voraus-

setzung II alle ganzen rationalen Zahlen d, durch [l teilbar sind.

Abgesehen von moglichen weitergehenden Verallgemeinerungen mit
Hilfe der von Hasse®) entwickelten Theorie der Reziprozititsgesetze in
Erweiterungskorpern des Korpers der m-ten Einheitswurzeln?) lassen sich
offenbar die in Gut [4] in Abschnitt 3 und 4 entwickelten Formeln auf
das Kompositum von &k mit irgend einem absolut quadratischen Korper
iibertragen, und es gelten dann wohl zu dem in der vorliegenden Arbeit
bewiesenen analoge Sitze.

(Eingegangen den 15. April 1950.)
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