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Euler'sche Zahleii und Klassenanzalil
des Kôrpers der 4/-ten Eînheitswurzeln

Von Max Gut, Zurich

1. Inhaltsangabe und Bezeichnungen

Wir wâhlen in dieser Arbeit Vorzeichen und Indexbezeichnung der
Bernoullischen und Eulerschen Zahlen so, daB

^0 m m ev — 1 '

bzw.

m c m! ev

Bedeutet l durchwegs eine beliebige ungerade Primzahl, so hat Kummer
bekanntlich den Satz bewiesen, da8 die Klassenanzahl des Kôrpers der
Z-ten Einheitswurzeln dann und nur dann zu l teilerfremd ist, wenn die

l iZâhler der ersten —-— Bernoullischen Zahlen von geradem Index,

J50, B2, JS4, jBj_3 aile zu l teilerfremd sind. Wir werden hier und
in Abschnitt 4 diesen Satz der Kûrze halber immer als den Satz von
Kummer bezeichnen.

In folgendem beweisen wir den Satz:

Die Klassenanzahl des Kôrpers der 4l-ten Einheitswurzeln, wo l eine

ungerade Primzahl bedeutet, ist dann und nur dann zu l teilerfremd, wenn

die Zâhler der ersten —-— Bernoullischen Zahlen von geradem Index,
l — 1

BQ, B2, B±, 2?j_3 und die ersten —-— Eulerschen Zahlen von

geradem Index, Eo, E2, Ei9 Et^ aile zu l teilerfremd sind.

Mit £ bezeichnen wir durchwegs die primitive l-te Einheitswurzel

£ e l mit k den Kôrper der i-ten Einheitswurzeln. Weiter bedeute
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r eine Primitivwurzel mod. l, die wir durchwegs so wàhlen, da8 r1'1 e^e 1

(mod. l 2) und r 1 (mod 4) ist1), und S den erzeugenden Automorphis-
mus von k, also f^ fr, endlich k0 den maximalen reellen Unterkôrper
von k

Den erzeugenden Automorphismus des GauBschen Zahlkôrpers be-
zeichnen wir immer mit £, so daB i2 — i Adjungieren wir i zu &,
so entsteht der Kôrper K der 4Z-ten Einheitswurzeln, dessen maximaler
reeller Unterkôrper durchwegs mit Ko bezeichnet ist. Da wir K immer
als Kompositum von k mit dem GauBschen Zahlkôrper auffassen, wird

i—i

die konjugiert komplexe einer Zahl A von K durch Ass gegeben.

Eine quadratische Matrix, bzw. Déterminante, deren Elemente aile
Funktionen von Zahlen von K sind, und die die Eigenschaft besitzt, daB
die Elemente der zweiten Zeile aus den entsprechenden der ersten Zeile
vermôge des Automorphismus S, die Elemente der dritten Zeile aus
den entsprechenden der ersten Zeile vermôge des Automorphismus S2,

usw. hervorgehen, wird in abgekurzter Weise durch Angabe der Elemente
der ersten Zeile bezeichnet.

2. Die Klassenzahlen von fe0 und von Ko

Ist x der erzeugende mod l eigentliche Charakter, fur welchen

2-rri

Z(r) ep:ï, (2.1)

so hat, vgl. Gui [2]2), § 1 und § 7, die Klassenzahl h0 von kQ den Wert:

l—3 £

wo Rko den Regulator von k0 bedeutet. Ist yl9 y2i yt_3 hier und im

folgenden ein System von Grundeinheiten von k0, so ist 2

Rh I log y, f log I

y» log

x) Die erste dieser Voraussetzungen wird gebraucht beirn Beweise des Satzes von
Kwnmer.

2) Die Nummern in eckigen Klammern beziehen sich auf das Literaturverzeichnis am
Ende der vorliegenden Arbeit.
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falls fur die Logarithmen hier und ûberall in der ganzen vorliegenden
Arbeit die reellen Werte genommen werden, und ferner die Reihenfolge,
bzw. Normierung dieser Grundeinheiten so gewâhlt wird, da6 die
Déterminante positiv ist.

Unter Benutzung der Théorie derjenigen Determinanten, die man als

Zirkulanten bezeichnet, vgl. z. B. Cesàro [1], pg. 25, erhâlt man fur den
Zâhler von h0 die Déterminante:

Z—3

2

n
w=l n

l—3) 1—5)

8 ~
1-5

wo 0 die positive Einheit

von Jc0 bedeutet3). Mithin ist
(1—9) (1—5)

(2.2)

(i-C) (i-C-1)

1-5

| iog<9 loge* iog^a,.. logo*81
I Vi I log log | y3 | log

Ist Xo der Charakter, der eigentlich ist mod 4, so hat die Klassen-
anzahl Ho von Ko, vgl. Ont [2], § 1 und § 10, den Wert:

l—3
2

77 log sin

i—i
2

77

wo i?jro der Regulator von Ko ist.
Um zunâchst den Nenner von Ho umzuformen, benutzen wir folgendes

Lemma aus der Théorie der algebraischen Zahlkôrper von endlichem
Grade, vgl. z. B. Hasse [5], pg. 96:

Lemma: Ist K* eine relativ-quadratische Erweiterung von &*, JB* die
Anzahl der Grundeinheiten von K*, r* die Anzahl der Grundeinheiten
von k*, also r* ^ i?*, so gibt es 6ei geeigneter Wahl der Grundeinheiten

y von k* und F von K* nur folgende drei môglichen Fàlle beim Ûbergang
von fc* zu K* :

3) Auch fur die zu 0 konjugierten Emheiten soll îmmer der positive Wert genommen
werden; dadurch ersparen wir uns m der vorangehenden und in der folgenden Formel
das Zeichen fur den absoluten Betrag bei den zu 6 konjugierten Einheiten, wenn wir je
den Logarithmus einer dieser Emheiten nehmen.
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Fall À : Die Grundeinheiten yx, y2, yf* von Je* gehôren auch zu
den Grundeinheiten von K*, so da8 yx, y2, yf* ; J\, JTa, JT^*.^*
ein System von Grundeinheiten von K* bilden.

Fall B : Die Einheiten yx y2, yr* _ x }/yf* gehôren zu den
Grundeinheiten von Z*, so daB y1, y2, yf*_! ^y,.* /\ JTj > • • • >

/ii*_r* ein System von Grundeinheiten von JT* bilden.

Fall G : Die Einheiten yi, y2, yr*-i » V— iy»-* gehôren zu den
Grundeinheiten von K* so daB yx, y2 yf*_x î^—tyr*, /\,
A» • • •> rR*—r* e^n System von Grundeinheiten von if* bilden. Dieser
Fall kann hôchstens eintreten, wenn k* die vierte Einheitswurzel i
nicht enthâlt, K* k* (i) ist und V2yT* eine Zahl von k* ist.

Beim tîbergang von k0 zu Ko gilt der Fall A unseres Lemmas. Denn
Ko entsteht aus k0 zum Beispiel durch Adjunktion von i(Ç — f-1)

Nun kann der Fall B nicht eintreten, denn eine Gleichung von der Form

- (f - f-1)^ <xoVo

wo oco und j80 ganze Zahlen von k0 sind und y0 eine Grundeinheit von k0

ist, ist nicht môglich, wie man sofort erkennt, wenn man beidseitig die
absolute Norm in k0 nimmt.

Ferner kann der Fall C nicht eintreten, denn eine Gleichung von der
Form

- (C - C"1)2^ - - iyo«î

wo <x0 und f}0 wieder ganze Zahlen von k0 sind und y0 eine Grundeinheit
von k0 ist, ergibt durch Quadrieren:

Nimmt man hier beidseitig die absolute Norm in k0, so ergibt sich ein
Widerspruch.

l 3
Da also aile —-— Grundeinheiten yx, y2, yl_z die in 22^ auf-

2

treten, neben —-— weiteren Grundeinheiten J\ JT2, F,t als ein
2

System von Grundeinheiten von Ko genommen werden kônnen, wird der

Regulator RK von Ko :
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|iog|r;|

Da fur jede Zahl T ^ 0 von Ko :

1

pi— 21

ist, wo JT1"1"^ in fc0 liegt, erkennt man, wenn man je eine geeignete homo-
l 3 i y

gène lineare Kombination der ersten —-— Spalten bzw. zur —-— ten,
l 4- 1

— ten, letzten [(Z — 2)-ten] Spalte addiert, da6 der Regulator

von Ko auch so geschrieben werden kann:

^l... iog|rîif ||

oder auch, falls wir wie in Hilbert [7], § 139, pag. 283, zur Abkûrzung
7* l - 3

4.r —-— setzen:

log Vl ...log y,* log A,1-2

Yi •••logr^*

Subtrahiert man hier die l.Zeile von der l+i -ten Zeile, die 2.Zeile

von der
i

ten Zeile usf., die te Zeile von der letzten

[(l — 2)-ten] Zeile, so ergibt sich:
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log I Yi • • • log i Yi* I log A — 2 i

oder

/ ]

i°g

log

0

0

log

log

0

0

s**-1
Y\

s**
Yi

log

log

0

0

s1*-1
Yi* 1 l°g

Yi* l°g

— 2 log

-2 log

(i-js)^*-1
1 i

(l-2)Sl*
1 1

log

log

rî~*| ...-2 iog

r[x-E)s ...~2 iog

J- ;* -f. 1

\r\\~+Vs\

0

...logly,*

n

!A

...log|yf* | log|ri
0

0

-2) S1*

0 :|/1'" S'*-1

Subtrahiert man hier die— te Zeile von der 1. Zeile, die — te
2 *2

Zeile von der 2. Zeile usf., die letzte [(l — 2)-te] Zeile von der
l — 3

/

l
Zeile und addiert nachher die Summe der ersten ten Zeilen zur
1-1 -ten Zeile, so ergibt sich

Wir gehen dazu ùber, den Zahler von HQ umzuformen. Das erste Pro-
dukt ist gemâB dem Corollar, Ont [2], pg. 172 unten, gleich der linken,
also auch der rechten Seite der Formel (2.2).

48



Das zweite Produkt kônnen wir wieder in der Form einer Déterminante
schreiben.

Ist u irgend eine der Zahlen 1,2,3, —-— so ist der Ausdruck
2

2 - xo(») x2u-
nn

(2.3)
gleich

21-1 -n 21-1

2 ~ Jto(n) X2u~Hn) log sin —j- + 2 - Zo(n) log sin-^-
n==l(mod 4)

21-1
V -

n Z (mod 4)

nn

n s 1 (mod 4)

nn 2/~~1

log sin-y + 2 x2u~1(n) l°g sin 77 •

n=3 (mod 4)

Setzt man in der zweiten Summe n 4Z — nf und lâBt nachher bei
nf den Strich wieder weg, so wird der Ausdruck (2.3) gleich

21-1 n U-lV _ z»~-i(n) log sin^Ç + 2
îi =1 (mod 4)

log sin^-
n==l (mod 4)

2 ~ X2u~
« iw^l (mod 4)

Da wir oben festgesetzt haben, da6 man die Primitivwurzel r 1

(mod. 4) wâhlen soll, wird der Ausdruck (2.3) gleich

1-2 Tir4
sin—r-

2-ni

oder falls zur Abkiirzung ji e1-1 gesetzt wird, gleich

1—2

2 —1

— /3

sin

(2W"

4i

sin

Z-2

ï—1
0111 ^

4t Commentarii Mathematici Helvetici 49



Setzt man in der zweiten Summe t' —- (- t, so wird der Ausdruek
(2.3) gleich

1—8

2

-!> *lûg

l—l

sm
Tir

nr4
sm-—r-

Nun ist r2 =2Z — l
der Ausdruek (2.3) gleich

wo w ganz rational ist, mithin ist

1—3

2

cotg U

Aber

und

cotg

27rir*
42

41

1 -e

h±

/ # tzî
V

27TÏ 2

Folglich ist

cotg
nr4

l-lrt-i-l) 2 i

\-\-i1
i-ir*_(_l) 2 i

1-t't
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Fuhrt man mithin die positive Einheit

0

ein4), so wird der Ausdruck (2.3) gleich

4~ (2.4)

Lzl
2

1-3

Das zweite Produkt im Zâhler von HQ wird mithin gleich

i—î 2

n

Unter nochmaliger Benûtzung der Théorie der Zirkulanten, vgl. z. B.
Cesàro [1], pg. 25, erhâlt man fur diesen Ausdruck, falls wir zur Erleich-
terung des Formelsatzes bei der Drucklegung der vorliegenden Arbeit
voriibergehend zur Abkûrzung O1-2 0 setzen:

i—i

(-1)

10g 0 log 0S 10g l0g 0S

log 0* log 0* log

1-3
2

10g 0sl~~2 log 0 10g 0S log 0S

10g

1-7

„ 2

log 0S 10g <2>

*) Auch hier soll fur die zu (9 konjugierten Einheiten unmer der positive Wert ge
nommen werden, dadurch ersparen wir uns in den folgenden Formeln das Zeichen fur
den absoluten Betrag bei den zu O konjugierten Emheiten, wenn wir je den Logarithmus
einer dieser Einheiten nehmen.
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Multipliziert man hier aile Zeilen mit Ausnahme der ersten mit
so wird dièse Déterminante:

log 0 log 0S log &S% log 0
Az?

„ 2

log

log

log log log

J—3 l—1
2 2

log 0S lOg 0^ log

log

10g 0S

log

log

log

10g

log

log

Fiihrt man hier die letzte Zeile in die 2. Zeile liber, die vorletzte in die
3. Zeile usf., so wird dièse Déterminante unter Wiedereinfuhrung der
Einheit 0:

(—1) 8 log 01-2 log9{1~E)S

Zusammenfassend wird

(/—1) (1—7)

/ ]\ 8

log

• 2 •

^1-2
log©1"

log ^-"
9(l-2)5 _ j

log

Z-3

(2. 5)

Ho h0 •

Hiebei ist -=~ eine natiirliche Zahl, denn jedes Stûck des Hilbertschen

Klassenkôrpers von k0 gehôrt auch zum Hilbertschen Klassenkôrper von
Ko, vgl.Ghd[3], Satz pg. 86 oben.

3. Hilfssâtze

Um die Betrachtungen in der Folge nicht unterbrechen zu miissen,
leiten wir in diesem Abschnitt fûnf Hilfssâtze her.

Wir betrachten die Summe
4;
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wo Xo wie in Abschnitt 2 den eigentlichen Charakter mod. 4 bedeutet und
X(n) der in (2.1) definierte Charakter ist, endlich u jede der Zahlen

l 3
1

» 2, —-— bedeuten darf.

Ist 1 1 (mod. 4), so lâBt sich (3.1) durch Einfuhrung des Wertes
von Xo(n) zunàchst so schreiben:

-X2u(l~ 4) ¦(«-4) + *»«(* - 2) • (l - 2) +
z«»(2) • (l + 2) - z*«(4) • (l + 4) +

+ X2n(l - 3) • (2Ï - 3) - Z*«(J - 1) • (21 - 1) +
Z2«(l) • (2i + 1) - z*«(3) • (21 + 3) +

+ Z*"(I - 4) • (M - 4) - Z""(ï - 2) • (3Ï - 2) +
X2"(2) • (3Z + 2) + z««(4). (31 + 4) - + • • •

- z*(i - 3) • (4Z - 3) + z«»(ï - 1) • (él - 1)

Dieser Ausdruck ist gleich:

J{za"(l) - ^2M(2) - z*«(3) + z2«(4) + + • ¦ •

+ X2tt(l - 4) - Z««(I - 3) - X2u(l - 2) + Z«»(ï - 1) }
oder auch gleich

f /Z
4 2w(

Da in der letzten geschweiften Klammer eine ganze Zahl des Kôrpers

der ten Einheitswurzeln steht, ergibt sich der

1. Hilfssatz. Ist die Primzahl 1=1 (mod. 4), und darf u jede der
l 3

Zahlen 1,2, —-— bedeuten, so ist

+ Z«"(Z - 4) - Z«»(I - 3) - %2«(Z - 2) +

eine ganze Zahl des Kôrpers der —-—ten Einheitswurzeln.
2
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Ist l 3 (mod. 4), so lâBt sich (3.1) durch Einfûhrung des Wertes
von Xo(n) so schreiben:

+ X*u(l ~ 4) • (l - 4) -Zi"(ï-2).(J-2) +

- Z*"(2) • (« + 2) + *2«(4) • (ï + 4) - + • • •

+ X2u(l ~ 3) • (21 - 3) - X*«(l - 1) • (21 - 1) +
+ x*«(l) • (21 + 1) - Z2"(3) • (2i + 3) +

- X2u(l ~ 4) • (31 - 4) + Z»(I - 2) • (31 - 2) +
+ Z2"(2) • (31 + 2) - x2«(4). (31 + 4) +

- x»(l - 3) • (41 - 3) + z«-(l - 1) • (4J - 1)

Dieser Ausdruck ist gleich:

2« { Z2«(l) + Z2U(2) - Z2"(3) - %2"(4) + +
- f{l - 4) - z«-(ï - 3) + ^(ï - 2) + ^(1 - 1) }

oder auch gleich

[

Da in der letzten geschweiften Klammer wieder eine ganze Zahl des

Kôrpers der — ten Einheitswurzeln steht, ergibt sich der

2. Hilfssatz. Ist die Primzahl l 3 (mod. 4), und darf u jede der
1 g

Zahlen 1,2, —-— bedeuten, so ist

2 Wf"W

- X2u(l ~ 4) ™ *2tt(Z - 3) + %2«(Z - 2) + X2u(l - 1)}

eine ganze Zahl des Kôrpers der — ten Einheitswurzeln.

Weiter benôtigen wir zwei Hilfssàtze ûber Eulersche Zahlen, die sich
vielleicht schon irgendwo in der umfangreichen Literatur iiber die
Théorie der Bernoullischen und Eulerschen Zahlen finden.
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In der Fundamentalformel der Théorie der Eulerschen Zahlen, vgl.
z. B. Cesàro [II pg. 297:

2f(x) /( (x + h) + Eh) + /( (x - h) + Eh)

setzen wir h 1 :

2f(x) f((x+l)+E) +f({x-l) + Ë) (3.2)

Es sei zunàchst l 1 (mod. 4). Es wird, falls man in (3.2) sukzessive

x 1,2,3, ...,£ — 1 setzt, die entstehenden Gleichungen mit der Vor-
zeichenfolge -\ \~ versieht und addiert:

2 {/(l) -
+ f(l - 4) - f(l - 3) - /(! - 2) + /(Z - 1)}

f(l + E) + f(E) -f((l-i) + E)- /(l + ^)

Ist daher m eine beliebige natûrliche Zahl und setzt man

/(*) *¦»,
so ergibt sich der

5. Hilfssatz. Ist die Primzahl i 1 (mod 4), m eine beliebige natûrliche

Zahl, so gilt die Kongruenz :

im _ 2m — 3m + 4W H h

+ (l — 4)m ~ (l ~ 3)™ - (l- 2)m + (l - l)m Em (mod l)

Es sei 1 3 (mod. 4). Es wird, falls man in (3.2) sukzessive

#=1,2,3,...,Z — 1 setzt, die entstehenden Gleichungen mit der Vor-
zeichenfolge + H versieht und addiert:

+ + f(l - 2) + f(l - 1)}

l)+E)+ /(l + S) + f(E)

Setzt nxan wie eben fur eine beliebige natûrliche Zahl m

f(x) xm

so ergibt sich der

4. Hilfssatz. Ist die Primzahl 1 3 (mod. 4), m eine beliebige natûrliche

Zahl, so gilt die Kongruenz:
\m+ 2m — 3™ — 4™ + H •. • + (l — 2)m + (i — l)m Em(mod.l).
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Ist wie in Hilbert [7], pg. 280, T das in l aufgehende Primideal

l=(l,P-r), yS e7^

des Kôrpers der (l — l)-ten Einheitswurzeln, so gilt fur £=0, 1,2,... ,1—2 :

X(r') pt rt (modï)

mithin fur jede der Zahlen n 1,2, — 1 :

#(w) =n (modï)

Folglich ergibt sich aus dem ersten und dritten, bzw. aus dem zweiten
und vierten der vorangehenden Hilfssâtze der

5. Hilfssatz. Ist l eine beliebige ungerade Primzahl, und darf u jede
l 3

der Zahlen 1,2, —-— bedeuten, so ist die in der folgenden Kon-

gruenz auf der linken Seite stehende Summe eine ganze algebraische
l iZahl des Kôrpers der — ten Einheitswurzeln, und sie erfullt die

Kongruenz: u
2 ~ XM X2u(n) ^j~iE2u (mod T)

wo I das in l aufgehende Primideal I (l, j8 — r) des Kôrpers der
(l — l)-ten Einheitswurzeln bedeutet.

4. Die Klassenzahlen von k und K
Die Klassenzahl h von k wird, da der Regulator von Jc0 auch Regulator

von k ist, vgl. Ont [2], pg. 200/201 :

wo

l

2^

h--

1-1
2

r n

— h1' h0

~l(n) •

(4.

(4.

1)

2)

eine natlirliche Zahl ist, da jedes Stûck des Hilbertsehen Klassenkôrpers
von k0 auch zum Hilbertsehen Klassenkôrper von k gehôrt, vgl. Oui [3],
Satz pg. 86 oben.
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Endlich ergibt sich fur die Klassenzahl H von K, vgl. Ont [2],
pg. 200/201, falls RK der Regulator von K ist:

H H1- Ho (4.3)
wo

-1(n=l

n

2 • Hx ist eine natûrliche Zahl, da jedes Stûck des Hilbertschen Klassen-
kôrpers von Ko auch zum Hilbertschen Klassenkôrper von K gehôrt,
und K zum Hilbertschen Klassenkôrper von Ko gehôrt, vgl. Ont [3], Satz

pg. 86 oben.

Vermôge des Lemmas, Gut [2], pg. 172 unten, wird der letzte Ausdruck
auch gleich

11 1 ~ o/-2
77 V" \ Zà 7

v

2—3

2

n

Unter Beriicksichtigung von (4.2) folgt

/—3

Tràgt man dièse Form des Wertes von H1 und den in (2.5) angege-
benen Wert fur Ho in (4.3) ein, so wird unter Berucksichtigung von
(4.1):

[-1)"
(l-l) (1-7)

2 ~2\.. log^1-^)'5 2

log Z-l
-X

Z-3
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H
Der Quotient -j~ ist jedenfalls eine natûrliche Zahl, da jedes Stiick

des Hilbertschen Klassenkôrpers von k auch zum Hilbertschen Klassen-
kôrper von K gehôrt, vgl. Oui [3], Satz pg. 86 oben.

GemâB unserem Lemma in Abschnitt 2 ist ferner der dritte Faktor
7?

von H, also ° entweder gleich 1 oder gleich 2
KK

Ebenso ist der vierte Faktor von H eine natûrliche Zahl, wie wir am
Ende des 2. Abschnittes gesehen haben.

Der letzte, fûnfte Faktor ist daher auch eine positive rationale Zahl,
folglich da dieser Faktor gemâB Hilfssatz 5 von Abschnitt 3 als Produkt
von ganzen algebraischen Zahlen eine ganze algebraische Zahl ist, eben-
falls eine natûrliche Zahl. Ferner genûgt dièse natûrliche Zahl der Kon-
gruenz :

1—3 1—3

^À *

denn gemâB Hilfssatz 5 von Abschnitt 3 gilt dièse Kongruenz jedenfalls
modulo dem dort definierten Primideal T des Kôrpers der (l — l)-ten
Einheitswurzeln, folglich da beide Seiten der Kongruenz rational sind
modulo der rationalen Primzahl l.

Aus den letzten Aussagen und dem Satz von Kummerh) folgt sofort,
l idaB wenn einer der Zâhler der —-— ersten Bernoullischen Zahlen von

l — 1

geradem Index: Bo, B2, Béi jBj_3 oder eine der —-— ersten Euler-

schen Zahlen von geradem Index: Eo, E2, EA, Et_z durch l teilbar
ist, auch H durch l teilbar ist.

Der Hauptsatz der vorliegenden Arbeit wird mithin bewiesen sein,
wenn noch folgendes gezeigt worden sein wird:

l — lGelten die Voraussetzung I : Die Zâhler aller —-— ersten Bernoulli-

schen Zahlen von geradem Index: Bo, B2, i?4, Bt_3 sind aile zu
l il teilerfremd, und die Voraussetzung II : Die —-— ersten Eulerschen

Zahlen von geradem Index: Eo, E2, EA, Et_^ sind aile zu l
teilerfremd, so ist H zu l teilerfremd.

Aus der Voraussetzung I allein folgt aber gemâB dem Satze von
Kummer, daB jedenfalls der Faktor h von H zu l teilerfremd ist.

B) Vergleiohe die Bemerkung in Abschnitt 1.
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Aus der Voraussetzung II allein folgt jedenfalls, da6 der fûnfte Faktor
von H zu l teilerfremd ist. Im folgenden Abschnitt werden wir noch
zeigen, da8 aus der Voraussetzung II allein folgt, daB auch der vierte
Faktor von H zu l teilerfremd ist. Hiermit wird dann der in Abschnitt 1

aufgestellte Satz bewiesen sein.

5. Beweis der letzten Behauptung von Abschnitt 4

Die Einheit 0, vgl. Formel (2.4) liegt im Kôrper der 8ï-ten Einheits-
wurzeln, aber ihr Quadrat ist in Ko. Setzt man daher zur Abkurzung

9 (5.1)

so ist Q die (1 — Z)-te Potenz einer Einheit von Ko
Bezug nehmend auf Abschnitt 3 und 4 der Arbeit Gut [4], und unter

Verwendung der dort benutzten Bezeichnungen berechnen wir zunâchst
die „ Takagi"-schen Exponenten fur die Einheiten

QPu(S)
^

wo u jede der Zahlen 1,2, l — 1 bedeuten darf und wo zur Er-
leichterung des Formelsatzes bei der Drucklegung der vorliegenden
Arbeit Pu (S) das ganzrationalzahlige Polynom vonx Grade l — 2 in 8 :

r^°/ g __ ru
bedeutet. Es ist

also Q(l) Hs(l) 1 und

log U(e") ^ i 2 f"~\ • -^r
o y / ^^ 22m?—-1 ii;

Fur «0=1,2,...,Z—1 wird :

LW(Q) O(modi)

folglich fur w 1, 2, l — 1 ; n 1, 2, l — 1, wie sich aus
den Formeln der Seite 85, Ont [4], sofort ergibt

59



O(modZ)

und damit

0 (mod l) falls u ^ w

1 "1 ^mod *) ' faUs U

0 (mod l)

0 (mod l) falls u

i (mod Z) ' falls U=W
(5.2)

a-i) (i-i) is
Wir multiplizieren den vierten Faktor von H mit (—1) 8 2 2

dadurch entsteht die ganze rationale Zahl

J-3

log D \ogQs

log J\ log log

und es geniigt, zu zeigen, daB dièse ganze rationale Zahl unter der Vor-
aussetzung II zu l teilerfremd ist.

Im folgenden môgen m und n immer unabhângig voneinander aile
l l H ]\2

Werte 1,2, —-— annehmen dûrfen, und sind (—s—) GrôBen qmn

gegeben, so setzen wir zur Abkiirzung ||?wn|| fur die Déterminante

ÏI-1 l~l 1-1
2 ' 2

Da i3 die (1 — -T)-te Potenz einer Einheit von Ko ist, gelten Gleichungen
von der Form

^(1 — 2,) a i

1-1 (5.3)

wo die Exponenten amn aile ganz rational sind. Aus (5.3) folgt

sn '= SXniog r\" (5.4)
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und daraus

log Q log Qs log Q
1-3

\S 2

*~s\... log r)Zt
i — i

Im folgenden sei zur Abkiirzung

gesetzt, und wir betrachten den Quotienten

I log^ logQ2 logQl_1

a- (5.5)

(5.6)

1-3

log Q log Qs log I^ 2

Da fûr « 0 1, 2 Z-3

/-i

gemàB (5.1)

2 —zs 2 A;

gesetzt werden kann in der Formel (5.6), so wird

Qm û6^ £Ô2™5 û*»*51 Qb i-i s~r (5.7)

wo die Exponenten bnm aile ganz rational sind. Aus (5.7) folgt:

und

log Ûm X blm log fi8''1

log.Q2 \ogQl-1
l_— II A
l 11 v

(5.8)

(5.9)

log i2 log Qs log

erweist sich als eine ganze rationale Zahl.
Unsere Behauptung am Ende von Abschnitt 4 wird bewiesen sein,

wenn wir zeigen kônnen, daB unter der Voraussetzung II sogar das Pro-
dukt der beiden ganzen rationalen Zahlen (5.5) und (5.9) zu l teiler-
fremd ist. Setzt man

«ml bln + «
•»•-.- -T- » n
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so sind auch die GrôBen cmn aile ganz rational, und es wird das genannte
Produkt gemâB Formel (5.5) und (5.9)

log Ûx log Q2 log fi^i
log r\ log log pl-2

2

(5-10)

endlich folgt aus (5.8) und (5.4):

2 -,1-2 (5.11)

Zum indirekten Beweise wollen wir jetzt annehmen, daB || cmn\\ durch

l teilbar ist. Dann gibt es—-— ganze rationale Zahlen dn die nicht

aile durch l teilbar sind, fur welche aber aile
Zahlen

2

ganzen rationalen

2 Cm

durch l teilbar sind. Aus (5.11) folgt

logjû*1 ...a
i—i

2

fur eine gewisse Einheit &0 von Ko. Aus der letzten Gleichung folgt

Mithin muB fiir w 1, 3, 55 l — 2 :

Gjûrûr... at±) ° (modl) '

also gemâB (5.6) :

"«; i3 "i~ 1 0 (mod l)

sein. Das bedeutet aber auf Grand der Formel (5.2), daB fur

''•••' 2
•
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d n

ist. Es ergibt sich demnach der Widerspruch, daB wegen der Voraus-

setzung II aile —-— ganzen rationalen Zahlen dn durch l teilbar sind.

Abgesehen von môglichen weitergehenden Verallgemeinerungen mit
Hilfe der von Hasse*) entwickelten Théorie der Reziprozitâtsgesetze in
Erweiterungskôrpern des Kôrpers der m-ten Einheitswurzeln7) lassen sich
ofïenbar die in Gut [4] in Abschnitt 3 und 4 entwickelten Formeln auf
das Kompositum von k mit irgend einem absolut quadratischen Kôrper
ûbertragen, und es gelten dann wohl zu dem in der vorliegenden Arbeit
bewiesenen analoge Sâtze.

(Eingegangen den 15. April 1950.)
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