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Metrisches Feld und skalares Materiefeld
Von K. Fink, Bern

§ 1. EMeitung

In der Mie-Hilbertschen Théorie der Materie1) ist das Wirkungsprinzip

ÔJ 0

mit dem Wirkungsintegral
J $WV-Gdx

Ausgangspunkt fur die Herleitung der Gravitations- und Materieglei-
chungen. Das metrische Feld wird durch die Gravitationspotentiale

der metrischen Grundform
S - vTçor X q Xq j

das matérielle Feld durch das Vektorpotential

beschrieben. Die invariante Weltfunktion W hângt von den GQU, ihren
ersten und zweiten Ableitungen nach den Weltkoordinaten und von den
materiellen FeldgrôBen ab. J selbst ist eine Integralinvariante. Das

Wirkungsprinzip sagt aus, dafi bei unabhângiger Variation der Zustands-
grôBen das Wirkungsintegral stationâr sein soll. Dies ergibt ein voll-
stàndiges System von Gravitations- und Materiegleichungen. Die
Weltfunktion kann in zwei Teile

W R + xM

zerlegt werden, von denen der Riemannsche Kriimmungsskalar R von
den materiellen ZustandsgrôBen und die matérielle Wirkungsfunktion M
Ton den Ableitungen der Gea unabhângig ist.

x) D. Hilbert, Grundlagen der Physik, 1. Mitteilung, Gôttinger Nachrichten 1915
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Es ist nicht gelungen, eine Weltfunktion aufzufinden, die auf Grund
der zugehôrigen Differentialgleichungen das matérielle Geschehen und
die Materie selbst befriedigend besehreibt. Man ist immer noch auf den
phânomenologischen Energie-Impuls-Tensor angewiesen, der sich be-
kanntlich nicht auf eine Wirkungsfunktion M zuruckfuhren lâBt.

W. Scherrer, Bern, hat sehon vor lângerer Zeit auf die Môglichkeit,
die Materie durch eine skalare Funktion zu besehreiben, hingewiesen2).
Es ist von Interesse, zu untersuchen, was sich aus der Verbindung von
s2 mit der skalaren Funktion ohne Einfuhrung eines Vektorfeldes ergibt.

In dieser Arbeit soll die mit Hilfe des Gradienten der invarianten Funktion

S S(x0, xl9 #2, xz) gebildete Wirkungsfunktion

Jf 2^-VS '
(1)

mit Hilfe der Mie-Hilbertschen Methoden untersucht werden. Mit \/8
wird der erste Beltramische Operator

v a _ QQ<j
d8 d8 (2)V *3

OXQ OXa

bezeichnet.
Das statisch-zentralsymmetrische Feld lâBt sich exakt bestimmen. Es

zeigt sich, daB Lôsungen mit endlicher, aber negativer Gesamtenergie
existieren. AnschlieBend wird das kosmologische Problem auf Grund
dieser Wirkungsfunktion behandelt.

In einer neueren Arbeit3) hat W. Scherrer den in wesentlicher Hinsicht
erweiterten Ansatz

ô fl(B - 2A)y>* + êcoGQa
J { OXQ

^G dx 0

behandelt. Wie mir Herr Scherrer mitteilte, ergeben sich fur die Grenze

m -> oo Lôsungen, die den unsrigen entsprechen.

§ 2. Die Feldgleichungen

Die zu lôsende Variationsaufgabe mit der speziellen materiellen
Wirkungsfunktion M lautet:

(3)ô({B+

â) Verhandlungen der S.N.G., Basel 1941. H. P. A. XXII, 1949.
8) Erscheint demnàchst in den H. P. A.
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Integriert wird iiber ein beschrânktes Weltgebiet ©. Die Weltkoordi-
naten sind x0 et, xx, x2, #3 ; do; steht ftir d#0 dxx dx2 dx3 Die 0QO

sind die Koeffizienten der metrisehen Fundamentalform

S "ZZZZ vJTnjy X Q Xq

vom Tràgheitsindex drei. G bezeichnet die zur Matrix der GQa gehôrige
Déterminante, co ist eine Konstante. Der Riemannsehe Krlimmungs-
skalar wird definiert durch

R G*a RQ

mit
7? — ex

__ gg _i_ rx ru — rx r^ea ~" ^a dxX Q* QX Q° X/X '

Die jT^t sind die Christoffelsehen Symbole. Die Gravitationspotentiale
GQG und die Materiefunktion S sind die zu variierenden ZustandsgrôBen.
Vorausgesetzt wird das Verschwinden der Variationen auf dem Rande

von (5

Es erweist sich als vorteilhaft, die Variationsaufgabe durch direktes
Ausfuhren der Variationen zu lôsen, ohne die allgemeinen Lagrange-
Gleichungen zu verwenden. Nach Weyl4) vereinfacht sich das Varia-
tionsproblem durch Elimination der in RV — G steckenden Divergenz.
Wir definieren die GrôBen:

q

Die Berechnung liefert dann die Aufspaltung

Bei der Variation und Intégration ûber © lâBt sich der erste Teil der
rechten Seite in ein Oberflâchenintegral verwandeln und liefert keinen
Beitrag. Die vereinfachte Variationsaufgabe lautet jetzt:

à f{Q + 2a>\7S}\/^Gdx 0 (4)

Aus der Variation der GQa folgen die zehn Feldgleichungen der Gravitation:

4) Weyl, Raum-Zeit-Materie, 5. Aufl., S. 238.
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1rs
a rsa

2^^ VS-ffJ • (5)
OXq OXq

Durch Vergleich mit den Einsteinschen Gleichungen

ergibt sich flir den Energie-Impuls-Tensor :

Die Variation von S ergibt die Feldgleichungen der Materie:

n S — o ^7^- i—j ° — u • v'/

Aus dem Verschwinden der kovarianten Ableitung

D
folgt der Erhaltungssatz

(8)

Dièse vier Identitâten, deren Existenz schon aus einem allgemeinen
Theorem der Variationsrechnung1) folgt, gewâhrleisten die der allgemeinen

Relativitâtstheorie zugrunde liegende Freiheit der Koordinaten-
transformation.

§ 3. Das statisch-zentralsymmetrische Feld

Wir geben dem Linienelement

S =Greor(i£Q, Xi, X%, #3) XçXa

durch Zerspaltung in Raum und Zeit die Gestalt

s2 =f2(x1} x2, x3)xl — gkl{xl9 x2> xs)xkxl (&,Z=1,2,3) •

Wegen der râumlichen Zentralsymmetrie làBt sich dièses mit Hilfe der
Polarkoordinaten r, û, <p in der Schwarzschildschen Form

s2 j\r) x\ - g\r) f2 - r2(^2 + sin2 <&y2) (9)

anschreiben. Die zu bestimmenden Funktionen / und g hàngen nur von
der einzigen Variabeln r ab.
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Die Tafel der Gravitationspotentiale lautet:

«00

Ou

atr22

«33 —

c
ç

g2

r2 C

r2 sin2 &

?Ca 0

r ~ oQQ

(10)

Die Materiefunktion 8 hàngt naturlich auch nur von r ab. Die Berech-

nung der materiellen Wirkungsfunktion nach (1) ergibt

(H)

Der Strich bezeichnet die Ableitung nach r. Fur Q erhalten wir nach
Beifûgung des fiir Polarkoordinaten notwendigen Zusatzes 2/r2 :

ç 4
Mit

2rf'
r fg2

— 0 r2fq sine (12)

lautet jetzt die Variationsaufgabe unter Weglassung der Zeit- und Winkel-
variabeln :

fg+
y

(4')

Durch Variieren der Funktionen /, g und 8 erhalten wir das System
der Lagrange-Differentialgleichungen :

8'2
¦ — I + o)ra ^— =0

r2i^ =0.

Die Intégration der dritten Gleichung ergibt

8'-9 A

(13.)

(13.)

(14)

30



Die Integrationskonstante A hat fur unser Problem eine der elektrischen
Ladung analoge Bedeutung. Wir nennen sie ,,S-Ladung". Wir bilden
die Kombinationen

{/ • (13i) + 9 ¦ (132) J
-L + r (^j - fg 0

2r

(15)

Wirsetzen p^fg q_j_ (16)

Mit
h r.q (17)

verwandelt sich (15) in
W - p =0

(18)
p' —corpB'2 0

(16), (17) in (14) eingesetzt ergibt

r28f2 ^ (19)

Aus (18) erhalten wir mit (19) fur h die Dififerentialgleichung

rh" + (oA2(^-\ =0 (20)

Durch Einfûhren der neuen unabhângigen Variabeln

s=lnr (21)
erhâlt (20) die Gestalt •

h-h= -coA21

wobei der Punkt die Ableitung nach 8 bezeichnet. Eine erste Intégration
liefert

1

h — o)A2 — + h + 2B (22)

Die Integrationskonstant 2B hat den Charakter einer Lange. Mit

h + B =u (23)

folgt aus (22)

_ (u-B)dudS~ u2-(B2 + a>A2)
• (24)
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Fur die Intégration von (24) unterscheiden wir auf Grund der Diskrimi-
nante

B2 -f o)A2 D (25)
drei Fâlle:

I. B2 + (oA2 > 0

(26)

Fall I:
Wir fûhren ein

wobei gilt

Mit

folgt aus (24)

Die Intégration ergibt

II.

III.

B

B2-

B2 -

2 + COOi

J y*-

f (oA2

f coA2

A

2 1

0

<o

(27)

(28)

(29)

Wir ersetzen s wieder durch r und erhalten fur r als Funktion von y

1-/3
y — 1

r a y+ y+
Fall II :

Mit

erhalten wir aus (24)

Daraus folgt

Fall III:
Wir setzten B

u

a- \y\ ¦ e»

+ V-D

(30)

(31)

(32)

(33)

(34)
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Mit

folgt aus (24)

«=+]/-/) • y

Die Intégration ergibt

s — In a ^ In (?/2 + 1) — /?7 arc tg y

Mit 5 — In r erhalten wir

(35)

(36)

(37)

(38)

Die Berechnung von p und # auf Grund von (17), (18), (23) liefert:

I

II

III

p

P

p

r

B
r

V-D
r

t
y

y

y"
y

y2

i

i
-F

r

B
r

a- V~D
r

¦{y-

¦ {y -

¦(y-

P)

i)

F)

(39)

Aus

erhalten wir auf Grund von (30), (33), (38) und (39) folgende Lôsungen:

(40)
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§ 4. Diskussion der Lôsungen

In § 2 wurde das Linienelement in der Form

à2 =f2(r)x20 - g*(r)r2 - r2(#2 + sin2 #q>2)

vorausgesetzt. Wir fùhren

â2 ê2 + sin2 &q>2

als Abkiirzung ein. Die Variable r, der ,,Radius", hat keine ausgezeichnete
geometrische Bedeutung. Durch die Formeln (30), (33) und (38) haben
wir y an Stelle von r eingefiihrt. Das Linienelement heiBt dann:

s2 ï2(y)x2-g2(y)y2-r*{y)à* (41)

f2(y) f2(r[y]) ist durch (40) gegeben. Mit ~§2(y) ist der Ausdruck

92 (r [y] -j-1 bezeichnet.

Die metrischen Koeffizienten enthalten noeh eine willkurliche Kon-
stante a. Dièse wird durch eine Grenzbedingung fur das râumlich
Unendliche fixiert. Wir fordern, da8 das Linienelement (41) mit r gegen
Unendlich in das der speziellen Relativitâtstheorie mit /2 g2 1

iibergehe. Die Punktion r(y) spielt also im râumlich Unendlichen die
Rolle des euklidischen Radius. Durch dièse Grenzbedingung ist unser
Problem erst vollstândig bestimmt.

Es ist jetzt der Variationsbereich von y zu bestimmen, in welchem
einerseits die MaBbestimmung sich regulâr verhâlt und andererseits die
Grenzbedingung sich durch spezielle Wahl von a erfûllen lâBt. Wir
untersuchen die drei Fâlle I, II und III gesondert.

Fail I:
Fur y ^ 1 erhalten wir mit

1 -1* y-\ \y+l
fiir das Linienelement (41):

1 — P
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Mit

ist die Grenzbedingung erfullt. Singulâr wird die MaBbestimmung fur

Der Variationsbereich -— 1 ^ y ^ + 1 scheidet aus. Der Trâgheits-
index der metrischen Form ândert sich und die Grenzbedingung lâBt sich
nicht erfiillen. Im Bereiche y ^ — 1 erhalten wir dasselbe
Linienelement.

Fail II:
Mit 1 / y — 1

ergibt sich fur das Linienelement :

v—a2e y2 —

Wenn wir a B setzen, so ist die Grenzbedingung erfullt. Singulâr
wird die MaBbestimmung fur y 0

Fail III:
Mit Hilfe von

schreibt sich das Linienelement in der Form:

s*

Fur ^/ unendlich wird das Linienelement mit a \/— De 2 pseudo-
euklidisch.

In der Mieschen Feldtheorie5) wird die Materie nur auf Grund der
elektromagnetischen ZustandsgrôBen beschrieben. Es wird vermieden
neben der elektromagnetischen Energie eine mechanische Masse ad hoc
einzufuhren. Hilbert hat dièse Théorie zu einer geschlossenen Beschrei-
bung der Materie erweitert, die Gravitation und Elektrodynamik um-
faBtx) 6). Stellen wir uns konsequent auf den Boden dieser Théorie,

5) G. Mie, Grundlagen einer Théorie der Materie, Ann. d. Phys., Bd. 37, 39, 40.

•) W. Scherrer, Gravitationstheorie und Elektrodynamik, H. P. A., XXII,
1949.
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dann muB sich fur S' 0 — materiefreier Raum — die metrische
Struktur als pseudoeuklidisch erweisen. Daraus folgt fur miser Problem,
da6 die Integrationskonstante B gleich Null gesetzt werden muB. Auf
Grund von (26) und mit der Forderung co > 0 folgt, daB Fall III aus-
scheidet. Lassen wir Werte B =fi 0 zu, so stellen wir uns auf den Boden
der klassischen Sehwarzschildschen Lôsung, die das Gravitationsfeld
eines Massenpunktes beschreibt. Unabhàngig vom #-Feld wird also eine
mechanische Masse eingefiihrt. Jetzt erhalten wir fiir Sf =0, d. h.
A 0 mit Hilfe von

r -2B l
die klassische Lôsung

2B
2B

Die Konstante a wurde gleich \/D gesetzt.
Im Fall I, der also den klassischen enthàlt, kônnen wir von einem

Ûberwiegen der Gravitationswirkung sprechen. Im Fall III wurde dann
die $-Wirkung vorherrschen.

§ 5. Berechnung der Totalenergie

Wir ermitteln den Energie-Impuls-Tensor nach der Formel

QŒ
x i dxQ dxa

Mit
Q(J

ergibt sich die Tafel:

Die

Mit

1 00 —

Totalenergie

0)

X

0)

X

f2
g2

S'2

8r 2 T

T-1 33

berechnet sich aus

M
2

__

b

n 77 00

J J
0

T° ~Vq^~

(O

X

sin2

d&d<p

r2

Y
.Q rp

•
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erhalten wir, indem wir die Intégration beziiglich der Winkelvariabeln
ausfiihren : ^

77?

Fall I:
Mit Hilfe von

folgt

y - Pdr r -—- -V dy

^2 f_dy_
D J y2-l '

Die Intégration erstreckt sich tiber das t/-Intervall 1 ^ y < oo Wir
erhalten :

XV In

Dieser Ausdruck divergiert von der Ordnung eines Logarithmus. Die
Gesamtenergie wird unendlich.

Fall II :

erhalten wir

E
A2 fdy^

y2

Wir integrieren iiber das Intervall 1 ^ y < oo Es ergibt sich auch in
diesem Fall eine unendliche Totalenergie.

Fall III:
Die Energie berechnet sich aus

4:710) A2A2 Ç
D I

dy

Die Intégration erstreckt sich von 0 bis oo Sie ergibt :

E
4:710) A2

arc tg y
00 2tc2co A2

— D

Wir erhalten einen endlichen Energieinhalt. Damit dieser positiv aus-

fâllt, mufi auch œ positiv gewàhlt werden. Dadurch wird aber die Be-

dingung (26) III verletzt.
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§ 6. Das kosmologische Problem

Wir setzen ràumliche Isotropie fur einen Beobachter in einem belie-
bigen Weltpunkt voraus. Zeit und Raum lassen sich dann trennen und
der Raumanteil mu6 homogen sein7). Wir kônnen also dieser Betraehtung
das Linienelement

zugrunde legen, wobei

à2 gkl xk i, è2 + sin2 êy* + sin2 & sin2 <p*x2 8)

sich auf den Raumanteil bezieht. Der ,,R&dius" L ist eine Funktion
von x9 allein. In einem bestimmten Zeitmoment bildet der Raumanteil
die Oberflâche einer dreidimensionalen Sphâre. L ist ihr Radius. Wir
setzen L als reell voraus. Die Tafel der GQa lautet :

(42)

Wir setzen weiter voraus, daB die Materiefunktion S nur von x0 abhàngt.
Die kosmologisehen Gleiehungen lauten:

Rça (43)

A bezeichnet die kosmologische Konstante. Dièse Gleiehungen erhalten
wir leicht aus dem Variationsprinzip, indem wir den Zusatz —2A\/—G
der Wirkungsfunktion beifugen.

Die Berechnung der F%x liefert:

(44)

Mit ykt sind die zur Form à2 gehôrigen Dreiindizessymbole bezeichnet.
Eine einfache Rechnung gibt mit (42) fur den verjiingten Krummungs-
tensor :

*) R. G. Tolman, Belativity, Thermodynamics and Cosmology, 1934, S. 364.

8) Indizes i, k, l nehmen die Werte 1, 2, 3 an.
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(45)

Die r,,. sind die entsprechenden GrôBen bezogen auf <r2. Fur den Krum-
mungsskalar

erhalten wir aus (42), (45) mit

rtk ~ 2^fc und r - 6

Fur die Ausdrucke auf der rechten Seite der kosmologischen Gleichungen
folgt sofort

-"00 "~ too j£i

JîsO (47)

Rtk-\OtlcR (2LL + V+ \)gt%

Der Energietensor hat die einfache Gestalt

k ^ (l (48)

Setzen wir die Ausdrucke (47) und (48) in (43) ein, so erhalten wir

Die Kombination £2 • (49X) — (492) ergibt fur L die Diflferentialgleichung

LL +2L* + 2 -AL2 0 (50)

Aus dem Energiesatz (8) erhalten wir mit Hilfe von (44) und

dx
mi mQ
-1 i — * 0
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die Gleichung
a

dx0

Eine kleine Umformung

(dS\ L(dS\
\dx0) ' L \dxoj

ergibt

d (t* dS \
dx0 \ dx0 j ~ (51)

Im wesentlichen stimmt (51) iiberein mit der Feldgleichung der Materie

Aus (51) folgt sofort
**- A (52)

UJSQ U

(52) in (49j) eingesetzt, ergibt

Wie leicht zu sehen ist, ist (53) ein erstes Intégral der Gleichung (50).

Zwei Typen von Lôsungen treten auf :

1. L 0 L konstant
statische Losung.

Aus (50) folgt sofort fur den raumlichen Radius

L
2. L ^0

dynamische Lôsungen.

Die zeitliche Ânderung des Radius L ist gegeben durch

^1 -^ + 3

Die Intégration liefert
L

y2dy
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Lôsungen existieren, falls

3^)o ¦ (54)

Seiner Bedeutung nach ist y eine positive Grôfie. Da wir nur positive
Energieinhalte zulassen, ist auch co positiv anzunehmen.
Wir setzen

Falls A^O, muB F(y)^O sein, damit (54) erfiillt wird. Die Dis-
kussion der Funktion F (y) wird uns die verschiedenen Lôsungstypen
ergeben. Fur A > 0 erhalten wir folgende Extrema:

Wir unterscheiden folgende Fâlle:

a) A>—j

Die Funktion F liât keine réelle Wurzel. Der zulâ&sige i/-Bereich erstreckt
sich von Null bis Unendlich. L kann sich also ungehemmt vergrôBern.
Monotone Welt erster Art.

Es treten zwei réelle, positive Wurzeln oc, fi auf. Zwei getrennte zulâssige
^/-Bereiche [0, a] und [/?, + oo] sind vorhanden. Entsprechend erhalten
wir zwei expandierende Welttypen:

Periodische Welt : L wâchst von 0 bis oc und verringert sich wieder
auf 0.

Monotone Welt zweiter Art : L beginnt mit einem endlichen Anfangs-
wert fi und vergrôBert sich ungehemmt bis unendlich.

C) A~ a>A*
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In diesem Grenzfall fallen die beiden Wurzeln zusammen.

Zwei Intervalle [0, oc] und [oc, oo] stehen zur Verfûgung. Wir erhalten
wieder zwei Welttypen:

Asymptotische Welt erster Art : L vergrôBert sich von Null an und er-

leicht fiir £ oo den Wert 1/—p, der einer statischen Zylinderwelt

entspricht.

Asymptotische Welt zweiter Art : Dièse Welt hat zur Zeit t — oo

als statische Zylinderwelt vom Radius [/—p sich zu expandieren be-

gonnen. L wàchst ungehemmt bis unendlich.
Fiir A < 0 hat die Funktion F eine réelle positive Wurzel oc. Zuge-

lassen ist also nur das Intervall [0, oc]. Die zugehôrigen Lôsungen ent-
sprechen periodischen Welten. Die beiden Sonderfâlle

A 0 und A 0

lassen sich leicht uberblicken. Fur A 0 erhalten wir eine periodische
Lôsung. Der Fall A 0 lâBt sich elementar integrieren. Es ergibt sich

L a ' Cos

Es handelt sich also um eine de Sittersche Kugelwelt. Gegen diesen
Sonderfall entwickeln sich die monotonen Welten von a), b) und c)

fur y gegen Unendlich.

Ich bin Herrn Prof. Dr. W. Scherrer, Bern, zu groBem Dank verpflich-
tet. Er hat dièse Arbeit angeregt und ihre Durchfuhrung mit wertvollen
Ratschlâgen unterstiitzt.

(Eingegangen den 7. April 1950.)
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