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Metrisches Feld und skalares Materiefeld
Von K. FiNk, Bern

§ 1. Einleitung
In der Mie-Hilbertschen Theorie der Materie?) ist das Wirkungsprinzip

0 =0
mit dem Wirkungsintegral
J= WV —-Gdx

Ausgangspunkt fiir die Herleitung der Gravitations- und Materieglei-
chungen. Das metrische Feld wird durch die Gravitationspotentiale

un = Gea(xO: Xy, g, CL‘3)

der metrischen Grundform
S ? = GQU xo o,

das materielle Feld durch das Vektorpotential
Dy = Dy (%o, Xy, X5, Xy)

beschrieben. Die invariante Weltfunktion W hiéngt von den G, ihren
ersten und zweiten Ableitungen nach den Weltkoordinaten und von den
materiellen FeldgroBen ab. J selbst ist eine Integralinvariante. Das
Wirkungsprinzip sagt aus, dal bei unabhéngiger Variation der Zustands-
groBen das Wirkungsintegral stationdr sein soll. Dies ergibt ein voll-
stindiges System von Gravitations- und Materiegleichungen. Die Welt-

funktion kann in zwei Teile
W=R-+xM

zerlegt werden, von denen der Riemannsche Kriimmungsskalar R von
den materiellen Zustandsgrofen und die materielle Wirkungsfunktion M
von den Ableitungen der G,, unabhingig ist.

1) D. Hilbert, Grundlagen der Physik, 1. Mitteilung, Gé6ttinger Nachrichten 1915
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Es ist nicht gelungen, eine Weltfunktion aufzufinden, die auf Grund
der zugehorigen Differentialgleichungen das materielle Geschehen und
die Materie selbst befriedigend beschreibt. Man ist immer noch auf den
phéinomenologischen Energie-Impuls-Tensor angewiesen, der sich be-
kanntlich nicht auf eine Wirkungsfunktion M zuriickfiithren 1af3t.

W. Scherrer, Bern, hat schon vor lingerer Zeit auf die Moglichkeit,
die Materie durch eine skalare Funktion zu beschreiben, hingewiesen?).
Es ist von Interesse, zu untersuchen, was sich aus der Verbindung von
82 mit der skalaren Funktion ohne Einfiihrung eines Vektorfeldes ergibt.

In dieser Arbeit soll die mit Hilfe des Gradienten der invarianten Funk-
tion S = S(x,, ;, x,, ;) gebildete Wirkungsfunktion

Mzzgvs ' (1)

mit Hilfe der Mie-Hilbertschen Methoden untersucht werden. Mit VS
wird der erste Beltramische Operator
oS o8 2)

— (99 __—__
Ve =G 0x, 0%,

bezeichnet.

Das statisch-zentralsymmetrische Feld 148t sich exakt bestimmen. Es
zeigt sich, dal Losungen mit endlicher, aber negativer Gesamtenergie
existieren. AnschlieBend wird das kosmologische Problem auf Grund
dieser Wirkungsfunktion behandelt.

In einer neueren Arbeit?®) hat W. Scherrer den in wesentlicher Hinsicht
erweiterten Ansatz

dy 9 _
af{(R—zA)w2+4wG°°—f'—"~ YW —Gdz=0

0z, 0%o

behandelt. Wie mir Herr Scherrer mitteilte, ergeben sich fiir die Grenze
@ —> oo Losungen, die den unsrigen entsprechen.

§ 2. Die Feldgleichungen

Die zu losende Variationsaufgabe mit der speziellen materiellen Wir-
kungsfunktion M lautet:

S[{R+ 20V8} V= Gdz=0 . (3)
&

?) Verhandlungen der S.N.G., Basel 1941. H. P. A. XXTI, 1949.
8) Erscheint demnéchst in den H. P. A.
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Integriert wird iiber ein beschrinktes Weltgebiet . Die Weltkoordi-
naten sind 1z, = ct, x,, 7,, ¥;; da steht fiir dx,dx, daxydxy;. Die G,
sind die Koeffizienten der metrischen Fundamentalform

6"2 == Ggo‘a}@ io

vom Trégheitsindex drei. G bezeichnet die zur Matrix der ¢,, gehorige
Determinante. w ist eine Konstante. Der Riemannsche Kriimmungs-
skalar wird definiert durch '

R = G* R,,
mit
arx, oI,
‘RQa: axz - axi -+ FéMF’SK _onrl)fp. .

Die I'?, sind die Christoffelschen Symbole. Die Gravitationspotentiale
(%’ und die Materiefunktion S sind die zu variierenden Zustandsgrofen.
Vorausgesetzt wird das Verschwinden der Variationen auf dem Rande
von & .

Es erweist sich als vorteilhaft, die Variationsaufgabe durch direktes
Ausfiithren der Variationen zu losen, ohne die allgemeinen Lagrange-
Gleichungen zu verwenden. Nach Weyl*) vereinfacht sich das Varia-
tionsproblem durch Elimination der in RV — G steckenden Divergenz.
Wir definieren die Groflen:

Q = G{I3, I't, — I'y, T}
P°= G¥ I, — GO I, .

Die Berechnung liefert dann die Aufspaltung

Py —@
0,

Ry —-@Q =

+QV—a .

Bei der Variation und Integration iiber ® 148t sich der erste Teil der
rechten Seite in ein Oberflichenintegral verwandeln und liefert keinen
Beitrag. Die vereinfachte Variationsaufgabe lautet jetzt:

5f{Q+2va}1/?i’éidx:0 . (4)
‘G

Aus der Variation der G®? folgen die zehn Feldgleichungen der Gravita-
tion:

4) Weyl, Raum-Zeit-Materie, 5. Aufl.,, S. 238.
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o8 o8

Reo - %RGQG = —wi{2 9%, 0o

— V8- Gy} - (5)
Durch Vergleich mit den Einsteinschen Gleichungen
Ryy — 3 RGyo = — 2Ty,

ergibt sich fiir den Energie-Impuls-Tensor:

) oS 08
Die Variation von S ergibt die Feldgleichungen der Materie:
1 0 — oS
iy — —GGQG'—’EDS:O. 7
]/—G 0Zq (V axe) "

Aus dem Verschwinden der kovarianten Ableitung

'DQ (Rg' - % 65‘ R)
folgt der Erhaltungssatz
D,T¢ =0 . (8)

Diese vier Identititen, deren Existenz schon aus einem allgemeinen
Theorem der Variationsrechnung?!) folgt, gewihrleisten die der allgemei-
nen Relativititstheorie zugrunde liegende Freiheit der Koordinaten-
transformation.

§ 3. Das statisch-zentralsymmetrische Feld

Wir geben dem Linienelement

6.'2 EGQO‘(xO’ xl) xz, 563) (1.391;70.
durch Zerspaltung in Raum und Zeit die Gestalt
‘§2 Efz(wli Lg x3) a‘;g - gkl(xla La s x3) :;:k:;:l (ky I = ]-a 25 3) *

Wegen der raumlichen Zentralsymmetrie 148t sich dieses mit Hilfe der
Polarkoordinaten r, &, ¢ in der Schwarzschildschen Form

§2 = f2(r) 22 — g2(r) 2 — 72({‘}2 + sin? & @2?) (9)

anschreiben. Die zu bestimmenden Funktionen f und g héngen nur von
der einzigen Variabeln r ab.
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Die Tafel der Gravitationspotentiale lautet:

Goo = ,2 GW =0
ezo
Gy = —¢g°
1 (10)
Gzz == - 72 GQQ = =
ee

Die Materiefunktion S hingt natiirlich auch nur von r ab. Die Berech-
nung der materiellen Wirkungsfunktion nach (1) ergibt

. w 2 rg
M—'_??S . (11)

Der Strich bezeichnet die Ableitung nach r. Fiir  erhalten wir nach
Beifiigung des fiir Polarkoordinaten notwendigen Zusatzes 2/r?:

0= 2 (1 2121

. r? fg?
Mit
V —G =1r2fgsind (12)
lautet jetzt die Variationsaufgabe unter Weglassung der Zeit- und Winkel-
variabeln :
/
6f{fg+—gf—f—g—i—f-~—wr2—5—8’2}dr=0. (4)

Durch Variieren der Funktionen f, g und 8 erhalten wir das System
der Lagrange-Differentialgleichungen:

‘r\/ ' 1 S’ 2
2_)_( __) 2B 13
(Z) = (o+5) +or 5 (13)
rf’ 1 S’ 2
27’; — (1_?]—2.)—wr2fg2 =0 (13,)
fSl )/ .
r? =0. 13,
(22 (13,)
Die Integration der dritten Gleichung ergibt
g_94 (14)

for
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Die Integrationskonstante A hat fiir unser Problem eine der elektrischen
Ladung analoge Bedeutung. Wir nennen sie ,,S-Ladung’’. Wir bilden
die Kombinationen

%{f- (131)+g-<132)}5§+¢(_3)’ _fg=0

(15)
2
— LA us) — g usa)= (o — wrfgsr = o
Wir setzen
P=f-9 9= —g— (16)
Mit -
h=r-q (17)
verwandelt sich (15) in
K —p = 0
(18)
p —wrp8'2=0
(16), (17) in (14) eingesetzt ergibt
2
?‘2 S, 2 = —‘;—:—2“ O (19)
Aus (18) erhalten wir mit (19) fiir 2 die Differentialgleichung
!/ "
rh” + w A2 (71[) =0 , (20)
Durch Einfithren der neuen unabhéngigen Variabeln
s=Inr (21)
erhilt (20) die Gestalt L i
h’——hz —‘wA2<'—h—> 5

wobei der Punkt die Ableitung nach s bezeichnet. Eine erste Integration
liefert

i'a=——wA2—’1b——{—h+2B. (22)
Die Integrationskonstant 2 B hat den Charakter einer Lidnge. Mit

h+ B =u (23)
folgt aus (22)
(v — B)du
u? — (B2 + w A4?)

ds = (24)
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Fiir die Integration von (24) unterscheiden wir auf Grund der Diskrimi-
nante

B? + wA* =D (25)
drei Fille:
I. B + wA? >0
1. B 4+ wA? =0 (26)
ITI. B2 + wA? <0
Fall I:
Wir fiihren ein
B A
—— [3 —_— = X , (27)
+VD +VD
wobei gilt
2+ wat=1.
Mit B
u=,VD-y (28)
folgt aus (24)
_[y—8
S“fyz——-ldy' (29)

Die Integration ergibt
s—Ina=3{(1—Ahly—1|+0+Pnjy+1]}.

Wir ersetzen s wieder durch r und erhalten fiir » als Funktion von y

il 4
y—1,°2
—q- ' 1] . 30
r a'y+1 |y + 1] (30)
Fall II:
Mit u = By (31)
erhalten wir aus (24)
y—1 1
8 = dy =In — . 32
f ea— lm+y (32)
Daraus folgt s
r=a-|y|-ev. (33)
Fall 111 :
Wir setzten B A
e 2= —— = . (34)
+V—D +V—-D
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Mit

folgt aus (24)

Die Integration ergibt

Mit s = Inr erhalten wir

Die Berechnung von p und ¢ auf Grund von (17), (18),

r::a-]/y2+1oe

uE+V—D-y

-

y~/3’
y: + 1

y .

— B’ arctg y

. .
y— b
B y*
II p = 'y——l
vV —D y: — 1
IIT _ = '
p y—p
Aus
2= pq

erhalten wir auf Grund von (30), (33

s—Ina=121In(y?+1) —parctgy.

D
q=‘/r (y — B)
B
¢g=——(y—1)
_D
q=Vr——— (y — B')
s __ P
7=y

IL

111

2 __ D Y — 1\
a? y+1
2
2 == E_ . e_y_
az
2 __ :__Q 2 B/ arctg y
a’

g® =

9* = —

g2_,_

y*— 1
(y — B)?
y2
(y—— 1)
y+1
(y —pB')?

Commentarii Mathematici Helvetici

(23) liefert :

(35)

(36)

(39)

), (38) und (39) folgende Losungen:

(40)

33



§ 4. Diskussion der Losungen

In § 2 wurde das Linienelement in der Form
3 =f2(r) &2 — g2(r)#2 — r2(? + sin? 997
vorausgesetzt. Wir fiihren
62 =9 + sin? @ p?
als Abkiirzung ein. Die Variable r, der ,,Radius®, hat keine ausgezeichnete
geometrische Bedeutung. Durch die Formeln (30), (33) und (38) haben

wir y an Stelle von r eingefithrt. Das Linienelement heift dann:

&2

Il

f2y) 22 — g2 (y) 42 — r2(y) 62 . (41)

f2(y) = f*(r[y]) ist durch (40) gegeben. Mit g*(y) ist der Ausdruck
dr\? )
g*(r(y]1) (E}}) bezeichnet.

Die metrischen Koeffizienten enthalten noch eine willkiirliche Kon-
stante a. Diese wird durch eine Grenzbedingung fiir das réumlich
Unendliche fixiert. Wir fordern, dafl das Linienelement (41) mit r gegen
Unendlich in das der speziellen Relativitdtstheorie mit f* =g% =
iibergehe. Die Funktion 7(y) spielt also im rdumlich Unendlichen die
Rolle des euklidischen Radius. Durch diese Grenzbedingung ist unser
Problem erst vollsténdig bestimmt.

Es ist jetzt der Variationsbereich von y zu bestimmen, in welchem
einerseits die Mafbestimmung sich regulidr verhdlt und andererseits die
Grenzbedingung sich durch spezielle Wahl von a erfiillen la8t. Wir
untersuchen die drei Fille I, IT und IIT gesondert.

Fall 1:

Fir y =1 erhalten wir mit

o y—B[(y—1\7
r=a y—-l(y+1)

fiir das Linienelement (41):

: D [y —1\¢, y+ 1\#. y— 1\1—8
2 = (Y 2 _ 2t ' 2 2] 2
8”02(y+1) Fo a(y—l)y @y +1) (y+1) 7
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Mit .
a=VD

ist die Grenzbedingung erfiillt. Singuldr wird die MaBbestimmung fiir
y=1.

Der Variationsbereich — 1< y < 4+ 1 scheidet aus. Der Trigheits-
index der metrischen Form éndert sich und die Grenzbedingung 1d8t sich
nicht erfiilllen. Im Bereiche y < — 1 erhalten wir dasselbe Linien-
element.

Fall 11:
Mit r’=ae%<-y_l>
y
ergibt sich fiir das Linienelement:
_2 2 2
525%2— e ' —ae’ §% —ae’ Y262 .

Wenn wir @ = B setzen, so ist die Grenzbedingung erfiillt. Singulér
wird die MaBbestimmung fiir y = 0.

Fall 111:

Mit Hilfe von y—p o— 67 axctey

Vit

schreibt sich das Linienelement in der Form:

r =a

— D 62 B’ arctg y

-2:
i P

. —28 arctgy — 28’ arctgy -
&2 —ate PP MRY g2 g2(y2 | 1) ¢ 2F ATRY g3

™
Fiir y unendlich wird das Linienelement mit ¢ = }/— D ez pseudo-

euklidisch.

In der Mieschen Feldtheorie®) wird die Materie nur auf Grund der
elektromagnetischen ZustandsgroBen beschrieben. Es wird vermieden
neben der elektromagnetischen Energie eine mechanische Masse ad hoc
einzufiihren. Hilbert hat diese Theorie zu einer geschlossenen Beschrei-
bung der Materie erweitert, die Gravitation und Elektrodynamik um-
faB3t 1) ¢). Stellen wir uns konsequent auf den Boden dieser Theorie,

) G. Mie, Grundlagen einer Theorie der Materie, Ann. d. Phys., Bd. 37, 39, 40.

%) W. Scherrer, Gravitationstheorie und Elektrodynamik, H.P. A, XXII,
1949.
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dann mufB sich fiir S’ =0 — materiefreier Raum — die metrische
Struktur als pseudoeuklidisch erweisen. Daraus folgt fiir unser Problem,
daBl die Integrationskonstante B gleich Null gesetzt werden mufl. Auf
Grund von (26) und mit der Forderung « > 0 folgt, dal Fall III aus-
scheidet. Lassen wir Werte B £ 0 zu, so stellen wir uns auf den Boden
der klassischen Schwarzschildschen Losung, die das Gravitationsfeld
eines Massenpunktes beschreibt. Unabhéingig vom S-Feld wird also eine
mechanische Masse eingefiihrt. Jetzt erhalten wir fir 8 =0, d.h.
A = 0 mit Hilfe von
p— r—2B g=1
— 4=
die klassische Losung

, T—2B . r
fr = r » T T3B
Die Konstante a wurde gleich }/D gesetzt.
Im Fall I, der also den klassischen enthilt, kénnen wir von einem
Uberwiegen der Gravitationswirkung sprechen. Im Fall III wiirde dann
die §-Wirkung vorherrschen.

§ 5. Berechnung der Totalenergie

Wir ermitteln den Energie-Impuls-Tensor nach der Formel

) oS 98
Tga:? 25;;‘6-5;—;'—VSG90: .
Mit
1
VS == “'—9—2—8/2
ergibt sich die Tafel:
w [? w 7
oo = 15 Toa = 57
) .
/ A =—;‘——S’2 T,y =sin2d T,

Die Totalenergie berechnet sich aus

E:T’rjr’ T’Tgl/—adrdﬂdqa.
o o °

Mit ™ — w S'?

7,72
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erhalten wir, indem wir die Integration beziiglich der Winkelvariabeln

ausfiihren: -
E = 47;wf8"2q7*2dr .
Fall I:
Mit Hilfe von dr — 7 %i_li_ y
folgt
dnew A? dy

Die Integration erstreckt sich iiber das y-Intervall 1<y < oo. Wir

erhalten:
27w A2

x VD

Dieser Ausdruck divergiert von der Ordnung eines Logarithmus. Die
Gesamtenergie wird unendlich.

lny_lloo

J ) .
y+1a

Fall IT:
Mit

erhalten wir

dnw A? [dy
- = % nyz‘

Wir integrieren iiber das Intervall 1 < y < oco. Es ergibt sich auch in

diesem Fall eine unendliche Totalenergie.

Fall 111 :
Die Energie berechnet sich aus

dnew  A? f dy
E = e .
x V—D y:+1
Die Integration erstreckt sich von 0 bis co. Sie ergibt:

© 9x2@w A2

4w A2

x V—D 0 »x V—D

Wir erhalten einen endlichen Energieinhalt. Damit dieser positiv aus-
fallt, muB auch w positiv gewihlt werden. Dadurch wird aber die Be-
dingung (26) I11 verletzt.

)

arctg y

37



§ 6. Das kosmologische Problem

Wir setzen réumliche Isotropie fiir einen Beobachter in einem belie-
bigen Weltpunkt voraus. Zeit und Raum lassen sich dann trennen und
der Raumanteil mu3 homogen sein?). Wir kénnen also dieser Betrachtung
das Linienelement

§2 =23 — L%(x,) o2
zugrunde legen, wobei

6* =gy &, &, = 97 + sin® 952 + sin? & sin? g 2 9)

sich auf den Raumanteil bezieht. Der ,,Radius“ L ist eine Funktion
von z, allein. In einem bestimmten Zeitmoment bildet der Raumanteil
die Oberfliche einer dreidimensionalen Sphére. L ist ihr Radius. Wir
setzen L als reell voraus. Die Tafel der G¢° lautet:

GO=1  @F*=0
gor 9% (42)

Wir setzen weiter voraus, dafl die Materiefunktion § nur von xz, abhingt.
Die kosmologischen Gleichungen lauten:

Ryo — 3G R+ AGy, = — xT,,. (43)

A bezeichnet die kosmologische Konstante. Diese Gleichungen erhalten
wir leicht aus dem Variationsprinzip, indem wir den Zusatz — 241/ — @
der Wirkungsfunktion beifiigen.

Die Berechnung der I'?, liefert:

F0°0=0 Foole Fkol’::LL.gkl
i i L i i i (44)
ry, =0 F,,,=~E6, Iy, = v

Mit y}, sind die zur Form o2 gehorigen Dreiindizessymbole bezeichnet.
Eine einfache Rechnung gibt mit (42) fiir den verjiingten Kriimmungs-
tensor:

") R. C. Tolman, Relativity, Thermodynamics and Cosmology, 1934, S. 364.
8) Indizes i, k, ! nehmen die Werte 1, 2, 3 an.
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b~ b

Ry =3 Ry =0 (45)

Ry = — (LL 4= 21:2) Gir + Tir -

Die r,, sind die entsprechenden GroBen bezogen auf ¢2. Fiir den Kriim-
mungsskalar

R =GR,
erhalten wir aus (42), (45) mit
Toe = —2¢45 und r= —6
LL 4 L2 41
R=¢6 73 . (46)

Fiir die Ausdriicke auf der rechten Seite der kosmologischen Gleichungen
folgt sofort

. L2 41
Roo - %GOOR —— 3-—-—L2——-
R,,— %GokR =0 (47)
R, — %GikR — (2Li -+ L + 1)gir -

Der Energietensor hat die einfache Gestalt
w (08 \2
Too:‘;(—‘a—g(—)‘) Ti‘:“‘aiiToo . (48)

Setzen wir die Ausdriicke (47) und (48) in (43) ein, so erhalten wir

) a8 \2
~ § g~ 4 :-w(——) (49,)

0x,

a8 )2 (49,)

QLL + L2+ 1—AL2 = —wL2(——-—
0%,
Die Kombination LZ?.(49,) — (49,) ergibt fiir L die Differentialgleichung
LL+t+2lr+2 —Al2=0 . (50)
Aus dem Energiesatz (8) erhalten wir mit Hilfe von (44) und
0o _ @ 2&)
Ty = x (6:::0 ,,
T = — 13
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die Gleichung
o8

L (a8
oz, (axo) T3 L (axo) =0

Eine kleine Umformung ergibt

a<3as)=0. (51)

0z, 0z,

Im wesentlichen stimmt (51) iiberein mit der Feldgleichung der Materie

O8=o0.
Aus (51) folgt sofort
W _ 4 -
(52) in (49,) eingesetzt, ergibt
Uﬁ+ﬁ~%ﬂ—%m20. (53)

Wie leicht zu sehen ist, ist (53) ein erstes Integral der Gleichung (50).
Zwei Typen von Losungen treten auf:

1. L =0 L — konstant
statische Losung.

Aus (50) folgt sofort fiir den rdumlichen Radius

2
L:-I/Z :

Die zeitliche Anderung des Radius L ist gegeben durch

aL l/__ 42 — ] + LG

dz,

2. L+#0
dynamische Losungen.

Die Integration liefert

L
) = y*dy
’ 2.A2___y4+4_?;; .‘
0 3 3
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Losungen existieren, falls

Sl =T+ 4] >0 (54)

Seiner Bedeutung nach ist y eine positive GroBe. Da wir nur positive
Energieinhalte zulassen, ist auch o positiv anzunehmen.
Wir setzen

3 w
— 8 __ "~ 4 i 2
F(yy=y Ay+AA .

Falls A=0, mul F(y)=0 sein, damit (54) erfiillt wird. Die Dis-
kussion der Funktion F(y) wird uns die verschiedenen Losungstypen
ergeben. Fiir /4 > 0 erhalten wir folgende Extrema:

_ _ D 4
y =0 F—-AA

2 1 4
_ _ 2 __
y_VA F_—A(wA A2)'

Wir unterscheiden folgende Fille:

a) A>wA2'

Die Funktion F hat keine reelle Wurzel. Der zuldssige y-Bereich erstreckt
sich von Null bis Unendlich. L kann sich also ungehemmt vergroflern.
Monotone Welt erster Art.

4

Es treten zwei reelle, positive Wurzeln «, § auf. Zwei getrennte zulissige
y-Bereiche [0, «] und [, + oo] sind vorhanden. Entsprechend erhalten
wir zwei expandierende Welttypen:

Periodische Welt : L wichst von 0 bis « und verringert sich wieder
auf 0.

Monotone Welt zweiter Art: L beginnt mit einem endlichen Anfangs-
wert 3 und vergrolert sich ungehemmt bis unendlich.

. 4
 wd?

c) A

4]



In diesem Grenzfall fallen die beiden Wurzeln zusammen.

azﬂzl/—i—.

Zwei Intervalle [0, x] und [«, co] stehen zur Verfiigung. Wir erhalten
wieder zwei Welttypen:

Asymptotische Welt erster Art: L vergroBert sich von Null an und er-

reicht fiir ¢ = co den Wert l/ —/2T , der einer statischen Zylinderwelt

entspricht.
Asymptotische Welt zweiter Art: Diese Welt hat zur Zeit t = — oo
als statische Zylinderwelt vom Radius l/ 721~ sich zu expandieren be-

gonnen. L wichst ungehemmt bis unendlich.

Fir A <0 hat die Funktion F eine reelle positive Wurzel «. Zuge-
lassen ist also nur das Intervall [0, ]. Die zugehorigen Losungen ent-
sprechen periodischen Welten. Die beiden Sonderfille

A=0 und A=0

lassen sich leicht iiberblicken. Fiir A4 = 0 erhalten wir eine periodische
Losung. Der Fall 4 = 0 ldBt sich elementar integrieren. Es ergibt sich

L=a,-Cos(—~a3’—) ”
a

Es handelt sich also um eine de Sittersche Kugelwelt. Gegen diesen
Sonderfall entwickeln sich die monotonen Welten von a), b) und c)
fiir y gegen Unendlich.

Ich bin Herrn Prof. Dr. W. Scherrer, Bern, zu groflem Dank verpflich-
tet. Er hat diese Arbeit angeregt und ihre Durchfithrung mit wertvollen
Ratschligen unterstiitzt.

(Eingegangen den 7. April 1950.)
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