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Stiitzfunktion und Radius II

Von W. SCHERRER, Bern

§ 1. Einleitung

Die vorliegende Note bildet die unmittelbare Fortsetzung des unter
demselben Titel erschienenen Teil I, dessen Kenntnis ich also voraus-
setzen mufl und den ich inskiinftig mit dem Zeichen [I] zitieren werde?).

Um die Ausdrucksweise zu erleichtern, werde ich von einer ,,absoluten
Hauptform* oder von einer ,relativen Hauptform® sprechen, je nachdem
ihre Koeffizienten selbst oder nur die Verhéltnisse ihrer Koeffizienten
als Funktionen der Parameter gegeben sind. Weiter werde ich — wie das
schon geschehen ist — jeder Hauptform ein ,,entsprechendes Kriimmungs-
maf* zuordnen: Der ersten Hauptform entspricht die maittlere Kriimmung

H, der zweiten die Gaufsche Kriommung K und der dritten schlieBlich
1
13

Wenn man nun die in Teil I entwickelten invarianten Grundglei-
chungen betrachtet, erkennt man, dafl sie Anlal geben, 3 verschiedene
Aufgaben zu stellen:

die harmonische Kriimmung g— =

1. Man gibt eine relative Hauptform und das entsprechende Krivm-
mungsmaf3 vor und bestimmt erst einmal Radius und Stiitzfunktion,
dann das Dreibein T, R, P und schlieBlich den Ortsvektor x.

2. Man gibt eine absolute Hauptform vor und sucht hierauf die Fliche
zu bestimmen.

3. Man gibt die Stitzfunktion, den Radius und ein Krimmungsmap
vor und bestimmt erst einmal die entsprechende relative Hauptform,
dann das Dreibein I, N, P und schlieBlich den Ortsvektor x.

Zu diesen drei Aufgaben sei folgendes bemerkt: Die 1. Aufgabe wird
durch die in Teil I angegebenen Entwicklungen gelost. Im Text I, S. 376,
wurde ja darauf hingewiesen, daB nur die Koeffizientenverhiltnisse der
gewiahlten Hauptform benotigt werden. Im Sinne der jetzt vereinbarten

1) Stitzfunktion und Radius I. Commentarii Mathematici Helvetici, Bd. 20,
Heft 4, S. 366—381, 1947.
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Terminologie kénnte also in den 3 angegebenen Sitzen der Terminus
»,Hauptform*“ ausnahmslos durch ,relative Hauptform ersetzt werden.
Diese Bemerkung ist wichtig, um die erste Aufgabe sachgemill gegen-
iiber der zweiten abzugrenzen. In § 2 werde ich kurz auf die Entwick-
lungen von Teil I zuriickkommen, um die Rolle des Anfangsstreifens
zu erdrtern und die Widerspruchslosigkeit der konstruierten Fliche dar-
zutun.

Die 2. Aufgabe nimmt einen sehr verschiedenen Aspekt an, je nach der
Hauptform, die man zugrunde legt. Geht man von der ersten Haupt-
form aus, so erhdlt man einen Zugang zur bekannten Theorie der Be-
stimmung einer Raumfliche auf Grund ihrer inneren Eigenschaften.
Legt man die zweite Hauptform zugrunde, so erhdlt man folgendes
Problem: Ist eine Fliche durch ihre absolute zweite Hauptform nach
Vorgabe eines Streifens bestimmt? Die Tatsache, dal die Koeffizienten
der zweiten Hauptform die zweiten Ableitungen des Ortsvektors ent-
halten, 1a(t es als moglich erscheinen, dafl zu dieser Bestimmung ein
Streifen 2. Ordnung geeignet ist. Auch eine nidhere Betrachtung der
Gleichungen I, (38) deutet in dieser Richtung. In der vorliegenden Note
werde ich mich nicht weiter mit der zweiten Aufgabe befassen. Fiir die
dritte Hauptform schlieflich wird die Aufgabe gegenstandslos. Sie darf
nédmlich nicht absolut vorgegeben werden, da das ihr zugeordnete ,,Bie-
gungsmal“ den der Einheitskugel entsprechenden Wert 1 haben mub8.

Die 3. Aufgabe ist, wie man leicht aus der Formulierung entnimmt,
eine Art Umkehrung der ersten. Sie soll das Hauptthema der gegen-
wirtigen Ausfiihrungen bilden. Wir werden sehen, da@l sich auch in ihrer
Losung der Umkehrungscharakter zu erkennen gibt. Wir beschrinken
die Untersuchung auf den Fall der zweiten Hauptform, da in den andern
Fillen analoge Entwicklungen zu erwarten sind. Da bei der dritten Auf-
gabe Stiitzfunktion und Radius als bekannte Funktionen der Parameter
vorausgesetzt sind, erzielen wir eine wesentliche formale Vereinfachung
dadurch, daf3 wir die genannten Invarianten als Parameter wihlen. Das
Hauptergebnis besteht dann in der Feststellung, dal eine Fliche durch
ihre Gaullsche Krimmung als Funktion von Stiitzfunktion und Radius
nach Vorgabe eines nichtasymptotischen Streifens bestimmt ist. Dabei
ist noch zu erwdhnen, dafl sich die Aufgabe in formaler Beziehung auf
eine einzige quasilineare partielle Differentialgleichung zweiter Ordnung
reduzieren 148t.

§ 2. Erginzung zu Teil I

Entsprechend dem in §1 gegebenen Hinweis befassen wir uns jetzt
mit den Anfangsbedingungen zu folgender Aufgabe:
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Von einer Flidche seien die relative zweite Hauptform und die Gauf-
sche Kriimmung als Funktionen der Parameter , v bekannt,

—l—/%: = Au, v) (1a)
VM.Q—_— — p(w,v) (1b)
—‘71%— = v (u, v) (1c)
K=K (u,v) (2)
wobei @ definiert ist durch
Q =LN — M2, (3)

Auflerdem sei vorgegeben ein Anfangsstreifen durch Parameterkurve,
Ortsvektor und Flichennormale auf Grund der Festsetzungen

u = u(t) (4a)
v = v(l) (4b)
x[u(?), v(®)] = x(t) (5)
NR[w(t), v(E)] = N(E) (6)

Zusammenfassend bedeutet dies, dafl die rechten Seiten der Gleichungen
(1a), (1b), (1c), (2), (4a), (4b), (5) und (6) vorgegebene Funktionen dar-
stellen.

Zur Bestimmung des Ortsvektors als Funktion der Parameter

x=x(u,v) (7)

ist es nun nach den Entwicklungen in Teil I notig, sukzessive die Glei-
chungen I, (38), I, (35) (36) und die erste der Gleichungen I (3) zu losen.
Das entscheidende Argument fiir die Eindeutigkeit der Losung besteht
nun offenbar in dem Nachweis, dal es moglich ist auf Grund der An-
fangsbedingungen die Werte der Grofien

‘R’P’ ‘Ru?R’v7‘Pu)‘P'v (8)

laings des Anfangsstreifens eindeutig zu berechnen.

Nach der Theorie der linearen partiellen Differentialgleichungen zweiter
Ordnung ist es dann ndmlich moglich, aus dem System I (38) die Funk-
tionen

R(u,v) , P(u, v) (9)
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zu bestimmen. Nach der Theorie der totalen Differentialgleichungen
ergeben sich dann aus den Systemen I (35) (36) die Vektorfunktionen

T(uw,v), Nu,v), P(u,v) (10)

des Dreibeins und hierauf ergibt sich aus der ersten der Gleichungen
(I, (3)] unter Beachtung von [I, (1) (2)], d. h.

r=VE, p=VF (11)

ganz elementar der Ortsvektor (7).

Zur Bestimmung der GroBen (8) lings des Anfangsstreifens gehen wir
nun folgendermafBlen vor. GemidB den Definitionen [I, (1)] und [I, (2)]
erhalten wir aus (5) und (6) unmittelbar

R=(x(t))?, P = (N0 =x@)?. (12)

Durch Ableitung nach ¢ ergeben sich dann die Relationen
R=R,4+ R,v , (13a)
P=P,u+P,o . (13Db)

Durch Kombination aus [I, (27,)] und [I, (27,)] — wieder unter Beach-
tung von (11) — folgen weiter die Relationen

. (La+ M) P, — (Mi + Ni) P,
PE= 2sVKQP(R — P) ’ (142)

_VE[(Lu+ M%) R, — (M4 + Nb)R,]
2VQ(R — P) '

— PR (14b)

Mit Riicksicht auf die Definition I, (3) und die Gleichungen (5) und (6)
sind die linken Seiten dieser Relationen bekannt. Auf den rechten Seiten
der Relationen (13a), (13b), (14a) und (14b) sind wegen (la), (1b),
(1e), (2), (4a), (4b) nur die Ableitungen

R,, R, P,, P, (15)

unbekannt. Wir haben also 4 lineare Gleichungen zur Bestimmung der
GroBen (15) und finden
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(}.&+yi;)R+2K_%l/R——Pb‘B€ft

R, = 11,
(M-{-M)R-zK'%VR—PMBﬁt
R, =
11,
4 (16)
P__ua+ﬂmﬁ~aK10%R—mb$i
w = II,
. o -
p (uuw +vo)P+ 2K l/P(R——P)uin
s 11,
wo der Nenner
I, = Au® 4+ 2puv + w? (17)

die relative zweite Normalform darstellt. Durch (12), (16) und (17) werden
also die Groflen (8) auf dem Anfangsstreifen eindeutig festgelegt. Nach
den vorausgehenden Bemerkungen ist somit die gesuchte Fliche ein-
deutig bestimmt, w.z.b.w.

Um nun noch die Widerspruchslosigkeit der gewonnenen Losung dar-
zutun, mull man die im Anschlufl an (7) genannten Gleichungen in um-
gekehrter Reihenfolge durchlaufen und zeigen, da3 die relative zweite
Hauptform und die GauBlsche Krimmung der eben bestimmten Fliche
mit den vorgegebenen Funktionen (1a), (1b), (1¢) und (2) iibereinstim-
men. Den Ausgangspunkt bildet also jetzt die erste der Gleichungen
[1, (3)] in der Gestalt

t=VR—_PI—-VPR. (18)

Leitet man hier unter Verwendung von (I, (35) (36)] nach « und v ab,
so folgt

R AP, — uP,
X, =—-—2-—TI > =
2VR—P + 2VKP(R — P) P
_ , (19)
£, — R, T 1 uP, —vP, B
2VR—P 2V KPR — P)
und daraus ergibt sich
Vo (B, P)
X, , X, ] = N 5 20
[ ! 4(R— P)YVPK (20)
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wo V, den auf die relative Hauptform (17) bezogenen Operator [I, (17a)]
bedeutet. Der Normalenvektor kommt also richtig heraus. Fiir die Deter-
minante D, die nach Definition durch

Vﬁ_—:—l[xuaxv]l:[xu :xv]m (21)

gegeben ist, erhédlt man daher

T VO(RsP)
VD= R P VPE (22)

Weiter erhdlt man auf Grund von (19) und [I, (35) (36)] die skalaren

Produkte
_muxv VO(R’P)-_
4(R—P)VP

Vo (R, P)
_mu v: —— mv “: — )
* Y S Vs (23)

_ Ye(R,P)
oty = 4(R_P)|/P“v

wobei die Identitit Ay — u®? =1 zu beachten ist. Die relative zweite
Hauptform ist also richtig bestimmt und weiter folgt aus (23), daB die
absolute Hauptform dann und nur dann vorliegt, wenn die Relation

Vo (R — P ) 0
— = 24
ey (24)
besteht. Fithrt man diese Relation in (22) ein, so ergibt sich
Q _
=K. (25)

Dies aber bedeutet, daf3 das der bestimmten Flidche nach Definition zuzu-
ordnende KrimmungsmaBl mit der vorgegebenen Kriimmungsfunktion
K (u,v) iibereinstimmt. Damit ist die Widerspruchslosigkeit der ganzen
Konstruktion dargetan.
Schreiben wir schlieBlich (24) auf die absolute Hauptform um, so er-
halten wir
Viu(R,P)= 4R — P)VP . (26)

Damit ist also auch die Rolle aufgeklirt, welche die akzessorische Rela-
tion [I, (39)] beim Aufbau der Fliche spielt.
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Es ist kaum daran zu zweifeln, da@ sich fiir die erste und dritte Haupt-
form analoge Verhiltnisse ergeben. Ich fasse daher die nun noch niher
prézisierten Sitze von Teil I zusammen in

Satz4: Sind von einer Fliche eine relative Hauptform und das ent-
sprechende Krivmmungsmaf als Funktionen der Parameter bekannt, so ist
diese Fliche nach Vorgabe eines Streifens eindeutig besttmmt. Dieser Streifen
1st nur vm Falle der zweiten Hauptform der Einschrinkung unterworfen,
nicht asymptotisch zu sein.

§ 3. Die Normalinversion

Darunter wollen wir diejenige Abbildung der Raumfliache
= x(u,v) (7)
verstehen, welche definiert wird durch die Vektorgleichung

— N
T=— 27
VP (27)
wobei also ¥ den Ortsvektor des dem Original (7) zugeordneten Bildes
bedeutet. Sie ist offenbar eine Beriihrungstransformation. Ob sie schon
einmal betrachtet worden ist, weill ich nicht. Ich bezeichnesie als ,, Normal-
mversion’, weil sie aus der gewdhnlichen Inversion

X

VR

hervorgeht, wenn man in der letzteren an Stelle des Ortsvektors x und
des Radius VR die Normale — 9t und die Stiitzfunktion VP treten 14Bt.
Sie wird uns dazu dienen, eine in dem Gleichungssystem I, (38) liegende
Symmetrie aufzudecken. Die in Teil I entwickelten Formeln gestatten
uns, die Eigenschaften der Normalinversion direkt zu berechnen. Man
muf3 nur beachten, daB dort teilweise fiir ¥'P noch das Zeichen p benutzt
wurde.
Durch Ableitung von (27) erhalten wir vorerst

¥ =

X, — — 921“ + _WP “sJE,
¢ VP 2PVP 25)
F,— b BR

2 Commentarii Mathematici Helvetici 17



Mit Riicksicht auf I (23), (25), (3) ergibt sich daraus

=5 X
N=——— 29
VE (29)
und -
v - KVE 5 30
Ve v 0
Durch Ableitung von (29) folgt weiter
& X R
N, = — —= —x
VE | 2RVE
R (31)
N, = — 24

L%
V'R 2RV'R

Gestiitzt auf die Gleichungen (27) bis (31) erhalten wir nun leicht alle
notigen Relationen, wobei wir uns aber auf diejenigen Beziehungen
beschrinken wollen, die zwischen Stiitzfunktion, Radius, zweiter Haupt-
form und Kriimmung von Original und Bild bestehen.

Fiigen wir noch die grundlegenden Gleichungen (27) und (29) hinzu,
so erhalten wir schliefllich folgende Tabelle:

E:—%; i l/% (32a)
E:%; F:% (32Db)
L= ]/f{P A VJZP 3 N = V%‘P‘ (32)
vg-YL @20

K = %— : —;— (32d)

Aus (32) folgt nun unmittelbar

Satz 5: Die relative zweite Hauptform ist gegenither Normalinversion
invariant.
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Da nun das Gleichungssystem [I, (38)] seinem Begriffe nach invariant
ist gegeniiber der vollstindig durchgefiihrten Normalinversion, folgt aus
Satz 5, daBl es auch invariant bleibt, wenn man auf die Groflen R, P
und K allein die durch die Gleichungen (32b) und (32d) definierte Trans-
formation ausiibt.

Ein Blick auf die Gleichungen (32b), sowie die Umgestaltung von
(32d) zu

K KR
P P

=1 (33)

zeigen weiter, daBl die eben festgestellte Symmetrie einfacher wird,
wenn man an Stelle von P und K die neuen Groflen

g=1L . WE—EPZ{—_—_RSK (34)

einfiihrt.

Die Umwandlung des Systems [I, (38)] gemidfl der Substitution (34)
vollzieht sich leicht auf Grund der Formeln I, (20), (21), (22). Fiihrt man
die Rechnung durch, so ergibt sich schliellich

Satz 6 : Das System

DR) + 57V (B, W) =

_ 2RS —1 RS +1 R
“sr@s—0 V® tagms — VEI + swsme —1) V&)
AS) — o7 (S, W) =

(S) ‘“Q—WV( , W) =
_ 2RS —1 RS +1 A"
= 8@ —n VO tsgms— 2 &N T 3r@Es— VP
: : (35)
tst invariant gegenitber der Transformation
- — .
R=8; S8S=R, W:“W" (36)

Diese Tatsache ist offenbar dank der in (35) erreichten Gestalt formal
evident. Unter dem Einflul von (36) werden ja die beiden Gleichungen
einfach miteinander vertauscht. Nebenbei bemerkt habe ich hier den in
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I, (38) die zweite Hauptform kennzeichnenden Index IT weggelassen, da
wir uns in der vorliegenden Note nur mit der zweiten Hauptform befassen
wollen.

Zum Schluf} formulieren wir noch den unmittelbar aus (32a) und (32b)
flieBenden

Satz 7: Die Normalinversion ist eine tnvolutorische Abbildung.

Die Normalinversion erweist sich also in ihren wichtigsten Eigen-
schaften als ein vollkommenes Seitenstiick zur Inversion.

§ 4. Bestimmung einer Fliche aus Radius, Stiitzfunktion
und GauBscher Kriimmung

Wir wenden uns jetzt also zu der in der Einleitung erlduterten dritten
Aufgabe, wobei wir uns, wie schon gesagt, auf den Fall der zweiten
Hauptform, respektive der ihr entsprechenden GauBlschen Kriimmung
beschrinken. Mit Riicksicht auf die im vorausgehenden Paragraphen
festgestellte Symmetrie, formulieren wir aber die Aufgabe wie folgt:

Vorgegeben seien der Radius /R, die reziproke Stiitzfunktion }/S
und die Krimmungsinvariante W = RSK als Funktionen der Para-
meter. Gesucht wird der Ortsvektor einer diesen Daten angepaften
Flache.

Da wir die beiden invarianten Skalare R und S kennen, erzielen wir,
wie schon in der Einleitung erwahnt wurde, eine erhebliche formale
Vereinfachung, wenn wir diese beiden Skalare gerade als Parameter
wihlen. Unsere Vorgabe erhiilt damit folgende Gestalt

s=o | -
W= W0 .|

Fiihrt man diese Funktionen in das System (35) ein, so erfihrt dasselbe
eine Verwandlung, die auf Grund der Formeln [I, 17a), (17b), (19)] zu
berechnen ist. Fithrt man aullerdem durch die Festsetzungen

v L i M ’ i N

Ve Ve Ve
die Koeffizienten 4, u, v der relativen zweiten Hauptform ein, so nimmt
das System (35) schliellich folgende Gestalt an

A
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au+qu—va_ 2uv + 1 uv + 1 U

E? S~ sue —1)"  Zowe— )" T 2Wome — 1)
op AW, —uW,  2uv—1 A_ﬂ;u_v_—ti_ 4 Wv
w2 W  2o(wv—1)" 2u@r—1"T 2u@v—1) "

Neben diesen Gleichungen ist wohl zu beachten die wegen¢) = LN — M?
[I, (5)] aus (38) folgende Identitét

Av —put= —1. (40)

Wir haben also drei Relationen zur Bestimmung der drei Gréflen A, u, v .
Eine Verkoppelung von Differentialgleichungen mit einer algebraischen
Beziehung hat gewohnlich unangenehme Komplikationen zur Folge. Im
vorliegenden Falle lassen sich dieselben vermeiden, da die Identitit (40)
durch unabhingige rationale Funktionen vollstindig befriedigt werden
kann. Zu dem Zwecke schreiben wir sie in der Gestalt

Av=(u— 1) (u+ 1) (40a)

und suchen sie durch zwei neue Grofien p und ¢ gemill dem Ansatz

h=o(u—1=o(+D

1 1 (41)
Y= “E(M + ) =—(@—-1
zu erfiillen. Eine leichte Rechnung ergibt dann
_ 2% . ,_efo ., 2
l——g_a ; M_Q——G ; V—Q——U (42)

womit (40) identisch in den zwei unabhéngigen Groflen g und o befriedigt
wird.

Fihrt man nun diese Ausdriicke (42) in (39) ein und bezeichnet man
diese beiden Gleichungen kurz durch

A=0, B=0,
so zeigt sich nach einiger Rechnung, dafl man mit Vorteil die Kombina-
tionen

0A+B=0, ¢A+B=0

21
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bildet und iiberdies an Stelle der durch (34) definierten GroBe W die
Invariante

= K8§® (43)
oder also laut (37)
J=—= Kuv? (434a)

einfiihrt. Als SchluBsystem ergibt sich

ST By by s
=GB B B s

wo die Koeffizienten aus folgender Tabelle zu entnehmen sind:
T w
A’:%(:’;ﬁuvzi 1) 3 Ba=— 2(ufvl——l)J ' (452)

Das System (44) ist offensichtlich separierbar. Setzt man (44a) in (44b)
ein und benutzt man die Abkiirzungen

Ay + Ao+ dyp*=A(9) =4, (46a)
B, + B,p + B,¢* = B(p) = B, (46b)

so erhdlt man eine quasilineare partielle Differentialgleichung zweiter
Ordnung fiir ¢:

(Qv + B)Quu e [Qu+ 4 -+ Q(Qv -} B)]qu+ Q(Qu + A)vi + - = 0, (47)

wo die nicht angeschriebenen Glieder keine zweiten Ableitungen mehr
enthalten. Sie ist vom hyperbolischen Typus, denn durch die imaginire
Einheit im Ansatz (38) wurde dafiir gesorgt, daf gerade fiir den Fall
reeller Asymptotenlinien (Q < 0)g und o in (42) reell ausfallen.
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Die Charakteristiken von (47) sind gegeben durch
(o + B)9* + [ou + 4 + olo, + B)] v + oo, + 4) u?
= [(e. + B) v + (0u + A) ] (v + ou) =0 ,

was wegen (44a) gleichbedeutend ist mit

(6o + B) (v + ou) (v + ou) =0 . (48)

Die Losungen dieser Gleichung sind aber die Asymptotenlinien, denn
dieselben werden nach (42) charakterisiert durch

Au? +2puv + vl = (ou + v) (cu + ) =0 .

0—o

Zur Bestimmung einer Losung von (47) ist also sicher ein nichtasym-
ptotischer Streifen erforderlich. Wir haben jetzt nur noch zu zeigen, dal
ein solcher auch hinreicht. Um dies zu erreichen, miissen wir auf die
Entwicklungen von § 2 zuriickgreifen, wobei wir aber immer die durch
(34), (37) und (43) bedingten Modifikationen zu beachten haben.

Der Anfangsstreifen sei wieder charakterisiert durch die Gleichungen
(6) und (6), deren rechte Seiten also vorgegebene Vektorfunktionen sind.
Nach (12), (34) und (37) ergibt sich daher vorerst die Parameterkurve
gemifl

wu) =R = (x@))*, (49a)

() = S — -}P—_—(m(t)x(t))—z. (49b)

In Analogie zu (13a) und (13b) erhalten wir somit
wu=R, 5=28. (50)

An Stelle von (14a) und (14b) dagegen tritt jetzt wegen (38), (34), (37)
und (43)
" Au+ po
x - — — T )
» 2V J(uv — 1)

i VI tri)
BR = 2 Vuv — 1

23



Fiithren wir nun (42) ein, so folgen zwei Gleichungen zur Bestimmung
von ¢ und o:

200u + (g + 0) ¥

— Px = S 5la
P 2i(0 — o)V J(uv — 1) (51a)
%ﬂ:§gﬂgiﬂiiﬁif. (51D)
2i(0p — o) Vuv — 1
Setzen wir abkiirzungsweise
a=—1Pi-VJIuv—1), (52a)
b= i PR VMJ_"I , (52b)
so erhalten wir zur Bestimmung von g und ¢ die Gleichungen
2upc 4 v(o + 0) = 2a(p — o) , (53a)
u(o + o) + 20 = 2b(p — o) . (53Db)
Dieses System hat zwei rationale Losungen. Die erste lautet
v

Nach den im Anschlufl an (48) gemachten Feststellungen bedeutet dies,
daf} der Streifen charakteristisch ist und iiberdies — wie auch (42) zeigt —
ein parabolischer Punkt vorliegt. (54) ist also auszuschlief3en.

Die zweite brauchbare Losung lautet

2a + u 2a — v

=9 —a > ‘T 2bta

(55)

Sie versagt nur fiir 2b = -4 % . Setzt man diesen Wert in (53b) ein,
so folgt ou +v =10 oder gu +» =0, d.h. in jedem Falle wieder
eine charakteristische Richtung. Fiir jeden nichtasymptotischen Streifen
ist also die eindeutige Existenz der Funktionen ¢ und o gesichert.

Nun benotigen wir noch die vier Ableitungen o,, 0,, 6,, 6, . Zu ihrer
Ermittlung stehen uns jetzt die Gleichungen

Qu'z}’_}_gv?}:é ’
ouz},—}-av?}:& ‘
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in Verbindung mit den Gleichungen (44a) und (44b) zur Verfiigung.
Schreiben wir letztere mit den Abkiirzungen (46a) und (46b) in der
Gestalt

Qu — 00y = Bo — 4

o, — 00, =pe — B,

so erkennen wir unmittelbar, dafl die 4 ersten Ableitungen nur dann nicht
eindeutig bestimmbar sind, falls ein charakteristisches Streifenelement
vorliegt. Das System (44) besitzt also nach Vorgabe eines nichtasympto-
tischen Streifens genau eine Losung. Da man jetzt neben den vorgege-
benen Groflen (37) resp. (34) mit ¢ und o auch die relative zweite Haupt-
form zur Verfiigung hat, deckt sich die weitere Integration mit den Aus-
fithrungen in I, § 4 und § 2.
Da speziell noch die Vorgabe von

J(u,v) =J(R,S)
nach (43) und (34) gleichbedeutend ist mit der Vorgabe von

K(R,P) = P2J<R, 71,) , (56)

gelangen wir schlieilich zu

Satz 8: Kennt man von ewmer Fliche die GaupPsche Krimmung als
Funktion der Stitzfunktion und des Radius, so ist diese Fliche nach Vor-
gabe eines michtasymptotischen Streifens eindeutig bestimmt.

(Eingegangen den 6. April 1950.)
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