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Metabelsche Gruppen
Seinem hochverehrten Lehrer Herrn Professor RUDOLF FUETER zum 70 Geburtstag gewidmet

von H. Meier-Wunderli, Cambridge (England)

Die generelle metabelsche Gruppe 9K mit n Erzeugenden

<xl9 oc2, ocn (n> 1)

kann nach Otto Schreier1) aufgefaBt werden als die Erweiterung2) der
freien Abelschen Gruppe R (Kommutatorgruppe)

(<xlk, ocH, otl2, .,oclr) \

*«<•••< h-i < H $

mit der freien Abelsehen Gruppe Qf (Faktorkommutatorgruppe)

'2 > • • • <*n }

und den Erweiterungsbedingungen

OOt, OC,)
y OCj (Xi.) (OC. ^X,) OCk (X,) (2)

(oc3 oct <xk) (oct <xk a,) (afc a, ott) 1 (3)

Ist 501 SJli 3 9K2 ^ die absteigende Zentralreihe 3), so erkennt
man hieraus, daB aile Kommutatoren in (1) vom Gewicht w(r w) eine
Basis fur die freie Abelsche Gruppe 3JlwI^Rw+i darstellen von der leicht
ersichtlichen Dimension

'n+w — 2

x) O. Schreier, Ûber die Erweiterung von Gruppen. Hamb. Abh 4, p. 322,
vgl. auch A.Scholzy Konstruktion algebraischer Zahlkorper mit behebiger
Gruppe von Pnmzahlpotenzordnung. Math. Zeitschr. 42, 1936/1937, p. 186f¥.

2) vgl. auch H.Zassenhaus, Lehrbuch der Gruppentheorie, 1. Bd.; Leipzig 1937»

p. 95ff.
3) vgl. 2) p. 118.
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AuBerdem ergibt sich die wichtige Tatsaehe, da8 jedes Elément X aus
2R mod yiïlw+1 eine eindeutige Basisdarstellung gestattet in der Form

X= «***•¦. <» n(aik ,*«,,*«,,..., (Xi,)******- -frmod SR^ (5)
f=2

(1 < ix < i2 < • • • < ifc__i < ik < »Vi < • * ' < *r < n) •

Die Exponenten x durehlaufen dabei aile positiven und negativen ganzen
Zahlen einschlieBlich der Null.

Ein Elément X aus 501 ist also mod 9JÎW+1 durch Angabe eines Expo-
nentensystems

X (a?!, #2, #n, #i;fc it iz {f (6)

eindeutig bestimmt.
Es ergibt sich daher das Problem, das Kompositionsgesetz fur die

Exponentensysteme (6) zu finden4).
Die Ableitung des Kompositionsgesetzes und insbesondere die Bestim-

mung des Exponentensystems der n-ten Potenz mod yRw+1 ist der Inhalt
des allgemeinen Teiles unserer Arbeit.

Als Anwendung bestimmen wir die generelle metabelsche Gruppe mit
n Erzeugenden, deren Elemente ^ 1 aile die Ordnung p besitzen. Dies
ist âquivalent mit der Losung der metabelschen Approximation des be-
kannten Problèmes von Burnside5) fur den Fall von Primzahlen.

I.
Allgemeiner Teil

§ 1. Komposition
Ein beliebiger Basiskommutator vom Gewicht w besitzt nach (1) die

Gestalt

(7)
\ a\ o>Jc — 1 &r

mit 2 < Je < r < n ; 1 < ix < i2< • • • < ir < n ;

j^ at. w? ; o < a{ < w (i 1, 2, r)

4) Fur n 2 vgl. H. ilfeier-Wunderli, Ûber endliche p-Gruppen, deren
Elemente der Gleichung ocP 1 genûgen. Com. math, helv., vol. 24, I, p. 23ff.

5) W. Burnside, On an unsettled question in the theory of discontinuous
groups. Quart. Journ. 33, 1902, p. 230—238.



Meinen wir die Gesamtheit der Kommutatoren (7) mit festen a-Werten
und 2 ^k t^r, so verwenden wir an Stelle von (7) einfach das

Symbol K{ai ^2... ;«*... ^r Ist tj1. .i\r echter Teiler von if1. .tj*,
so schreiben wir wie ublich i[l. iy | if1. i"r. Hierbei diirfen einzelne
der b{ auch 0 sein, aber wenigstens zwei sollen stets von 0 verschieden
sein.

Znr Bestimmung der Gruppenkomposition der Système (6) hat man
gemâB Définition das Produkt (vgl. (5))

X Y «•'. Kn-H(«ik ,««,,««,,..., «tr)*ikil-ir ¦

•«?*... «ï"'^(*i*. ««,.**.. ....«j"1*'1-*" (8)
r=2

mit Hilfe der Relationen (2) und (3) in die Form, (5) iiberzufuhren. Dies
geschieht am einfachsten durch den von P. Hall*) in die Gruppentheorie
eingefuhrten ,,commutator collecting frocess". Zu diesem Zweck ersetzte

man <xj* und oc** in (8) respektive durch oc^ ocfK odf^ und

ocp + 1 ot*i + 2 .oc*i + vi
^ wobei die oberen Indizes lediglich eine An-

ordnung der ocl ermôglichen sollen. Die Ûberfuhrung von (8) in die
Normalform wird nun dam.it begonnen, indem man von zwei Elementen
otp und o<$ dasjenige zuerst an seine Stelle in (5) durchzieht, das in der
lexikographischen Anordnung der Paare (i, j) und (&, ï) zuerst kommt.

Dabei hat man Kommutatoren einzufuhren von der Form

(9)

mit den Zahlenbedingungen

*<*

iii) 1 < rjm < r?m< • • • < t£< xim + yiw (m *+ 1, k+2, ...,r
und Kommutatoren der Form

mit den Zahlenbedingungen

•) P. HaW, A contribution to the theory of groups of prime power order.
Proc. Lond. math. Soc, vol. 36, 1933, p. 29—95. § 3.



i) <*1.

ii) 1 < e < x.bi ibr

iii) 1 ^ x\x < x\x < < T"}~bl ^ yi% 1 2, r)

Wir haben nun aus (9) und (10) die Gesamtheit der beim Durchzieh-
prozeB induzierten Kommutatoren (7) auszusondern.

Die Kommutatoren (9) sind nach Konstruktion Basiskommutatoren
der Form (7). Ihre Anzahl wird nach (9) i), ii) und iii) gegeben durch

Xik + Vik\ [VikW n lXim()] h (*<* + **) (H)

Aus (3) folgt mit i <j <k
(<*k, <*,, <*4) (<xk9 oci} oc3) (ocjf <xi9 ocx)-1 (12)

In Verbindung mit (2) folgt hieraus, daB nur diejenigen Kommutatoren

(10) Beitrâge der Form. (7) liefern, deren erste oder zweite Kompo-
nente gerade ociJc ist. Das heiBt, wir haben nur diejenigen K{blt ^ zu

betrachten, deren erste oder zweite Komponente gleich ocik ist. Hierbei
hat man nach (12) die Anzahl der letzteren Kommutatoren negativ ein-
zuberechnen.

Die gesuchte Anzahl der aus (10) hervorgehenden Kommutatoren (7)
ist daher nach (10) i), ii) und iii) gegeben durch

(13)

%k

k+i r | "1 'r
H >0

Setzt man daher F(x; y) X • Y, so kônnen wir den Satz notieren

1. Satz: Die generelle metabelsche Oruppe 9ft mit n Erzeugenden wird
mod 501^,+! (w 1,2, eindeutig dargestellt durch (6) mit dem Kom-
positionsgesetz

ft(x ; y) Xi + yt (i 1, 2, n)



Die Funktionenfolge (14) liefert ihrer Bedeutung wegen eine Parti-
kularlosung der Funktionalgleichung

F(f(x;y);z)=F(x;f(y;z))

Dies ist ja einfach das assoziative Gesetz fur die Exponentensysteme

§ 2. Potenz

Zur Ableitung des Exponentensystems der allgemeinen n-ten Potenz
eines Elementes X aus 9ÏI mod SJl^+x haben wir den Ausdruck (vgl. (5))

w

r=2

in die Normalform (5) uberzufuhren. Zu diesem Zweck ersetze man in
Analogie zu § 1 die GroBen (xx%% und {oc%k atl, oc%rf%k%* %r aus

dem Z-ten Faktor X in (15) respektive durch

m =1

Die tîberfuhrung in die Normalform (5) wickelt sich jetzt analog ab
wie in § 1. Einzig die Existenzbedingungen in (9) und (10) miissen neu
formuliert werden.

Die Gesamtheit der durch (9) induzierten Kommutatoren der Form (7),
deren erste Komponente zum Z-ten Produkt X in (15) gehôrt, ist offenbar
gleich der Anzahl der ganzzahligen Losungen der Ungleichungen

ii) (l-l)xlk<rlk^lxlk ; TÎ,<r^< ...<t;*<tt^ (16)

iii) (l-l)Xim<T]m<rlm< <r%^nxtm(m

Die entsprechende Anzahl der aus (10) hervorgehenden Kommutatoren
(7) ist gleich der Anzahl der ganzzahligen Losungen von

ii) (l — 1) xm br < s < lxm br (17)
*i V *i V

"i) ïafH. < TL < TL< • • • < C"*m < w^m(w 1, 2, ,r)
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Setzt man noch n — l e, so ist die Anzahl der ganzzahligen Lôsun-

gen von (16) gegeben durch

/7('e*-W((e + 1)M-(eMl n p+^M (i8)m=i\amj\\ ak \akJlm=k+1\ am

und die Anzahl der ganzzahligen Lôsungen von (17) wird durch den
Ausdruck gegeben

l %r I *1 *f

r
n

%bk %bk+i %bk ,«i t«r * *+* r m-1 \am —
* *+i r 1 r

(19)

Dies liefert den Satz:

2. Satz: Die n-te Potenz Fn(x) (X)n eines Elementes (6) rfer

generellen metabelschen Gruppe 501 mi£ n Erzeugenden wird mod
SRu>+i (w >

2
» • • • gegeben durch

f: nxt

H—1

m=

2
lbi %br I t«i t«r

* / Jm=*+1

(20)

%bk %bk+i %br I %a\ t<*r *
* *+i r I 1 r

bk > 0

A am

II.

Lô8iing der Metabelscben Approximation
des Problèmes von Burnside

Darunter verstehen wir die vollstândige Bestimmung der Struktur der
allgemeinen metabelschen Gruppe mit n Erzeugenden, deren Elemente

^ 1 aile die Ordnung p (Primzahl) besitzen. Dièse Gruppe sei im folgen-
den mit 3RP bezeichnet.
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§ 1. Bemerkungen

Die wichtigsten Daten der Grappe 50lp, nâmlich Ordnung und Klasse,
sind sofort bekannt, wenn es gelingt den zum Gewicht w und der Prim-
zahl p gehôrigen Dimensionsdefekt ôp,w zu bestimmen.

Er wird nach P. Hall definiert durch

(21)

Zur Ermittlung von ôp,w hat man die Relationen zwischen den
w-fachen Basiskommutatoren zu studieren, die sich ergeben, wenn aile
Elemente aus 501 einer Gleichung der Form xp 1 genugen sollen. Die
in / entwickelten Formeln gestatten es, einen Ûberblick ûber dièse
Relationen zu gewinnen.

Aus (14) folgt unmittelbar fur beliebiges l und k

v

m=l

tv\

d. h. fur W> gilt die Relation

(22)

Hieraus folgt die wiehtige Tatsache, daB man in (7) stets a€ < p
(i 1, 2, r) annehmen darf.

(20) kann daher fur 50lp in der einfacheren Gestalt geschrieben werden

i r

wobei

und

c.« -»*

(23)



Punkte in der Entwicklung (23) deuten Glieder niedriger Dimension
in x und s an. Die hôchste Dimension in e ist fur den ersten Summanden
in (23) genau w — 1 ; fur die andern Summanden ist sie ^ w — 2

Aus (22) geht die weitere Tatsache hervor, daB die Klasse unserer
Gruppe sieher nicht grôBer als n(p — 1) sein kann. Ein Kommutator
der Form (7) und vom Gewicht n(p — 1) + 1 wûrde ein at > p auf-
weisen, ist also nach (2) und (22) gleich 1. Die Gruppe 30tp ist also von
endlicher Ordnung.

§2. ôp,w ÎUr w<p
ôp,w flir w < p ergibt sich sofort wenn man bemerkt, daB

^^i1 u [ ® mO(i P falls k Ejà 0 mod p — 1

^ s ~~ l (24)
e i \ — 1 mod p falls k 0 mod p — 1

und die unter (23) gemachten Feststellungen berucksichtigt.
Man sehlieBt dann, daB

fïk <Ji.. ia/ 0 mod p fur ^ a{ < p
i l

sein muB. Dies ist gleichbedeutend mit der Aussage

«,,«, 0 fur w<p (25)

In diesem Paragraphen rechnen wir durchwegs mod ÏÏR^+i. Aus (23)
r

und (24) folgt dann fur J£ ai p

fVk .«,....«, - C,-!...,., • a* • ^ *# mod p (26)

Zum Beweis braucht man nach (24) nur den Koeffizienten von e**-1

im ersten Ausdruck von (23) zu bestimmen fur w p Er ist gleich

(V "j4*"1) - (P ~[ Ak) ak Damit ergibt sich (26).

Wegen der Bedeutung der Exponenten (26) gilt daher mod S0t*;+1 eine
Relation der Form

n K V'V ll ff= 1 (27)

t=l



Nun gehoren aile in (27) auftretenden Elemente einer elementaren
Abelschen Grappe an, namlich der Kommutatorgruppe von 9Jtp. Wegen

at< p und der beliebigen Wahl der x mod p konnen wir daher nach
dem gelâufîgen Vandermondschen Argument1) schlieBen, daB sogar

%

K axk ar

d. h. es gilt auch

n K~kaX %ar 1 (28)
r 2^k^r

fur X at p

(28) besagt: Zwischen den Basiskommutatoren (7) vom Gewicht p,
die in den at und a%i oct2 oclr ubereinstimmen, gilt mod 3R^+1

genau die Relation (28). Hieraus folgt, daB der Dimensionsdefekt der
Klasse p gleich ist der Anzahl der verschiedenen Aggregate x**. x^,
die man aus xl9x2,...,xn herstellen kann unter den Nebenbe-

r
dingungen £ at p und 0 < ax < p

Hieraus folgt

Fur n 2 besagt (28), daB die Klasse unserer Gruppe genau gleich
p — 1 ist.

§4- ôp,p+t fur n>2
Aile Rechnungen gelten jetzt mod 5Dt£+2 • Wir betrachten die folgende

p-te Potenz:

(**%l<x*%* ocx%r • K*%k%')P

Sie besitzt wegen (23) und (24) die Gestalt

r
l p-l «i ar

7) vgl. z. B.: A. Speiser, Théorie der Gruppen von endhcher Ordimng.
Spnnger, 1937. § 43, insbesondere auf p. 128.
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P ist ein Produkt von Basiskommutatorpotenzen, deren Exponenten
nur x{i, xi%, xif involvieren. Wegen der beliebigen Wahl der x
folgt insbesondere P 1 Somit gilt

«f

Aus denselben Grûnden wie fruher kônnen wir jetzt wieder das Vander-
mondsche Argument anwenden und beweisen, daB

Kik if <Kit, (xix, ocir, .,*j 1 (30)

ar

Nun kann aber jeder Basiskommutator vom Gewicht p + 1 durch
(30) representiert werden.

Es folgt also _ j
Wir haben fruher bereits bemerkt, daB 2Rp eine endliche Gruppe dar-

stellt. Statt (31) kônnen wir daher auch sagen: Die Klasse der Gruppe
WP ist fur n > 2 genau gleich p

Damit ist der folgende abschlieBende Satz ûber die metabelsche Approximation

des Problèmes von Burnside gewonnen.

3. Satz : Die maximale metabelsche Oruppe mit n Erzeugenden, deren

Elemente der Oleichung xv 1 genilgen, ist fur n 2 von der Klasse
c p — 1 und fur n> 2 von der Klasse c p Sie ist von der Ord-

nung c
ti -f- S d\j) — on to

Es ist

und

jn + p _

n > 2 bestehen zwischen den p-fachen Basishommutatoren genau
die Relationen a*

77 K

(Eingegangen den 20. April 1950.)
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