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Uber Taubersche Konstanten
bei Cesaroschen Mittelbildungen

Von V. GArTEN in Tiibingen

Einleitung

Herr H. Hadwiger!) hat als erster die interessante Bemerkung ge-
macht, dafl sich sowohl der klassische Abelsche Stetigkeitssatz als auch
seine ebenfalls schon klassische Umkehrung von Tauber in einer einzigen
Ungleichung einheitlich zusammenfassen lassen, die noch unter allge-
meineren Voraussetzungen giiltig bleibt. In neuerer Zeit haben sich nun
mehrere Untersuchungen 2) mit der Weiterfilhrung dieser Bemerkung
und namentlich mit der Bestimmung der dabei auftretenden absoluten
Konstanten, die von Herrn Hadwiger treffend als Konstanten Tauber-
scher Art bezeichnet wurden, beschaftigt. Als in gewisser Hinsicht ab-
schlieBendes Ergebnis sei hier nur der folgende Satz genannt :

Satz I (von Agnew?®)). Es ses >0. Dann gilt fir jede unendliche
Rethe X a, mit den Teilsummen s, = s(n) und reellen oder komplexen
Gliedern, die der Bedingung

lim|ma,, | <oco (1)
m—>oo

gendigen, fir die also insbesondere die Potenzrethe
a(z) =3 a,x”
v=1
vm Hinheitskreis konvergiert, die Ungleichung :

l—i_n_ala(x) —s8(n)| < f*(B) lim |ma,,| fir n —>oo bzw. z —>1—0, (2)
m—>oo

wenn x = exp(—pf/n) bzw. n =[—p/log x] gewdhlt wird, wobe: die

Konstante f*(B) den Wert

1) Siehe das am Ende der Note befindliche Schrifttumsverzeichnis Nr. 3.

) Vergleiche die im Schrifttumsverzeichnis aufgefiihrten Veroffentlichungen, Nr. 1
bis Nr. 7 und Nr. 10.

8) Vergleiche Schrifttumsverzeichnis Nr. 2.
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oo

—t
f*B)=C+logp+2 [ —dt (3)
8
besitzt und C die Eulersche Konstante bedeutet. Uberdies ist bei festgehalte-
nem f der Wert f*(B) die bestmdogliche Konstante in dem Sinne, dap fiir
gewisse reelle Reihen in (2) das Qleichheitszeichen einiritt. Endlich liefert
B =log 2 unter allen Konstanten f*(B) den ginstigsten (das heift klein-
4
sten) Wert*) % = f* (log 2) .

Erweitert man in Satz I die Voraussetzung n a, = 0(1) durch Ein-
fithrung des Kroneckerschen Ausdruckes

1 n
o,=— Jva,
ny=1

zu o, = 0(1), — wie dies Herr Wintner zuerst fiir den Fall § = 1 aus-
gefiithrt hat, — so erhédlt man den

Satz 11°5). Wird in Satz I die Voraussetzung (1) durch die Bedingung

lim | o, | <oco

m—>co
erselzt, so gilt fir n — oo bzw. x — 1 —0 die Ungleichung
lim | a(2) —s(n) | <f() lim | o, | , (4)
m—>oo

wober die Konstante den Wert

fB) =f*B) +2eF

besitzt. Uberdies wird bei festgehaltenem B fiir gewisse reelle Reihen in (4)
die Konstante tatsdichlich erreicht. Der giinstigste (das heifft kleinste) Kon-
stantenwert v = f(B,) wird fir die positive Losung f = f, der transzen-
denten Gleichung B 2(1+p) =0

erzielt.

Die beiden angefiihrten Sétze liefern also eine Abschédtzung fiir die
Abweichung einer Zahlenfolge s, von ihren Abelschen Mitteln a(z),

4) Der Fall § =1 wurde von Wintner, Hartman und Hadwiger, der Fall § = log 2
von Hadwiger und Agnew untersucht. Agnew behandelte anschlieBend (in Nr. 2 des
Schrifttumsverzeichnisses) die Frage allgemein bei unbestimmt gelassenem Korrespon-
denzparameter f > 0.

5) In seiner zweiten Abhandlung erwiahnt Agnew, daB der hier in Satz II angegebene
Sachverhalt (bei allgemein gewahltem £ > 0 unter der Voraussetzung, daf der Kron-
eckersche Ausdruck beschrinkt bleibt) von W. E. Barnes in Angriff genommen sei. Bisher
habe ich aber noch keine diesbeziigliche Verétffentlichung des Herrn Barnes ausfindig
machen kénnen.
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sofern die Variablen n» und « in passender Weise durch den Korrespon-
denzparameter g miteinander gekoppelt werden.
In der vorliegenden Note werden in entsprechender Weise die Ab-

n
weichungen der Folge s, = ¥ a, von ihren Cesaroschen Mitteln k-ter
Ordnung (k> 1 ganz) v=0

? - G k
o =V§OA;’k")a" , AP = (p , j’—‘i; )/(p—; ) (5)

untersucht. Wie zu erwarten, gehen die sich hierbei ergebenden Kon-

stanten 7;, 7, fir ¥ —oco in die Konstanten 7*, v der Abelschen Mittel
iiber. Man gelangt ndmlich zu folgendem Ergebnis :

Satz 1. Es set «>0. Dann gilt fir jede Reihe ¥ a, mit den Teil-

v=0
summen s, und reellen oder komplexen Gliedern, die der Bedingung (6)

lim | ma,, | <<oco geniigen, die Ungleichung
m-—» oo

En]c;")-——snlgO;(oc) lim |ma,| fir n —>oco bzw. p - oo, (7)
m—>co

wenn p = [n/x] baw. n = [x p] gewdhlt wird und die Konstante C(x)
den Wert

fr (%) =§11—t)’c +§{1—(l—t’°}— fur « <1
02(0‘)= % (8)
f +f{1—(1—t)"} fir o>1

besitzt, also von der Wahl der (a,) bzw. (s,) nicht abhingt. Uberdies lift sich
bei festem o>0 die Konstante C(x) mnicht verbessern, da in der Un-
gleichung (7) fur gewisse reelle Reihen das Gleichheitszeichen eintritt. Bei

k e
festem k >1 Uefert o =op =1 — 1/V'2 den giinstigsten (das heift
kleinsten) Wert v, = f,' (). Endlich gilt lim v, = v*.
k—>o

Ersetzt man hier wieder die Voraussetzung = a, = O(1l) unter Her-
anziehung des Kroneckerschen Ausdruckes

1 ”

—_ - (1) = = s e

n+12va 8, — C,, (0p=0,n=1,2,...)

durch die allgemeinere Bedingung J, =O(1), so erhdlt man den fol-
genden

0, =

Satz 2. Wird in Satz 1 die Voraussetzung (6) durch die Bedingung
lim | 6, | <oo (9)
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erselzt, so qilt fir n —oco bzw. p — oo die Ungleichung

lim | ¢ —s, | < Cylx) lim | 8, , (10)
m—>o0

wober die Konstante C(x) den Wert

0, ) = fel@) =fi (@) + 2(1 —a)* Jir o <1

gx (%) = gx(®) far o> 1

besitzt. Uberdies liPt sich bei festem o>0 die Konstante C,(x) nicht
verbessern, da in der Ungleichung (10) fir gewisse reelle Reihen das Qleich-
heitszeichen eintritt. Der gimstigste (das heift kleinste) Wert v, = f(o)
wird bes festem k > 1 fir die positive Losung o = «, der algebraischen

Qlerchu
M k(1 — a1 20k — 1) (1 — )t = 0

erreicht. Endlich gilt lim 7, = 7.
k—>

Aus diesen Sédtzen 1 und 2 werden zum SchluBl noch einige Folgerungen
fiir reelle Reihen gezogen. So ergeben sich aus den Ungleichungen, die
mit den direkten S#tzen zugleich auch ihre Umkehrungen enthalten,
eine Erweiterung des Permanenzsatzes und eine Erweiterung des Tauber-
schen Umkehrsatzes fiir das C,-Verfahren (1 <k <oo, ganz). Mit
Hilfe eines Satzes von Ramaswami®) gelingt es ferner, aus diesen fiir
C,-Verfahren giiltigen Sitzen durch den Grenziibergang % — oo ohne
Benutzung der Sitze I, IT die entsprechenden Sitze fiir Abelsche Mittel
herzuleiten, némlich einerseits eine Erweiterung des Abelschen Stetig-
keitssatzes 7) und des Satzes von Frobenius, andererseits eine Erweite-
rung des Tauberschen Satzes ?) fiir Potenzreihen 8).

%) Vergleiche Schrifttumsverzeichnis Nr. 8 und Nr. 9, S. 371/372.

7) Diese Erweiterung rithrt — fiir Reihen mit komplexen Gliedern — bereits von Herrn
Hadwiger (vergleiche Schrifttumsverzeichnis Nr. 3) her.

8) Nach Fertigstellung dieser Note machte mich Herr Hadwiger freundlicherweise
auf die vor kurzem verdsffentlichten schonen Untersuchungen von Herrn H. Delange
(vergleiche Schrifttumsverzeichnis Nr. 10) aufmerksam, in denen dasselbe hier nur im
Spezialfall der C-Mittel behandelte Problem (die Entwicklung der elementaren Umkehr-
sitze als Korollare gewisser allgemeiner Ungleichungen, die absolute Konstanten ent-
halten) ganz allgemein, sowohl fiir allgemeine Limitierungsverfahren als auch fiir allge-
meine Konvergenzbedingungen, in umfassender Weise dargestellt wird. In der zweiten
Mitteilung seiner Untersuchungen behandelt Herr Delange sogar die entsprechende
Fragestellung bei den tiefer gelegenen Umkehrsitzen. Die vorliegende Note diirfte aber
vielleicht trotzdem erstens als konkrete Illustration zu den sehr allgemein gehaltenen
Untersuchungen von Herrn Delange und zweitens mit Riicksicht auf die besondere Natur
der in Paragraph 3 enthaltenen SchluBfolgerungen einiges Interesse beanspruchen.
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§ 1. Beweis des Satzes 1

Den Ausgangspunkt fiir den Beweis des Satzes 1 bildet der

Hilfssatz 1: Sind die (reellen oder komplexen) Glieder einer nicht mot-
wendig konvergenten Rethe X a, der asymptotischen Beschrinkung

via,| <M v=1,2,...) (11)

unterworfen, so gibt es zu jedem Wertepaar (p,n) eine beste (das heift
kleinste) von der Wahl der a, unabhingige Schranke C(p,n) derart, daf
die Abschitzung

e —s, | <M -Cr(p,n) (n=1,2,...5p=1,2,...) (12

gult, und es st

) Fy(p,n) far n<p,
Ck (p’ n) = * .
Gylp,n) fir n=p,
wenn zur Abkiirzung

» n
Fi(p,n)= 5 AB—+ 5 (1—A4%) %),
v=1

v=n+1 4

(13)

Grp,n)= 3 —+ 3y (1—4,)—
v=p+1 4 v=1 4
gesetzt wird.

1. Fir » < p ist ndmlich nach (5)

y4 n

k k k

G —Su= X Ap)a,— ¥ (1—A47)a, .
yv=n+1 y=1

Wegen .
0<AP <1 fir »=1,2,...,p

und der Voraussetzung (11) folgt hieraus unmittelbar
|6 —s, | < M Fy(p,n) .

2. Fir n > p hat man

n P
k k
Sp—0p) = ¥ a,+ ¥ (1—A4AN)a,
v=p+1 y=1

und aus denselben Griinden wie soeben

l'gn_c(pk)l SMG: (p:n) .

n
9) 3 bedeutet fiir n < m die leere Summe.
m
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Das Gleichheitszeichen erhélt man in der Abschédtzung (12), wenn man
im Fall » > p das Beispiel e, =0, a, = 1/v fiir » > 1 wihlt, im
Fall n<p aber das noch von n abhingige Beispiel a, = a{™ mit

0 fir » =0
a =1 —1p fir 1<v<n
+ 1y fir n4+1<vw
betrachtet.

H fssatz 2 : Fir die in Hilfssatz 1 auftretenden Schranken (13) gelten die
Rekursionsformeln

1

% 1
Fk(p7n)=F;——l(p’n)+?{l_—2A(k'r)l+1}_-?_’_k ’ (14)
% oy 1 1
Gi(p,m) =Gy (P, 0) + 4 iy
Setzt man nimlich
Fip,n)=8P+ 8, Gi(p,n)=8F+ 8P (15)
mit
SH= A SP =5 (148,
v=n+1 4 v=1 4
* _ (kyy L (k) 51
S5 :vé'l(l _Azw);' J Sy :v=2p'+l‘;“ )
so hat man zunichst wegen
k) _ g&=D (7 ___ 7Y
Apv “'Apv (1 P+ k) ’ (16)
5 AEv—ay, 2EE (17)
v=n+1 k
& k
SAEV=2TEq_ 4B )1 m<p (9
y=1
nach (16)
gb— gy gLt & ga-n_ 1
! Mv=§+1 by 4 v=27—L:+1 Py p+k ’
n 1 n
(k) A=y — (k1)
S2 —v§1(1 Apv )V +v§1Apv p—l—k ’
1

p 1 »
(k) — — Ak-1y — (k—-1)
§0=2 (A —4p") + T4

und weiter nach (17)
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S = S0 — L AR, (19)
und endlich nach (18)

- 1
s —ge-ny 11
3 3 k p+ k

Verwendet man die Formeln (19), (20) in (15) und beachtet, da S
= 81 ist, so ergeben sich die Rekursionsformeln (14).

Da fiir das Folgende das infinitire Verhalten der Schranke C(p, n)
fir p - oo bzw. m — co interessiert, geben wir zunichst fiir die den
Summen Fj(p,n), G;(p,n) nachgebildeten Integralausdriicke

D=fa—p% i fo—a-m L=y,
& 0 ¢
o it (21)
g ()= | 5+ 5{1 — (1=} =IP+IP

[a—t

die entsprechenden Rekursionsformeln.

Hilfssatz 3: Fir die in Satz 1 (8) auftretenden Schranken f, und g;
gelten die Rekursionsformeln

(@) =fia @)+ 3 {1 —2(1— ),
(22)

* % 1
g () =g _1 (&) + %

Denn die den Summen S{ analog zu bildenden Integrale J{" befolgen
entsprechende Rekursionsbeziehungen wie (19) und (20).

Nach diesen Vorbereitungen gelingt es leicht, die Schrankenwerte
C(p,n) fiir groBe p bzw. n, wenn namlich p und n beide gleichzeitig
—oco streben, so dal der Quotient n/p einen Grenzwert «>0 besitzt,
durch die entsprechenden Integralausdriicke (21) abzuschétzen.

Hilfssatz 4: Fir ein «, das der Bedingung
n -+ 1

23
p ot << ’ (23)
gendigt, gelten bes p —>oco bzw. m —>oco die Abschditzungen
Fy(p,n) = fk(cxH—O( ) n<p
(24)

Gio.m =i +0(y). n=p (m=DMn(p,m).
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Der Beweis hierfiir ergibt sich leicht durch vollsténdige Induktion !°).
Fir k¥ =1 hat man némlich nach (13) wegen A$) =1 —/(p + 1) zu-
néchst

F:(p,n):vré‘+l(l p:—l) +2{1“(1“ p:—l)}_zl;:

P 1 2n 1
— -1
2y T T T

G1 (p, - L 1—(1— :
1P = +Z{ (1 p+1} AR

v=p+1 ¥ v
und nach (21)
fi(x) =log1/x —1 + 2« , gi(x) =loga + 1 .

Geldufige Integralabschitzungen fiir die Teilsummen der harmonischen
Reihe fiihren daher auf die Beziehungen

Fi(p,n) =fi (&) + O (1/m) , & (p,n) =g (x) +O(1/m) .  (25)

Die Behauptung ist also fiir £ = 1 richtig. Angenommen, sie sei bereits
fir ¥k =1,2,...,1l —1 bewiesen, so gilt insbesondere fir I > 2

Fii(p,n)=fi10)+0(1m) , G_1(p,n) =g_1(x)+0(1/m) . (26)

Auf Grund der Rekursionsformeln (14) und (22) und der Induktionsvor-
aussetzung (26) erhélt man

* % 1 1
Fi(p,n)=F,_, (P:")‘}“‘{l 2A(ln+1}“

p+1
= F1 () + F {1 — 2y — ;:z,+1}+0( )
und
. 1
p+1
* 1
—gi ) +0 () -

Da nun fir » < p wegen

(1—211)<A<%1<(1—-’;i;)' (1> 1) (27)

und (23) die Abschédtzung

* * 1
Gl (p’n)zal——l(p:n) +T

10) Man kann natiirlich auch fir k>1 die in F},Gf auftretenden Summen Sgk) in
ganz éhnlicher Weise, wie es hier fiir k£ = 1 geschieht, direkt durch die entsprechenden

Integrale ink) abschétzen, was insbesondere im Fall nicht ganzzahliger Ordnungen k
notig wiirde.
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AP = (1— ) +0 (——1”;) (28)
gilt, sind damit die Formeln (24) bewiesen.

LaBt man nunmehr bei festem o«>0 erstens dem Index n die Zahl
p = [n/x] entsprechen, so wird offenbar n/(p + 1)<« < n/p; ordnet
man zweitens umgekehrt dem Index p die Zahl n = [x p] zu, so wird
n/p <a<(n + 1)/p. Beidemale erfiillt « also die Bedingung (23).

Die Fallunterscheidung «<1, « =1, «>1 entspricht, wie man
leicht sieht, fiir hinreichend groe Werte von n bzw. p der Fallunter-
scheidung n<p, m =p, n>p.

Benutzt man nun die in Hilfssatz 4 angegebenen Abschitzungen fiir
die jeweilige Schranke C}(p,n) und vollzieht in der Ungleichung (12)

des Hilfssatzes 1 den Grenziibergang n —>oco bzw. p-—>oo, so ergibt
sich der

Hilfssatz 6 : Unter der gleichen Voraussetzung wie in Hilfssatz 1 gilt die
Limesaussage

lim| e —s,| < MCy(x) fir n—>oo, p=[n/a];

bzw. fir p—>oco, n=[xp], (29)
wober ,
" . fe(x) fir 0<a<1
C"‘“"‘{gi(a) fur o>1

ist und f,g, die in (21) angegebene Bedeutung haben.

Wir gehen nun zum Beweis des Satzes 1 iiber. Zunichst priifen wir,
daB in (29) rechter Hand die Konstante M durch den Hauptlimes

[* =limm|a,| ersetzt werden darf, womit dann die Ungleichung (7)
m—> oo

des Satzes 1 sichergestellt ist.

Nach der Voraussetzung des Satzes 1 gibt es zu jedem beliebig vor-
gegebenen ¢>0 einen Index n, derart, daf

via, | <l* 4+ ¢ fir alle >N,

ausféllt. Setzt man nun
o — {0 fiir 0 <v <mn,
@, fir ne+1<v,
go gilt
v|a,|<l*+ e firalle »>0. (30)

Um die Abhéngigkeit von den Reihengliedern @, zum Ausdruck zu
bringen, schreiben wir voriibergehend ausfithrlicher ¢ (a,) fir ¢
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und s,(a,) firs,. Fir n>n,, p>n,, n <p oder n > p erhilt man
dann wegen des linearen Charakters der Mittelbildung

| (@,) — s (@) | < |6 (@) — s, (a3) | + | P (@, — a5) — s, (a, —a}) | . (31)

Da nach der Voraussetzung des Satzes 1 ferner eine positive Konstante M
existiert derart, daBl »|a,| < M fir alle » > 0 gilt, kann man den
zweiten Summanden auf der rechten Seite der Ungleichung (31) leicht

80 abschétzen :
Rg

¥ (@, —a)) —s,(a,—a}) | <M 3 (1—AD)1/p=M R (n,) .
v=1

Nach (16) und (18) wird aber

1 1
BO(n) =R )+ (1= AD ) — -7 (22 (32)
und nach (27) ist hierbei
_AD (i met 1Y met 1
1—49 ., <1 (1 p+1)3p+1l' (33)
Durch Aufsummieren von ! =2 bis ! =% erhdlt man aus (32) daher
1
Rb < puy et 1l
<EO4+ 2 (1)
Wegen A() =1—v/(p+ 1) findet manaber R = n./(p + 1), folglich
R < 34
(ne) < p+1 (34)
und somit schlieBlich
o (a,— a3) —sp(a,—ap) | < M EPEEZD _0(2) (3

Der Grenziibergang n —oco mit der Zuordnung p = [n/x] bzw. p —oo
mit n = [« p] in (31) liefert nun, da sich bei festem &¢>0 und somit
festem n, der Hilfssatz 5 wegen (30) mit [* 4+ ¢ an Stelle von M auf
die Reihe X a, anwenden ldBt, mit Riicksicht auf (35) zunichst

lim | ¢® (a,) —s,(a,) | <lim [P (@) —s,(a}) | < (I + €) Of(x) . (36)

Weil diese Ungleichung fiir jedes beliebige ¢>0 gilt, die linke Seite
jedoch von & gar nicht abhidngt, muB auch die Ungleichung (7) des
Satzes 1 gelten, die fiir ¢ = 0 aus (36) hervorgeht. Damit ist der erste
Teil des Satzes 1 bewiesen.
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Um weiter zu zeigen, daB die Konstante C}(x) sich nicht verbessern
148, geniigt es im Fall &« > 1 das Beispiel ay =0,a, = 1/v fir » > 1
zu betrachten. Im Fall «<<1 wihle man

0 fir 0<»<4
a, =1 — 1 fir Ay, 1<v < Ay, m=1,2,...) (37)
+ 1/’V fir A2m <7 S 12m+1 ’

wobei (4,,) eine Folge positiver, iiber alle Grenzen wachsender Zahlen
bedeutet, fiir die noch

Pty >l>l fir m>my , (38)
A o
und
P -0 fir m—>oo (39)
. Z’m-{-l
gilt.

Die Beispielreihe (37) erfiillt die Voraussetzung des Satzes 1, weil hier

lim |va,| =1 ist. Offenbar geniigt es nun zu zeigen, dafl bei festem
gegebenem « (0 <« <<1) fiir unser Beispiel die Ungleichung

Hm | ¢ —s, | > fi(x) (40)

besteht, wenn n bzw. p jeweils nur eine passende Teilfolge der natiir-

lichen Zahlenreihe durchlduft und p = [n/x] bzw. » = [p«] ist.
Zum Beweis von (40) wiahlen wir » = 4,,, mit m>my /2, so daB

wegen p = [n/x] gemiB (38) p < A,,/x<4,,,,; wird, und bilden

Aom 2m—1
o= T ADE F (-4 + 3 (- F -4l @
v=n+l Aom—1+1 Ap—1+1 4

Die Differenz wird offenbar dadurch verkleinert, daf3 man auf der rechten
Seite in der dritten Summe fiir jeden Wert von u das Minuszeichen ver-
wendet. Verkleinert man nun weiter, indem man bei der so entstandenen

Summe
Aam—1

— Al
A4l 4
die untere Summationsgrenze durch 1 ersetzt, und nimmt man diese
Summe gleich zweimal, so kann man dafiir zum Ausgleich in der zweiten
Summe rechter Hand den Index » von 1 anstatt von 4,,_,+ 1 an laufen
lassen. So erhilt man

1 em 1
c(k) —Sp = 2 A(k) + 2(1 _"'Agakv)) e e 2 ( A;;kv));‘

v=n+1
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oder in der Bezeichnungsweise von (13) und (32)
c;)k) — 8 = F; (p; n) - 2R(k)(22m—1) .
Nach (34) gilt die Abschéitzung

klgpm—y + (K — 1) Agp— (k— 1)«
(k) 2m—1 2m—1
0 S 'R (}’2m“1) S p + 1 = ko‘ ng + lgm ’
also nach (39) R® (4,,_;) =o0(1) fir m —oco. Damit ist zunichst ge-
zeigt, dal . .
c%n/)a]—_'gn ZFlc(p, n) + 0(1) ] (n = j'2m)

und nach dem Hilfssatz 4, (33)
ooy — 80 = [ (@) + 0 (1)

ist. Fir m — oo folgt hieraus die Limesaussage (40).

Es bleibt lediglich iibrig, nachzupriifen, da man eine den obigen
Forderungen geniigende Folge 4, finden kann. In der Tat braucht man
nur A, =m! zu wihlen.

Bisher hatten wir den Zuordnungsparameter o fest gelassen. Von
besonderem Interesse ist es aber, jetzt den Verlauf der Funktion ()
in Abhingigkeit von & (0 <« <<oo) zu untersuchen. Weil die Ableitung

o) = 1 {1 —2 (1 —a)} (42)
negativ, gleich Null oder positiv ausfillt, je nachdem 0 <ax <oy, & = o

k
oder a>o; ist, liegt bei o =af =1 —1/V2 das einzige absolute
Minimum von f;(x). Da hiernach insbesondere f;(x;)<f;(1), anderer-
seits f,(1) = g;(1) ist und g;(x) fir « > 1 monoton wichst, liefert
die Wahl &« = «; fiir den Zuordnungsparameter die beste, das heit
kleinste Konstante
7 =f% (%) = Min 0% («) .
O0<x< o

Offenbar wird (vgl. (8)) g;(x) also C%(x) wie log « unendlich fiir & — oo
und f;(x) also C%(x) wie log 1/x unendlich fiir « — 0. Aus der Dar-

stellun
g F1—201— o)

" 1
fk(“)—‘—log;‘i‘

=1 4
ergibt sich speziell
* (x) = log L — fo)=log L _ 3 e
fi(oc)w—log(x 14 2x , fz(oc)mlog“ 2—|—4(x o?
() = log L 1L _gat 4 Zge
fs(cx)-—log“ 5 + 6x — 3« +~3—cx .
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Fiir die Konstanten 7, findet man wegen

. (L\V 1 Bl
1_0‘1‘::—_—(?) und ——k==22
1 — V%‘ y=0
die Darstellung k—v
E oY k-1 %
‘A 1—2

7, = log (2 '”) X — ,

=1 v=1

daher speziell
= log 2 = 0,693147 ..
7 =log(2+ V2 +1—V2=0813732...
—log(2+Va+V2)+3—VPa4—17V2=086106..

Endlich untersuchen wir noch das Verhalten der Konstanten z, bei
wachsendem Index k. Die Rekursionsformel (22) liefert mit o« = «}
wegen 2(1 —oj)* =1 die Beziehung f(x;) =fr_1(x;); da aber
Sfio1(og)>Fr_1(og_;) ist, gilt also 7;>17;_,, das heiBt die Konstanten
t;, wachsen mit & monoton.

Um f;(x) fir k—>oco nach oben abzuschitzen, fiihre man in der In-
tegraldarstellung (8) von f(x) die Substitution

1 —t =e ¥k | 1 —x =e P¥
aus und setze zur Abkiirzung
Q@) — = 7

I —e* e — 1
So erhilt man

[« <}

fZ(oc)=B'—~—Q( )dw+ fl“e_wQ(%)dw. (43)

Wegen e*>1 4 « gilt fiir beliebige « die Abschidtzung @ (x)<1 und

daher B
fi(@) < j vt [ dw =g () (44)
0
Zufolge der Integraldarstellung der Eulerschen Konstanten
1 oo
w w
1

stimmt die soeben in (44) eingefiihrte Schranke f*(8) tatsdchlich mit
der in Satz I (3) bei den Abelschen Mitteln auftretenden Konstanten
tiberein.
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Fir o« =), wird g =B, =log2, also gilt

7 =f3 (03) <f* (log 2) = 7* .

Da hiernach die monoton wachsende Folge (tr;) eine von % freie obere
Schranke besitzt, muB jedenfalls der Grenzwert lim 7; = 7’ vorhanden
k—>x
sein.
Zur Bestimmung des Grenzwertes 7’ schéttzen wir jetzt f(x) nach

unten ab, setzen dabei allerdings voraus, da « <1 —e-1/'F bzw. f< Vk
bleibt, was insbesondere fiir « = &, wegen f, = log 2 sicher zutrifft.
Nun ist fiir x <1 stets e*<1/(1 —z) und darum @Q(x)>1—=z. Hier-
mit wird nach (43)

fk(oc)>j (1——)dw+f e_w(l——«%)dw

BY%k

-l e e
f—e——idw<—
1

]

S (%) Vi I*(B) 5%

Waihlt man jetzt o = (k) derart, da g(k) = k log 1/(1 —«) fiir £ — oo

gegen einen endlichen positiven Grenzwert f konvergiert, so folgt aus

(44) und (45) Lm fj (x(k)) =f*(B). Fir &, =1—c V% folgt insbe-
k—>o0

und wegen

weiterhin

sondere lim f}(x,;) = f* (logc). Mit &, =1 —2-V% ergibt sich ganz
speziell *—>*
v = t* = f* (log 2)

Somit geht fiir £ —oco aus den Tauberschen Konstanten ), der Cesaro-
schen Mittel die Taubersche Konstante t* der Abelschen Mittel hervor.

§ 2. Beweis des Satzes 2

Als Ausgangspunkt fiir den Beweis des Satzes 2 beweisen wir zunéchst
einen dem Hilfssatz 1 unter den verdnderten Voraussetzungen ent-
sprechenden
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Hilfssatz 1°. Mqit den reellen oder komplexen Gliedern einer nicht not-

wendig konvergenten Reithe 3 a, bilde man den Kroneckerschen Ausdruck
y=0
1
—_— — (1) —_ . —
6"“n+1 )_’,‘va, Sy m=1,2,...; 6,=0). (46)
Unter der Voraussetzung
| 6, | <M  fiir alle m=1,2,... (47)

gibt es zu jedem Wertepaar (p,n) eine beste (das heifdt kleinste) von der
Wahl der a, unabhingige Schranke C,(p,n) so daf3 die Abschitzung

| 6P —s, | < MO, (p,n) m=1,2,...; p=1,2,...) (48)
gilt, und es ist

| Fr(p,n) fir n<p
O"“”""{Gk(p,n) fir  n>p,

wenn zur Abkiirzung

B(pl,;’—l) A(k 1) (1+ (k 1)”)

—k
und
Fypom) =1+ 5 B+ 51— B
yv=n-+1 4 =1 14
(49)
? k-1 1
Gulpm) =1+ T ~+ 3 {1— B —
yv=p+1 v=1
gesetzt wird.
Nach (46) hat man ndmlich
al,:é,,——é,,_l—l——%’— fir »>1,
woraus 3
= goav:ao"*—an"{‘{“‘;‘
und weiter wegen
1 (k—1)»\ 1 1
(k) (k) (k-1) — — Rk-1)
A® (H— v) A® = A% (1+ e )v = B (50)
mittels partieller Summation
o) — ZA(k)av__ao_*_ 2 F; g R 4 Sy
folgt. b
Im Fall n <p ist daher
V4
&P —s,=—6,+ ¥ BE 1>‘S 2{1— B&- 1>} . (51)

v=n+1
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Der Ausdruck

Uy

—1— B®-1__71_ g¢k-D L__l)_v)
Bo "= 1= 4 (+ p+k

ist fiir £ = 1 nicht negativ und fiir £>1 folgt dies sogleich aus
k—1 kv-+1)
p+k—1 p+k

Wegen (47) kann man also die Differenz (51) wie behauptet abschétzen.
Im Fall »n > p ergibt sich die Behauptung ebenso aus
d, 0
(k) __ _v (k—1n v
8y —Cp =0, + 2 . + )_’] {1—B,, .

yv=p+1

vo=0 und v, —v, =A% >0 .

DaB sich in (48) die Schranke C(p,n) nicht verbessern li3t, zeigen
die folgenden Beispiele. Im Fall n > p verlangt das Beispiel a, =0,
a, =2, a, =1/y fir »>1, beidem ¢, =1 fiir alle » > 1 wird, das
Gleichheitszeichen. Im Fall n < p wéhle man hingegen das noch von »
abhingige Beispiel
0 fir » =0
—2 fir » =1
a™m =1 —1/y fir 2<v<nmn
24 1Y(n+1) fir »=n+ 1
+ 1/y fir v>n +1 .

Weil bei diesem
—1 fir 1 <v<n

0y = +1 fir »>n-+1

wird, tritt ebenfalls in (48) das Gleichheitszeichen ein.
Die Schranken C,(p,n) lassen sich nun auf die Schranken C}(p,n)
von Satz 1 leicht zuriickfithren. Zunéchst findet man durch Aufspaltung

des Ausdruckes B " 1/ in die beiden Summanden
1 k—1
(k—1) (k—1) 7
A% . und A oy

und weiter wegen (17) und (18)

* 1 1
Fk(P,n)Z{qu(ﬁ,’”')"*‘ k(l—zA(Pkf)l-!—l -HC +2 ;kr)c+1+ -HC

Der Ausdruck in der geschweiften Klammer stellt aber nach (14) gerade
F,(p,n) dar. Verfihrt man ebenso mit G4 (p,n), so erhidlt man nach (18)

% 1 1 k
Gk(P,n)z{Gk-1(p,n)+7c‘” p+k}+ p+k
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Der Ausdruck in der geschweiften Klammer stellt jetzt nach (14) gerade
Q. (p,n) dar. Daher gilt der

Hilfssatz 2°.  Die Schranken der Hilfssitze 1 und 1° stehen in dem Zu-
sammenhang :

* k
Fy(p,n)=F(p,n)+ 24 _, Pk

* k (62)
Gy (p,n) =Gy (p,n) + PE

Kombiniert man die Formeln (52) mit den Rekursionsformeln (14) fiir

F}, und G, so ergeben sich fast unmittelbar die Rekursionsformeln fiir
F, und G,.

Hilfssatz 3°. Fir die in Hilfssatz 1° auftretenden Schranken (49) gelten
die Rekursionsformeln

1
Fk(pan):Fk—l(p’n)+7c—{l_2B§7kn_—:i} - (
E—1
p+k(p+k—1) °

Wegen (52) kann man sogleich die Abschitzungen (24) fiir F; und G,
ausniitzen. Beachtet man dabei noch die Abschitzung (28), so erhélt man
den

Hilfssatz 4°. Fir ein o, das der Bedingung

n n—+1
e < < e
p+1°="% p
geniigt, gelten bei p —oco bzw. n —>oco die Abschitzungen
1
Fo(pm) =fi (@) +2(0 =) +0(5) .

Gy (p,n) =gz (x) + O (%) :

kE—1
p+kp+k—1)"

1
Gk(p: ’ﬂ) = Gk—l (p’ n) +”,5‘ -

(m = Min (p, n)) (563)

Dieselben Uberlegungen wie bei Hilfssatz 5 gestatten auch jetzt bei ent-
sprechender Zuordnung von n und p in der Ungleichung (48) des Hilfs-
satzes 1° den Grenziibergang n —>oco bzw. p —oo zu vollziehen. Auf
Grund der Abschédtzungen (53) ergibt sich so der

Hilfssatz 5°.  Unter der gleichen Voraussetzung wie in Hilfssatz 1° gult
die Limesaussage fir n —oo, p=[n/x] bzw. p oo, n = [« p]

lim | —s,| < M Cy(x) , (54)
wober
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fo@=fr@+201—a)k fur O0<a<l
9r (%) = g () fir  oa>1

ist und [y, g, die in (21) angegebene Bedeutung haben.

C, (x) = { (65)

Ahnlich wie in Paragraph 1 148t sich nun der Satz 2 selbst gewinnen,
indem man zeigt, dafl in der Limesaussage (54) des Hilfssatzes 5° rechter

Hand die Konstante M durch den Hauptlimes [ = lim | 4,, | ersetzt
werden darf. >0

Im Fall « > 1 erfordert, wie man unmittelbar erkennt, das Beispiel
ay =0, ay =2, a, =1/y fir » > 2, bei dem ¢, fiir alle » > 1 gleich 1
wird, in (10) das Gleichheitszeichen.

Im Fall x<<1 wéhle man

0 tir 0<v <4
—1—1fy fir v =14,+1
— 1y fir Ay, + 2 <v < Ay
v 241y fir »v=124,,+1
+ 1y fir Ay, +2 <9 < Ay
—2—1pp fir »=124,,.+1.

Dann wird
0 fir 0<v<i
0, =3 —1 fir A, ,+1<rv<24,, (m=1,2,...)
+ 1 fiir Ao +1<v< Ay »

so dafl unsere Beispielreihe wegen lim | 6, =1 gewill die Voraus-
m—»oo

setzung von Satz 2 erfiillt. Uber die positiven Zahlen 1, wird dabei
vorausgesetzt, dafl sie monoton iiber alle Grenzen wachsen und wiederum
die Bedingungen (38) und (39) erfiillen.

Der Nachweis dafiir, daB bei unserem Beispiel in der Ungleichung (10)
das Gleichheitszeichen eintritt, folgt denselben Uberlegungen, welche in
Paragraph 1 zum Beweis der Ungleichung (40) fiihrten. Es kann hier
darum darauf verzichtet werden.

Bei der Untersuchung des Verhaltens von C;(x) in Abhingigkeit von
& (0<a<oo) kann man sich wegen g¢,(x) =g;(x) fir «>1 und
fie(1) = f3(1) mit der Betrachtung von

fo@) =fi)+2(1—a) in O0<a<l (56)
begniigen. Wegen (42) findet man fiir die Ableitung
filw) =1u {1 —2k (1 —a)e-2 4 2(k —1) (1 —a)¥} . (57)
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Durch die Substitution z = 1/(1 —a) (l<z<oc) wird

o fy, ()
(I — a)F

Im fraglichen Intervall 0<a<1 bzw. 1<z<oo stimmen also die
beiden Funktionen f,(x) und h(z) im Vorzeichen iiberein. Wegen
R(1) =—1 und A’ (2) =k (2% —2) fallt h(z) fir k>1 zunichst

k—1
monoton bis zur Stelle des einzigen absoluten Minimums bei z = V2

und wichst dann monoton, um schlieBlich fiir geniigend groBe z positiv
k—1

zu werden. Wie man leicht sieht, ist h(z) sicher fiir alle z> V2k
k—1

positiv. Zwischen 1 und V' 2k liegt also gewil die einzige in unserem

Intervall befindliche Nullstelle z,, von h(z), welcher die zwischen 0 und
k—1

1 —1/V2k gelegene Nullstelle &, von f.(x) entspricht. Zu diesem
Wert «, gehort das absolute Minimum
T = f k ((xk) ’

welches den giinstigsten Schrankenwert in Satz 2 liefert.

=2k —2kz+2(k—1)=h(z) .

Fir k=1 wird () = —2 , f,=logllx +1, 7, =f(1)=1,

Fir k=2 wird 2, =2+ V2, o« =1V2, 1,=f (V2
—1llog2 4+ 1 =1,346573...,

Fir k =3 wird 2 =2, a=1, w=fi(})=log2+ 3§ =1,443147 .

Nun untersuchen wir noch das Verhalten der Konstanten t, bei wach-

sendem k. Weil 7,_, = f._;(x;_;) das Minimum bei festem &k darstellt,
gilt
S () > frm1 (¥3—1) - (58)

Die Stelle «,,, an der das Minimum von f;(x) erreicht wird, geniigt nach
(67) der Gleichung

2(1 — o)l — 2(1 — o) = 1k {1 — 2(1 —oz)*} . (59)
Aus (58) folgt
Tp — Tie1 = S () — Sima 01) > Fr (o) — froa (o) -
Nach (56) ist nun weiter
Jre (o) — Fra (o) =f}ﬁ () —Fra (o) + 2(1 —og)f —2(1 —o)*2 .

Hier aber muBl die rechte Seite den Wert Null haben, weil nach der
Rekursionsformel (22) und der Gleichung (59) die Relation
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Fe(o) —feoa(oa) = Vk{l —2(1 —ap)*} =2 (1 — o)t — 2(1 — oap)*

gilt. Folglich wachsen die Konstanten 7, mit ¥ monoton. Die Folge der
7, ist aber auch beschrinkt. Denn nach Paragraph 1 (44) und (55) ist
frl@)<f*(B) + 2, insbesondere 7,<f*(8,) + 2, wenn o =1 —e Pk

gesetzt wird. Die Folge v, mufl also einen Grenzwert lim 7, = 7% be-
k—>o0
sitzen. Wir werden gleich sehen, dafl 7% mit der in Satz 2 auftretenden

Konstanten 7 tibereinstimmt. ~
In Paragraph 1 hatten wir unter der Voraussetzung «<1 — e Wk
die Abschitzung fiir groQle k

(1__ W) [f*(ﬂ) m-ﬂ—ll/—i} <fr (&) <f*(B)

gefunden. Wihlt man jetzt & =a(k) =1 —e P®/* derart, daB (k) fiir
k —oo gegen einen endlichen positiven Grenzwert f konvergiert, so
strebt f; (x) = f*(B) und 2(1 —a)* — 2eR also fi(x) = f*(B) + 2P
= f(#). Bedeutet f, die einzige positive Wurzel der Gleichung

1 —2eB(14+8)=0
und wird noch «, =1 — e P¥* gesetzt, so strebt fir & —oco wegen
apfilo) =1 —2e P8 (1 4 B) +0(1) =0

zunichst g, — B, und daher auch 7, =f, (x,) = f(f,) = 7.

Demnach ergibt sich wieder durch den Grenziibergang k —>oco aus
den Tauberschen Konstanten 7, der Cesaroschen Mittel dle Taubersche
Konstante v der Abelschen Mittel.

§ 3. Folgerungen

Fiir reelle Reihen setze man

lms, =8, lims, =s , S —s =80 |,
as . k

hm C(nk) =0k , ].E_n G(n) =Cp , Ck — Cg ZQk ’
lim C, =0C,, lime, =c,, C, —c, =290, ,
k—>o00 k—>o0

lim a(zx)=4 , lima(x)=a , A —a =8, .
z—>1-0

Bei diesen Werten soll auch 4-co zugelassen werden. Dann hestehen
ganz allgemein die Beziehungen
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8¢ < <c, <a<A4<C,<0,<0,<8,
0,50, <92, <00 (1<I<k) . (60)

Umgekehrt kann man nun unter Hinzufiigung einer geeigneten Neben-
bedingung die Hauptlimites (bzw. das Oszillationsintervall) der Teil-
summen durch die Hauptlimites der C,-Mittel und die Hauptlimites
Cesaroscher Mittelbildungen niederer Ordnung durch diejenigen hoherer
Ordnung abgrenzen.

Nach Satz 1 bzw. Satz 2 hat man ndmlich bei gegebenem &>0 fir
hinreichend grofle n bzw. p, etwa fiir n>N, p> P die Ungleichungen

8, —Ky(6) —e <P <s,+ Ky(x)+¢e, n=[xp], (61)

e —Ky(x) —e<s, <P+ K(x)+e, p=[nx], (62
wenn zur Abkiirzung

K,@®) =Ct(x)lim|ma,| bzw. =C,()lim]|s, |,

K, =1 lim|ma,| bzw. =7, lim|d,]|,

K, () =f*(p) lim|ma,| bzw. =f(f) lm]|d,],

K, =r1t* lm|ma,| bzw. =7 lim|é,|

gesetzt wird.
LaBt man hier in (62) n eine solche Teilfolge ¢,, bzw. t,, der natiirlichen
Zahlenreihe durchlaufen, daB} s, — S bzw. Sy —> 8 strebt!!), so gibt es

sicher einen Index M derart, da ¢,,>N, >N und
8, >8 —¢& und P<Cp+e fir pz[—tﬂ]>P ,

t
bzw. s, <s+¢ und P >c,—e  fiir p:l—é”;]>P

gilt, sobald nur m>M gewihlt wird. Daher gewinnt man aus (62) die
Abschétzungen

C, —Kp(x) —3e<s<8<C,+ K, (x)+3¢.
Verfihrt man mit (61) ganz entsprechend, so findet man
s— K, () —3e<¢, <C, <S8+ K, (x)+3¢.

Wegen der Willkiirlichkeit von ¢>0 erhélt man hiernach bei der giin-
stigsten Wahl von « die Beziehungen

11) S und s als endlich vorausgesetzt; der Fall § = oo bzw. 8§ = — oo ist trivial.
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s —K,<e¢, <0, <8 +K,, 2,<2 +2K,, (63)

Verwendet man gleichzeitig die Relation (63) mit dem Index %k und die
Relation (64) mit dem Index <k oder umgekehrt, so findet man

o;—(K+-K) <¢, <0, <O, +H(K+Ky), 2, <02,42(K,+K,), (65)
c— (K +K;) <c¢, <O, <C,+(Ky+K;), Q <Q,+2(K,+K,). (66)

Die Beziehungen (63), (65) sind vom direkten Typ, (64), (66) dagegen
vom Umkehrtyp. Fir K, = 0 bzw. K, = 0 liefern (63), (65) einen Teil
der Ordnungsrelation (60). Da die Grenzwerte C, und c_ existieren,
weil die Folge C, monoton fillt, die Folge ¢, monoton wichst und iiber-

dies der Grenzwert lim K, = K, = K, vorhanden ist, bestehen die
k—>c0

Ungleichungen (63), (64) auch noch fiir den Index k£ = oo. Daraus folgt
fir K, =0 und K, =0 sofort, daB neben der direkten Ordnungs-
relation '

s<¢g<c¢,<c,<C, <0, <(C; <8 (67)
auch die Umkehrung

Cpw ¢, <, <880, L0, <0, (68)
also
8 =€, =Cp =0Cqy , B=0,=0,=0, , B=0 =0, =0,

gilt. Wir kénnen daher das wesentliche Ergebnis durch folgende kurze
Formulierung wiedergeben.

Satz 3. Geniigen die Glieder einer Rethe X a, der Tauberschen Bedin-

gung 1

na,=o0(l) oder é,= f‘va,,:o(l) ,

n+19

8o stimmen die Hauptlimites (bzw. das Oszillationsintervall) threr Teil-
summen mit den Hauptlimites (bzw. dem Oszillationsintervall) ihrer Cesaro-
Mittel (der ganzzahligen Ordnung k,1 <k << oo) diberein.

Dieses Ergebnis stellt erstens eine Verallgemeinerung des Permanenz-
satzes des C,-Verfahrens dar, der darin unter der weiteren Voraus-
setzung 2 =0 bzw. 2, =0 mit der Behauptung £, =0 bzw.
0Q_ = 0 enthalten ist, und zweitens eine Erweiterung des Tauberschen
Umkehrsatzes fiir das O, -Verfahren, der sich als Spezialfall unter der
weiteren Voraussetzung 2, =0 bzw. Q_, =0 mit der Behauptung
Q =0 ergibt.
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Zum SchluBl wollen wir noch zeigen, dafl sich mit Hilfe eines leicht
beweisbaren Satzes von Ramaswami®) und einfacher Abschitzungen
fiir die Differenz (s, —a(x)), — die nicht die allgemeinen Uberlegungen
des Satzes I bzw. II erfordern, — sowohl die von Herrn Hadwiger her-
riihrenden Erweiterungen des Abelschen Stetigkeitssatzes und des
Tauberschen Satzes fiir Potenzreihen als auch eine Verallgemeinerung
des Satzes von Frobenius aus den entsprechenden Séatzen fiir das C-Ver-
fahren gewinnen lassen.

Nach dem Satze von Ramaswami gilt ndmlich ¢, =a, C, =4,
sobald nur die beiden Grenzwerte c_ , C, beide endlich sind. Ist dies der
Fall, so folgt wegen K = K, aus (63) und (64)

s — K, <a<4<S+K,, ,<2 +2K,,
a—K, <s<S<A4+K,, Q <Q2,4+2K,
und aus (65) und (66)
¢(;— (K +K)<a <4 <C,+(K +K), 2,82, +2(K,+ K))
o —(K, +K)<e¢ <0 <A+K, +K), 2 <Q,+2(K,+K)) .

Fir K, =0 und K, =0 ergeben sich hieraus einerseits die Ord-
nungsrelationen

s<a<A<S, ¢g<a<4d<LC(C, Q,<8$£, R, ,
andererseits die Umkehrungen
a<s<S8S<4, a<ec<C(C, <4, <Q,, 2,<2,,
so daf3

s=¢,=a, S8=0,=4, 22=02,=0, (69)
folgt. Damit haben wir den

Satz 4. Geniigen die Glieder einer Reihe X a, der Tauberschen Bedin-

gung 1 n
na,=o0(l) oder 5n=m§va,=o(1) (70)

und sind thre C,-Mittel hinreichend hoher Ordnung beschrinkt, so stimmen
die Hauptlimites shrer Teilsummen bzw. C,-Mittel (1 < k < oo) mit den
Hauptlimites threr Abelschen Mittel iiberein.

Im Fall des erweiterten Abelschen Stetigkeitssatzes bzw. des Satzes
von Frobenius setzen wir s, S bzw. ¢;, C, als endlich voraus. Wegen (70)
und (63) sind dann auch ¢, und C, beide endlich.
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Im Fall des Tauberschen Satzes fiir Potenzreihen hat man wegen
|na,|<M?*?) in geldufiger Weise

| ® ¥
lsn—a(x)|<Mi1§;;—(l——xv)_|_n§1_v_] .

Setzt man hier x =1-—1/(n 4+ 1), so wird nach der Bernoullischen
Ungleichung «*>1 —/(n 4+ 1) also

Y xntl 1

n—+1 +n—|—1 l1—2x

Aus der Beschrinktheit der Abelschen Mittel und der Bedingung
| na, | <M folgt daher zunidchst die Beschrinktheit der Teilsummen,
daraus aber wieder nach (63) die Endlichkeit von ¢, und C_ . Nunmehr
ergeben sich auf Grund des Satzes von Ramaswami die Identitidten (69).

Der Satz 4 stellt sowohl eine Erweiterung des Abelschen Stetigkeits-
satzes 7) (Voraussetzung 2 = 0, Behauptung £, = 0) und des Satzes
von Frobenius (Voraussetzung 2, = 0, Behauptung £, = 0) dar als
auch eine Erweiterung des Tauberschen Satzes ?) fiir Potenzreihen (Vor-
aussetzung 2, = 0, Behauptung £ = 0).

| <21

12) Fir die Bedingung Jy, = o(l) verlauft die entsprechende Abschiétzung von
8p — a(x) ganz dhnlich.
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