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Ûber Taubersehe Konstanten
bei Cesàroschen Mittelbîldungen

Von V. Gabten in Tiibingen

Einleitung

Herr H. Hadwiger1) hat als erster die intéressante Bemerkung ge-
macht, daB sich sowohl der klassische Abelsche Stetigkeitssatz als auch
seine ebenfalls schon klassische Umkehrung von Tauber in einer einzigen
Ungleichung einheitlich zusammenfassen lassen, die noch unter allge-
meineren Voraussetzungen gûltig bleibt. In neuerer Zeit haben sich nun
mehrere Untersuchungen2) mit der Weiterfuhrung dieser Bemerkung
und namentlich mit der Bestimmung der dabei auftretenden absoluten
Konstanten, die von Herrn Hadwiger treffend als Konstanten Tauber-
scher Art bezeichnet wurden, beschâftigt. Als in gewisser Hinsicht ab-
schlieBendes Ergebnis sei hier nur der folgende Satz genannt :

Satz I (von Agnew*)). Es sei /?>0. Dann gilt filr jede unendliche
Beihe E av mit den Teilsummen sn s (n) und reellen oder komplexen
Gliedern, die der Bedingung

lim \mam\ <oo (1)
m—>oo

genûgen, fur die also insbesondere die Potenzreihe
oo

a(x) E avxV

im Einheitskreis konvergiert, die Ungleichung :

]im\a(x) —s(n)\ </*(/8) lim |mam| fur n ->oo bzw. x -> 1—0, (2)

wenn x =exp(—fijn) bzw. n f—fillogx] gewâhlt wird, wobei die
Konstante /*(£) den Wert

1) Siehe das am Ende der Note befindliche Schrifttumsverzeichnis Nr. 3.

2) Vergleiche die im Schrifttumsverzeichnis aufgefùhrten Verôffentlichungen, Nr. 1

bis Nr. 7 und Nr. 10.

8) Vergleiche Schrifttumsverzeichnis Nr. 2.
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dt (3)

besitzt und G die Eulersche Konstante bedeutet. Vberdies ist bei festgehalte-
nem /? der Wert /* (/?) die bestmogliche Konstante in dem Sinne, daji ftir
gewisse réelle Reihen in (2) das Gleichheitszeichen eintritt. Endlich liefert
P =log 2 unter allen Konstanten /* (/?) den gûnstigsten (das heijit klein-
sUn)Wern T*=/*(log2).

Erweitert man in Satz I die Voraussetzung nan =0(1) durch Ein-
fiihrung des Kroneckerschen Ausdruckes

zu an =0(1), — wie dies Herr Wintner zuerst fur den Fall f} 1 aus-
gefûhrt hat, — so erhâlt man den

Satz II5). Wird in Satz I die Voraussetzung (1) durch die Bedingung

lim | am | <oo
m—>oo

ersetzt, so gilt fur n -> oo bzw. x -> 1 — 0 die Ungleichung

Ù^n | a(x) -s(n) \ <f(p) îïn^ | am | (4)
m—>oo

wobei die Konstante den Wert

/(/?) =/*(£) +2 e-0

besitzt. Vberdies wird bei festgehaltenem fi fur gewisse réelle Reihen in (4)
die Konstante tatsâchlich erreicht. Der gûnstigste (das heiflt kleinste) Kon-
stantenwert r =/(/?0) wird fur die positive Lôsung f} /?0 der transzen-
denten Gleichung ep_2(i + p) =o
erzielt.

Die beiden angefuhrten Sâtze liefern also eine Abschâtzung fur die
Abweichung einer Zahlenfolge sn von ihren Abelsehen Mitteln a(x),

4) Der Fall p 1 wurde von Wintner, Hartman und Hadwiger, der Fall /? log 2

von Hadwiger und Agnew untersucht. Agnew behandelte anschliefîend (in Nr. 2 des
Schrifttumsverzeichnisses) die Frage allgemein bei unbestimmt gelassenem Korrespon-
denzparameter f$ > 0.

5) In seiner zweiten Abhandlung erwâhnt Agnew, dafi der hier in Satz II angegebene
Sachverhalt (bei allgemein gewâhltem /? > 0 unter der Voraussetzung, daB der Kron-
eekersche Ausdruck beschrânkt bleibt) von W. E. Barnes in Angriff genommen sei. Bisher
habe ieh aber noch keine diesbezûgliche Verôffentlichung des Herrn Barnes ausfindig
machen kônnen.
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sofern die Variablen n und x in passender Weise durch den Korrespon-
denzparameter fi miteinander gekoppelt werden.

In der vorliegenden Note werden in entsprechender Weise die Ab-
n

weichungen der Folge sn JT av von ihren Cesàroschen Mitteln &-ter
Ordnung (k> 1 ganz) v==0

r(k) _ v a (k) n A (k) _ (V ~~ V + ^\ / /P +
v =o

^ p \!P —v JI \ V

untersucht. Wie zu erwarten, gehen die sich hierbei ergebenden Kon-
stanten r£, rk fûr k ->oo in die Konstanten t*, t der Abelschen Mittel
liber. Man gelangt nâmlich zu folgendem Ergebnis :

00

Satz 1. Es sei oc>O. Dann gilt fûr jede Reihe £ av mit den Teil-

summen sn und reellen oder komplexen Gliedern, die der Bedingung (6)

lim | m am | <oo genûgen, die Ungleichung
m—>oo

^ — sn\<C*k(ot) lim \mam\ fur n -> oo bzw. p -> cx> (7)
m—>oo

wenn p [n/oc] bzw. n [oep] gewàhlt wird und die Konstante C\{<x)
den Wert

/;(«)=jV-*)*4+J<1-<1-*«-t fûr *^1
ldt 1t °

dt (8)

1 f 0 C

besitzt, also von der Wahl der (an) bzw. (sn) nicht abhangt. Vberdies laflt sich
bei festent ot>0 die Konstante C*k{(x) nicht verbessern, da in der
Ungleichung (7) fûr gewisse réelle Eeihen das Gleichheitszeichen eintritt. Bei

k _
festem k > 1 liefert oc oc\ 1 — 1/1^2 den gûnstigsten (das heifit
kleinsten) Wert r*k =fk*(ocl). Endlich gilt lim r*k t*.

k—>oo

Ersetzt man hier wieder die Voraussetzung nan =0(1) unter Her-
anziehung des Kroneckerschen Ausdruckes

^ 7TT i vav sn - <W («o 0, n 1, 2,...
n -f l v=1

durch die allgemeinere Bedingung ôn =0(1), so erhàlt man den fol-
genden

Satz 2. Wird in Satz 1 die Voraussetzung (6) durch die Bedingung

ïïm|(5m|<oo (9)
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ersetzt, so gitt fiir n ->oo bzw. p-yoo die Ungleichung

n^ |cf -Sn\<ct(«) ii^ | ôm|

wobei die Konstante Ck(<x) denWert

ôm
m—>oo

*

besitzt. Vberdies lafit sich bei festent &>0 die Konstante Ck((x) nicht
verbesserriy da in der Ungleichung (10) fur gewisse réelle Reihen dasGleich-
heitszeichen eintritt. Der gûnstigste (das heifït hleinste) Wert rk f(<xk)
uÂrd bei festem Je > 1 fur die positive Lôsung oc ock der algebraischen
Gleichung

1 — 2k(l —tx)*-1 + 2(k — 1)(1 — oc)k =0
erreicht. Endlich gilt lim rk t.

£->oo

Aus diesen Sâtzen 1 und 2 werden zum SchluB noch einige Folgerungen
fur réelle Reihen gezogen. So ergeben sich aus den Ungleichungen, die
mit den direkten Sâtzen zugleich auch ihre Umkehrungen enthalten,
eine Erweiterung des Permanenzsatzes und eine Erweiterung des Tauber-
schen Umkehrsatzes fur das Ofc-Verfahren (1 < h <oo, ganz). Mit
Hilfe eines Satzes von Ramaswami6) gelingt es ferner, aus diesen fiir
Cfc-Verfahren gûltigen Sâtzen durch den Grenzûbergang h -> oo ohne

Benutzung der Sâtze I, II die entsprechenden Sâtze fur Abelsche Mittel
herzuleiten, nâmlich einerseits eine Erweiterung des Abelschen Stetig-
keitssatzes 7) und des Satzes von Frobenius, andererseits eine Erweiterung

des Tauberschen Satzes 7) fiir Potenzreihen8).

•) Vergleiche Schrifttumsverzeichnis Nr. 8 und Nr. 9, S. 371/372.
7) Dièse Erweiterung rûhrt — fur Reihen mit komplexen Gliedern — bereits von Herrn

Hadwiger (vergleiche Schrifttumsverzeichnis Nr. 3) her.
8) Nach Fertigstellung dieser Note machte mich Herr Hadwiger freundlicherweise

auf die vor kurzem verôffentlichten schônen Untersuchungen von Herrn H. Delange
(vergleiche Schrifttumsverzeichnis Nr. 10) aufmerksam, in denen dasselbe hier nur im
Spezialfall der Cjc -Mittel behandelte Problem (die Entwicklung der elementaren Umkehr-
sâtze als Korollare gewisser allgemeiner Ungleichungen, die absolute Konstanten
enthalten) ganz allgemein, sowohl fur allgemeine Limitierungsverfahren als auch fur allge-
meine Konvergenzbedingungen, in umfassender Weise dargestellt wird. In der zweiten
Mitteilung seiner Untersuchungen behandelt Herr Delange sogar die entsprechende
Fragestellung bei den tiefer gelegenen Umkehrsatzen. Die vorliegende Note dûrfte aber
vielleicht trotzdem erstens als konkrete Illustration zu den sehr allgemein gehaltenen
Untersuchungen von Herrn Delange und zweitens mit Rûcksicht auf die besondere Natur
der in Paragraph 3 enthaltenen SchluÛfolgerungen einiges Interesse beanspruchen.
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§ 1. Beweis des Satzes 1

Den Ausgangspunkt fur den Beweis des Satzes 1 bildet der

Hilfssatz 1: Sind die (reellen oder komplexen) Glieder einer nicht not-
wendig lconvergenten Reihe Zav der asymptotischen Beschrânkung

v\av\<M (v l,2,...) (11)

wzterworfen, so gibt es zu jedem Wertepaar (p,n) eine beste (das heiflt
kleinste) von der Wahl der av unabhàngige Schranke Cl (p, n) derart, dafî
die Abschâtzung

\of — sn\ <M.C*k(p,n) (n l,2,...; p l,2,...) (12)

gilt, und es ist
iK(P>n) far n<p,

Ck(p,n) \
\ G*k (p,n) fur n>p,

wenn zur Abkilrzung

K(p,n)= z ^v + ia

gesetzt wird.

1. Fur n <p ist nàmlich nach (5)
p n

cp sn — 2 Apv av 2J (1 Apv) av

Wegen

0<A$<l fur v l,2,...,p
und der Voraussetzung (11) folgt hieraus unmittelbar

\cf-sn\<MFl(p,n)
2. Pur n > p hat man

v=p+l v—1

und aus denselben Grunden wie soeben

n
9) S bedeutet fur n < m die leere Summe.

m
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Das Gleichheitszeichen erhâlt man in der Abschàtzung (12), wenn man
im Fall n > p das Beispiel a0 0, av l/v fur v > 1 wàhlt, im
Fall n<p aber das noch von n abhàngige Beispiel av a(vw) mit

!0
fur v 0

— l/v fur 1 < v < n
+ l/v fur n + 1 < v

betrachtet.

Hilfssatz 2 : Fur die in Hilfssatz 1 auftretenden Schranken (13) gelten die
Rekursionsformeln

Fl (p, n) F*k_, (p, n) + I {1 - 2^[<f>+1} - _L_

11
Setzt man nàmlich

(15)
mit

-^)7. <s?>= i -
so hat man zunàchst wegen

»^^) (16)

_ A(k)

i 4*> (n < p) (18)

nach (16)
x 1

4- r yl(*-l)___JL_

und weiter nach (17)
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und endlich nach (18)

Verwendet man die Formeln (19), (20) in (15) und beachtet, daB

Sf~x) ist, so ergeben sich die Rekursionsformeln (14).
Da fur das Folgende das infinitàre Verhalten der Schranke C*k (p, n)

fur p -> oo bzw. n -> oo interessiert, geben wir zunâchst fur die den
Summen F\(p,n), G\(p,n) nachgebildeten Integralausdrûcke

die entsprechenden Rekursionsformeln.

Hilfssatz 3 : Fur die in Satz 1 (8) auftretenden Schranken fl und g*k

gelten die Rekursionsformeln

fl M =/**_! (*) + i {1 - 2 (1 - oc)*}

1
(22)

Denn die den Summen aS(/) analog zu bildenden Intégrale J\k) befolgen
entsprechende Rekursionsbeziehungen wie (19) und (20).

Nach diesen Vorbereitungen gelingt es leicht, die Schrankenwerte
C*k(p, n) fur groBe p bzw. n, wenn nâmlich p und n beide gleichzeitig
->oo âtreben, so daB der Quotient n/p einen Grenzwert ^x>0 besitzt,
durch die entsprechenden Integralausdrûcke (21) abzuschàtzen.

Hilfssatz 4: Filr ein ot, das der Bedingung

n n +
p+1 p

genilgt, gelten bei p ->oo bzw. n ->oo die Abschàtzungen

(23)

—1> n^P
(24)

n>p (m Min (p, n))
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Der Beweis hierfûr ergibt sich leicht durch vollstândige Induktion10).
Fur k 1 hat man nâmlich nach (13) wegen A^l 1 —v/(p + 1) zu~

nàchst

2n

und naeh (21)

J* (<%) log 1/oc — 1 + 2oc g* (oc) log oc + 1

Gelâufige Integralabschàtzungen fur die Teilsummen der harmonischen
Reihe fûhren daher auf die Beziehungen

Fï (P> n) =/* (oc) + O(l/m) O* (p, n) g* (oc) + O(l/m) (25)

Die Behauptung ist also fur k 1 richtig. Angenommen, gie sei bereits
fur fe 1, 2,..., Z — 1 bewiesen, so gilt insbesondere ftir Z > 2

¦F*_i(P> w) =/*-iW+O(Vw) ' ^*-i(P> w) ==flr*-i(a) + O(l/w) (26)

Auf Grand der Rekursionsformeln (14) und (22) und der Induktionsvor-
aussetzung (26) erhâlt man

1

und

Da nun fur n <p wegen

und (23) die Abschâtzung

10) Man kann natûrlich auch fur k> 1 die in F%, 0| auftretenden Summen /Sj*^ in

ganz âhnlicher Weise, wie es hier fur k 1 geschieht, direkt durch die entsprechenden

Intégrale J^ abschàtzen, was insbesondere im Fall nicht ganzzahliger Ordnungen k

nôtig wûrde.
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(28)

gilt, sind damit die Formeln (24) bewiesen.
LâBt man nunmehr bei festem oc>0 erstens dem Index n die Zahl

p [nioc] entsprechen, so wird offenbar n/(p + 1)<# < n/p \ ordnet
man zweitens umgekehrt dem Index p die Zahl n [oc p] zu, so wird
n/p <#<(?& + I)IP- Beidemale erfûllt oc also die Bedingung (23).

Die Fallunterscheidung oc<l, oc 1, oc>l entspricht, wie man
leicht sieht, fûr hinreichend groBe Werte von n bzw. p der Fallunterscheidung

n<p, n p, n>p.
Benutzt man nun die in Hilfssatz 4 angegebenen Abschâtzungen fûr

die jeweilige Schranke C*k(p,n) und vollzieht in der Ungleichung (12)
des Hilfssatzes 1 den Grenzûbergang n -»oo bzw. ^-^oo, so ergibt
sich der

Hilfssatz 5 : Unter der gleichen Voraussetzung wie in Hilfssatz 1 gilt die
Limesaussage

lim | c(p*> — sn | < M C\ (oc) fûr n-+oo, p= [n/oc] ;

bzw. filr p -> oo, n [oc p] (29)
wobei

fûr 0 < oc < 1

ist und fl, g*k die in (21) angegebene Bedeutung haben.

Wir gehen nun zum Beweis des Satzes 1 ûber. Zunàchst prûfen wir,
daB in (29) rechter Hand die Konstante M durch den Hauptlimes
l* lim m | am \ ersetzt werden darf, womit dann die Ungleichung (7)

m—>oo

des Satzes 1 sichergestellt ist.
Nach der Voraussetzung des Satzes 1 gibt es zu jedem beliebig vor-

gegebenen e>0 einen Index ne derart, daB

v | av | <Z* + e fûr aile v>n6

ausfâllt. Setzt man nun

*(0 fûr 0 <v <ne
ap ~\av fûr ne + 1 < v

so gilt
v | a*v | <Z* + e fûr aile y > 0 (30)

Um die Abhângigkeit von den Reihengliedern av zum Ausdruck zu
bringen, schreiben wir vorûbergehend ausfûhrlicher ^(a^ fûr cjf)
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und sn(av) fur sn. Fur n>ne, p>ne, n <p oder n > p erhalt man
dann wegen des linearen Charakters der Mittelbildung

I c?> (av) - sn (av) | < | cf (a*v) - sn «) | + | c<*> (av -O - sn (av -av)\ (31)

Da nach der Voraussetzung des Satzes 1 ferner eine positive Konstante M
existiert derart, dafi v \ av \ < M fur aile v > 0 gilt, kann man den
zweiten Summanden auf der rechten Seite der Ungleichung (31) leicht
so abschâtzen :

| c<?> (av - a*v) - sn (av -a*v)\<M£(l- A%) 1/v M B™ (ne)

Nach (16) und (18) wird aber

Ie) J8<w> (n€) + I (1 - A%^) - j±-j (l > 2) (32)

und nach (27) ist hierbei

pns+l- y p+lf - p+l
Durch Aufsummieren von 1=2 bis l k erhàlt man aus (32) daher

| (fc i)

Wegen .4^ 1 —r/(p + 1) findet man aber i?(1) ns/{p + 1)> folglich

kn°+^V (34)

und somit schliefllieh

=o{^ (35)

Der Grenzubergang n ->oo mit der Zuordnung p [n/oc] bzw. p ->oo
mit n [&p] in (31) liefert nun, da sich bei festem e>0 und somit
festem n£ der Hilfssatz 5 wegen (30) mit l* + e an Stelle von M auf
die Reihe £a*n anwenden làfit, mit Rucksicht auf (35) zunâchst

îîm | c»> (aF) - «, (a,) | < îîin | c</> «) - *. (aj) | < (l + s) C*k («) (36)

Weil dièse Ungleichung fur jedes beliebige e>0 gilt, die linke Seite

jedoch von e gar nicht abhângt, muB auch die Ungleichung (7) des

Satzes 1 gelfcen, die fur e 0 aus (36) hervorgeht. Damit ist der erste
Teil des Satzes 1 bewiesen.
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Um weiter zu zeigen, daB die Konstante C*k(oc) sich nicht verbessern

lâBt, genûgt es im Fall oc >l das Beispiel a0 0, av l/v fur v > 1

zu betrachten. Im Fall oc< 1 wâhle man

0 fur 0 < v < Ax

— 1/v fur K*r-i<v<l*m (m =1,2,...) (37)

+ 1/v fur A2m O < A2w+1

wobei (Xm) eine Folge positiver, uber aile Grenzen wachsender Zahlen
bedeutet, fiir die noch

r14"1 > — > 1 fur ra>ma (38)
K oc

und

-y-^—>0 fiir m->oo (39)

gilt.
Die Beispielreihe (37) erfûllt die Voraussetzung des Satzes 1, weil hier

Km | v av | =1 ist. Offenbar genugt es nun zu zeigen, daB bei festem
gegebenem oc (0<<%<l) fur unser Beispiel die Ungleichung

lim I Cp Sn \ ^IJkK^) V*u/

besteht, wenn n bzw. p jeweils nur eine passende Teilfolge der natiir-
lichen Zahlenreihe durchlàuft und p [n/oc] bzw. n [poc] ist.

Zum Beweis von (40) wâhlen wir n A2m mit m>mJ2, so daB

wegen p [n/oc] gemâB (38) p < A2w/^<A2m+1 wird, und bilden

Die Differenz wird offenbar dadurch verkleinert, daB man auf der rechten
Seite in der dritten Summe fur jeden Wert von /u das Minuszeichen ver-
wendet. Verkleinert man nun weiter, indem man bei der so entstandenen
Summe

^2m-i 1

- s (i-42>|
die untere Summationsgrenze durch 1 ersetzt, und nimmt man dièse
Summe gleich zweimal, so kann man dafiir zum Ausgleich in der zweiten
Summe rechter Hand den Index v von 1 anstatt von X2m__r + 1 an laufen
lassen. So erhâlt man

v=n+l

21 Commentarii Mathematici Helvetici



oder in der Bezeichnungsweise von (13) und (32)

c<f> -an > F*h(p, n) -
Nach (34) gilt die Abschàtzung

also nach (39) B{k) (X2m^i) =o(l) fur m-»oo. Damit ist zunâchst ge-
zeigt, daB

(j ~~~~ S ~^> F It) Tll ~~

und nach dem Hilfssatz 4, (33)

ist. Fur m -> oo folgt hieraus die Limesaussage (40).
Es bleibt lediglich ûbrig, nachzuprûfen, daB man eine den obigen

Forderungen geniigende Folge Xm finden kann. In der Tat braucht man
nur Xm m! zu wâhlen.

Bisher hatten wir den Zuordnungsparameter a fest gelassen. Von
besonderem Interesse ist es aber, jetzt den Verlauf der Funktion C\((x)
in Abhângigkeit von oc (0<oc<oo) zu untersuchen. Weil die Ableitung

fï(*) =1/«{1-2(1-*)*} (42)

negativ, gleich Null oder positiv ausfàllt, je nachdem 0 <<x <o?k, oc oc*k

k

oder oc>ocl ist, liegt bei oc oc*k 1 —l/]/2 das einzige absolute
Minimum vonfl (oc). Da hiernach insbesondere fl (oc*k) <fl 1 anderer-
seits fl(l) gl(l) ist und g*k(oc) fur oc > 1 monoton wàchst, liefert
die Wahl oc <x*k fiir den Zuordnungsparameter die beste, das heiBt
kleinste Konstante

0<a<oo

Ofifenbar wird (vgl. (8)) gl(oc) also Cl (oc) wie log oc unendlich fur oc -»oo
und fl (oc) also Cl (oc) wie log 1/oc unendlich ftir oc -> 0. Aus der Dar-
stellung

* 1 * 1 -2(1 -oc)v
oc v__i v

ergibt sich speziell

cX-

î («) ]ogl - -H. + 6« -
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Fur die Konstanten rk findet man wegen

l-«î l4-r und L_=*y12^JL(1

die Darstellung kv
- " *-i l _ 2-i-

daher speziell

T* log2 =0,693147

t* log (2 + 1/2) + 1 — 1/2" 0,813732

r* log (2 + fï+ f2) + | —1^4 — 1 1^2 0,86106...

Endlieh untersuchen wir noch das Verhalten der Konstanten rk bei
wachsendem Index k. Die Rekursionsformel (22) liefert mit <x <xl

wegen 2(1 —oc*k)k — 1 die Beziehung fl(a*k) ft-i&l), da aber

/jfc-i^*)^/*-!^*-!) ^> ë^ a^so ^^^-î» ^as nei^ (ile Konstanten
t^ wachsen mit k monoton.

Um fl(oc) lur &->oo nach oben abzuschatzen, fuhre man in der In-
tegraldarstellung (8) von fl(a) die Substitution

1 —t =e-wlk 1 — (x =e~m
aus und setze zur Abkurzung

0(, xe~x x

So erhalt man

Wegen ea!>l + x gilt fur beliebige a; die Absehatzung Q(x)<l und
daher 00 p

-^dfi;+ j -—dw=f*(P) (44)

0 0

Zufolge der Integraldarstellung der Eulerschen Konstanten
1 00

J~*
1 p—W /» p—W

— dw- dw (45)
w J w

0 1

stimmt die soeben in (44) eingefuhrte Sehranke /*(/?) tatsaehlieh mit
der in Satz I (3) bei den Abelschen Mitteln auftretenden Konstanten
ùberein.
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Fur oc o?h wird /? f}k log 2, also gilt

ï î î 2) t
Da hiernach die monoton wachsende Folge (ri) eine von k freie obère
Schranke besitzt, mufi jedenfalls der Grenzwert lim ri rr vorhanden
sein. k~>cc

Zur Bestimmung des Grenzwertes rf schâtzen wir jetzt fl((x) nach

unten ab, setzen dabei allerdings voraus, daB oc < 1 —e~ll}/k bzw. /? < Vk
bleibt, was insbesondere fur oc o?k wegen fik log 2 sicher zutrifft.
Nun ist fur x<l stets ea;<l/(l—x) und danim Q(x)>l—x. Hier-
mit wird nach (43)

0

*
1 - e~u

00

>

und wegen

weiterhin

Wàhlt man jetzt oc =oc(k) derart, daB fi(k) k log 1/(1 —oc) fur k -> oo

gegen einen endlichen positiven Grenzwert p konvergiert, so folgt aus
(44) und (45) lim /J (oc (k)) /*(j8). Fur *fc 1 — c~1/fc folgt insbe-

&->oo

sondere lim/^(âfc) =/* (loge). Mit ock 1 —2~1//f ergibt sich ganz
speziell *~^°°

T/ T*=/*(l0g2)
Somit geht fur k ->oo aus den Tauberschen Konstanten ri der Cesàro-
sehen Mittel die Tauber^che Konstante r* der Abelschen Mittel hervor.

§ 2. Beweis des Satzes 2

Als Ausgangspunkt fur den Beweis des Satzes 2 beweisen wir zunàchst
einen dem Hilfssatz 1 unter den verânderten Voraussetzungen ent-
sprechenden
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Hilfssatz 1°. Mit den reellen oder komplexen Oliedern einer nicht not-
00

wendig konvergenten Reihe £ av bilde man den Kroneckerschen Ausdruck

1 n

Sn= -j- Z vav sn~cn (n=l,2,...; ÔO O) (46)

Unter der Voraussetzung

\ôm\ <M fur aile m 1, 2,... (47)

gibt es zu jedem Wertepaar (p, n) eine beste (das heifit kleinste) von der
Wahl der av unabhangige Schranke Ck(p,n) so dafl die Abschatzung

\cf-sn\<MCk(p,n) (n=l,2,...; p l,2,...) (48)

gilt, und es ist
Fk(p,n) fur n<p
®h (P 9 n) fàr n > P

wenn zur Abkurzung

+ p-k
und

gesetzt wird.

Nach (46) hat man nàmlich

v v v-l v î

woraus

und weiter wegen

i — ^-pv l1"! fc
I ~ -— nvv ~ vou;

mittels partieller Summation

vpv — Zj

folgt.
v==°

Im Fall n<p ist daher
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Der Ausdruck
v - 1 - 4-

ist fur k 1 nicht negativ und fur k > 1 folgt dies sogleich aus

A(k_2) k-1 k(v+l)
vo O und vv+1 — vv A(*v â)

——¦^
; > 0

Wegen (47) kann man also die DiflEerenz (51) wie behauptet abschàtzen.
Im Fall n >p ergibt sich die Behauptung ebenso aus

" &*'

DaB sich in (48) die Schranke Ck(p, n) nicht verbessern làBt, zeigen
die folgenden Beispiele. Im Fall n >p verlangt das Beispiel a0 0,
ax 2, av l/v fur v > 1, bei dem ôv 1 fur aile v > 1 wird, das

Gleichheitszeichen. Im Fall n <p wàhle man hingegen das noch von n
abhângige Beispiel

0 fur v 0

— 2 fur v 1

— l/v fur 2 < < n
2 + l/(rc +1) fur v n + 1

+ 1/p fur v>n + 1 •

Weil bei diesem
— 1

+ 1

fiïr
fur

l <. v <. n
v > n + 1

wird, tritt ebenfalls in (48) das Gleichheitszeichen ein.
Die Schranken Ck (p, n) lassen sich nun auf die Schranken C*k p, n)

von Satz 1 leicht zuriickfuhren. Zunâchst findet man durch Aufspaltung
des Ausdruckes B^'^ l/v in die beiden Summanden

und weiter wegen (17) und (18)

Der Ausdruck in der geschweiften Klammer stellt aber nach (14) gerade

Fl(p,n) dar. Verfâhrt man ebenso mit Gk(p,n), so erhâlt man nach (18)

p+ k
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Der Ausdruck in der geschweiften Klammcr stellt jetzt nach (14) gerade
@t (P » n) dar. Daher gilt der

Hilfssatz 2°. Die Schranken der Hilfssâtze 1 und 1° stehen in dem Zu-
sammenhang :

(52)

Kombiniert man die Formeln (52) mit den Rekursionsformeln (14) fur
F\ und G\, so ergeben sich fast unmittelbar die Rekursionsformeln fur
Fk und Gk.

Hilfssatz 3°. Fur die in Hilfssatz 1° auftretenden Schranken (49) gelten
die Rekursionsformeln

Wegen (52) kann man sogleich die Abschatzungen (24) fur Fl und G\
ausnûtzen. Beachtet man dabei noch die Abschâtzung (28), so erhàlt man
den

Hilfssatz 4°. Fur ein a, das der Bedingung

n n 4- 1
<oc<

p + l p

genûgt, gelten bei p ~>oo bzw. n ->oo die Abschatzungen

2 (i_) +
V ' (53)

Dieselben Ûberlegungen wie bei Hilfssatz 5 gestatten auch jetzt bei ent-
spreehender Zuordnung von n und p in der Ungleichung (48) des Hilfs-
satzes 1° den Grenzubergang n ->oo bzw. p -^oo zu vollziehen. Auf
Grund der Abschatzungen (53) ergibt sieh so der

Hilfssatz 5°. Unter der gleichen Voraussetzung wie in Hilfssatz 1° gilt
die Limesaussage fur n -> oo, p [n/oc] bzw. p -> oo, n [oc p]

foc) (54)
wobei
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Ck (oc) h («) ft («) + 2 (1 — «)* /Br 0 <« <
^fc M — 9k (<*) fàr oc > 1

(55)

is£ wwrf fl, g*k die in (21) angegebene Bedeutung haben.

Âhnlich wie in Paragraph 1 lâBt sich nun der Satz 2 selbst gewinnen,
indem man zeigt, daB in der Limesaussage (54) des Hilfssatzes 5° rechter
Hand die Konstante M durch den Hauptlimes l lim | ôm | ersetzt
werden darf. m->oo

Im Fall oc > 1 erfordert, wie man unmittelbar erkennt, das Beispiel
a0 0, ax 2, av 1/v fiir v > 2, bei dem av fur aile v > 1 gleich 1

wird, in (10) das Gleichheitszeichen.
Im Fall oc < 1 wâhle man

av

Dann wird
0

i

+ 1

0

— 1

2

2

fur
fur
fur

-1/v
— 1/v

J l'U

+ 1/v

— 1/v

0 <
Km—

A

fiir
fiir
fur
fiir
fur
fur

v < A

L+ 1

+ 1

so daB unsere Beispielreihe wegen

0

v
A,

v
A«

v

< v

<v
lim

<

<
<

V < A!

A!+l
+ 2 < v < A2m

Km+l
+ 2 <V < Km+l
Km+1 +

Km (m — 1
î

^2w+l >

1 àm | 1 gewiB

setzung von Satz 2 erfiillt. Ûber die positiven Zahlen Am wird dabei
vorausgesetzt, daB sie monoton iiber aile Grenzen wachsen und wiederum
die Bedingungen (38) und (39) erfiillen.

Der Nachweis dafiir, daB bei unserem Beispiel in der Ungleichung (10)
das Gleichheitszeichen eintritt, folgt denselben Ûberlegungen, welche in
Paragraph 1 zum Beweis der Ungleichung (40) fiihrten. Es kann hier
darum darauf verzichtet werden.

Bei der Untersuchung des Verhaltens von Ck (oc) in Abhângigkeit von
oc (0<oc<oo) kann man sich wegen gk(oc) g\(oc) fiir oc > 1 und
fk(l) =fl(l) mit der Betrachtung von

(") =fl W — <x)k<x)k in (56)

begniigen. Wegen (42) findet man fiir die Ableitung

fk{oc) l/oc {1 —2k (1 -oc)*-i + 2(le -1) (1 —a)*} (57)
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Durch die Substitution z 1/(1—a) (l<z<oc) wird

fk(*l =zk-2kz+2(k-l)[l OC)

Im fraglichen Intervall 0<oc<l bzw. 1 <z<oo stimmen also die
beiden Funktionen /#(#) und h (z) im Vorzeichen iiberein. Wegen

h(l)=— 1 und h1 (z) k (z*-1 — 2) fàllt h (z) fur k>\ zunâchst
k-l

monoton bis zur Stelle des einzigen absoluten Minimums bei z \^2
und wàchst dann monoton, um schlieBlich fur genûgend groBe z positiv

Jc-l

zu werden. Wie man leicht sieht, ist h (z) sicher fur aile z>\^2k

positiv. Zwischen 1 und Vlïk liegt also gewiB die einzige in unserem
Intervall befindliche Nullstelle zk von h (z), welcher die zwischen 0 und

jfe-i
1 —l/V/2k gelegene Nullstelle ock von /%(<%) entspricht. Zu diesem
Wert ock gehôrt das absolute Minimum

welches den giinstigsten Schrankenwert in Satz 2 liefert.

Fiîr jfe l wird h(z)=-z /1=logl/«+l, xx =A(1)
Fiir 4-2 wird z2 2 + V^", oc2 1/V2, r2 -=f2 (1/1/2)

+ 1 =1,346573...
Fur k=3 wird z=2, <x3=|, t8 =/8(J) log 2 +f 1,443147

Nun untersuchen wir noch das Verhalten der Konstanten rk bei waeh-
sendem k. Weil rk_1 fk-ifak-i) das Minimum bei festem k darstellt,
gilt

Die Stelle <xk, an der das Minimum von fk(oc) erreicht wird, genûgt nach

(57) der Gleiehung

2(1 -^-i_2(l -<xkf 1/fc {1 -2(1 -«*)*} (59)

Aus (58) folgt

Nach (56) ist nun weiter

î -/î-i(«*) + 2(1 -«fc)fc -2(1 -*fc
Hier aber muB die rechte Seite den Wert Null haben, weil nach der
Rekursionsformel (22) und der Gleiehung (59) die Relation
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/ÏW-/mW i/M1-2(1-«*)1 2(1-«Jw-2(i-%)1
gilt. Folglich wachsen die Konstanten rk mit k monoton. Die Folge der

rk ist aber auch beschrânkt. Denn nach Paragraph 1 (44) und (55) ist
/* (*) </* (/S) + 2, insbesondere rk </* (Jt0) + 2, wenn oc 1 — e""p/*

gesetzt wird. Die Folge rfc mufi also einen Grenzwert lim xk t° be-

sitzen. Wir werden gleich sehen, daB r° mit der in Satz 2 auftretenden
Konstanten r ûbereinstimmt.

In Paragraph 1 hatten wir unter der Voraussetzung oc<\ —e"1'*
die Abschâtzung fiir groBe k

1 ]
</;(«)</*<

gefunden. Wâhlt man jetzt oc =oc(k) 1 —e~P(k)fk derart, dafi /?(£) fur
k ~>oo gegen einen endlichen positiven Grenzwert fi konvergiert, so

strebt fk((x) ->/*(/») und 2(1 —a)k-^2e~P also /*(*) ->/*0?) + 2e-^

f(fl). Bedeutet /?0 die einzige positive Wurzel der Gleichung

1 — 2e-^(l +/Î) =0
und wird noch afc 1 — e~0A;/* gesetzt, so strebt fiir k ->oo wegen

**/* M =1-2 er** (1 + /S,) + o(l) 0

zunâchst f}k -> pQ und daher auch rk =fk (otk) ->/(^0) t.
Demnach ergibt sich wieder durch den Grenzubergang k ->oo aus

den Tauberschen Konstanten rk der Cesàrosehen Mittel die Taubersche
Konstante r der Abelschen Mittel.

§ 3. Folgerungen

Ftir réelle Reihen setze man

lim sn S lim sw s 8 — s Q

îïm 4?} C* Km c<*> cfc Cfc - cfc Qk

lim C& ==(?«,, lim cfc =cw, 0^ — c^ jO^

lim a(#) J. lim a(x) —a A —a QA
3-»l-0

Bei diesen Werten soll auch ±cx> zugelassen werden. Dann bestehen

ganz allgemein die Beziehungen
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< c, < ck < Coo < a < A < C^ < Ck < Cl < S

(60)

Umgekehrt kann man nun unter Hinzufugung einer geeigneten Neben-
bedingung die Hauptlimites (bzw. das Oszillationsintervall) der Teil-
summen durch die Hauptlimites der C^-Mittel und die Hauptlimites
Cesàroscher Mittelbildungen niederer Ordnung durch diejenigen hôherer
Ordnung abgrenzen.

Nach Satz 1 bzw. Satz 2 hat man nàmlich bei gegebenem e>0 fur
hinreichend groBe n bzw. p, etwa fur n>N, p>P die Ungleichungen

sn — Kk (oc) — e < c(pfc) < sn + Kk (oc) + e n [oc p] (61)

c<*> - Kk (oc) - e < sn < c<f > + Kk (oc) + e p [n/«] (62)

wenn zur Abkiirzung

Kk (oc) Cl (oc) lim \mam\ bzw. Ck (oc) lim | ôm \

Kk ri lim \mam\ bzw. - rfc lim \ ôm\

ka (P) /* (0) lim l^am| bzw. /(fi) lim | dTO |

jf^ =_- t* lim | m am \ bzw. r lim | ôm \

gesetzt wird.
LàBt man hier in (62) n eine solche Teilfolge tm bzw. tfm der natiirlichen

Zahlenreihe durchlaufen, daB stm~> S bzw. st< ~> s strebt11), so gibt es

sicher einen Index M derart, daB tM>N, tfM>N und

o -*>„ ,Cf c iinrl /•(*) *^* /^ J_ c fiir» m I m I ^ Po / ^-> O c UIlll O», <-^. Ky r. ~t~ c 1 U.1 U I I ^> JT

L <* J

«5,/ < s + e und clf * > cfc — e fiir t> I -^-1 > P

gilt, sobald nur m>M gewâhlt wird. Daher gewinnt man aus (62) die

Abschàtzungen

ck — Kk (oc) — 3 e < s < S < Ck + Kk (oc) + 3 e

Verfâhrt man mit (61) ganz entsprechend, so findet man

s —Kk(oc) —S e <ck<Ck<S + Kk(oc) + 3 e

Wegen der Willkurlichkeit von e > 0 erhàlt man hiernach bei der gun-
stigsten Wahl von oc die Beziehungen

11 S und s als endlich vorausgesetzt; der Fall S — oo bzw. s — — co ist trivial.
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s — Kk<ok<Ck<8 + Kk Qk<Q + 2 Kk (63)

ck—Kk<s <8 <Ck + Kk i2 < 42fc + 2 iTfc (64)

Verwendet man gleichzeitig die Relation (63) mit dem Index k und die
Relation (64) mit dem Index l<k oder umgekehrt, so findet man

<ck<Ck< C^K.+KJ, Qk < Ol+2(Kk+Kl), (65)

< ct < C% < C&+(Zfc+Z,), Qx < Dk+2(Kk+Kl). (66)

Die Beziehungen (63), (65) sind vom direkten Typ, (64), (66) dagegen
vom Umkehrtyp. Fur Kk 0 bzw. Kt 0 liefern (63), (65) einen Teil
der Ordnungsrelation (60). Da die Grenzwerte C^ und c^ existieren,
weil die Folge Ck monoton fàllt, die Folge ck monoton wàchst und uber-
dies der Grenzwert lim Kk K^ KA vorhanden ist, bestehen die

Ungleichungen (63), (64) auch noch fur den Index k oo. Daraus folgt
flir Kk 0 und K% — 0 sofort, da8 neben der direkten Ordnungsrelation

s <cl<ck<co0<CO0<Ck<Cl<S (67)

auch die Umkehrung

Coo < ck < ct < s < S < Ct < Gk < Cw (68)
also

s ct ck €„ S =Cl=Ck=Coo £2 =Ql=Qk=Qoo
gilt. Wir kônnen daher das wesentliche Ergebnis durch folgende kurze
Formulierung wiedergeben.

Satz 3. Genilgen die Olieder einer Beihe Ean der Tauberschen Bedin-
Qung x

nan o(l) oder ôn= £vav o(l)
n -f- i i

so stimmen die Hauptlimites (bzw. das Oszillationsintervall) ihrer Teil-
summen mit den Hauptlimites (bzw. dem Oszillationsintervall) ihrer Cesàro-

Mittel (der ganzzahligen Ordnung k, 1 < k < oo) ûberein.

Dièses Ergebnis stellt erstens eine Verallgemeinerung des Permanenz-
satzes des C^-Verfahrens dar, der darin unter der weiteren Voraus-
setzung Q 0 bzw. Ûl 0 mit der Behauptung Qk 0 bzw.
Q^ 0 enthalten ist, und zweitens eine Erweiterung des Tauberschen
Umkehrsatzes fur das C^-Verfahren, der sich als Spezialfall unter der
weiteren Voraussetzung Qk 0 bzw. Qw 0 mit der Behauptung
i2 0 ergibt.
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Zum SchluB wollen wir noch zeigen, daB sich mit Hilfe eines leicht
beweisbaren Satzes von Ramaswami6) und einfacher Abschâtzungen
fur die DifiEerenz (sn —a(x)), — die nicht die allgemeinen Ùberlegungen
des Satzes I bzw. II erfordern, — sowohl die von Herrn Hadwiger her-
rûhrenden Erweiterungen des Abelschen Stetigkeitssatzes und des

Tauberschen Satzes fur Potenzreihen als auch eine Verallgemeinerung
des Satzes von Frobenius aus den entsprechenden Satzen fur das C^-Ver-
fahren gewinnen lassen.

Nach dem Satze von Ramaswami gilt nàmlich c^ a, C^ A,
sobald nur die beiden Grenzwerte c^, C^ beide endlich sind. Ist dies der
Fall, so folgt wegen K^ KA aus (63) und (64)

s — KA<a <A <S + KA QA<Q +2KA
a—KA<s<S<A+KA, Q <QA + 2KA

und aus (65) und (66)

el-(KA+Kl) <a <A <

a-(KA+Kt) <cl<Cî<
Fiir KA 0 und Kx 0 ergeben sich hieraus einerseits die Ord-
nungsrelationen

s <a <A <8 ct<a <A <CX QA<Q QA<Ql
andererseits die Umkehrungen

a <s <8 <A a <ct <Ct<A Q <QA Ql<OA
so da6

s^c^a, S =Ct =A Q =Qt =QA (69)

folgt. Damit haben wir den

Satz 4. Genugen die Glieder einer Reihe S an der Tauberschen Bedin-

nan o{l) oder 6n=—-—rZvav o(l) (70)

und sind ihre Ck-Mittel hinreichend hoher Ordnung beschrànkt, so stimmen
die Hauptlimites ihrer Teilsummen bzw. Ck-Mittel (1 < k < oo) mit den

Hauptlimites ihrer Abelschen Mittel ûberein.

Im Fall des erweiterten Abelschen Stetigkeitssatzes bzw. des Satzes

von Frobenius setzen wir s, S bzw. ct, Ct als endlich voraus. Wegen (70)
und (63) sind dann auch c^ und C^ beide endlich.
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Im Fall des Tauberschen Satzes fur Potenzreihen hat man wegen
| n an | < M12) in gelâufiger Weise

\sn-a(z)\<M\£1-(l-x*)+ Z~\
l 1 v n+l v J

Setzt man hier x — 1 —l/(n+ 1), so wird nach der Bernoullisehen
Ungleichung xv>l —v/(n + 1) also

+În ]

Aus der Beschrânktheit der Abelschen Mittel und der Bedingung
| n an \<M folgt daher ztinâchst die Beschrânktheit der Teilsummen,
daraus aber wieder nach (63) die Endlichkeit von c^ und C^. Nunmehr
ergeben sich auf Grund des Satzes von Ramaswami die Identitâten (69).

Der Satz 4 stellt sowohl eine Erweiterung des Abelschen Stetigkeits-
satzes 7) (Voraussetzung Q 0, Behauptung QA 0) und des Satzes

von Frobenius (Voraussetzung Qt 0, Behauptung QA — 0) dar als
auch eine Erweiterung des Tauberschen Satzes 7) fur Potenzreihen
(Voraussetzung QA =¦ 0, Behauptung Q =0).

12) Fur die Bedingung ôn — o(l) verlâuffc die entsprechende Abschàtzung von
8n — a(x) ganz àhnlich.
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