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Ûber komplex-analytisehe
Mannîgfaltigkeiten mît Kâhlerscher Metrik

Von H. GtiGGENHEiMER, Basel

Einleitung

Eine Mannigfaltigkeit M2m der Dimension 2m, mit komplex-analyti-
scher Struktur, auf welcher eine iiberall regulâre Hermitesche Metrik
ohne komplexe Torsion definiert ist, soll eine Kàhlersche Mannigfaltigkeit
lieilïen. Die differentialgeometrischen Eigenschaften einer solchen
Meirik wurden zuerst von E. Kâhler [11]1) betrachtet. Die wichtigsten
Resultate Kàhlers werden im § 1 dieser Arbeit kurz dargestellt, soweit
sie fur den weiteren Verlauf nôtig sind.

Der Hauptzweck der vorliegenden Arbeit ist die Untersuchung der
Homologie-Eigenschaften geschlossener Kâhlerscher Mannigfaltigkeiten :

ihm sind die Paragraphen 2 bis 5 gewidmet. Es werden also Be-
ziehungen zwischen der lokal-metrischen und der global-topologischen
Struktur auf Kâhlerschen Mannigfaltigkeiten untersucht. Dièse Be-

ziehungen finden ihren Ausdruck in Sâtzen sowohl tiber die additive
Struktur der Kohomologiegruppen, das heifit im wesentlichen liber die
Bettischen Zahlen (Sàtze 5, 13, 14), als auch in Sâtzen iiber die multipli-
kative Struktur des Kohomologieringes, das heifit liber Schnitteigenschaften

in der Mannigfaltigkeit (Sâtze 17, 18).
Die naheliegendsten Beispiele Kâhlerscher Mannigfaltigkeiten sind der

komplexe projektive Raum mit einer elliptischen Metrik und die in
diesem Raum analytisch und singularitâtenfrei eingebetteten komplexen
Mannigfaltigkeiten. Dazu gehôren aile singularitâtenfreien algebraischen
Mannigfaltigkeiten (vgl. [9], Kapitel IV). Daher sind in unseren Ergeb-
nissen Aussagen ùber die Bettischen Zahlen und die Schnitteigenschaf-
ten algebraischer Mannigfaltigkeiten enthalten. Die meisten unserer
Ergebnisse fur diesen Spezialfall werden von Hodge hergeleitet. Die vor-
liegende Arbeit kann als eine Verallgemeinerung und Analyse der Hodge -

1) Zahlen in eckigen Klamrnern verweisen auf das Literaturverzeichnis am Ende der
Arbeit.
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schen Théorie aufgefaBt werden. Dabei legen wir besonders Wert darauf,
bei den Ableitungen nur die Eigenschaften der Kàhlerschen Metrik
zu verwenden. Die Benûtzung sonstiger spezieller Eigenschaften der
betrachteten Mannigfaltigkeiten, etwa topologiseher oder algebraischer
Natur, wird strikte vermieden. Ein solehes Vorgehen ist von A. Weil [16]
angeregt und skizziert worden ; wir iibernehmen von ihm die meisten
Bezeichnungen.

Die ganze Ableitung beruht auf einer Reihe rein lokaler Formeln liber
alternierende Differentialformen auf Kahlersehen Mannigfaltigkeiten. Die
Herleitung dieser Pormehi geschieht mit Hilfe der differentialgeometri-
sehen Resultate lokalen Charakters, die in § 1 dargestellt sind. Wir be-

nûtzen dabei durchwegs den Kalkûl von Cartan und den Begriff der
,,harmonischen" Formen,* und gelangen zu sehr weitgehenden Aussagen
ûber die harmonischen Formen in einer Kahlersehen Mannigfaltigkeit.
Vermôge des Satzes von Hodge, welcher besagt, daB der Ring der har-
monisehen Formen zum Kohomologiering isomorph ist, lassen sieh dièse

Resultate auf den Kohomologiering iibertragen.
Eine wichtige Rolle spielt bei der Herleitung eine der Metrik zu-

geordnete alternierende Differentialform Q vom Grade zwei. Sie ist samt
allen ihren Potenzen harmonisch und fur die Grade <m kein Nullteiler
im Ring der Differentialformen. Auf ihr beruht eine Zerlegung der Formen

in solche verschiedener Klasse (Sâtze 9 bis 13). Eine Form heiBt
von der Klasse k, wenn sie in einem gewissen, in § 4 prâzisierten, Sinn
die lc-te Potenz von Q als Faktor enthàlt.

Auf jeder Mannigfaltigkeit mit komplexer Struktur gibt es eine natûr-
liehe Zerlegung der Differentialformen nach deren Typus. Eine Form
heiBt vom Typus r, wenn jeder ihrer Summanden r Faktoren dzi
enthàlt, wobei die z5 (j 1,..., m) komplexe Koordinaten auf M2m sind.
Auf Kahlersehen Mannigfaltigkeiten gibt auch dièse Zerlegung zu topolo-
gischen Sâtzen AnlaB, welche gewisse Sâtze ûber algebraische
Mannigfaltigkeiten verallgemeinern (Sâtze 2 bis 5).

Im § 6 werden Orthogonalitàtsrelationen hergeleitet, welche auf dem

von de Rham [13] verwendeten skalaren Produkte beruhen. Es zeigt sich,
daB fur dièses Produkt zwei Formen verschiedener Klasse oder verschie-
denen Typus immer orthogonal sind. Es lâBt sich daher eine orthogonal-
normierte Basis der Formen angeben, welche der Einteilung der Formen
in Klassen und Typen in natlirlicher Weise Rechnung trâgt.

In einem Anhang wird gezeigt, daB aile Sâtze, welche auf dem Begriff
,,Formen verschiedener Klasse" beruhen, sich schon unter viel schwâche-

ren Voraussetzungen herleiten lassen. Sie gelten auf reellen Mannigfaltig-
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keiten gerader Dimension, auf denen eine Differentialform vom Grade 2

mit bestimmten Eigenschaften existiert (Sàtze 6* bis 16*).
Ein Teil der Resultate dieser Arbeit ist zusammen mit weiteren Ergeb-

nissen in drei Noten des Verfassers gemeinsam mit Herrn Eckmann an-
gekiindigt worden [8].

Es sei mir gestattet, an dieser Stelle meinem verehrten Lehrer, Herrn
Professor Dr. B. Eckmann, der mir das Thema der vorliegenden Arbeit
gestellt hat, meinen herzlichsten Dank auszusprechen fur das stete Wohl-
wollen und Interesse und die vielen wertvollen Hinweise, mit denen er
meine Arbeit gefôrdert hat.

§ 1. Komplexe Mannigfaltigkeiten

1.1. Die Punkte des 2m dimensionalen kartesischen Raumes R2m

sind die geordneten 2m-upel reeller Zahlen xx,..., x2m. Sie kônnen
auch durch die geordneten ra-upel komplexer Zahlen zx,..., zm gege-
ben werden, welche den reellen 2m-upeln durch

zk Zk + iZm+k k=l,...,m (1)

eineindeutig zugeordnet sind.
Aile im folgenden auftretenden Funktionen im R2m seien reéll-analy-

tisch, das heiBt sie seien als Potenzreihen in den unabhângigen Variablen

^j,..., x2m darstellbar. Fûgen wir zu den durch (1) gegebenen kom-
plexen Variablen noch die entsprechenden konjugiert-komplexen hinzu

** »* — ixm+k *=l,...,m, (2)

so lassen sich die Potenzreihen in den xx,..., x2m zu solchen in zx,..., zm ;

5W umformen. Aile vorkommenden Ableitungen nach komplexen
Variablen sind an den so gewonnenen Potenzreihen auszufûhren.

Transformationen der reellen Koordinaten xx,..., x2m in einem Ge-
biet des R2m lassen sich als solche der zk, ~zk ausdriicken :

Zk fk \Z19 • • • zm zl y • • • zm) >
fe 1, Wl

Im folgenden betrachten wir speziell diejenigen Koordinatentransforma-
tionen, bei denen sich die z'k durch die zk allein ausdriicken lassen :

**=/*(*i> •••>*«) i= l,...,m (3)

das heiBt bei denen

^- 0, fc,ï=l,...,m, (4)
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ist. Zerlegt man die Funktionen fk in ihre reellen Komponenten, etwa

fk~ukJr ^fc5 fc 1,..., m, so l&Bt sich (4) auch in der Form

duk dvk
Q

OXm+l 1 1 1 /r<\k, l 1,. m (5)

._+ ™*L ^0
schreiben. Dièse Gleichungen sind nichts anderes als die Cauchy-Rie-
mannschen Difïerentialgleichungen fur die Real- und Imaginârteile der
komplexen Funktionen fk. Dièse sind also komplex-analytisch in den

zx,..., zm, was auch daraus hervorgeht, daB sie durch Potenzreihen in
den zk allein gegeben sind. Eine Koordinatentransformation der Ge-

stalt (3) soll komplex-analytisch heiBen.
Zu einer komplex-analytischen Koordinatentransformation (3) gehôrt

also stets eine reell-analytische Transformation, die durch die Gleichungen

xk vk («i,.--, ^2m) Je m + 1,..., 2m

oder ebenso gut durch

Zk ~ fk \zl> • • • > zm)
fc 1,. m

beschrieben sind. Zwischen den Funktionaldeterminanten von (3), (3'),
(3") bestehen die Beziehungen

d(z'1,...,z'm
d [xx,. x2m) u (zx,. zm, zx,. zm)

Fiir eine komplex-analytische Transformation ist also stets

a (x[,..., x'2j
^ Q

Geometrische Eigenschaften, die gegeniiber komplex-analytischen
Transformationen invariant sind, heiBen Eigenschaften des komplexen
kartesischen Raumes Rim). Dieser Invarianzbegrifï liegt allen folgenden
Betrachtungen zugrunde.

1.2. Eine 2m-dimensionale geschlossene Mannigfaltigkeit M(m) heiBt

komplex-analytisch oder kurz ,,komplex", wenn sie mit einer end-
lichen Anzahl von Umgebungen ûberdeckt ist, deren jede dem komplexen
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j{im) (Vgj x.l) homôomorph ist, derart, dafi im Durchschnitt je zweier
Umgebungen der Ûbergang von den einen komplexen Koordinaten zu
den anderen durch eine komplex-analytische Transformation gegeben ist.

Ein lokales Koordinatensystem in einer Umgebung II auf M{m) heiBt
zulâssig, wenn es im Durchschnitt von U mit jeder Umgebung der ur-
spriinglichen Ûberdeckung aus dem dort gegebenen Koordinatensystem
durch eine komplex-analytische Transformation hervorgeht. Die Ge-
samtheit aller zulâssigen Koordinatensysteme heiBt die komplexe
Struktur der Mannigfaltigkeit M{m).

Notwendige Bedingungen dafiir, daB eine vorgegebene reell differen-
zierbare Mannigfaltigkeit eine komplexe Struktur besitzt, wurden von
Hopf, Ehresmann [10] und anderen angegeben.

1.3. Einige spâter niitzliche Konventionen seien an dieser Stelle
eingefûhrt.

Wir bezeichnen die konjugiert -komplexen GrôBen durch Indizes, die
sich von den ursprunglichen um m unterscheiden, mit folgender Vor-
zeichenregel -Zm+k Zk a)

«2m+* — H * 1 m, b) (6)

Ferner sollen kleine lateinische Indizes immer von 1 bis m, griechische
von 1 bis 2 m laufen.

Mit diesen Bezeichnungen gelten bei einer komplex-analytischen Ko-
ordinatentransformation ftir die DifiEerentiale der Koordinaten die
Transformationsgleichungen

m

dzk J£ -AIL dzt k ~ 1,. m a)
1=1

- (7)
f

m dfk

1=1 VZm+l

Hieraus kann leicht folgender Invarianzsatz abgeleitet werden :

Wenn bei einem Tensor auf M(m) in einem Koordinatensystem aile Kom-
ponenten verschwinden, die nicht von der Gestalt Tki kr m+kr+1 m+k8
sind, so verschwinden sie auch in jedem anderen zulâssigen Koordinatensystem.

1.4. Unter einer Hermiteschen Metrik verstehen wir eine positiv
definite Riemannsche Metrik mit reellen (analytischen) Koeffizienten,
welche in jedem zulàssigen Koordinatensystem bezuglich der Differen-
tiale der reellen Koordinaten xx,..., x2m (vgl. 1) die spezielle Gestalt hat
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{xkdxl)+hkm+l(dxkdxm+l)+hm+k,{dxm+kdxt)+hm+km+l(dxn+kdxm+l)}

rit (8>

hkl ">lk — hm+Jcm+l ^m+lm+k > a)

h h b)

Dabei sind die Produkte in Klammern gewôhnliche Produkte.
Setzt man

9km+l Kl + ihm+l > (10)

so lautet das ds2 (8) in den komplexen Koordinaten :

ds2 Z9km+i(dzkdzm+l) (11)

Die Komponenten genûgen hierbei der Hermite-Bedingung

9km+l 9lm+k (1^)
Sie kônnen durch

9kl — 9m+k m+l 0 a)
(là)

9m+k l 9l m+k ®)

zu einem symmetrischen Tensor bezuglich der 2 m Koordinaten zk, ~zk

ergânzt werden.
Das zugrunde gelegte lokale Koordinatensystem xx,..., x2m sei nun

in einem Punkte p geodâtisch bezuglich der Metrik (8). Dort gilt

hpy dpv a)

«fe-o b,
<14)

OXx

wobei ô^y das Kroneekersymbol ist. In formaler Analogie gilt dann auch
nach (10)

==Q
dzx

In jedem lokalen Koordinatensystem existieren m linear unabhângige
Pfaffsche Pormen

<o, Zaik(zl9.. .,zmzl9.. .9zn)dzk \\a,k\\ ^0 (16)
k

(Cartan [3], p. 59), so da6 ftir die Hermitesche Metrik gilt

ds*=E {<*>,'&,) (17)
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Die Koeffizienten ajk sind dabei homogène rationale Funktionen der

gkm+i. Ist das zugrunde gelegte Koordinatensystem geodâtisch in einem
Punkte p0, so verschwinden in p0 die partiellen Ableittingen der ajk

0 (18)

und es kann dort
«i* K (19)

gewâhlt werden. Im folgenden sei unter p0 stets ein Punkt einer Um-
gebung auf M{m) verstanden, in dem fur das speziell gewàhlte
Koordinatensystem (15), (18) und (19) erfûllt sind. Jeder Punkt auf M{m) kann
zu einem pQ gemacht werden.

1.5. Eine Kâhlersche Metrik ist eine Hermitesche Metrik, bei
der die gkm+l der grundlegenden Bedingung genugen2) :

^9km+l
__ tyj m+l

# /j£ \

Wir stellen kurz die wichtigsten Eigenschaften einer Kàhlerschen Metrik
zusammen.

Aus (Kx) folgt durch Ûbergang zu den konjugiert-komplexen Werten,
unter Berlicksichtigung der Hermitebedingung (12), die entsprechende
Relation

9km+l 9km+j (9,(\\
dz ~~ dz * 'OZm+j UZm+l

Nach Kàhler a. a. 0. gibt es in jedem Koordinatensystem eine Funk-
tion U (z,.. .Zo™), so da6

_9km+l — ;% ^OZk OZm+l

ist. Beim Beweis ist wesentlich, daB die Koeffizienten der Metrik reell-
analytisch vorausgesetzt sind. Die beiden Bedingungen (K^) und (K2)
sind in diesem Falle âquivalent.

Die gewôhnKchen partiellen Ableitungen seien durch Indizes hinter
einem Semikolon bezeichnet :

Dann lassen sich die Komponenten des Tensors der gkm+l in einem
lokalen Koordinatensystem nach (jST2) und (13) darstellen als

2) vgl. Kàhler [11], Bochner [1], Chern [6].
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9km+l — U, k,m+l > a)

9kl 9m+km+l ° • b)

Wenn man noch die Vertauschungsregeln fur Ableitungen berucksich-
tigt, ergibt sich fur die Koeffizienten des zur Metrik gehorenden affinen
Zusammenhangs

-* m+j, kl — "2 \9hm+), l + 9lm+j,k 9kl,m+}) ~ &,m+j, k, l > a)
\ZCi)

* y, ra-f& m+l U, j,m+k,m+l s "/
wahrend aile ubrigen infolge (21) versehwinden. Fur den Riemannsehen
Krummungstensor

T> p p i nocB (P P p P \

folgt aus (22), da8 nur diejenigen Komponenten von Null verschieden
sind, die zu Indizesgruppen jlcv, qo gehoren, wobei f,i, v und o, a je einen
Index ^ m und einen >m enthalten. So wird zum Beispiel

-Khm+j, km+l~ ", h, ro+j, fc, m+l i ô' ^, w+s, ^, A, ^, r, w-W, w+l • (^**)

Da die Indizes des Krummungstensors auf der rechten Seite dieser Glei-
ehung als Indizes partieller Ableitungen auftreten, ubertragt sich die
Vertauschbarkeit der Ableitungen auf die Indizes des Krummungstensors

:

In einem Punkt p0 (vgl. 1.4) gelten speziell die Pormeln

9km+l ~ akl Uf jcfm+i Ôkl a)

^.kX^^^x^O b) (25)

^,KÀ,/i ^ U,l,X, X,/X ^lH,Xfl C)

1.6. In Zukunft sei immer vorausgesetzt, da8 ohne Klammern ge-
schriebene Produkte von Differentialen und Differentialformen dem
schiefen Kalkul von E. Cartan 3) gehorchen. Wir werden Differential-
formen r-ten Grades oder kurz ,,r-Formenu betrachten

¥= 2 Ptl trdz(i. dzlr (20)
<«i 'r)

gebildet in den 2m Unbestimmten dzx,..., dz2m mit alternierenden
komplexwertigen kovarianten Tensoren Pfi ff {zx,..., z2tn). Ein alter-

3) vgl. Cartan [3, 4], Kahler [12], Chern [5].
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nierender Tensor r-ter Stufe wird dabei wie folgt definiert : q± qt
und o1.. ,or seien zwei verschiedene Anordnungen der gleichen r Zahlen.
Daim gilt

Qi Qr vQi Qr <*i °r '

wo ôaQlx *°rr das verallgemeinerte Kroneckersymbol ist. Die Summation
in der Form (26) soll so ausgefuhrt werden, da6 fur eine gewisse Kom-
bination von r Indizes nur uber eine der r\ Permutationen summiert
wird. An dieser Summationskonvention sei im folgenden durchwegs fest-
gehalten sie spielt eine Rolle bei der Bestimmung etwa auftretender
Koeffizienten.

Die Ableitung dqf einer r-Form (f ist definiert durch

d<pr= E dPtl lfdzlx. dzlr^ £ S ll lr dzQdzti. .dzlr (27)
Oi h) (il ir) Q VZ(*

Setzen wir (26) die Pfaffschen Formen (16) mit Hilfe von

dzk E bk) (o}

ein, ho erhalten wir ;

(Xx Xr)

und es sind bei der Bildung der Ableitung von qf aueh die co} zu differen-
zieren.

Wir bemerken noch, daB die Difïerentiale der reellen und komplexen
Koordinaten folgendermaBen zusammenhangen

dzk =dxk + i dxm+k a)

dzm+k dxk — i dxm+k b)

àzk dzm+h =- dzk dzk — 2idxkdxm+k (29)

Wir wollen nun Eigenschaften der Kahlerschen Metrik untersuchen,
die sich aus der Gestalt (17) ergeben, und uns insbesondere mit den Ab-
leitungen der Pfaffschen Formen œk (vgl. (16)) befassen. Wir definieren
hierzu die symbolische Ableitung naeh einem co3, die wir durch
einen Index hinter einem Komma andeuten wollen.

Wenn der Zusammenhang zwischen den a)k und den dzk durch dzk

£ bk} o)j gegeben ist, so definieren wir
j

f,k xS-brk (30)
r OZr
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Die Torsion einer Hermiteschen Metrik wird nach E. Cartan so defi-
niert : Setzt man

und
d(ot Zœ^Wj + Ql (31)

9

so wird der Koeffiziententensor von Qx Torsion der Metrik genannt.
Nach Voraussetzung (KJ und (25) ist in p0 dcol £ a>w cw,-, unddaher

dort >

In gleicher Weise wie die Ableitung der Formen ce>t kann diejenige der
Pormen colx zerlegt werden in Ânderung durch Parallelverschiebung
und absolute Ableitung

d(ou Z colk (okj + Ql} (32)
A-

Die GrôBe Qu làBt sich bei einer Kàhlermetrik besonders leicht in einem
Punkt p0 bestimmen. Nach (25) gilt dort

Da (Kz) und (33) in p0 gelten, so gelten sie auch in jedem Punkte der
gewâhlten Umgebung und in jeder Umgebung auf M{m), da die absolute
Ableitung Tensorcharakter hat. Dieser fur die Anwendung geodatischer
Koordinaten charakteristische SchluB wird im folgenden noch ôfters
auftreten. Er sei deshalb kurz als „SchluB mit geodâtischen Koordinaten"

bezeichnet.

§ 2. Harmonische Differentialformen

Es handelt sich in diesem Paragraphen darum, harmonische Pormen
analog den Defînitionen von Hodge [9] und de Rham [14, 15] einzu-
fiihren, wobei wir durchwegs im Komplexen bleiben wollen, das heiBt
die komplexen Differentiale dz1,..., dzm, dzm+1 dix,..., dz2m dzm
verwenden werden ; an deren Stelle kônnen auch die lokalen linearen
Differentialformen cai? lôi treten (vgl. 1.4).

& bezeichne die Vektorgruppe aller komplexen auf der ganzen Mannig-
faltigkeit M{m) definierten DifferentiaKormen <pr vom Grade r (vgl. 1.6),
r 0,1, ...,2m. Wir definieren eine Opération *, welche jeder r-Porm
qf eine (2m — r)-Porm *ç?r zuordnet, in folgender Weise : Ist in einem
lokalen Koordinatensystem <pr durch qf J£ Plx tr a)tl. œlr ge-

en, so sei <*i...«r)
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(34)

gesetzt, wobei entsprechend unserer Summationskonvention in (26) nur
ûber je eine Permutation der tr+1... i2m zu summieren ist. Wie sich in
2.3 ergeben wird, ist die Opération * vom lokalen Koordinatensystem
und von der Wahl der co3 unabhàngig und definiert eine ,,antilineare"
Abbildung von 0r in <2>2m~r. Aus der Définition folgt wegen

unmittelbar
2m—\ l) °1 2wi

Die Opération * ist also ein Isomorphismus von &r auf 02m~r.
Als Volumenelement wâhlen wir

* 1 im cox. ..com a)m+1.. .o>2m
(6b)

im\\ gkm+i II dz±.. .dzm dzm+1.. .dz2m

Dièses ist bis auf einen positiven Faktor mit dem iiblichen Riemannschen
Volumenelement in reellen Koordinaten identiseh, es ist nâmlich nach (29)

* 1 ^VllKxWdx,.. .dx2m (37)

Aus der gegebenen Metrik ds2 Z 9km+i{dzk dzm+l) kann man immer
k,l

durch Multiplikation mit einer positiven Konstanten eine neue erhalten
derart, dafi fur das zugehôrige Volumenelement

* 1 1 (38)

gilt, ohne daB sich die ûbrigen Eigenschaften wesentlich àndern. Wir
wollen in Zukunft immer voraussetzen, daB fur unsere Metrik (38) gilt.

Aus (34) und (36) folgt leicht :

(39)

2.2. Die Ableitungsoperation d ist eine lineare Abbildung von
in 0r+1, gegeben durch

Mit Hilfe der soeben eingefuhrten Opération * definieren wir eine zweite
Ableitungsoperation d, welche 01* linear in 0r~1 abbildet durch

<V — * d * <pr (40)
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Durch
A<pr (dô + ôd) <f (41)

ist dann eme lineare Abbildung

A dô + ôd (41')

von 0r in sich defîniert. Der Kern dièses Endomorphisnms ist eine
lineare Untergruppe Hr von &r, die Formen <pr e Hr, fur die also

A (f 0 (42)

gilt, heiflen harmonisch.

2.3. Ein Vergleich unserer Définition von *, Ô und A mit derjenigen
von Hodge und de Rham fur réelle Formen zeigt, da8 die entsprechenden
Operatoren sich nur uni einen konstanten Faktor unterseheiden, und
da8 daher insbesondere die beiden Definitionen der harmonischen
Formen ubereinstimmen.

Zur Durchfuhrung dièses Vergleichs betraehten wir eine réelle r-Form
in komplexer Schreibweise. Eine solche Form ist selbst-adjungiert (vgl
Bochner [2], p. 88), das heiBt Komponenten des Koeffiziententensors,
bei welchen sich entsprechende Indizes je um m unterseheiden, und
deren Indizes aile zwischen 1 und 2 m liegen, sind zueinander konjugiert-
komplex. Insbesondere sind in einem Punkte p0 einander entsprechende
kovariante und kontravariante Komponenten konjugiert-komplex So

gilt zum Beispiel fur einen selbstadjungierten Vektor

und analog fur hohere Stufen.
Die Définition des Operators * von de Rham ([14], p. 6), den wir zum

Unterschied mit %H bezeichnen wollen, lautet

Wir betraehten also eine réelle Form qf in reellen Koordinaten in
einem Punkt pQ

<Pr= E P9l ;,m+;m m+3r dxfl dx9$ dxm+Jg+t dxm+,r (44)
Oi Jr)

In komplexen Koordinaten lautet dort der Ausdruck fur qf

+ d-zH) n {d*tt-di,t)
q=8 + l

Aus (44) ergibt sich
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r V S1

Of-M Hm)

oder in komplexen Koordinaten

m-r + 8 2m

(Jr+i Hm)

wahrend aus (45) nach (34) folgt

l ^m—r+H ___ m—r + 8 2m

...t_r+i -q^JAz^~d~z^
Der Vergleich beider Ergebnisse zeigt, daB

* (p2 =r 22 <r~m) *H (pr (46)

Fur geradedimensionale Mannigfaltigkeiten 4) lauten die Definitionen
von Hodge-de Rham der Opérâtoren ô und A

Da die Opération d die Dimension uni 1 erhoht, erhalten wir, wie am
Anfang dieser Nr. behauptet,

*« i* a)

AH ±A b)

Es folgt insbesondere, daB fur unsere harmonischen Formen der Satz
von Hodge gilt, der den Zusammenhang zwischen den Gruppen Hr und
Homologieeigenschaften von M(m) liefert und daher die Ùbertragung der
folgenden Resultate auf die Kohomologie- und Homologiegruppen ge-
stattet. Der Satz von Hodge besagt, daB die Gruppe der reellen
harmonischen r-Formen auf einer geschlossenen Mannigfaltigkeit M isomorph
ist zur r-ten Kohomologiegruppe von M bezuglich reeller Koeffizienten.
Daher ist auch die Gruppe der komplexen harmonischen r-Formen auf
M dieser Kohomologiegruppe isomorph. Insbesondere ist der Rang der
Gruppe Hr bezuglich komplexer Koeffizienten gleich der r-ten Betti-
schen Zahl pr von M.

4) de Rham [15], p. 136. Das Vorzeichen ist hier wegen der geraden Dimension dei
Mannigfaltigkeit vom Grad der Form unabhangig. Ist die Dimension der Mannigfaltigkeit
allgemem n, so gilt
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2.4. Mit Hilfe der Ableitungsformeln von 1.6 ergibt sich als explizite
Darstellung der Opération d

2m r \

(48) 5)
Dièse Formel, auf *ç>r angewendet, ergibt

' *» J£

und hieraus folgt durch nochmalige Anwendung der Opération *

ô<pr= JE

•'T ** x O 'l X 0 f I

(49)
Die Vorzeichen sind dabei bestimmt durch

$1 2m __ / j\(x_i)(2w-r+l)+(r-«)(2n-r) ^1 ...2m _. / j\x-l

/il 2m __ / i\G+x+X-l
'x'e'f+i.'f-HX-i'f+X+i-..f2m'r+X ti.-.tx-i »x+i.-.*e-i «e+i-'-'r V x/

Mit Hilfe von (48) und (49) kann nun A berechnet werden. Es genûgt
fiir xmsere Zwecke, dies in einem Punkt p0 zu tun. Nennen wir in den
rechten Seiten von (48) und (49) die erste Summe dQ respektiv ô0) die
zweite dx respektiv âl9 so ist in p0

A <pr (doô + ôod) tf
somit bei Berûcksichtigung von (23) und (25)

Î2m

H, X, C, ^

In der zweiten Summe kônnen auch mehrere Indizes gleich sein, das
heiBt ausgeschrieben

5) -a. bedeutet dabei, dafi die darunterstehende Grôfîe aus der betreffenden Reihe weg-
zulassen ist.

270



{ 2m

A<f=- E

+ v* / i \X D "D >^
^ i — J. j Jl Xïi CO • * • CO • • Ct)

2, RPix...ir*>ix--•<*>+] ' (50

Dièse Formeln sind offenbar nur in einem Punkte p0 giiltig.

2.5. Wir stellen nun einige wichtige Eigenschaften der Operationen
d, *, ô und A zusammen.

Fiir beliebige Differentialformen qf gilt 3)

ddqf 0 (51)
Daraus folgt

ôô<pr 0 (52)

Beweis : ààcpr #d!*#d*9?r (— l)r+1 * dd * <pr 0

Es folgen unmittelbar die Beziehungen

Ad<pr dàdqf) a)
(53)

r Zl V1 àdôqf) b)

Fiir die Opération * ergeben sich aus (35) folgende Vertauschungs-
relationen :

*dq? (— l)r+1 à*<pr a)

31c <y (—iy d*<p h) (54)

^ ^r Zl * Ç9r C)

Beweis :

2(— l)r+2 d * ç?

Aus der letzten Formel folgt eine Aussage uber die harmonischen Formen.

Satz 1. Mit (pr ist auch * <pr eine harmonische Form. * ist ein Iso-
morphismus von Hr auf H2m~r.
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Nach dem Satz von Hodge folgt daraus fur die Bettischen Zahlen die
Dualitâtsbeziehung pr ^2w~r. Die Beziehungen zwischen dem Opéra -

tor * und der Dualitât in Mannigfaltigkeiten werden im § 6 noch genauer
untersucht.

2.6. Fur das Produkt zweier Formen qf ~ J£ P(
f col ...oj1 und

<*i r)
tpq J£ Q>1 x 0)xl- • -^x gilt die bekannte Ableitungsformel3)

d((pr-y)q) d<pr'%pq -\~ (—\)rqf'dxpq (55)

Fur (5(ç?r ^a) lâBt sich im allgemeinen keine so einfache Formel an-
geben. In einem Punkt p0 erhalt man jedoch eine Darstellung, welche
fiir unsere Zwecke genûgt :

ip^y\ àcpr * ip^ -j- (—i)^ cpr • ôipQ

^ rr+1 f+î,,^„ ,r
(̂56)

§ 3. Der Operator C

3.1. Es ist auf Kâhlersehen Mannigfaltigkeiten il4r(m) verhaltnismâfiig
einfach, eine gewisse Ûbersicht ùber die dort môglichen Dififerential-
formen zu gewinnen. Ein erstes Klassifikationsprinzip ergibt sich aus den

Transformationsgleichungen (7) und dem Invarianzsatz in 1.3.
Wàhlen wir in einer r-Form cpr die Teilsumme aller Glieder aus, die in

den dzk von einem festen Grade h sind, so bildet dièse Teilsumme selbst
wieder eine r-Form. Dies fûhrt uns zu folgender Définition :

Eine r-Form <pr heiBt reine Form, wenn aile ihre von 0 verschiedenen
Glieder vom gleiehen Grade h in den d"zk sind. Dieser Grad h heiBt der

Typus der r-Form ; durch einen unteren Index in Klammern, zum Bei-
spiel (h), deuten wir stets an, daB eine Form rein (vom Typus h) ist, zum
Beispiel cp[hy Aile reinen r-Formen vom Typus Ji bilden eine Vektor-
Gruppe &[h)9 die eine lineare Untergruppe von &r ist. Die harmonisehen
r-Formen vom Typus h bilden eine lineare Untergruppe H'h) von Hr.
Der Rang von H*h) sei er(h).

Jede Differentialform lâBt sich ofïenbar eindeutig als Summe reiner
Formen darstellen r

Z<Pr{9)
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0r zerfallt also in die direkte Summe (mit -+- bezeichnet)

&' 0{O) + 0r(1) + • • • + ®[r) (58)

Lemma. Ist cp\h) eine reine r-Form vom Typus h, so ist auch A<p*h)

eine solche.

Beweis. In einem Punkt p0 laBt sich à<p[h) nach (50) berechnen. Da

wegen der Voraussetzung der Kahlermetrik nur die unter (23) besehriebe-

nen Komponenten des Krummungstensors von 0 verschieden sind, gilt
dort das Lemma. Nach dem SchluB mit geodatischen Koordinaten (ver-
gleiche 1.6) gilt es also allgemein.

Aus dem Lemma folgt der

Satz 2. Mit <f sind auch aile reinen Komponenten cp\h) von cpr in (57)
harmonisch Hr zerfallt in die direkte Summe

ff' £rç))+£^) + .+ H[r) (59)

Korollar zu Satz 2 • Pur die Bettischen Zahlen p" von M{m) folgt

Beweis von Satz 2 Setzen wir auf Grund des Lemmas

so ist fur eine harmonische Form qf £ (p[8)
8

A<f S A<p[t) X fl,} 0
8

das heiBt wegen der Eindeutigkeit der Darstellung (57)

3.2. Wir defînieren jetzt eine lineare Opération C in &r, welche
wesentlich von der komplexen Struktur abhangig ist. Der r-Form
qf -= £ jPi lr(otl.. .œ r

wird eine neue r-Form zugeordnet durch

CqT i* E PH ,fo>w4ll...iom+<f (61)
('i 'r)

Fur eine reine Form laBt sich C darstellen als

0<prw *l-iYïU (62)
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Aus dieser Définition folgt
CC<f (—lYqf (63)

und

C/ (—l)rCy (64)
Hieraus ergibt sich

3. Die Abbildung G ist ein Automorphismus von &r. C ist
ein Isomorphismus von 0[A) auf

Fur das Weitere fiihren wir noch die dureh C Transformierten der im
vorigen Paragraphen definierten Operationen ein :

*=<7*C a)

ô gôc c)

A OJC d)

und untersuchen sie hauptsâchlich im Hinblick auf Vertauschungs-

regeln. Dabei wird sich herausstellen, daB * und A nichts Neues ergeben,

wâhrend d und ô Ableitungsoperatoren sind, die fur reine Formen bis
auf ein Vorzeichen mit den gewôhnliehen zusammenfallen. Ftir andere
Formen weichen sie von diesen ab.

3.3. Man verifiziert leicht durch Einsetzen (61), daB

C(<pr'y>«) C<pr-Cy)q (66)

Nun betrachten wir die Vertauschung der Operatoren C und *.

C * <pr (—1)™-' *C<pr (67)

*çf=(—1 )«-••* çf (68)

Dièse beiden Formeln sind wegen (64) àquivalent. Ihr Beweis erfolgt
durch explizite Darstellung :

Die Formeln (67) und (68) sagen im wesentlichen nichts anderes aus als

(— lyltqr (69)

Dies ist ein neuer Beweis dafur, daB der Operator * réelle Formen wieder
in réelle xiberfûhrt, wie dies schon aus 2.3 hervorgeht.
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Jetzt verifizieren wir, dafi d und â die formalen Eigensehaften von
Ableitungen haben.

d̂dwr O a)
(70)

0 b)

Beweis : Nach (51) und (52) ist

ddq? CddC (pr 0

ôô<pr CÔÔC <pr 0

Ferner gilt analog zu (40) und (41)

ô<pr= -*5*ç>r (71)

Â<pr={dô + ôd)<pr (72)
Beweis :

ô(pr — 0 * d * (7 (pr — l)m~r (— l)1*-1 ^
Hieraus folgen sofort die zu (54) analogen Formeln

* dcpr= (—I)r+Iô*(pr a)

* a^ (-l)r d*^ b) (73)

* Â<f A *<pr c)

Zum AbschluB dieser Formelreihe zeigen wir noch, da8

CA JO (74)
das heifit

A A (740

Zum Beweis dieser Formeln dient der SchluB mit geodàtischen Koordi-
naten. In einem Punkt p0 ist nach (50)

Î2mEPH...tr,t>l<om+H...«>m+lr +
.»-i

+ E(-lT+^Pn...,rIiem+lxm+l^(OvCO^COm+ll. .M^1k. .Wm+,x. .(Om+J
x, X J

2m

H, X
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Da nur die in (23) angegebenen Komponenten des Knimmungstensors
von 0 verschieden sind, kônnen wir hier o — m -\- q, r m -f ju usw.
wahlen, so dafi wegen (24) die beiden rechten Seiten identisch werden.
Hieraus folgt :

Satz 4. Mit <pr sind auch Cqf und yr harmonisch. C bewirkt einen

Automorphismus von Hr sowie einen Isomorphismus von Hr(h) auf Hr{r_h).

Satz 4 bedeutet fur die Range der Gruppen H[h)

Setzen wir dies in (60) ein, so ergibt sich fur die Bettischen Zahlen der

Satz 5.
r h

Vr 2 <*) 2 X e\h) 0 (mod 2) fur r 2 & + 1 a)

^ X <») 2 v e[A) + 6fo cjrj (mod 2) fur r - 2fc b)

Die Formel (76.a), welehe besagt, dafi in einer Kàhlersehen
Mannigfaltigkeit die Bettischen Zahlen in den ungeraden
Dimensionen gerade sind, ist eine Verallgemeinerung eines bekann-
ten Satzes von S. Lefschetz uber algebraische Mannigfaltigkeiten. Die
Formel (76.b) kann dazu verwendet werden, gewisse Sâtze von 8. Boch-

ner [2] uber den Zusammenhang zwisehen Knimmung und Bettisehen
Zahlen auf Kâhlerschen Mannigfaltigkeiten zu verschàrfen.*)

3.4. Zum Schlufi beweisen wir noch eine wichtige Formelgruppe, die

d, ô mit d, ô verknûpft
dd + M 0 a)

^ ^ (77)
dà + ôô 0 b)

Um die erste dieser Formeln zu beweisen, betrachten wir eine r-Form
<Pr -S -^l .ir^zii' - -dzlr und bilden

sowie (»i...t)

Dann ist (l*---''>

*) Zusatz bei der Korrektur: Vgl. H. Guggenheimer, A Note on Curvature and
Betti Numbers, erscheint in Proc. Amer. Math. Soc.
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\.t ,rMXdzxdzxdzH...dzr
If) \ K,X

+ EPtl ,r,y,,m+xdzjzxdzti.. .dzl

(77.b) folgt dann wie ublich durch Transtormation mit *.

§ 4. Die Operatoren L und A

4.1. Der im vorigen Paragraphen eingefuhrte Operator C laBt sich
auf jeder Mannigfaltigkeit mit komplex-analytischer Struktur definieren.
Dagegen beruhen die Operatoren, diewir jetzt einfuhren wollen, wesent-
lich auf der Voraussetzung, da8 in der betrachteten Mannigfaltigkeit
eine Kahlermetrik definiert ist.

Der Kahlermetrik
ds2 ^ gkm+iidzjcdzt) X (o)* «)fc)

laBt sich eine schiefe Differentialform vom Grade 2

® i £9km+i dzk dzm+l i £ cok a)m+k (78)
kj k

zuordnen, auf dièse beziehen sich die folgenden Betrachtungen.

Die Voraussetzung (Kt)
dÇkm+l - d9>™+1

o ist dabei aquivalent
oz ozmit oz3 ozk

dQ 0 (K4)

4.2. Wir untersuchen die 2-Form Q genauer. Zuerst berechnen wir
* Q. Es ist nach Définition

m

7=1
co 2m

Andererseits berechnen wir die (m — l)-te Potenz von Q. Dabei wollen
wir, zur Unterscheidung von Gradbezeichnungen, Exponenten immer in
eckigen Klammern schreiben. Es ist
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wobei in der Summe jx,..., jm^1 unabhangig voneinander von 1 bis m
gehen, also m m

Vergleichen wir dies mit dem obigen Résultat, so ergibt sich

1 m (m—1)

/ i\ 2 Qlm—t] C7Ù\

Allgemeiner gilt
k)

Beweis : Es ist
1

jjç QVc\ _. pn-k £ ^l
*f <**¦>• Hm)

m(m—1)

^ (-1) ^

«î 7k) *-
wobei sich die Summe uber aile Kombinationen jx,..., ;fc von 1,..., m
erstreekt, und

jfc=l, ,m

Es ist insbesondere
m(m-l)

flW m'(-l) 2 *1 (81)

also von 0 verschieden (dies sogar in jedem Punkte der Mannigfaltigkeit),
daher sind auch aile Potenzen Qm k 0, 1,..., m uberall von 0
verschieden.

Aus (Jl4) folgt nach der Produktformel (55) dQm 0 und hieraus

ergibt sich nach (80) auch d #£?c&] 0, also

0 (82)
somit

AQW 0 (83)

Satz 6. Die Pormen Qik* (k 0, 1,..., m) sind harmonisch und

Es gibt also in den geraden Dimensionen 2 k ^2m mindestens eine
harmonische Form ^ 0 ; dies bedeutet fur die Bettischen Zahlen

p2k^ 1 k= 0,...,m (84)
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Ûbrigens sind die Formen Qm vom Typus fe, es ist also sogar (vgl. 3.1)

(84) bzw. (85) ist eine erste notwendige Bedingung dafûr, dafi sich auf
einer komplex-analytischen Mannigfaltigkeit eine Kâhlersche Metrik de-
finieren lâBt.

4.3. Wir fuhren jetzt, nach A. Weil [16], zwei lineare Operatoren L
und A ein, welche die Vektorgruppe & in 0r+2 resp. ^~% abbilden,
nâmlich

Lof or. £2 a)
(86)

ylç,r ^ — ljr^i^^r b)

Fiir sie gelten die Vertauschungsregeln

* A qf L * qf a)
(87)

* /y ç)r A * 9/ ; b)

CL qf LC qT a)
(88)

C Aq>r ACqf b)

(87) folgt unmittelbar aus der Définition (86) durch beidseitige Anwen-
dung von *. Um (88) zu beweisen, schreiben wir L ausfuhrlich in der
Form m

Lqf i E X ^...«r^V ' 'œ

Es ist also
m _

und
m

CL(pr P+1 £ E Ptl...,r O)m+ll. O)m+lf. (On+z CO2m+k

ir+1 E E P^.^
(»l...lf) *=1

womit (88.a) bewiesen ist. (88.b) folgt dann durch Transformation mit *
und Anwendung von (67) :

C A<pr (—l)r
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4.4. Zwischen den Ableitungsoperatoren d und ô einerseits und L
und A bestehen wichtige Zusammenhânge.

Aus (55) ergibt sich fur die Vertausehung von d und L :

dL qf d(qf Q2) dqf*Q2 + (—l)r qf dû2 Ldqf

Wir berechnen ferner ôL. Dies kann unter Verwendung des Schlusses

mit geodâtischen Koordinaten geschehen (vgl. 1.6). Im Punkte p0 ergibt
sich dabei eine Formel, auf deren beiden Seiten nur Differentialformen
stehen ; dièse gilt also allgemein

Entsprechende Ausdrucke fur A erhalten wir, indem wir aile auftreten-
den Pormen mit * transformieren ; es ist

* dL * qf àA qf *Ld*qf ~ A ôqf
und

*ôL*(pr ~dAcpr *Lô*(pr —Aô<pr

ZusammengefaBt ergeben sich somit folgende Formeln :

dL — Ld 0 a)
(89)

ÔA—AÔ O. b)

(5L — Lô — d, a)
(90)^ — Ad — (5 b)

Hieraus folgen schliefilich noch die Vertauschungsformeln fur A :

AL — LA =0 a)
(91)

AA—AA 0 b)

Der Beweis ist wieder nur fur eine der beiden Formeln nôtig, zum Bei-
spiel fur (91.a) ; die andere Formel folgt daraus durch Transformation
mit *. Nach (89) und (77) ist

AL qf (dôL + ddL) qf (dLô + ôLd — dd) qf

(Ldô + Lad — (dd + dd)) qf LAqf
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Aus (91) folgt

Satz 7. Ist (f harmonisch, so sind auch Lqf und Aqf harmonische
Formen.

Zusammenfassend gilt fur die Operatoren *, C, I und A und die
Gruppen Hr aller harmonischen r-Formen, fur aile r : * ist ein Isomor-
phismus von Hr auf H2m~r, C von Hr auf sich ; L ist ein Homomorphismus
von Hr in Hr+2, A von Hr in Hr~2. Fur die Gruppen H[8) der reinen
harmonischen Formen vom Typus s gilt fiir aile r und s :

* ist ein Isomorphismus von H[8), auf H2^Z8\, C von H[8) auf Hr(r_8).
L ist ein Homomorphismus von lï[g) in H^^, /l von H[8) in H^^.

Harmonische Formen werden also durch dièse vier Operatoren stets
wieder in harmonische, reine Formen in reine iibergefuhrt. Resuitate,
welche die vier Operatoren betreffen und die wir fur die Gruppe &r auf-
stellen werden, lassen sich daher ohne weiteres auf Hr und H^8) an-
wenden.

Wir werden im folgenden die durch L und A bewirkten Homomorphis-
men genauer untersuchen und zeigen, dafi sie zum Teil Isomorphismen
sind.

4.5. 0ro sei der Kern der Abbildung A von 0r in &r~2 ; das heiBt
01 besteht aus denjenigen r-Formen yjr, fur welche Axpr 0 ist. Solche
Formen heifien effektiv oder von der Kl as se 0. Die Untergruppe der
eflfektiven harmonischen r-Formen soll mit HrQ bezeichnet werden, die
der reinen effektiven harmonischen r-Formen mit Hr(8)0. Ihre Range
seien er0 und er{8)0.

Eine Form qf heiBt von der Klasse Je, wenn sie in der Gestalt

yf Lm yjr~2k dargestellt werden kann, wobei \pr-2k eine effektive Form
ist. Die Vektorgruppen 0rk der r-Formen der Klasse Je, Hrk der harmonischen

r-Formen der Klasse Je, Hr{8)1c der reinen harmonischen r-Formen
der Klasse Je und des Typus s sind also folgendermaBen definiert :

0\

Analog seien O0r, 0Hr und 0Hr(8) die Kerne der Abbildungen L von 0r
in 0r+2 bzw. von Hr in Hr+2 bzw. von H[8) in H*^, und wir bezeich-

nen die Range von QHr imd QH{8) mit oer und 0er(8) ; ferner sei
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gesetzt. Wir verzichten darauf, hier besondere Benennungen einzu-
fuhren.

Fur effektive Formen y>2 € &r0 und r + 2& ^ m gilt nun die wichtige
Orundformel

* D® Vf — i-T — l)i m <™-D+è ir+l) r Lim-r~k] Q yf (92)r (m — r —- k) ' v ' Y v 7

Sie lafit sich auch so formtdieren : Fur eine Form <p8 € &*k vom Grade

s<m, das heiBt tp8 L™ y)8~2k mit Ayj*-2k 0, ist

(m — 5 -f- k) 1
(— I^^D+J^hD+^^IC^ # (93)

Dies ergibt sieh aus (92), wenn man dort r s — 2k setzt. (93) besagt
mit anderen Worten : Fur eine Form <p8 der Klasse k lafit sich der Opera-
tor * durch G und Lim~8] ersetzen, mit einem von s, k und m abhangigen
numerischen Faktor.

Beweis der Grundformel : Wegen der eindeutigen Zerlegbarkeit einer
r-Form in reine Formen ist es gestattet, den Beweis nur fur eine reine
effektive Form yf zu fuhren. Es sei

-j-jL yf % £ Fk jtgnH-k! m+k8l1/ci

• cokl. coks œ^^. (om+kg ù)h. coh œm+h com+ju

wobei die

llf. .,lt; m-\-jx. .m + ju

kein Paar um m versehiedener Indizes enthalten sollen. Hiermit ergibt
sich

*~k\ Lm ^ £l^^ ^ P*i *s™+*x m+k8 h ltm+h '

mit dem Vorzeichen

Un

282



Abgesehen von einem konstanten Faktor ^ 0 auf der linken Seite, der
vom Umordnen der Tensorkomponenten herstammt, lautet die Bedin-
gung A tp2 0 explizit

-S Pjc k2...kgm+km+k2...m+kgll...ltm+jl...m+ju ~ 0 •

Wir benûtzen dièse Formel, um die Tensorkomponenten in *-j-j
mit Indizes

*!,...,*„ m + *!,... m + &a

durch solche zu ersetzen, zu welchen keine cot in unserem Ausdruck fur

— U® yf vorkommen. Dies geschieht, um die beiden Seiten der Grund-

formel vergleichen zu kônnen. Die Ersetzung ist môglich fur r + 2 k

< m + 1. Wir erhalten

il
Andererseits lâBt sich Lm~r-kCyf nach den Definitionen berechnen :

Tlmr-r—k] n vf — »m-k / i \s+u

- coQl.. .coQ8 œqi...a>Qêœll... <oH<oh.. .(oJutoQ8+1 a)Qg+1...

Die Summen auf den rechten Seiten von (95) und (96) sind, bis auf die

Reihenfolge der wl in den einzelnen Summanden, identisch. Sie unter-
scheiden sich daher nur durch das Vorzeichen

Am+h---m+hii •-iuQim+Qi Qm-r-k+s m+Qm-r-k+8

Eine einfache Rechnung ergibt

womit die Grundformel (92) bewiesen ist.
Als erste Anwendung der Grundformel beweisen wir : Fur Ayf 0

und r + 2 & ^ m ist

4j&[« yf — ifc(m— r — & + l)iC&-«^ (97)

Wir heben den Spezialfall Je 1 von (97) besonders hervor : Fur effek-
tive yf, r ^ m — 2, ist

— (m — r) yf (98)
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Es ist also insbesondere fur yf ^ 0 auch ALyf ^ 0, somit auch

Lyf =£ 0. Dies sagt aus, dafi fur r ^ m — 2 AL einen Isomorphismus
von <2>J bzw. von i/i bzw. von Hr^0 auf sich bewirkt. Dièse Aussage
werden wir im nachsten Paragraphen noch erweitern konnen.

Beweis von (97) * Wir erhalten durch linksseitige Anwendung von *
auf (97)

L * i[&] Y — k(m— r — Jfc + 1) * p

und dies laBt sich direkt aus der Grundformel (92) verifizieren

4.6. Bevor wir in der Ableitung der hauptsachlichsten Resuitate
weiterfahren, wollen wir einige Vertauschungsformeln zwischen L und A
herleiten. Wir benotigen jedoch dièse Formeln in den weiteren Beweisen
nicht.

L—L AW) cpr — k(m — r + h — 1) Ak~x yr (99)

Beweis : a) k 1. In diesem Falle lautet die zu beweisende Formel

(AL — LA) (f —(m—r)<pr (100)

Fur effektive Formen ist dies gleichbedeutend mit (98), fur nicht effek-
tive fuhren wir den Beweis fur eine reine Form

Hierbei ist

A(p 2j ^ r^ ^ jaja+x ?6w+jw+j2 m+jafn+3b+i ™+3c(O32 ' ' ' M3b (O32 * * * M 3a M 3b+i ' *

0

AL qf — (m — r -f- a) <pr

LA qf a qf

und daher
(yli — Zfil) Ç9r — (m — r) qf

b) Jetzt beweisen wir (99) durch Induktion nach h, Wir bezeichnen
den Koeffîzienten auf der rechten Seite von (99) mit ckr. Aus

Lq>r

ergibt sich die Rekursionsformel

ckr — ck-lr + cl r-2 (fc-1

clr —(m — r)
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und daher
Cj* ip — —— fô \7Yv —— / j fi/ X •

Gleichfalls von (100) ausgehend erhalten wir fur

(AL*** — LW A) <pr Qkr Uk~u y? (101)

die Rekursionsformeln

Qkr Qk-1 r ~\~ Ql r+2(fc-l)

und daher

Qkr =- — *(w — r — k + 1) (102)

Mit den hier abgeleiteten Beziehungen ist die Reihe dieser Formeln
bei weitem nicht abgesehlossen. Setzt man zum Beispiel fur effektive
Formen

y? X < l (103)l~l] y?

so ergeben sich je nach den Zerlegungen

und1

i^Ii^ ^ - cXr+2il_v A^-v £"-« ^ +
die Rekursionsformeln

ftX-llr Ql-\+l r

r ^ cl r 5

und somit

^Xlf ^eï.ir (104)

Fur kleine r kônnen wir dièse Formeln auch durch Vergleich mit der
Grundformel berechnen und erhalten so Kontrollmôglichkeiten. Der
Zahlenfaktor der Grundformel sei ykr, so ergibt zum Beispiel (101) die

Beziehung
Ykr —QkrYk-l r •

Jedoch ergibt sieh bei alledem nichts wesentlich Neues.
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§ 5. Der Zerlegimgssatz von Hodge

5.1. Die Aussagen ûber Kàhlersche Mannigfaltigkeiten, die wir im
folgenden machen werden, beruhen auf den beiden nachstehenden
Sâtzen :

Satz 8r. Fur r < m — 2 ist AL ein Isomorphismus von &r auf sich.

Satz 9r. Fur r < m ist &r die direkte Summe von 0ro und L&r~2.

Wir beweisen die beiden Sâtze gleichzeitig durch vollstândige Induk-
tion.

a) Die Opération erniedrigt die Dimension um 2. Daher ist in den
Graden 0 und 1 jede Form effektiv. Die Sàtze 90 und 9t sind somit
richtig.

b) Aus Satz 9S fur aile s < r folgt Satz 8r (r < m — 2).

Beweis : Aus 98 fur aile s ^ r folgt, daB &r direkte Summe aller

eine Form qf € &r lâBt sich
daher als Summe

p yy-o

mit eindeutig bestimmten effektiven yf~2 j darstellen. Es ist dann nach (97)

AL<f X AIP+K yf-V - ^2 (j + 1) (m - (r - 2j) - j

Wegen r < m — 2 sind die Koeffizienten von L1^ yf-2 * von 0 ver-
schieden ; es gibt also eine und nur eine Form %r e 0**, so daB ALqf

%r, das heiBt AL ist ein Isomorphismus von 0e auf sich.

c) Aus Satz Sr folgt Satz 9r+2 (r ^ m — 2).

Beweis : Wir formulieren Satz 9r+2 folgendermaBen : Zu jeder Form
qf+z € @r+2 gibt es eine effektive Form <pr0+2 und eine Form qf, beide
eindeutig bestimmt, so daB

(105)

In der Tat gibt es nach Satz 8r ein und nur ein %r derart, daB

Aqf+2^ ALtf (106)
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Daim ist A(<pr+2 — Lf) A <pr+2 — ALxr O, das heiBt <pr0+2

(pr+2 —£ ^r jg^ effektiv. (pr+2 ist also in der gewiinschten Form (105)
dargestellt, und da aus (105) (106) folgt, ist dièse Darstellung eindeutig.

5.2. Nach der SchluBbemerkung von 4.4 gelten die Sâtze 8r und 9r
auch, wenn man darin <Pr immer durch Hr oder durch Hr(8) ersetzt.

Ferner erhalten wir durch Transformation mit * noch folgende Sâtze,
die in den ,,oberen" Dimensionen ^ m gelten.

Satz 10. Fur r ^ m -\- 2 ist LA ein Isomorphismus von &r auf sich.

Satz 11. Fur r > m ist &r die direkte Summe von 0&r und A0r+2.

Aus den Sâtzen 8 und 10 folgt :

Satz 12. Fur r < m — 2 ist L ein Isomorphismus von &r in 0r+2
und bewirkt Isomorphismen von Hr in Hr+2 und von Hri8) in Hr(8++ly

Fur r > m + 2 ist A ein Isomorphismus von &r in &r~2 und bewirkt
Isomorphismen von Hr in Hr~2 und von H^g) in Hr^Xy

Der hauptsàchlichste Inhalt dièses Satzes laBt sich auch so formu-
lieren :

Satz 12 a. Fur r < m — 2 ist fur jede r-Form <pr ^ 0 das Produkt
qf-Q z/z 0, und fiir jede harmonische r-Form <pr ^ 0 ist das Produkt
qf-Q :?£ 0 und harmonisch.

Nach dem Satz von Hodge (vgl. 2.5) ist die Gruppe Hr der r-ten
Kohomologiegruppe bezûglich komplexer Koeffizienten isomorph. Nach
dem ,,dritten Satz von de Rham" entspricht dem schiefen Produkt ge-
schlossener Differentialformen das Alexandersche (Cup-) Produkt der
entsprechenden Kohomologieklassen. Der Satz 12 a sagt daher aus, daB
die zu Q gehôrende Kohomologieklasse im Kohomologiering in den
Dimensionen <m keinen Nullteiler besitzt.

Aus den Sàtzen 9 und 11 folgen die expliziten Zerlegungen der Grup-
pen aller r-Formen &r, aller harmonischen r-Formen Hr bzw. aller reinen
harmonischen r-Formen vom Typus sHr{8) :

Satz 13.

-ffl a)

T.-i)o-î \-Lltl JS(7-tU f min ^h s)' r<m- c)
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p \ d)

m~r I, e)

f)
Das wichtigste Résultat ist dabei die Formel b), welche fur algebraische
Mannigfaltigkeiten von Hodge [9] aufgestellt wurde.

Die Gruppe Hr gibt Auskunft uber die Homologiestruktur der Kàhler-
sehen Mannigfaltigkeiten. Wir wollen immer voraussetzen, daB unsere
Mannigfaltigkeit zusammenhàngend ist. Unter Berucksiehtigung von
po _ p2m _. g© __ flg2wi _. i gilt dann fur die Range der Formengruppen
Hr, also fur die Bettischen Zahlen :

Satz 14.
q

fî — JS £o~ZJ
> r < m a)

2?r ~ — ^S o£r+2' r ^m • b)

Eine etwas schwàchere Formulierung dièses Satzes ist

Satz 14 a.

pt _^/-s ^ £r ^ q r ^m a)

pr — pr+2 oer > 0 r > m b)

Dièse Formeln ergeben in Verbindung mit Satz 5 und e°0)0 e(2^)0 1 :

Satz 15.
k

p2k 1 + v efÂo (m^d 2) 2 £ < m a)

oder

Satz 13 liefert auch ein Konstruktionsprinzip fur eine Basis aller
r-Formen oder aller harmonischen r-Formen. Wir formulieren es nur fur
die Dimensionen ^ m, da aus einer Basis fur dièse Dimensionen eine
solche fur diejenigen > m durch Transformation mit * folgt.
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Satz 16. Eine Basis aller Formen ist bekannt, wenn die effektiven
r-Formen (in den Dimensionen r < m) bekannt sind. Eine Basis aller
harmonischen r-Formen ist bekannt, wenn die effektiven harmonischen
r-Formen (in den Dimensionen r ^ m) bekannt sind. Eine Basis aller
reinen harmonischen r-Formen ist bekannt, wenn die effektiven reinen
harmonischen r-Formen (in den Dimensionen r < m) bekannt sind.

§ 6. Orthogonalitâtsrelationen

6.1. In der betrachteten 2m-dimensionalen komplexen Mannig-
faltigkeit wollen wir uns in diesem Paragraphen auf die Dimensionen

^m beschrânken. Unsere Sâtze kônnen mittels der schon oft ange-
wandten Méthode ohne weiteres auf die Dimensionen ^m iibertragen
werden.

Wir untersuchen hauptsàchlich die Eigenschaften eines skalaren Pro-
duktes zweier Formen gleichen Grades. Es ist definiert durch

(<pr,V) jV-*y* (107)
M

Aus dieser Définition folgt die Hermitizitâtseigenschaft

(<pr, yf) (yf, <f) (108)
und (39) ergibt

(<Pr, <Pr) > 0 ; (<pr, cpr) 0 nur fur qf 0 (109)

Ist <f eine harmonische Form, so bezeichnen wir die durch sie gegebene

Kohomologieklasse ebenfalls mit cpr. Fur eine 2 m-dimensionale Koho-
mologieklasse y sei y {M) der Wert von y auf dem Grundzyklus M der

Mannigfaltigkeit (der Kronecker-Index). ^ bedeutet das Cup-, ^ das

Cap-Produkt. Dqf bezeichne einen reprâsentierenden Zyklus der zur
Kohomologieklasse y? dualen Homologieklasse. Die Schnittzahl zweier

Zyklen z, zf, wird durch 8 (z, z!) angegeben.
Da dem schiefen Produkt von Differentialformen das w-Produkt der

zugehôrigen Kohomologieklassen entspricht, ist

f qf - ip2 m~r (p^>y) (M)

Folglich ist (vgl. [17])

(V • ip2m~r qf (y)2m-r ^M) (pr (Dyj2m-r) f (pr — l)r f \fm~r
2mr rM Dip2m-r D<pr

S (D(pr, Dy)2m~r)
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Fur das skalare Produkt von qf und yf erhalten wir die Ausdrucke

(<f,rf) JV J Y

Aus (108) ergibt sieh hieraus zum Beispiel

Die folgenden Ergebnisse fuhren in dieser Weise zu Aussagen liber die

Homologiestruktur von M<m), auf die hier nicht weiter eingegangen wird6).

6.2. Lemma. (Lqf-2, yf) (ç)r~2, Ayf) (111)

Beweis :

(çf~2, Ayf) (— 1)»" J çf» * * L * ^ J Ç^~2 -0 * <pr (Lqf-2, yf)

Wir zeigen jetzt, da8 bezûglich des Skalarprodukts (107) r-Formen
verschiedener Klasse tind ebenso r-Pormen verschiedenen Typus zuein-
ander orthogonal sind ; mit anderen Worten, da8 aile direkten Summan-
den, die in den Zerlegungen von Satz 2 und Satz 13 auftreten, zueinander
orthogonal sind.

Wir bezeichnen wie frûher mit qfk eine r-Form der KJasse le (vgl. 4.5)
und mit <p[k) eine r-Form vom Typus k (vgl. 3.1); es gilt der

Satz 17. Fur k ^ l ist

{<?ki<p\) -0. (113)

Beweis : Es sei etwa k>l. Der Integrand von (112) ist q>r{k) • *ç>[j). Er
enthâlt m + k — l>m Faktoren der Gestalt 7ôj, das heiBt mindestens
einen solchen Faktor zweimal-und verschwindet deshalb identisch.

(113) beweisen wir mit Hilfe des Lemmas (111) und der Formel (103).
Wir wenden das Lemma l mal an :

(/*, <P\)

Nochmalige Anwendung des Lemmas ergibt

y;-«*, A fo~il) 0 q. e. d.

Eine reine r-Form, die von bestimmter Klasse ist, nennen wir eine

einfache r-Form. Wir kônnen Satz 16 dann folgendermafien inter-
pretieren :

6) vgl. B. Eckmann [7].
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Zwei einfache Formen, die nicht sowohl im Typus als auch in der
Klasse iibereinstimmen, sind orthogonal.

Die naturliche Zerlegung der harmonischen r-Formen in einfache
Formen nach den Sàtzen 2 und 13 ist daher eine, schon ziemlich weit-
gehende, Zerlegung in orthogonale Formen. Es gibt also eine orthogonale
Basis der Grappe Hr, die aus einfachen harmonischen Formen besteht ;

um sie zu erhalten, geniigt es, nach den Sâtzen 2 und 13 von einer Basis
auszugehen, die aus einfachen Formen gebildet ist. Das ubHche Ver-
fahren zur Gewinnung einer orthogonalen Basis braucht man nur dort
anzuwenden, wo mehrere unabhàngige Formen gleichen Typus und glei-
cher Klasse auftreten. Nach Satz 16 geniigt es sogar, dièse Konstruktion
nur fur eine Basis der effektiven Formen auszufiihren, da nach dem
Lemma (111) aus ((pi, y>r0) 0 auch (Lcpr0, LyQ 0 folgt.

6.3. Âhnliche Relationen wie fur die skalaren Produkte gelten auch
fur Produkte der Gestalt qfqf. Dièse Relationen sind aus (112) und
(113) mit Hilfe der Grundformel (92) abzuleiten. Dabei zeigt es sich, daB
als naturliche Integrationsbereiche fur dièse Produkte die zu Qlk] dualen
Zyklen auftreten.

ocr und {? seien zwei einfache Formen, die einer orthogonal normierten
Basis angehôren. o? sei von der Klasse h und dem Typus /, Ç? von der
KJasse k und dem Typus l. Dann gilt

Satz 18.

^ (m-h-r)\J
Zum Beweis berechnen wir nach der Grundformel (92) und der Définition

(62):

(«ï (fl A<0) {mJr+k)l (- V^ °*-1>+*r (I41)+* J«5
AT

Wir geben die Nummerierung der Formen einer Basis durch einen
Index in eckiger Klammer an. ^*[f] ist eine einfache Form der
Klasse h, vom Typus /, und mit der Nummer s in der Basis. Mit dieser

Bezeichnung folgt aus Satz 18

Satz 19, Besteht eine Basis der harmonischen r-Formen nur aus ein-
fachen Formen, so zerfâllt^die Matrix
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(/***) J
D2[w-rJ

nach Typus und Klasse in Kàstchen. Nur die Teilmatrizen, fur die

sind 76 0. Die Matrizen

sind hermitesch positiv définit.
Fiir eine beliebige Basis der harmonischen r-Formen lâBt sich die

Signatur der Matrix

aus der Zerlegung der Basis in einfache Formen nach (114) explizit be-
rechnen.

Anhang

§ 7. Réelle Ânaloga Kâhlerscher Mannigîaltigkeiten

7.1. Die im vorhergehenden abgeleiteten Sâtze liber Kàhlersche
Mannigfaltigkeiten zerfallen in zwei Gruppen nach den dabei hauptsâch-
lich verwendeten Voraussetzungen :

a) Die Existenz der komplex-analytischen Struktur gestattet die
invariante Définition des Operators C. Dies fuhrt zu den Sâtzen, die auf
der Zerlegung der Formen in Typen beruhen.

b) Die Existenz einer 2-Form Q mit den benûtzten Eigenschaften fuhrt
zur Définition der Klasse von Formen und damit zu den Zerlegungs-
sâtzen des § 5.

Die nachfolgende Analyse will zeigen, daB die beiden soeben charakte-
risierten Satzgruppen voneinander weitgehend unabhângig sind. Wâh-
rend die Sàtze liber den Typus offenbar wesentlich auf der komplex-
analytischen Struktur beruhen, kann gezeigt werden, daB sich der Be-

griff von Formen verschiedener Klasse auch auf reellen Mannigfaltigkeiten

einfuhren lâBt, sofern dort eine gewisse 2-Form mit speziellen
Eigenschaften existiert, und es gelten dann auch Analoga der Sâtze des

§ 5. Dièse analogen Sâtze werden wir durch die Nummer des entspre-
chenden Satzes mit einem dahinter gesetzten * bezeichnen.

Auf einer Kâhlerschen Mannigfaltigkeit mit der Metrik
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das heifit mit dem metrischen Tensor

« yik

glk o

haben wir die 2-Form

%, Je

das heiBt die Differentialform mit dem Koeffiziententensor

(H6)

eingefuhrt. Wir bezeichnen die kovariante Difïerentiation bezuglich (115)
dureh einen Querstrich. Daim gilt in jedem Punkt der betraehteten
Mannigfaltigkeit

Dièse Formel ist mit der Kahlerbedingung aquivalent 7).

M2m sei eine 2m-dimensionale differenzierbare Mannigfaltigkeit, auf
welcher eine Riemannsche Metrik gegeben ist ; kovariante Ableitung
bezuglieh dieser Metrik werde durch einen Querstrich bezeichnet. In
Analogie zu (117) wollen wir folgende Situation betrachten :

Auf der geschlossenen Riemannschen Mannigfaltigkeit M2m existiere
eine 2-Form rj2 hlkdxl dxk, die in jedem Punkt vont Range 2k ist und
die Bedingung erfullt

hlkjl =- 0 fur aile l. (K*)8) *)

7) Dies \*urde von S. Bochner [1], Theorem 7, zuerst angegeben. Der Beweis dièses

Theorems, zu Foimel (66), p. 388 a. a. O., sollle folgendermafien lauten Es ist
dhotp* rx

Setzt man hierm die aus (K) folgenden Werte (22) ein, so folgt
h<xp*ty 0

8) S. Bochner a. a. O. bewies, daB auf dieser Voraussetzung fur k m folgt

p*r > 1 r 1,. m (118)

Fur k m genugt zum Beweis von (118) schon die schwachere Voraussetzung drj 0.
Bezeichnen wir namlich mit t) auch die durch die 2-Form reprasentierte Kohomologie-
klasse, so folgt hieraus ?^m];zf0, d. h. auch r^W^fO, r 1, ,m.

*) Zusatz bei der Korrektur Fur k m genugt zum Beweis aller Satze dièses

Paragraphes sowie der \n diesem Anhang nicht bewiesenen Formel (76.a) p2^+i^0 (mod 2)
schon die sehr viel schwachere Voraussetzung dq 0 Vgl. H. Guggenheimer, Sur les
variétés qui possèdent une forme extérieure quadratique fermée, C. R
Acad. Sci. Paris 232, (1951), p 470 — Eine Beweisskizze fur Manmgfaltigkeiten behe

biger Dimension und (K*), sowie weitere Resultate, bei A Lichnerowicz, C R Acad Sci
Paris 232 < 1951), p. 677.
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Ist dièse Voraussetzung erfûllt, so bezeichnen wir die Mannigfaltigkeit
mit

7.2. Wir verwenden fur die Rechnungen die iiblichen Definitionen
der Operationen *ff, ôB und AH nach de Rham, wie sie in 2.2 angegeben
sind. Da an dieser Stelle keine anderen Operationen auftreten, lassen
wir die Indizes H wieder weg. &r bezeichne wieder die Vektorgruppe
aller r-Formen, Hr die der harmonisehen r-Formen.

Bei ungeradedimensionalen Mannigfaltigkeiten wûrden in den meisten
Definitionen noeh gradabhàngige Vorzeichen auftreten. Dies ist der
Grand dafûr, daB die folgenden Beweise und die Sàtze selbst fur solche

Mannigfaltigkeiten nicht gelten.

7.3. Aus den Definitionen ist ersichtlich, daB die Formeln (54) und
(56) aueh auf einer Mannigfaltigkeit B\™ gelten. Ebenso ist nach (K*)
Ar\ 0. Analog zu unserem Vorgehen im Komplexen fûhren wir die
linearen Operationen ein :

A(pr (—l)2*^*^ b)

und definieren wieder wie in § 4 0rh, Hrh, h0r, hHr. Es gilt

L A A L a)
(120)

A A A A b)
und somit

7*. Ist qf harmonisch, so sind auch Lqf und A<pr harmonisehe
Formen.

Wir brauchen analog wie frûher nur die eine Formel, etwa (120 a) zu
beweisen. Wegen (K*) ist

dL—Ld 0 (121)

Da tins ein Operator analog zu C hier nicht zur Verfugung steht, definieren

wir direkt
dy'^hlP^ ^idxtdx1*. .dx** (122)

Es ist wieder

(dd + dd)qf h\Pii ir;8.udx«dxtdxiK..dxi'

+ MPh.,Ar;u;tdxtdxudxiK. .dx1'

-M(Pi1..Ar;r,u-^1..Ar;u;t)dx-d^dxiK..dxi^O. (123)
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Verwenden wir ein in einem Punkt p0 geodâtisches Koordinatensystem,
so ist dort, wegen [h*t]Po [htt]Po

[ÔL <p%o V * V2 ~ K Pit.. .irSf «**' **il. dx*r LW "Vk •

Nach dem SchluB mit geodàtischen Koordinaten (analog zu 1.6) ist also
iiberall

ÔL — Là — d (124)

(121), (123) und (124) zusammen ergeben (120a).
Aus Satz 7* und der Voraussetzung (K*) folgt der

Satz 6*, Die Formen rj[q\ q 1,..., k sind harmonisch und ^ 0.

Korollar : In einer B\™ ist p2q ^ 1 fur q ^k (und m — k ^ q ^ m).

Im folgenden werden wir nur die Operatoren L und A benôtigen. Nach
Satz 7* kônnen wir uns wie in den Paragraphen 4 und 5 darauf beschràn-
ken, die Sâtze fur &r zu beweisen, sie sind dann fur Hr mitbewiesen.

Der Induktionsbeweis fiir die Sâtze 8r und 9r beruht auf der folgenden
Formel, die fur effektive Formen gilt :

A L yf — (m — r) y>r (98)

Wenn wir dièse Formel noch bewiesen haben, so ist unser Programm
erfûllt, da aile weiteren Beweise des § 5 sich wôrtlich auf den Fall der
B\™ iibertragen lassen. Der Beweis benutzt die Voraussetzung, da8 der
Rang von rj ûberall gleich 2k ist und gelingt nur fur die Grade r ^ k.
In den Sâtzen 8* usw. tritt daher immer k an die Stelle von m.

In jedem Punkt der jB|f lassen sich Koordinaten x1... x2m finden,
derart, daB dort gilt k

Mit diesen Koordinaten sei zum Beispiel

dann ist

A L <pr — (k — r + a) yr

L A<pr — a (f

dxiadxkK..dx^

fur aile [t, q
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das heiBt, wenn A qf 0,

ALqf =—{k—r)<pr (r<k) (125)

Es gelten also die Sâtze :

Satz 8*. Fur r < k — 2 ist L ein Isomorphismus von 0r auf sich.

Satz 9*. Fur r < k ist 0r die direkte Summe von &r0 und L 0r~2.0

Satz 10*. Fur r^2m — & + 2 ist yl ein Isomorphismus von 0r auf
sich.

Satz 11*. Fur r ^ 2 m —k ist &r die direkte Summe von 0&r mit

Satz 12*. Fur r < k — 2 ist L ein Isomorphismus von &r in $r+2
und bewirkt einen von Hr in Hr+2. Fiir r>2m — k -f- 2

ist yl ein Isomorphismus von 0r in 0r~2 und bewirkt einen

von Hr in ^~2.

Satz 12 a*. Die zu rj gehôrende Kohomologieklasse ist in den Graden

^ k kein Nullteiler im Kohomologiering.

Satz 13*.

0' - 01 + L0rQ~2 + • • • + iï^ÏÏ 0r~2[^ r^k a)

H'= HrQ+LHr0-2 + + L^ J5T^K1 r < ib b)

0* Q0r + Ao0r+2 + \-AVl 2 }\0 L 2 J r->2m-&. C)

l. d)

r
Satz 14*. pr 1 + J£ 4 r < i a)

2m-4 b)

r) r < &

i ist (<^, (pi) 0

Lemma.

Satz 17*.

(Lqf

Fur

M

h:

,=0
2m

Y)-
und r
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