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Uber komplex-analytische
Mannigfaltigkeiten mit Kiihlerscher Metrik

Von H. GUGGENHEIMER, Basel

Einleitung

Eine Mannigfaltigkeit M2™ der Dimension 2m, mit komplex-analyti-
scher Struktur, auf welcher eine iiberall regulire Hermitesche Metrik
ohne komplexe Torsion definiert ist, soll eine Kdhlersche Mannigfaltigkeit
heilen. Die differentialgeometrischen Eigenschaften einer solchen
Metrik wurden zuerst von K. Kdhler [11]') betrachtet. Die wichtigsten
Resultate Kdhlers werden im § 1 dieser Arbeit kurz dargestellt, soweit
sie fiir den weiteren Verlauf notig sind.

Der Hauptzweck der vorliegenden Arbeit ist die Untersuchung der
Homologie-Eigenschaften geschlossener Kihlerscher Mannigfaltigkeiten ;
ihm sind die Paragraphen 2 bis 5 gewidmet. Es werden also Be-
ziehungen zwischen der lokal-metrischen und der global-topologischen
Struktur auf Kéhlerschen Mannigfaltigkeiten untersucht. Diese Be-
ziehungen finden ihren Ausdruck in Satzen sowohl iiber die additive
Struktur der Kohomologiegruppen, das heifit im wesentlichen iiber die
Bettischen Zahlen (Sétze 5, 13, 14), als auch in Sédtzen iiber die multipli-
kative Struktur des Kohomologieringes, das hei3t iiber Schnitteigen-
schaften in der Mannigfaltigkeit (Sdtze 17, 18).

Die naheliegendsten Beispiele Kéhlerscher Mannigfaltigkeiten sind der
komplexe projektive Raum mit einer elliptischen Metrik und die in
diesem Raum analytisch und singularitédtenfrei eingebetteten komplexen
Mannigfaltigkeiten. Dazu gehoren alle singularitétenfreien algebraischen
Mannigfaltigkeiten (vgl. [9], Kapitel IV). Daher sind in unseren Ergeb-
nissen Aussagen iiber die Bettischen Zahlen und die Schnitteigenschaf-
ten algebraischer Mannigfaltigkeiten enthalten. Die meisten unserer
Ergebnisse fiir diesen Spezialfall werden von Hodge hergeleitet. Die vor-
liegende Arbeit kann als eine Verallgemeinerung und Analyse der Hodge-

1) Zahlen in eckigen Klammern verweisen auf das Literaturverzeichnis am Ende der
Arbeit.
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schen Theorie aufgefalt werden. Dabei legen wir besonders Wert darauf,
bei den Ableitungen nur die Eigenschaften der Kéhlerschen Metrik
zu verwenden. Die Beniitzung sonstiger spezieller Eigenschaften der
betrachteten Mannigfaltigkeiten, etwa topologischer oder algebraischer
Natur, wird strikte vermieden. Ein solches Vorgehen ist von 4. Weil [16]
angeregt und skizziert worden ; wir iibernehmen von ihm die meisten
Bezeichnungen.

Die ganze Ableitung beruht auf einer Reihe rein lokaler Formeln iiber
alternierende Differentialformen auf Kéahlerschen Mannigfaltigkeiten. Die
Herleitung dieser Formeln geschieht mit Hilfe der differentialgeometri-
schen Resultate lokalen Charakters, die in § 1 dargestellt sind. Wir be-
niitzen dabei durchwegs den Kalkiil von Cartan und den Begriff der
,,harmonischen‘‘ Formen, und gelangen zu sehr weitgehenden Aussagen
iiber die harmonischen Formen in einer Kihlerschen Mannigfaltigkeit.
Vermoge des Satzes von Hodge, welcher besagt, daBl der Ring der har-
monischen Formen zum Kohomologiering isomorph ist, lassen sich diese
Resultate auf den Kohomologiering iibertragen.

Eine wichtige Rolle spielt bei der Herleitung eine der Metrik zu-
geordnete alternierende Differentialform £ vom Grade zwei. Sie ist samt
allen ihren Potenzen harmonisch und fiir die Grade <<m kein Nullteiler
im Ring der Differentialformen. Auf ihr beruht eine Zerlegung der For-
men in solche verschiedener Klasse (Sdtze 9 bis 13). Eine Form hei3t
von der Klasse k£, wenn sie in einem gewissen, in § 4 prézisierten, Sinn
die k-te Potenz von {2 als Faktor enthilt.

Auf jeder Mannigfaltigkeit mit komplexer Struktur gibt es eine natiir-
liche Zerlegung der Differentialformen nach deren 7T'ypus. Eine Form
heit vom Typus r, wenn jeder ihrer Summanden r Faktoren dz; ent-
hélt, wobei die z; (j = 1,..., m) komplexe Koordinaten auf M?™ sind.
Auf Kiahlerschen Mannigfaltigkeiten gibt auch diese Zerlegung zu topolo-
gischen Sitzen AnlaB, welche gewisse Sétze iiber algebraische Mannig-
faltigkeiten verallgemeinern (Sétze 2 bis 5).

Im § 6 werden Orthogonalititsrelationen hergeleitet, welche auf dem
von de Rham [13] verwendeten skalaren Produkte beruhen. Es zeigt sich,
daB fiir dieses Produkt zwei Formen verschiedener Klasse oder verschie-
denen Typus immer orthogonal sind. Es 1a8t sich daher eine orthogonal-
normierte Basis der Formen angeben, welche der Einteilung der Formen

.in Klassen und Typen in natiirlicher Weise Rechnung trégt.

In einem Anhang wird gezeigt, daBl alle Sdtze, welche auf dem Begriff
,,Jormen verschiedener Klasse‘‘ beruhen, sich schon unter viel schwéche-
ren Voraussetzungen herleiten lassen. Sie gelten auf reellen Mannigfaltig-
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keiten gerader Dimension, auf denen eine Differentialform vom Grade 2
mit bestimmten Eigenschaften existiert (Sédtze 6* bis 16*).

Ein Teil der Resultate dieser Arbeit ist zusammen mit weiteren Ergeb-
nissen in drei Noten des Verfassers gemeinsam mit Herrn Eckmann an-
gekiindigt worden [8].

Es sei mir gestattet, an dieser Stelle meinem verehrten Lehrer, Herrn
Professor Dr. B. Eckmann, der mir das Thema der vorliegenden Arbeit
gestellt hat, meinen herzlichsten Dank auszusprechen fiir das stete Wohl-
wollen und Interesse und die vielen wertvollen Hinweise, mit denen er
meine Arbeit gefordert hat.

§ 1. Komplexe Mannigfaltigkeiten

1.1. Die Punkte des 2m dimensionalen kartesischen Raumes R2m
sind die geordneten 2m-upel reeller Zahlen =z,,...,x,,. Sie koénnen
auch durch die geordneten m-upel komplexer Zahlen z,,...,z, gege-
ben werden, welche den reellen 2m-upeln durch

Zk:'—-‘xk+?;xm+k ]Czl,...,m (1)

eineindeutig zugeordnet sind.

Alle im folgenden auftretenden Funktionen im R?™ seien reell-analy-
tisch, das hei3t sie seien als Potenzreihen in den unabhéngigen Variablen
Zyy..., &y, darstellbar. Fiigen wir zu den durch (1) gegebenen kom-
plexen Variablen noch die entsprechenden konjugiert-komplexen hinzu

Zp = Tp — L% s k=1,...,m , (2)

so lassen sich die Potenzreihen in den z,,...,,,, zusolchenin z,,...,z,;
215+, 2, umformen. Alle vorkommenden Ableitungen nach komplexen
Variablen sind an den so gewonnenen Potenzreihen auszufiihren.

Transformationen der reellen Koordinaten «,,..., z,, in einem Ge-
biet des R2m lassen sich als solche der z,, z, ausdriicken :

zg!:fk(z19“'3zm9—z.13°°'s§m), k’=1,...,m.

Im folgenden betrachten wir speziell diejenigen Koordinatentransforma-
tionen, bei denen sich die z;, durch die z, allein ausdriicken lassen :

2y = fu(21, .00y 20) , k=1,...,m, (3)

das heif3t bei denen

o _ _
ﬁ:"— ’ k:l"‘]',"'am: (4)
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ist. Zerlegt man die Funktionen f, in ihre reellen Komponenten, etwa
fr =1, +1v,, k=1,...,m, so laBt sich (4) auch in der Form

ou,, oy

— == f}
0z, 0% 11
k,l=1,...,
ouy, v, 0 " (6)
0%t ox;

schreiben. Diese Gleichungen sind nichts anderes als die Cauchy-Rie-
mannschen Differentialgleichungen fiir die Real- und Imaginarteile der
komplexen Funktionen f,. Diese sind also komplex-analytisch in den
Zis+++s 2y, was auch daraus hervorgeht, dafl sie durch Potenzreihen in
den z, allein gegeben sind. Eine Koordinatentransformation der Ge-
stalt (3) soll komplex-analytisch heiflen.

Zu einer komplex-analytischen Koordinatentransformation (3) gehort
also stets eine reell-analytische Transformation, die durch die Gleichungen

Xy = U (Tyyeens X)) k=1,...,m (3')
Tp, = Vg (Ty, e e ey Topm) k=m41,...,2m
oder ebenso gut durch
z;c :fk(zl’ . '>zm)

- - _ _ k=1,...,m (3”)
zk:fk(zl" . "zm) :flc(zl" . ':zm)

beschrieben sind. Zwischen den Funktionaldeterminanten von (3), (37),
(3”) bestehen die Beziehungen

B, « o x o) OLar v 2 s %mgs Brsr ¢ 03 Zy) J 0 (21,5« +»20)

0(21 .« «rZm)

Fiir eine komplex-analytische Transformation ist also stets

2

O(Tyye o oy Tom)  O(Rrse v vrZms Z1sn o os Zpm)

a(a:{,. . .,x;m)
a(xl" % ‘ame)

>0 .

Geometrische Eigenschaften, die gegeniiber komplex-analytischen
Transformationen invariant sind, heilen Eigenschaften des komplexen
kartesischen Raumes R™. Dieser Invarianzbegriff liegt allen folgenden
Betrachtungen zugrunde.

1.2. Eine 2m-dimensionale geschlossene Mannigfaltigkeit M (™ heillt
komplex-analytisch oder kurz , komplex‘, wenn sie mit einer end-
lichen Anzahl von Umgebungen iiberdeckt ist, deren jede dem komplexen
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R™ (vgl. 1.1) homdomorph ist, derart, dafl im Durchschnitt je zweier
Umgebungen der Ubergang von den einen komplexen Koordinaten zu
den anderen durch eine komplex-analytische Transformation gegeben ist.

Ein lokales Koordinatensystem in einer Umgebung U auf M (™ heilt
zulédssig, wenn es im Durchschnitt von U mit jeder Umgebung der ur-
spriinglichen Uberdeckung aus dem dort gegebenen Koordinatensystem
durch eine komplex-analytische Transformation hervorgeht. Die Ge-
samtheit aller zuldssigen Koordinatensysteme heifit die komplexe
Struktur der Mannigfaltigkeit M,

Notwendige Bedingungen dafiir, dal} eine vorgegebene reell differen-
zierbare Mannigfaltigkeit eine komplexe Struktur besitzt, wurden von
Hopf, Ehresmann [10] und anderen angegeben.

1.3. Einige spater niitzliche Konventionen seien an dieser Stelle
eingefiihrt.
* Wir bezeichnen die konjugiert-komplexen Gréen durch Indizes, die

sich von den urspriinglichen um m unterscheiden, mit folgender Vor-
zeichenregel -

zm—{—k = zk ’ a’)
22m+k = - Zk ’ k — ]. g 8 e oy 7n, b) (6)
R3m+k — — Rp - c)

Ferner sollen kleine lateinische Indizes immer von 1 bis m, griechische
von 1 bis 2m laufen.

Mit diesen Bezeichnungen gelten bei einer komplex-analytischen Ko-
ordinatentransformation fiir die Differentiale der Koordinaten die Trans-
formationsgleichungen

dz), :E—a—[’idz, k=1,...,m, a)

-1 0%

- (7
. f _
A2 = X dz,,., k=1,...,m . b)

im1 i

Hieraus kann leicht folgender Invarianzsatz abgeleitet werden :

Wenn bei einem Tensor auf M ™ in einem Koordinatensystem alle Kom-
ponenten verschwinden, die nicht von der Gestalt T} . mier, ... mtks
sind, so verschwinden sie auch in jedem anderen zulédssigen Koordinaten-
system.

1.4. Unter einer Hermiteschen Metrik verstehen wir eine positiv
definite Riemannsche Metrik mit reellen (analytischen) Koeffizienten,
welche in jedem zulassigen Koordinatensystem beziiglich der Differen-
tiale der reellen Koordinaten z,,...,z,, (vgl.1) diespezielle Gestalt hat
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dst =
X { by (dzyday)+ hy m+l(dxkdxm+l)+ hm+kl(dxm+kdxl)+hm+k m+1 (dxm+kdxm+l)} ’
. 8
hiy = by = hm+km+l = hm+lm+k ’ a) (9)
hkm+l = h'm+lcl . b)
Dabei sind die Produkte in Klammern gewohnliche Produkte.
Setzt man

Irmer = Py + thpmyy (10)
so lautet das ds? (8) in den komplexen Koordinaten :

d82 =kz;gkm+l(dzkdzm+l) . (11)
Die Komponenten geniigen hierbei der Hermite-Bedingung

Jem+1 = glm+k (125
Sie konnen durch

= Imtte mer1 = 0 5 a
9 Im+r m+1 ) (13)
Im+kr = 9t m+x > b)

zu einem symmetrischen Tensor beziiglich der 2m Koordinaten z,, z,
erginzt werden.

Das zugrunde gelegte lokale Koordinatensystem ,,..., %,, sel nun
in einem Punkte p geodédtisch beziiglich der Metrik (8). Dort gilt
h}w = 6;11) ) a’)
ohu, (14)
Bxl =0 ’ b)

wobei d,, das Kroneckersymbol ist. In formaler Analogie gilt dann auch
nach (10)

Jrm+t = Ot » a)
aglr:m+l _ (15)
s 0 . b)

In jedem lokalen Koordinatensystem existieren m linear unabhingige
Pfaffsche Formen

w; = %‘aik(zl,. N TR ¥~ | I P | RN (N (16)
(Cartan [3], p. 59), so daB fiir die Hermitesche Metrik gilt
ds? =} (w; w,) . (17)
j
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Die Koeffizienten a, sind dabei homogene rationale Funktionen der
Jrms1- I8t das zugrunde gelegte Koordinatensystem geoditisch in einem
Punkte p,, so verschwinden in p, die partiellen Ableitungen der a,,

oa;\
( azl )Po—‘— 0 , (18)
und es kann dort
@5, = Ojp (19)

gewdhlt werden. Im folgenden sei unter p, stets ein Punkt einer Um-
gebung auf M™ verstanden, in dem fiir das speziell gewihlte Koordi-
natensystem (15), (18) und (19) erfiillt sind. Jeder Punkt auf M kann
zu einem p, gemacht werden.

1.5. Eine Kiahlersche Metrik ist eine Hermitesche Metrik, bei
der die g,,,,; der grundlegenden Bedingung geniigen?):

OFxm+r _ 9F;mat
0z, 0z, ()

Wir stellen kurz die wichtigsten Eigenschaften einer Kédhlerschen Metrik
zusammen.

Aus (K,) folgt durch Ubergang zu den konjugiert-komplexen Werten,
unter Beriicksichtigung der Hermitebedingung (12), die entsprechende
Relation

0G5k m+1 . 0G % m+i
O2mi;  OZmyy . (20)

Nach Kdhler a. a. O. gibt es in jedem Koordinatensystem eine Funk-
tion U (24...2,,), so daB
U

azk azm+l

Jem+1 = (Ky)
ist. Beim Beweis ist wesentlich, daB die Koeffizienten der Metrik reell-
analytisch vorausgesetzt sind. Die beiden Bedingungen (K,) und (K,)
sind in diesem Falle dquivalent.
Die gewohnlichen partiellen Ableitungen seien durch Indizes hinter

einem Semikolon bezeichnet :

of

2 =lie -
Dann lassen sich die Komponenten des Tensors der g, in einem
lokalen Koordinatensystem nach (K,) und (13) darstellen als

%) vgl. Kdhler [11], Bochner [1], Chern [6].
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Iem+1 = U; k;mtl o a)
r1 = gm—{-k m+i 0. b)

Wenn man noch die Vertauschungsregeln fiir Ableitungen beriicksich-
tigt, ergibt sich fiir die Koeffizienten des zur Metrik gehérenden affinen
Zusammenhangs

(21)

— 1 —
Fm—H‘, kl— 9 (gk m+j; 1 + 9. mti kT gkl; m+j) - U; m+3; k;l a') (22)
Fj, mikmibl U;:i;m+lc; m+l s )

wiahrend alle iibrigen infolge (21) verschwinden. Fiir den Riemannschen
Kriimmungstensor

Ry,v,go: R,;w;q —R,pe;c +gaﬂ (ch,,w ]13, vo ~ Fa,;w]wﬁ,va)

folgt aus (22), daf3 nur diejenigen Komponenten von Null verschieden
sind, die zu Indizesgruppen uv, go gehoren, wobei u, v und ¢, o je einen
Index << m und einen >m enthalten. So wird zum Beispiel

—_ * m+8 5
Rh m+i, km+l — U; hym4-3; k; mA-1 + g + U; m+s; hy k U;r; m+j; m+l (23)

Da die Indizes des Krimmungstensors auf der rechten Seite dieser Glei-
chung als Indizes partieller Ableitungen auftreten, iibertragt sich die
Vertauschbarkeit der Ableitungen auf die Indizes des Kriimmungs-
tensors :

— — — 9
Ruv, Qo Rve, o Recr, py Rau, ev (“4’)

In einem Punkt p, (vgl. 1.4) gelten speziell die Formeln

Jemy1 = Qg = U; Iy mal T O a)
I:,;:?\ = U; P e 0 b) (25)
I:,xl;p.: U;L;n;?k;p: Rm, Ap c)

1.6. In Zukunft sei immer vorausgesetzt, dal ohne Klammern ge-
schriebene Produkte von Differentialen und Differentialformen dem
schiefen Kalkiill von E. Cartan 3) gehorchen. Wir werden Differential-
formen r-ten Grades oder kurz ,,»-Formen‘ betrachten

qpr: E Pll“_,rdz,l. o » dz , (26)

ir

(tre .. 19)
gebildet in den 2m Unbestimmten dz,,...,dz,, mit alternierenden
komplexwertigen kovarianten Tensoren F,  (zy,...,2,,). Ein alter-

!

3) vgl. Cartan [3, 4], Kdhler [12], Chern [5].
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nierender Tensor r-ter Stufe wird dabei wie folgt definiert: p,...p,
und o,...0, seien zwei verschiedene Anordnungen der gleichen » Zahlen.
Dann gilt

For...op= 0.

Q;. Qr 0y...0p

wo dgl-or das verallgemeinerte Kroneckersymbol ist. Die Summation

in der Form (26) soll so ausgefiihrt werden, daB} fiir eine gewisse Kom-
bination von r Indizes nur iiber eine der r! Permutationen summiert
wird. An dieser Summationskonvention sei im folgenden durchwegs fest-
gehalten ; sie spielt eine Rolle bei der Bestimmung etwa auftretender
Koeffizienten.

Die Ableitung d¢” einer r-Form ¢" ist definiert durch

do= X dB, , dz, ...dz, = 2 2 " T dzydz, . . .dz, . (27)

.lr tr
(t1...t9) (t1...17) @ %e

Setzen wir (26) die Pfaffschen Formen (16) mit Hilfe von
dz;, = 2 by, w;
)

ein, so erhalten wir

r= X le...xrwh'--wxr ’
(A1...2p)

und es sind bei der Bildung der Ableitung von ¢" auch die w; zu differen-
zieren.

Wir bemerken noch, daf3 die Differentiale der reellen und komplexen
Koordinaten folgendermaflen zusammenhéngen

dz, =dx, +1dx, . , a)
(28)
dzm—*-k = dmk —1 dxm—i—lc s b)
dz, Az, p == dz, dz,, = —2idx,de,, ;. (29)

Wir wollen nun Eigenschaften der Kihlerschen Metrik untersuchen,
die sich aus der Gestalt (17) ergeben, und uns insbesondere mit den Ab-
leitungen der Pfaffschen Formen w, (vgl. (16)) befassen. Wir definieren
hierzu die symbolische Ableitung nach einem w,;, die wir durch
einen Index hinter einem Komma andeuten wollen.

Wenn der Zusammenhang zwischen den w, und den dz, durch dz;
= ) b;; w; gegeben ist, so definieren wir

j
afb

f»k—z (30)
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Die Torsion einer Hermiteschen Metrik wird nach E. Cartan so defi-
niert : Setzt man
Dpp = Z-I;\,u, vy Wy = Wy
und v

dwl=zw”w,’+gl ’ (31)
7

so wird der Koeffiziententensor von 2, Torsion der Metrik genannt.
Nach Voraussetzung (K,) und (25) ist in p, dw, = ' w;; ,;, und daher
dort i
2,=0. (K)

In gleicher Weise wie die Ableitung der Formen w, kann diejenige der
Formen o,, zerlegt werden in Anderung durch Parallelverschiebung
und absolute Ableitung

dw,,- = %—: Wiy Wy + ‘Qw . (32)

Die GroBle £2,; 1iBt sich bei einer Kéhlermetrik besonders leicht in einem
Punkt p, bestimmen. Nach (25) gilt dort

-th =—2 Rhm+.1', km+i Pg ~6Z’_z (33)

Da (K,;) und (33) in p, gelten, so gelten sie auch in jedem Punkte der
gewihlten Umgebung und in jeder Umgebung auf M (™) da die absolute
Ableitung Tensorcharakter hat. Dieser {fiir die Anwendung geodéitischer
Koordinaten charakteristische SchluB wird im folgenden noch ofters
auftreten. Er sei deshalb kurz als ,,Schlu mit geoditischen Koordi-
naten“ bezeichnet.

§ 2. Harmonische Differentialformen

Es handelt sich in diesem Paragraphen darum, harmonische Formen
analog den Definitionen von Hodge [9] und de Rham [14, 15] einzu-
fithren, wobei wir durchwegs im Komplexen bleiben wollen, das heillt
die komplexen Differentiale dz,,..., dz,,, dz,., =dz,,...,dz,, =dz,,
verwenden werden ; an deren Stelle kénnen auch die lokalen linearen
Differentialformen w;, w; treten (vgl. 1.4).

& bezeichne die Vektorgruppe aller komplexen auf der ganzen Mannig-
faltigkeit M ™ definierten Differentialformen ¢” vom Grade r (vgl. 1.6),
r=20,1,...,2m. Wir definieren eine Operation x, welche jeder »-Form
¢" eine (2m — r)-Form x¢" zuordnet, in folgender Weise : Ist in einem
lokalen Koordinatensystem ¢ durch ¢"= X P o,... o, ge-
geben, so sei 1...tn)

e
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k@T=1im ¥ gprirhump g » (34)

....... 1...07 r+1° * " am
(tr+1...t2m)

gesetzt, wobei entsprechend unserer Summationskonvention in (26) nur
iiber je eine Permutation der ¢, ... ¢, zu summieren ist. Wie sich in
2.3 ergeben wird, ist die Operation % vom lokalen Koordinatensystem
und von der Wahl der w; unabhingig und definiert eine ,,antilineare*
Abbildung von &' in @2™-". Aus der Definition folgt wegen

Llee byt N | —_— 2 ook l1...1
O T e = (= o A

w,...0, =(-1)¢". (35)

.......................... r

Die Operation x ist also ein Isomorphismus von @ auf @2m-r,
Als Volumenelement wihlen wir

*l::z:mwl...wmwmﬂ...wzm (36)
= 1" || Grmys || 9210 - d2p d2p iy od2y,

Dieses ist bis auf einen positiven Faktor mit dem iiblichen Riemannschen
Volumenelement in reellen Koordinaten identisch, es ist ndmlich nach (29)

x1=2nV|| by || d2;. . .d2s,, . (37)
Aus der gegebenen Metrik ds? = X' g;,,.,(d?, dz,,,,) kann man immer
k1

durch Multiplikation mit einer positiven Konstanten eine neue erhalten
derart, daB fiir das zugehorige Volumenelement

A*l:l (38)

gilt, ohne daB sich die iibrigen Eigenschaften wesentlich #ndern. Wir
wollen in Zukunft immer voraussetzen, dafl fiir unsere Metrik (38) gilt.
Aus (34) und (36) folgt leicht:
<P"*<P'=(( X2 B, %1 . (39)
iy, ..09)

2.2. Die Ableitungsoperation d ist eine lineare Abbildung von @*
in @+, gegeben durch

dy"= X dF,  dz ...dz

oy 3 p °
G1...t9)

Mit Hilfe der soeben eingefiihrten Operation x definieren wir eine zweite
Ableitungsoperation §, welche @" linear in @ abbildet durch

0¢" = —kd xg¢" . (40)
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Durch
A4 ¢" = (dé + dod) ¢" (41)

ist dann eine lineare Abbildung
4 =ddé + dod (417)

von @' in sich definiert. Der Kern dieses Endomorphismus ist eine
lineare Untergruppe H” von @7, die Formen ¢" ¢ H", fiir die also

Ad¢g"=0 (42)
gilt, heilen harmonisch.

2.3. Ein Vergleich unserer Definition von %, 6 und 4 mit derjenigen
von Hodge und de Rham fiir reelle Formen zeigt, dafl die entsprechenden
Operatoren sich nur um einen konstanten Faktor unterscheiden, und
dafl daber insbesondere die beiden Definitionen der harmonischen For-
men iibereinstimmen.

Zur Durchfiihrung dieses Vergleichs betrachten wir eine reelle r-Form
in komplexer Schreibweise. Eine solche Form ist selbst-adjungiert (vgl.
Bochner [2], p. 88), das heilt Komponenten des Koeffiziententensors,
bei welchen sich entsprechende Indizes je um m unterscheiden, und
deren Indizes alle zwischen 1 und 2m liegen, sind zueinander konjugiert-
komplex. Insbesondere sind in einem Punkte p, einander entsprechende
kovariante und kontravariante Komponenten konjugiert-komplex. So
gilt zum Beispiel fiir einen selbstadjungierten Vektor

=g, =&, ‘—“E,- ’
und analog fiir hohere Stufen.
Die Definition des Operators x von de Rham ([14], p. 6), den wir zum
Unterschied mit x; bezeichnen wollen, lautet
kg ¢" =V, || T & 2 px, hr B dw, ..dw, . (43)

lam Hr ir4+1* tam

Wir betrachten also eine reelle Form ¢ in reellen Koordinaten in
einem Punkt p,

(pr :( . . )})91 . Jg Mtiggy .. mtdp dxfl v dxfs dxm+fs+1 R dw""'f'fr . (44)
1.0
In komplexen Koordinaten lautet dort der Ausdruck fiir ¢"

(— iy

8 r
¢ = X 1B smibisrr.. miis E(dzqu’_dzM) IT (dz;, —dz; ) .

(G1...97) g= g=8-+1
(45)

Aus (44) ergibt sich
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g (pr — E 61 ............................. 2m p

J1...Jg MtJa41. . . M+Gr frd1e .. Fmer48 M+ Tmr-ts+1. . .M+ Jom™ d1- - -dg mtdgyy.. o mbdy

(ir+1 oo dom)
- dx dx dx .dx

Ir41° " T imer e T imAr-g41 * m+jam

oder in komplexen Koordinaten
(_ ?:)m-r+s m—r+-8 2m

Xp @' = - omn—r X 6}1:::%%'732}_);1,..%“ I (dziq_'_d—z-?'q) 1 (dz?'q_dzfq)’

Ur41...72m) g=r+1 g=m—r+8+1

wahrend aus (45) nach (34) folgt

(_____ i)m-—r—l—s 1 9 — Mm—r-+ 8 _ om B
r— > MM m .
*(p T or Z 67'1...m+:52m 1)2'1...m+:ir 17 (dz7q+ dz?q) 17 (dz}q dz?q) .
- g=r+1 g=m—r-+8+1

Der Vergleich beider Ergebnisse zeigt, daB
*k 992 = 922(r—m) *H (pr . (46)

Fiir geradedimensionale Mannigfaltigkeiten 4) lauten die Definitionen
von Hodge-de Rham der Operatoren 6 und A4

O ¢" = — kgd*zo"
Ag¢" = (d oy + 6z d) 9" .

Da die Operation d die Dimension um 1 erhoht, erhalten wir, wie am
Anfang dieser Nr. behauptet,

Y

Es folgt insbesondere, daf fiir unsere harmonischen Formen der Satz
von Hodge gilt, der den Zusammenhang zwischen den Gruppen H" und
Homologieeigenschaften von M ™ liefert und daher die Ubertragung der
folgenden Resultate auf die Kohomologie- und Homologiegruppen ge-
stattet. Der Satz von Hodge besagt, daBl die Gruppe der reellen harmo-
nischen r-Formen auf einer geschlossenen Mannigfaltigkeit M isomorph
ist zur r-ten Kohomologiegruppe von M beziiglich reeller Koeffizienten.
Daher ist auch die Gruppe der komplexen harmonischen r-Formen auf
M dieser Kohomologiegruppe isomorph. Insbesondere ist der Rang der
Gruppe H" beziiglich komplexer Koeffizienten gleich der r-ten Betti-
schen Zahl p" von M.

%) de Rham [15], p. 136. Das Vorzeichen ist hier wegen der geraden Dimension der
Mannigfaltigkeit vom Grad der Form unabhiingig. Ist die Dimension der Mannigfaltigkeit
allgemein = n, so gilt

0= (—1)"+tnt+l, g«
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2.4. Mit Hilfe der Ableitungsformeln von 1.6 ergibt sich als explizite
Darstellung der Operation d

2m r
d(pr =(‘ El )[‘%Pll. itp, 1,0y e OOy +l}-:1(— 1))\——131. --'fI:)\"Qw“wQ @pyeee a\)’)\ e w"'} )
Leoobpy = - =
(48) %)
Diese Formel, auf * ¢” angewendet, ergibt

2m __
d*¢r=zm E {EPL,...lr,;wlr-H' y 'w¢2m+

(t1...t¢p) =1

-}-}_‘(—-—-1)"‘*91_),1. I, , 0w, . .0 . ..0,...0 }

ety Ttk Ly, ) e 73
=1 e e

und hieraus folgt durch nochmalige Anwendung der Operation x

b= X {2 (——1)7‘31_._,’”;\(»,1. . .6,)\. coo,

(t1...0) L A=1

’
+ 2 (— 1)n+9+1_P“-“'rI:’z 2

N\ N\
R R

00, ..
»%, @=1 ®e *
. . . . . (49)
Die Vorzeichen sind dabei bestimmt durch
3 2m __ (_ 1\(=1) (2m—r41) 4 (r—2) (2n—r) S1...2m __( 1yl
6l,¢ pd-1.0. tom by, . lxx—1 t,¢+1...lf_ ( 1) 6!1...&21» - ( ]') ’
(51 ................................ 2m __ (___ 1)e+n+l—1
g 10 Ip41 .o AP Al (P A410 0 02 PR b1 e olxgm1 tig 4100001 0@F1 .. 17 ¢

Mit Hilfe von (48) und (49) kann nun 4 berechnet werden. Es geniigt
fiir unsere Zwecke, dies in einem Punkt p, zu tun. Nennen wir in den
rechten Seiten von (48) und (49) die erste Summe d, respektiv §,, die
zweite d, respektiv d,, so ist in p,

A ¢1‘ - (doa + aod)w ’
somit bei Beriicksichtigung von (23) und (25)
2mP
Adgr = — X i1, @y e @
(p (11...ly){l§1 AR ! (50)

-+ A A A
+ )‘2 (=1 F B iy p Op@e®yy e Wy 0,
®, A, Q,

In der zweiten Summe konnen auch mehrere Indizes gleich sein, das
heillt ausgeschrieben

8) A bedeutet dabei, daB die darunterstehende GroéBe aus der betreffenden Reihe weg-
zulassen ist.
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2m
r
Aw - E E‘Ptl...lr, l,lwll' ¢ ‘wlf

(Ll...lr) =1
1A A ~
+ X ()R Ry, p0u 00,0, 0, .0,
(4, 3520, 1)

>

+ ) ;‘.;) (—1*B, B Lo, ..0,.. .0,
A

+ 2 'R'Pl]_...lr wtl' * 'wtr} * (50,)

Diese Formeln sind offenbar nur in einem Punkte p, giiltig.

2.5. Wir stellen nun einige wichtige Eigenschaften der Operationen
d, %, 6 und 4 zusammen.
Fir beliebige Differentialformen ¢" gilt 3)

ddg™ = 0 . (51)
Daraus folgt
8d¢" =0 . (52)
Beweis: dd¢" = xd xkd k¢" = (— 1y xdd x¢"=0.
Es folgen unmittelbar die Beziehungen
dA¢" = Adg" (= dddy") , a)
(53)
0de" = Adg" (= oddg™) . b)

Fiir die Operation x ergeben sich aus (35) folgende Vertauschungs-
relationen :

xdg" = (— 1" dxg¢" , a)
% 0pf = (— 1) dx¢" , b)  (54)
x dg" = Adxge . c)
Beweis :
Okg' = —xdkxo = (— 1y xdp
% 0% = — sk kd k" = (—1)y+2d x¢? ,

* dgr = ((—1)"6%d + (—1)ytd xd) o' = A xg¢" .

Aus der letzten Formel folgt eine Aussage iiber die harmonischen Formen.

Satz 1. Mit ¢" ist auch % ¢” eine harmonische Form. x ist ein Iso-
morphismus von H" auf H*m-r,
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Nach dem Satz von Hodge folgt daraus fiir die Bettischen Zahlen die
Dualitdtsbeziehung p" = p?™—. Die Beziehungen zwischen dem Opera-
tor x und der Dualitdt in Mannigfaltigkeiten werden im § 6 noch genauer
untersucht.

2.6. Fiir das Produkt zweier Formen ¢"= X P w, ...», und

1...1y i1° ty
(t1...7)

pi= X Q,, . rg Py - Dag gilt die bekannte Ableitungsformel 3)
(A]...Aq)

d(@"-p?) = dg"-p? + (—1) " dy? . (55)

Fir o6(¢"-y? 1dBt sich im allgemeinen keine so einfache Formel an-
geben. In einem Punkt p, erhilt man jedoch eine Darstellung, welche
fiir unsere Zwecke gentigt :

0(g" 9], = 09" pT 4 (— 1)29"- Gy
r+q

— 1! o
+ X )3 ( 1) Ryn‘r, U/ Qf‘r+1-~-'r+q Opye e Wi e - Wy 'wfr+q

C1...tr4) Ll=r41

,
l N\
+ l% (—1) El---‘rQ'7+1--"r+q, I R SN T .a),’,_mJ .

§ 3. Der Operator C

3.1. Esist auf Kdhlerschen Mannigfaltigkeiten M (™ verhiltnismaBig
einfach, eine gewisse Ubersicht iiber die dort moglichen Differential-
formen zu gewinnen. Ein erstes Klassifikationsprinzip ergibt sich aus den
Transformationsgleichungen (7) und dem Invarianzsatz in 1.3.

Wihlen wir in einer r-Form ¢” die Teilsumme aller Glieder aus, die in
den dz, von einem festen Grade % sind, so bildet diese Teilsumme selbst
wieder eine r-Form. Dies fiihrt uns zu folgender Definition :

Eine r-Form ¢" heil}t reine Form, wenn alle ihre von 0 verschiedenen
Glieder vom gleichen Grade % in den dz, sind. Dieser Grad kb heilt der
Typus der »-Form ; durch einen unteren Index in Klammern, zum Bei-
spiel (k), deuten wir stets an, da3 eine Form rein (vom Typus &) ist, zum
Beispiel ¢(;,. Alle reinen r-Formen vom Typus A bilden eine Vektor-
Gruppe @, die eine lineare Untergruppe von @ ist. Die harmonischen
r-Formen vom Typus % bilden eine lineare Untergruppe H(,, von H".
Der Rang von Hy, sei gj,.

Jede Differentialform 148t sich offenbar eindeutig als Summe reiner
Formen darstellen

r
¢ = 2090{,) - (57)
8=
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@ zerfillt also in die direkte Summe (mit -+ bezeichnet)
D" = ¢:o) + ¢{1) + R o :r) . (58)
Lemma. Ist ¢f,, eine reine r-Form vom Typus %, so ist auch Ag(,
eine solche.

Beweis : In einem Punkt p, 18t sich A¢[;, nach (50) berechnen. Da
wegen der Voraussetzung der Kdhlermetrik nur die unter (23) beschriebe-
nen Komponenten des Kriimmungstensors von 0 verschieden sind, gilt
dort das Lemma. Nach dem Schlufl mit geodétischen Koordinaten (ver-
gleiche 1.6) gilt es also allgemein.

Aus dem Lemma folgt der

Satz 2. Mit ¢" sind auch alle reinen Komponenten g¢,, von ¢" in (57)
harmonisch. H" zerfillt in die direkte Summe

H":HZFO)"FH(Q)".}""‘.FH{,-) . (59)
Korollar zu Satz 2 : Fiir die Bettischen Zahlen p" von M™ folgt
r
P= 3¢ - (60)
8=0
Beweis von Satz 2: Setzen wir auf Grund des Lemmas

r 7
A‘P(a) = Vs o

so ist fiir eine harmonische Form ¢" = 2 ¢,
8
A(pr e z Aq)(rs) = E 1/){8) e O R
8
das heifit wegen der Eindeutigkeit der Darstellung (57)
"/):s) - A(p{s) =0 .

3.2. Wir definieren jetzt eine lineare Operation C in @', welche
wesentlich von der komplexen Struktur abhingig ist. Der r-Form

¢"= X B, o, ..0 wird eine neue r-Form zugeordnet durch
(b1...19)

Co"=1v" ¥ E; co w . (61)
)

( lp “UmA-Ly 0 " Mty
1...0p

Fiir eine reine Form ldBt sich C darstellen als
Colyy = 1" (—1)° ¢, (62)
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Aus dieser Definition folgt

00" = (—1y ¢’ (63)
und

Cy =(—1yCy . (64)
Hieraus ergibt sich

Satz 3. Die Abbildung C ist ein Automorphismus von &. C ist
ein Isomorphismus von &, auf &, _, .

Fiir das Weitere fiihren wir noch die durch C Transformierten der im
vorigen Paragraphen definierten Operationen ein :

§<=8*0 , a)
i—0do | b

oee b (o)
d =080 c)
A=cd0 | d)

und untersuchen sie hauptsichlich im Hinblick auf Vertauschungs-
regeln. Dabei wird sich herausstellen, da % und 4 nichts Neues ergeben,

wihrend d und 6 Ableitungsoperatoren sind, die fiir reine Formen bis
auf ein Vorzeichen mit den gewohnlichen zusammenfallen. Fiir andere
Formen weichen sie von diesen ab.

3.3. Man verifiziert leicht durch Einsetzen (61), daf

Clg"y?) = Cog-Cy? . (66)

Nun betrachten wir die Vertauschung der Operatoren C und x.
Cxer=(—1)m"%xCq¢" , (67)
kgr = (—1)""x¢g" . (68)

Diese beiden Formeln sind wegen (64) dquivalent. Ihr Beweis erfolgt
durch explizite Darstellung :

C*(pr=ir~m > 6}12MP w ~'wm+zzm:(_1)m_r*0¢r .

ddgm byl by mtp gyt
(t1.. "’f)

Die Formeln (67) und (68) sagen im wesentlichen nichts anderes aus als

k@ = (—1)F %g¢ . (69)

Dies ist ein neuer Beweis dafiir, daB der Operator x reelle Formen wieder
in reelle iiberfiihrt, wie dies schon aus 2.3 hervorgeht.
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Jetzt verifizieren wir, daB d und 8 die formalen Eigenschaften von
Ableitungen haben.

Jg(pf =0, a)
~~ (70)
00" =10 . b)
Beweis: Nach (51) und (52) ist
ddy’ — CddC ¢" =0 |
3dg" — 0660 ¢ =0 .
Ferner gilt analog zu (40) und (41)
8" = — xd x¢" , (71)
Agr = (d§ + dd) g™ . (72)

Beweis :

5(}0’ —_ a*d * Ctp" — (_ l)m—r(__ l)r—l(___ 1)m——(2m-—r+1) *adg *(pr

= — *J* " .
Hieraus folgen sofort die zu (54) analogen Formeln
* dgr = (— 1)+ 8% g, a)
x 0" = (— 1)y dxg¢" , b)  (73)
* Z¢' = a x¢@" . c)

Zum AbschluBl dieser Formelreibe zeigen wir noch, daB

A = AC (74)
das heif3t _
A=4. (747)

Zum Beweis dieser Formeln dient der SchluBl mit geodédtischen Koordi-
naten. In einem Punkt p, ist nach (50)

m
AO‘P == - 2 {2 ‘})tl..,l,r,t,bwm-l-tl' « Dy, +
(1) Le=1
-+ A A A
+ %("1) I)tl...lr'RQm+tn'm+t;\Mwa[me+tl' ° . wm+tn e w . wm+l;\' . 'wm+z,-} ’
%,
2m
OA(p"::: - ¥ {2 P¢1---'r,‘,‘w7’H"1' Wy, -+
(L1000 0p) Li=1
x—+ A N N
+ ‘21 (""l) Rl..,tr-Racx tltwm+0wm+rwm+t1‘ . 'wln' * .CO,)\- ¢ ’wm+t,-} ¢
*%,
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Da nur die in (23) angegebenen Komponenten des Kriimmungstensors
von 0 verschieden sind, konnen wir hier ¢ =m 4 ¢, v =m + u usw.

wiihlen, so dal wegen (24) die beiden rechten Seiten identisch werden.
Hieraus folgt :

Satz 4. Mit ¢” sind auch C¢” und ¢" harmonisch. C' bewirkt einen
Automorphismus von H” sowie einen Isomorphismus von H{,, auf H{,_, .

Satz 4 bedeutet fiir die Ringe der Gruppen H{,
6{") == Ezr_h) . (75)
Setzen wir dies in (60) ein, so ergibt sich fiir die Bettischen Zahlen der
Satz 5.

r k
P=Xep=223¢= (mod 2) fir r=2k+1 a)
h=0 h= ,
i 1 (76)
PV=Xep=2X &4+ tp= 82_{) (mod 2) fir r=2k b)
h=0 h=0 2

Die Formel (76.a), welche besagt, daBl in einer Kahlerschen
Mannigfaltigkeit die Bettischen Zahlen in den ungeraden
Dimensionen gerade sind, ist eine Verallgemeinerung eines bekann-
ten Satzes von 8. Lefschetz iiber algebraische Mannigfaltigkeiten. Die
Formel (76.b) kann dazu verwendet werden, gewisse Sitze von S. Boch-
ner [2] iiber den Zusammenhang zwischen Kriimmung und Bettischen
Zahlen auf Kihlerschen Mannigfaltigkeiten zu verschirfen.")

3.4. Zum SchluB beweisen wir noch eine wichtige Formelgruppe, die
d, 6 mit d, § verkniipft 3
dd + dd =0 , a)

. (77)
68 + 36 =0 . b)

Um die erste dieser Formeln zu beweisen, betrachten wir eine r-Form
¢o'= X B, ,dz ...dz, und bilden
(t1...19)
dy" = X Blmmmﬂdzadz,l. . .dz,r ,
sowie (t...t9)
do"= X B .. dzdz, ...dz

tp °
Dann ist (1. .t7)

*) Zusatz bei der Korrektur: Vgl. H. Guggenheimer, A Note on Curvature and
Betti Numbers, erscheint in Proc. Amer. Math. Soc.

276



(dd+dd)ygr= X | SP. ,  pinrdzadedz, .. .dz,
(CTROAER

+ E 'I)Ll,_.yr; l;?ﬂ—f—u dzudz;\ dztl. & .dz’r
3, A
= E 27‘. (Rl---'r;m+";;‘ - 'Pll_“y,r;}\;m_}_”) dZ}\dz%dzcl. . ,dz[r::.' 0 .
(tg...0p) 2,

(77.b) folgt dann wie iiblich durch Transformation mit *.

§ 4. Die Operatoren L und A

4.1. Der im vorigen Paragraphen eingefithrte Operator C' 148t sich
auf jeder Mannigfaltigkeit mit komplex-analytischer Struktur definieren.
Dagegen beruhen die Operatoren, die wir jetzt einfithren wollen, wesent-
lich auf der Voraussetzung, dal in der betrachteten Mannigfaltigkeit
eine Kédhlermetrik definiert ist.

Der Kihlermetrik

ds? = g I my1(d2y d2) = % (g W)
laflt sich eine schiefe Differentialform vom Grade 2
Q:iggkmﬂdzkdzmﬂzi‘?wkwm+k (78)
zuordnen, auf diese beziehen sich die folgenden Betrachtungen.

0g; . . .
Die Voraussetzung (K,) 6gg;n+, . gé;"“ = 0 ist dabei dquivalent
mit ! k

dQ =0 . (K,)

4.2. Wir untersuchen die 2-Form {2 genauer. Zuerst berechnen wir
* £2. Es ist nach Definition

m
A m—1 e 2m
*x Q=1 ,’E Ojma3i.. i 541 mei-imisy. . om @1+ s @1 Ojpg e e s Oy s 3 Oy iy v+ Oy
=1

m
—f s \Ym+1
= (=)™ T 0. 0 W Oy Oppiiare s Do
=1

m (m—1)
—qm-1(—1) °

y —_
W, Wg -

LM s
s

J

k
k

5

Andererseits berechnen wir die (m — 1)-te Potenz von 2. Dabei wollen
wir, zur Unterscheidung von Gradbezeichnungen, Exponenten immer in
eckigen Klammern schreiben. Es ist

fm—-1] __ ;m—-1 -
Q =i Y w; w0, @
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wobei in der Summe j,,...,j,_; unabhingig voneinander von 1 bis m
gehen, also

pa—.

m m
Q-1 — im1 (g _ )Y IT w0, .

j=1 k=1
kZj
Vergleichen wir dies mit dem obigen Resultat, so ergibt sich
. 1 m(m—1)
*Q = m(*— 1) * _Q[m*ﬂ . (79)
Allgemeiner gilt
’C' m(m—1)
*Q[k] —_ (m - k)' (_ l) 2 0Im—k] (80)
Beweis: Es ist '
1 ;
FrROE =R X G i i ik am Otk D
Tk+1.+-72m P .
=gk ¥ (—1) 2 I  w,e,,
(J1...9k) k=1.kZ7:...7k

wobei sich die Summe iiber alle Kombinationen §,,...,j, von 1,...,m
erstreckt, und
[m—k] — ;m—k - —
) =" X 05, @5 Wy g Oy, =
(’1 ----- 7m—k)

= (m—k)!'l:m_k 2 H, Wy Wy .
(G1...98) kZ71,..., 7k

Es ist insbesondere
m(m—1)

QU —=ml(—1) 2 %1, (81)

also von 0 verschieden (dies sogar in jedem Punkte der Mannigfaltigkeit),
daher sind auch alle Potenzen QW k = 0,1,..., m iiberall von 0 ver-
schieden.
Aus (K,) folgt nach der Produktformel (55) df2”! = 0 und hieraus
ergibt sich nach (80) auch d x QW = 0, also
8QM =0 , (82)
somit '
AQUW = 0 . (83)
Satz 6. Die Formen Q¥ (k= 0,1,...,m) sind harmonisch und
# 0.
Es gibt also in den geraden Dimensionen 2k < 2m mindestens eine
harmonische Form == 0; dies bedeutet fiir die Bettischen Zahlen

p* =1, k=0,....,m . (84)
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Ubrigens sind die Formen Q¥ vom Typus %, es ist also sogar (vgl. 3.1)
gh=1, k<m. (85)

(84) bzw. (85) ist eine erste notwendige Bedingung dafiir, dafl sich auf

einer komplex-analytischen Mannigfaltigkeit eine Kéhlersche Metrik de-
finieren 14at.

4.3. Wir fithren jetzt, nach 4. Weil [16], zwei lineare Operatoren L

und A ein, welche die Vektorgruppe @" in &7+? resp. &2 abbilden,
namlich

Ly =g¢ -2 a)
(86)
Agr=(—1rxLxg" . b)
Fiir sie gelten die Vertauschungsregeln
xAgh=Lxg", a)
(87)
xLg'=Ad%¢" ; b)
CL¢"=LC ¢, a)
(88)
CAgr=A4C ¢ . b)

(87) folgt unmittelbar aus der Definition (86) durch beidseitige Anwen-
dung von %x. Um (88) zu beweisen, schreiben wir L ausfiihrlich in der
Form

m
p__ 2
L(p =1 2 Z 'Pll.-.lrwtl' ¢ 'wlfwkwm+k *

(ll...lr) k=1
Es ist also
m
r . ar+1
LC¢r=v2 ¥ X P¢1...z,wm+¢1- « Opypy, O WOpyp e
(t1...1p) k=1
und
m __
p—, S |
CL(p =1 + E E 'l)ll...'r wm-{-tl‘ . 'wm+lrw"n+kw2m+k
(t1...19) k=1
m
— ar+l _ >
- zr+ E kz 'Pll,..lr wm+ll' * 'wm+f1' wkwm+k - LO¢ b
(t1...1p) k=1

womit (88.a) bewiesen ist. (88.b) folgt dann durch Transformation mit %
und Anwendung von (67):

CAgr=(—1yC*Lx¢gr=(—1)"%CLx¢"=(—1)"*%xLC x¢
=(—1y%xLxCq¢ =A4C¢" .
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4.4. Zwischen den Ableitungsoperatoren d und ¢ einerseits und L
und A bestehen wichtige Zusammenhénge.
Aus (55) ergibt sich fiir die Vertauschung von d und L:

dL ¢ = d (¢ 22) = do™- 2% + (—1)" ¢"dQ2* = Ld¢" .

Wir berechnen ferner L. Dies kann unter Verwendung des Schlusses
mit geodétischen Koordinaten geschehen (vgl. 1.6). Im Punkte p, ergibt
sich dabei eine Formel, auf deren beiden Seiten nur Differentialformen
stehen ; diese gilt also allgemein

(OLg")p, = 0" - Q2* + (—1) @02 +

m
+(_ l)r 2 2 'Ptl...!r, kwtl"'wlrwm'{"k_Bl...'r,m}‘kwll'"w'rwk
(’1' . .Ir) k=1
= L d¢" — J(p" .
Entsprechende Ausdriicke fiir 4 erhalten wir, indem wir alle auftreten-
den Formen mit x transformieren ; es ist

kxdL x ¢" = dAd ¢ * Ld x ¢ = A d¢"
und
* 0L k ¢" = —dA ¢" * Lo k¢ = — A ¢ .

Zusammengefaf3t ergeben sich somit folgende Formeln :

dL —Ld = 0 , a)
(89)
04 — A6 =10 . b)
oL —Lé = —d , a)
- (90)
dAd — Ad = — 6 . b)
Hieraus folgen schlieflich noch die Vertauschungsformeln fiir 4 :
AL — LA =0 , a)
(91)
A4 — A4 =0 . b)

Der Beweis ist wieder nur fiir eine der beiden Formeln nétig, zum Bei-
spiel fiir (91.a); die andere Formel folgt daraus durch Transformation
mit x. Nach (89) und (77) ist

AL ¢ = (d8L + 8dL) ¢" = (dLé + SLd —dd) ¢
= (Ldd + Léd — (dd + dd)) 9" = LAg" .
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Aus (91) folgt

Satz 7. Ist ¢" harmonisch, so sind auch L¢" und A4 ¢" harmonische
Formen.

Zusammenfassend gilt fiir die Operatoren x, ', L und A und die
Gruppen H7 aller harmonischen r-Formen, fiir alle r: x ist ein Isomor-
phismus von H” auf H2™-", (' von H" auf sich ; L ist ein Homomorphismus
von H" in H™*2, A von H" in H™? Fiir die Gruppen H(, der reinen
harmonischen Formen vom Typus s gilt fiir alle » und s:

* ist ein Isomorphismus von Hf,, auf H{»"5, C von H{, auf Hj .

: : : r s r+42 ro3 r—2
L ist ein Homomorphismus von H{, in H{ "%, A von H{, in H 7.

Harmonische Formen werden also durch diese vier Operatoren stets
wieder in harmonische, reine Formen in reine iibergefiihrt. Resultate,
welche die vier Operatoren betreffen und die wir fiir die Gruppe @" auf-
stellen werden, lassen sich daher ohne weiteres auf H" und H{, an-
wenden.

Wir werden im folgenden die durch L und 4 bewirkten Homomorphis-
men genauer untersuchen und zeigen, dafl sie zum Teil Isomorphismen
sind.

4.5. @) sei der Kern der Abbildung A4 von @ in @"-2; das heilit
@}, besteht aus denjenigen r-Formen ¢, fiir welche Ay"™ = 0 ist. Solche
Formen heilen effektiv oder von der Klasse 0. Die Untergruppe der
effektiven harmonischen r-Formen soll mit Hj bezeichnet werden, die
der reinen effektiven harmonischen r-Formen mit H(,,. Ihre Ringe
seien g und &,,.

Eine Form ¢ heilt von der Klasse k, wenn sie in der Gestalt
¢" = LK yr—2k dargestellt werden kann, wobei y™2* eine effektive Form
ist. Die Vektorgruppen @} der r-Formen der Klasse k, H} der harmoni-
schen r-Formen der Klasse k, H(, ; der reinen harmonischen r-Formen
der Klasse k& und des Typus s sind also folgendermaflen definiert :

—2k
@, =L,
-2k
H, =LWH;
— T,k —2k
H{J)k - L[ . H(rs——k)o

Analog seien (@, (H" und H{, die Kerne der Abbildungen L von &~
in @+2 bzw. von H' in H™+? bzw. von Hj, in H{t% , und wir bezeich-
nen die Ringe von (H" und H{, mit ," und ,éef,,; ferner sei
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kq;r = /K] o¢r+2k
kHr = ¥} 0Elr+2lt:

p— k +2Kk
wHy = A Hi )

gesetzt. Wir verzichten darauf, hier besondere Benennungen einzu-
fiihren.

Fiir effektive Formen y?e @; und r + 2k < m gilt nun die wichtige
Grundformel

k!
—r—k)!

%] o — — 1)m (m=1)+3 (r+1) r [ Im—r—F]
s LUl yr ™ (—1) 3 L Cy . (92)
Sie 148t sich auch so formulieren : Fiir eine Form ¢? ¢ @, vom Grade
s <m, das heit ¢® = Lk ys-2k mit A2k =0, ist

k!
(m —s+k)

Dies ergibt sich aus (92), wenn man dort r = ¢ — 2k setzt. (93) besagt
mit anderen Worten : Fiir eine Form ¢® der Klasse k lif3t sich der Opera-
tor x durch C und L8 ersetzen, mit einem von 8, k und m abhdngigen
numerischen Faktor.

Beweis der Grundformel: Wegen der eindeutigen Zerlegbarkeit einer
r-Form in reine Formen ist es gestattet, den Beweis nur fiir eine reine
effektive Form y" zu fiithren. Es sei

*(Ps — ' (___ l)ém (m—1)+43 (s+1)+k Lm—sl O (ps . (93)

1
[x] — ok s
k| L ")Ur = ‘(E) Plcl...kaﬂl-i-k1...m+lc3 L... tmtiy. . mtdy

& wklo . owks wm'i‘kl. . cwm+k8 wllo . ‘wltwm+"1. . owm_*_j“ 9
wobei die

biyoo o lyym4-9,...m+3,

kein Paar um m verschiedener Indizes enthalten sollen. Hiermit ergibt
sich

l —_
k — o am—k .
* k' L[ ]’wr—_elfb 2Pkl...kg’"b-l-kl...m-l-kgll...ltm'f-.fl...m‘*‘ju

* wllo LY w;twh- . tw"qul war . .wq"H—k+8 qu—k+8

mit dem Vorzeichen

& =

13..1¢§1. . Juky. ke hy. . Bk @1, Amr—Kk+sm+11. . m+lgm+iy. . m+-jyum+ky. . m+-kgm+-hy. . m+hgm+-q1. . m+amy-k+8
k.. kgm+ky..m+kgly. . m+jy..m+fyuhim+hy. Rpmthpmtly. . m+ljy. . Judim+a1. .9mr-k+s m+amr-k+s

282



Abgesehen von einem konstanten Faktor # 0 auf der linken Seite, der
vom Umordnen der Tensorkomponenten herstammt, lautet die Bedin-
gung A y* =0 explizit

m

kz Pk ky...kgmtkmtky. ., mikgly... lgmtdy.. . midy =0 . (94)
=1

Wir beniitzen diese Formel, um die Tensorkomponenten in *—I:—' Lk o
mit Indizes '
kyyoo o kgym +ky,...m—+k,

durch solche zu ersetzen, zu welchen keine w, in unserem Ausdruck fir

1
k!
formel vergleichen zu konnen. Die Ersetzung ist moglich fir » 4 2k
< m -+ 1. Wir erhalten

1

Ly vorkommen. Dies geschieht, um die beiden Seiten der Grund-

[kl ypr — g am—k(__ 1)8 P .
* k' L 7/” - 81?' ( 1) (E "E:I]....ngr‘f'ql...'m'-i'ﬂg ly...lgmA-4y .. .mtiy (95)
: )
* wll. .. wltwjl. . .wjqul wa. . owq”‘__r_k_{_s wqm_r__k_*_‘ )

Andererseits 148t sich Lm™-"-¥Cy" nach den Definitionen berechnen :

1 -
[m—r—k] — am~Kk (__1\3+u .
(m —_r— k)' L 0"/)' =1 ( 1) (2)1311...1131"04‘(11...%!-03 ... gmtag.. omtdy
e wau noqu wat-lquwlloocwztwjlonowjqu8+1 wq8+1..'wqm—r—k+8wq —k+8

Die Summen auf den rechten Seiten von (95) und (96) sind, bis auf die
Reihenfolge der w, in den einzelnen Summanden, identisch. Sie unter-
scheiden sich daher nur durch das Vorzeichen

£ — m+ly...m+lgdy Juaamtar . .. 000 oo am—r—k+3 M+ Am-r-k+s
2 g1.-.ggm+qy...myggm+ly...m41 j1. .. Jy @81 M+ds+41- . - Im—r—k+8 M+ Im—r-k-+8

Eine einfache Rechnung ergibt
(—D)%e e, = (— l)z}m (m=1) + }r (r+1) ’

womit die Grundformel (92) bewiesen ist.
Als erste Anwendung der Grundformel beweisen wir: Fir Ay" =0
und 7 + 2k < m ist

ALK g = —k(m —r —k + 1) L1 4 (97)

Wir heben den Spezialfall £ = 1 von (97) besonders hervor : Fiir effek-
tive v, r <m —2, ist
ALy = — (m —r)y" . (98)

283



Es ist also insbesondere fiir ¢" # 0 auch ALy" % 0, somit auch
Ly # 0. Dies sagt aus, dafi fir » <m — 2 AL einen Isomorphismus
von @) bzw. von Hj bzw. von H{,, auf sich bewirkt. Diese Aussage
werden wir im nédchsten Paragraphen noch erweitern kénnen.

Beweis von (97): Wir erhalten durch linksseitige Anwendung von x

auf (97) . )
L*L[]wT:__.k(m_r_k_}_l)*L[k I]wr ,

und dies 148t sich direkt aus der Grundformel (92) verifizieren.

4.6. Bevor wir in der Ableitung der hauptsdchlichsten Resultate
weiterfahren, wollen wir einige Vertauschungsformeln zwischen L und A
herleiten. Wir benotigen jedoch diese Formeln in den weiteren Beweisen
nicht.

(AW L — L A"y ¢f = —k(m —r + k — 1) A1 g" . (99)
Beweis: a) k= 1. In diesem Falle lautet die zu beweisende Formel
(AL — LA) ¢ = — (m —7r) ¢" . (100)

Fiir effektive Formen ist dies gleichbedeutend mit (98), fiir nicht effek-
tive fithren wir den Beweis fiir eine reine Form

__— — - —_
Pir-b) = ZE le...a‘a Jat1...0bmtiy. . .mtigmtippy. . midgPiye s Wiy Wjye o Wig Wiy oo e Wy
)

Hierbei ist

L= X3P 05 0;,0;0;,
() 3

Y S—
Aq) - % 2Bjg...j‘aja,-{-l...jbm-l—jm-!-fg...M+5a’m+.’ib+1”.m+fcw.’i2' * 'wjb (0]-2- ¢ wjawjb-{—l' ° w.’ic'
]
AL g = — (m —r + a) ¢"
LAgr =ag¢,

]m‘.'l daher (AL___LA)(pr:___(m___r)¢r.

b) Jetzt beweisen wir (99) durch Induktion nach k. Wir bezeichnen
den Koeffizienten auf der rechten Seite von (99) mit c,,. Aus
A T, gf = AAk-11 T, Q" = A L A~11 @+ Cpyr Alk-1] ¢,
ergibt sich die Rekursionsformel
Chr = Cr—1r T C1 r—2 (k~1) >

01,.=——-(’m—--7') ’
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und daher
Crr=—k(m—r+k—1).

Gleichfalls von (100) ausgehend erhalten wir fiir

(ALW — LW 4) g = g, LD g7 (101)
die ngursionsformeln
Okr == Op—1r T 01 re2(x=1) >

917‘:011"

und daher
Oxr —= —k(im —r —k + 1) . (102)

Mit den hier abgeleiteten Beziehungen ist die Reihe dieser Formeln

bei weitem nicht abgeschlossen. Setzt man zum Beispiel fiir effektive
Formen

AW LW " = piy 3 LNy AL, (103)

so ergeben sich je nach den Zerlegungen

AADV LW g — A LU
und ¢

AN L LU g gy o0 AU LUt g 4 [ AD) LU-1 g
die Rekursionsformeln

Brrr = Bx=117r Q1=A41 7 >

Barr = Cxrq2(—1) MA1 1=1 r T BN 1=1 7 >

MKi1r = C1r
und somit
A—1

Krer = 11 Qi—jr - (104’)

i=0

Fiir kleine r konnen wir diese Formeln auch durch Vergleich mit der
Grundformel berechnen und erhalten so Kontrollmoglichkeiten. Der
Zahlenfaktor der Grundformel sei y,,, so ergibt zum Beispiel (101) die
Beziehung

Yer = —Okr¥Vr-17r -

Jedoch ergibt sich bei alledem nichts wesentlich Neues.
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§ 5. Der Zerlegungssatz von Hodge

5.1. Die Aussagen iiber Kidhlersche Mannigfaltigkeiten, die wir im
folgenden machen werden, beruhen auf den beiden nachstehenden
Sétzen :

Satz 8,. Fir r <m — 2 ist AL ein Isomorphismus von @" auf sich.
<

Satz 9,. Fir r <m ist @" die direkte Summe von @f und LP"-2,

Wir beweisen die beiden Sitze gleichzeitig durch vollstindige Induk-
tion.

a) Die Operation erniedrigt die Dimension um 2. Daher ist in den
Graden 0 und 1 jede Form effektiv. Die Satze 9, und 9, sind somit
richtig.

b) Aus Satz 9, fir alle s <<~ folgt Satz 8, (r < m —2).

Beweis: Aus 9, fir alle s <r folgt, daB @" direkte Summe aller

Li@g;=2i §=0,1,...,q; q= [—r—] ist ; eine Form ¢"e®" 1aBt sich
2

daher als Summe
q

=3 LUl wf-zf
j=0
mit eindeutig bestimmten eﬁektiv;n y"—27 darstellen. Es ist dann nach (97)
ALgr = %ALHH] 1/,r--zz' —_ — ﬁ; (4 + l)(m — (r — 29) __7')L[i]¢r—27'
i =
== X (D mor e Ly
Wegen r < m — 2 sind die Koeffizienten von LU1y™~2/ von 0 ver-

schieden ; es gibt also eine und nur eine Form y" e ®", so dafl ALg"
= 4’, das heil}t AL ist ein Isomorphismus von @ auf sich.

c) Aus Satz 8, folgt Satz 9,,, (r <m —2).

Beweis : Wir formulieren Satz 9, , folgendermafien: Zu jeder Form
@'t e D +2 gibt es eine effektive Form @2 und eine Form ¢*, beide ein-
deutig bestimmt, so dafB

7 = gt + Lyt . (105)

In der Tat gibt es nach Satz 8, ein und nur ein 4" derart, daB

Agr+et = AL 4 . (106)
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Dann ist A(pr+2 —Ly") = A¢™*? — AL 4y =0, das heiBt ¢j*?
= @2 — L 4" ist effektiv. ¢"+2 ist also in der gewiinschten Form (105)
dargestellt, und da aus (105) (106) folgt, ist diese Darstellung eindeutig.

5.2. Nach der SchluBbemerkung von 4.4 gelten die Sitze 8, und 9,
auch, wenn man darin @ immer durch H" oder durch Hj, ersetzt.

Ferner erhalten wir durch Transformation mit x noch folgende Sitze,
die in den ,,oberen“ Dimensionen > m gelten.

Satz 10. Fir r > m + 2 ist LA ein Isomorphismus von @" auf sich.
Satz 11. Fir r > m ist @ die direkte Summe von ;@ und AP"+2.
Aus den Sitzen 8 und 10 folgt :

Satz 12. Fir r <m — 2 ist L ein Isomorphismus von @’ in @"+2
und bewirkt Isomorphismen von H" in H™+2 und von Hf, in H{'%,.
Fir r >m + 2 ist A ein Isomorphismus von @ in @2 und bewirkt

Isomorphismen von H” in H™2 und von H’, in H' 2% ..
P (8) (8—1)

Der hauptsédchlichste Inhalt dieses Satzes 148t sich auch so formu-
lieren :

Satz 12a. Fir r <m — 2 ist fir jede r-Form ¢" # 0 das Produkt
¢"-2 7 0, und fiir jede harmonische r»-Form ¢" £ 0 ist das Produkt
¢"-£2 # 0 und harmonisch.

Nach dem Satz von Hodge (vgl. 2.5) ist die Gruppe H" der r-ten
Kohomologiegruppe beziiglich komplexer Koeffizienten isomorph. Nach
dem ,,dritten Satz von de Rham® entspricht dem schiefen Produkt ge-
schlossener Differentialformen das Alexandersche (Cup-) Produkt der
entsprechenden Kohomologieklassen. Der Satz 12a sagt daher aus, daf3
die zu £ gehorende Kohomologieklasse im Kohomologiering in den
Dimensionen < m keinen Nullteiler besitzt.

Aus den Sétzen 9 und 11 folgen die expliziten Zerlegungen der Grup-
pen aller »-Formen &7, aller harmonischen r-Formen H" bzw. aller reinen
harmonischen r-Formen vom Typus sH(,:

Satz 13.
@ =&, +LO2 +... 4L r<m, q=[§] . a)
Hr :HS -i“LHG—z _i_. . -—i—LqHS‘zq rr<m R q:[%] , b)
H{a)zﬂ('s)o"i’LH(ra—fl)O‘i" e 'i'LmH(ra_—ztfo ¢ == min ([_g~ ’ S)’ r<<m. c)
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o __:oq;r +A0¢r+2 + . ,__i_Apo¢r+2p, r}m , p:[g’lnz———’)‘J ’ d)
. . . zm__r_
HY = H" +AH™* ... L AvH™ P r>m, p=[‘”“‘2““J, )
= oHly -+ AGHIHE 4 - - - A IR t~min([-2m“r] m s) >
(8) 7 077(8) e+ T " 77 (s+1t) » = s | —8), r=m

Das wichtigste Resultat ist dabei die Formel b), welche fiir algebraische
Mannigfaltigkeiten von Hodge [9] aufgestellt wurde.

Die Gruppe H" gibt Auskunft iiber die Homologiestruktur der Kihler-
schen Mannigfaltigkeiten. Wir wollen immer voraussetzen, dafl unsere
Mannigfaltigkeit zusammenhéngend ist. Unter Beriicksichtigung von
P° = P?™ = gy = e2™ = 1 gilt dann fiir die Ringe der Formengruppen
Hr, also fiir die Bettischen Zahlen :

Satz 14. .
pPr=— 3 %, r<m , a)
j=0
p .
P’:~208’+2’, r>=m . b)
i=0

Eine etwas schwiichere Formulierung dieses Satzes ist

Satz 14 a.

Pr—1 = g m a)

VWV

0, r
0

VoA

2)7' — pr+2 — 087' R 7

m . b)

Diese Formeln ergeben in Verbindung mit Satz 5 und e, = iy = 1:

Satz 15.

k

pR=1+ X 8(2fj)o (mod 2) , 2k<m , a)
j=1
o
=1l med2),  2k>m b
oder i=k
P2k — P2 (k~1) — 8(2::)0 (mod 2), 2k <m , a)
R — PR Ui = 2 (mod 2) . 2k>m . b)

Satz 13 liefert auch ein Konstruktionsprinzip fiir eine Basis aller
r-Formen oder aller harmonischen r-Formen. Wir formulieren es nur fiir
die Dimensionen < m, da aus einer Basis fiir diese Dimensionen eine
solche fiir diejenigen > m durch Transformation mit % folgt.
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Satz 16. Eine Basis aller Formen ist bekannt, wenn die effektiven
r-Formen (in den Dimensionen r < m) bekannt sind. Eine Basis aller
harmonischen r-Formen ist bekannt, wenn die effektiven harmonischen
r-Formen (in den Dimensionen 7 < m) bekannt sind. Eine Basis aller
reinen harmonischen r-Formen ist bekannt, wenn die effektiven reinen
harmonischen r-Formen (in den Dimensionen r <{m) bekannt sind.

§ 6. Orthogonalititsrelationen

6.1. In der betrachteten 2m-dimensionalen komplexen Mannig-
faltigkeit wollen wir uns in diesem Paragraphen auf die Dimensionen
<m beschrinken. Unsere Sitze konnen mittels der schon oft ange-
wandten Methode ohne weiteres auf die Dimensionen >m iibertragen
werden.

Wir untersuchen hauptsichlich die Eigenschaften eines skalaren Pro-
duktes zweier Formen gleichen Grades. Es ist definiert durch

(@ 9) = [o %y . (107)
Aus dieser Definition folgt die Hermitizitédtseigenschaft
(¢", 97) = (y", ¢") (108)
und (39) ergibt
(¢ ¢) =0; (¢, ¢)=0nur fir ¢" =20 . (109)

Ist ¢" eine harmonische Form, so bezeichnen wir die durch sie gegebene
Kohomologieklasse ebenfalls mit ¢". Fiir eine 2m-dimensionale Koho-
mologieklasse y sei y (M) der Wert von y auf dem Grundzyklus M der
Mannigfaltigkeit (der Kronecker-Index). v bedeutet das Cup-, ~ das
Cap-Produkt. Dg¢" bezeichne einen reprisentierenden Zyklus der zur
Kohomologieklasse ¢" dualen Homologieklasse. Die Schnittzahl zweier
Zyklen z, 2/, wird durch S (2, z’) angegeben.

Da dem schiefen Produkt von Differentialformen das v-Produkt der
zugehorigen Kohomologieklassen entspricht, ist

A!w’ i = g oy(M) .
Folglich ist (vgl. [17])
f(pr . ,lpzm—r — (pr (wzm—-r . M) — (pr (D,(pzm—-r) — ‘f (Pr — (____ l)r wam-r
M

Dli)zm_r D‘Pr

= 8 (D(pr, Dy)2m-r) .
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Fiir das skalare Produkt von ¢" und y" erhalten wir die Ausdriicke
@)= [¢= [ v=8Dy, Dxy) . (110)

Dx T Dx o7
Aus (108) ergibt sich hieraus zum Beispiel

S (Dg¢", Dxy") = 8 (Dy", Dx¢") .

Die folgenden Ergebnisse fithren in dieser Weise zu Aussagen iiber die
Homologiestruktur von M ™) auf die hier nicht weiter eingegangen wird ¢).

6.2. Lemma. (L¢3 ¢y") = (¢" 2% Ay") . (111)
Beweis :

(@2 Ay) = (—1y [@2kk Lxy = [¢2 Qx ¢ = Ly y) .

Wir zeigen jetzt, daB beziiglich des Skalarprodukts (107) »-Formen
verschiedener Klasse und ebenso r-Formen verschiedenen Typus zuein-
ander orthogonal sind ; mit anderen Worten, da8 alle direkten Summan-
den, die in den Zerlegungen von Satz 2 und Satz 13 auftreten, zueinander
orthogonal sind.

Wir bezeichnen wie frither mit ¢ eine r-Form der Klasse k (vgl. 4.5)
und mit ¢}, eine 7-Form vom Typus k (vgl. 3.1); es gilt der

Satz 17. Fir k 41 ist

(P P)) = 0 (112)

(e 91) =0. (113)

Beweis : Es sei ebwa k>1. Der Integrand von (112) ist ¢, - * ¢{;,. Er

enthilt m + k — I >m Faktoren der Gestalt w,, das heit mindestens
einen solchen Faktor zweimal-und verschwindet deshalb identisch.

(113) beweisen wir mit Hilfe des Lemmas (111) und der Formel (103).
Wir wenden das Lemma [ mal an:

(¢%> 1) = (L g =%, L gf=*) = (L1 72, AT LIV =)
= fhy g gy (L1 G725, @072
Nochmalige Anwendung des Lemmas ergibt
(L1 g2, gg ) = (L1 g™, Agg™™) =0,  q.e.d.

Eine reine r-Form, die von bestimmter Klasse ist, nennen wir eine
einfache 7-Form. Wir kénnen Satz 16 dann folgendermaflen inter-
pretieren :

%) vgl. B. Eckmann [7].
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Zwei einfache Formen, die nicht sowohl im Typus als auch in der
Klasse iibereinstimmen, sind orthogonal.

Die natiirliche Zerlegung der harmonischen r-Formen in einfache
Formen nach den Sitzen 2 und 13 ist daher eine, schon ziemlich weit-
gehende, Zerlegung in orthogonale Formen. Es gibt also eine orthogonale
Basis der Gruppe H", die aus einfachen harmonischen Formen besteht ;
um sie zu erhalten, geniigt es, nach den Sdtzen 2 und 13 von einer Basis
auszugehen, die aus einfachen Formen gebildet ist. Das iibliche Ver-
fahren zur Gewinnung einer orthogonalen Basis braucht man nur dort
anzuwenden, wo mehrere unabhingige Formen gleichen Typus und glei-
cher Klasse auftreten. Nach Satz 16 geniigt es sogar, diese Konstruktion
nur fiir eine Basis der effektiven Formen auszufithren, da nach dem
Lemma (111) aus (¢g, ;) = 0 auch (Lej, Lyg) = 0 folgt.

6.3. Ahnliche Relationen wie fiir die skalaren Produkte gelten auch
fiir Produkte der Gestalt ¢” ¢". Diese Relationen sind aus (112) und
(113) mit Hilfe der Grundformel (92) abzuleiten. Dabei zeigt es sich, daB
als natiirliche Integrationsbereiche fiir diese Produkte die zu Q¥ dualen
Zyklen auftreten.

of und f" seien zwei einfache Formen, die einer orthogonal normierten
Basis angehoren. o sei von der Klasse A und dem Typus j, " von der
Klasse £ und dem Typus !. Dann gilt

Satz 18.
(m—nh—r)!
h!

s o E’ =
Dolim—r]

Zum Beweis berechnen wir nach der Grundformel (92) und der Defini-
tion (62):

(— 1)5‘"‘ (m—=1)+ §r (r=1) + B4 6hk6;’t .

k! —2h —2k
(*h e Br) = (m—r+k)! (— 1)im (m-Dgrired f“:i—h)o C B2, QUnr+hid
) M
k! —
— m (___ 1)§~m (m—1)43 v (r+3) 4 k+1 ( “{i)h . ﬂ{l)k .

Dplin—r)

Wir geben die Nummerierung der Formen einer Basis durch einen
Index in eckiger Klammer an. ¢, ist eine einfache Form der
Klasse &, vom Typus j, und mit der Nummer s in der Basis. Mit dieser
Bezeichnung folgt aus Satz 18

Satz 19. Besteht eine Basis der harmonischen r-Formen nur aus ein-
fachen Formen, so zerfillt die Matrix
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Dp2im—r]

nach Typus und Klasse in Késtchen. Nur die Teilmatrizen, fiir die

h=Fk, §j=1
sind £ 0. Die Matrizen

oy = (— 1)dm tm=1) + §r (r—1) + 1t ( (‘ (p;z(:i)[s] q);;(j)[t]) (114)

sind hermitesch positiv definit.
Fir eine beliebige Basis der harmonischen r-Formen laBt sich die
Signatur der Matrix

(:ust)

aus der Zerlegung der Basis in einfache Formen nach (114) explizit be-
rechnen.

Anhang
§ 7. Reelle Analoga Kihlerscher Mannigfaltigkeiten

7.1. Die im vorhergehenden abgeleiteten Sitze iiber Kaihlersche
Mannigfaltigkeiten zerfallen in zwei Gruppen nach den dabei hauptsich-
lich verwendeten Voraussetzungen :

a) Die Existenz der komplex-analytischen Struktur gestattet die in-
variante Definition des Operators ¢'. Dies fiithrt zu den Sétzen, die auf
der Zerlegung der Formen in Typen beruhen.

b) Die Existenz einer 2-Form £ mit den beniitzten Eigenschaften fiihrt
zur Definition der Klasse von Formen und damit zu den Zerlegungs-
sdtzen des § 5.

Die nachfolgende Analyse will zeigen, daf3 die beiden soeben charakte-
risierten Satzgruppen voneinander weitgehend unabhingig sind. Wah-
rend die Sitze iiber den Typus offenbar wesentlich auf der komplex-
analytischen Struktur beruhen, kann gezeigt werden, daf3 sich der Be-
griff von Formen verschiedener Klasse auch auf reellen Mannigfaltig-
keiten einfithren 148t, sofern dort eine gewisse 2-Form mit speziellen
Eigenschaften existiert, und es gelten dann auch Analoga der Sitze des
§ 5. Diese analogen Sitze werden wir durch die Nummer des entspre-
chenden Satzes mit einem dahinter gesetzten x bezeichnen.

Auf einer Kihlerschen Mannigfaltigkeit mit der Metrik

ds? = X g3 (dzi dzk)
i,k
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das heif3t mit dem metrischen Tensor

0 g,
( g”’) (115)
gir O

Q=X gikdzidzk
ik
das heif3t die Differentialform mit dem Koeffiziententensor

0 gix
(—~gik 0 ) (116)

eingefiithrt. Wir bezeichnen die kovariante Differentiation beziiglich (115)
durch einen Querstrich. Dann gilt in jedem Punkt der betrachteten
Mannigfaltigkeit

haben wir die 2-Form

Gorjn=0 . (117)

Diese Formel ist mit der Kihlerbedingung &dquivalent 7).

M2m™ gei eine 2m-dimensionale differenzierbare Mannigfaltigkeit, auf
welcher eine Riemannsche Metrik gegeben ist; kovariante Ableitung
beziiglich dieser Metrik werde durch einen Querstrich bezeichnet. In
Analogie zu (117) wollen wir folgende Situation betrachten :

Auf der geschlossenen Riemannschen Mannigfaltigkeit M2™ existiere
etne 2-Form n? = h,dxtda¥, die in jedem Punkt vom Range 2k ist und
die Bedingung erfillt

Bigjp =0 fiir alle 1. (K*)8) ")

7) Dies wurde von S. Bochner [1], Theorem 7, zuerst angegeben. Der Beweis dieses
Theorems, zu Formel (66), p. 388 a. a. O., sollte folgendermafBlen lauten: Es ist

Oho B* 2
hap*, y = By — hap* Faj/ .

Setzt man hierin die aus (K) folgenden Werte (22) ein, so folgt
hoapx,y =0 .

8) S. Bochner a.a.O. bewies, daB auf dieser Voraussetzung fiur k = m folgt
p2r > 1, r=1,...,m. (118)

Fir k = m geniigt zum Beweis von (118) schon die schwéchere Voraussetzung dn = 0.,
Bezeichnen wir néamlich mit # auch die durch die 2.Form représentierte Kohomologie-
klasse, so folgt hieraus #Ml 20, d.h. auch %7120, r=1,...,m.

*) Zusatz bei der Korrektur: Fiir k= m geniigt zum Bewets aller Sdtze dieses Para-
graphen, sowie der in diesem Anhang nicht bewiesenen Formel (76.a) p2k+1=0 (mod 2)
schon die sehr viel schwdchere Voraussetzung dn = 0. Vgl. H. Guggenheimer, Sur les
variétés qui possédent une forme extérieure quadratique fermée, C. R.
Acad. Sci. Paris 232, (1951), p. 470. — Eine Beweisskizze fiir Mannigfaltigkeiten belte-
biger Dimension und (K*), sowie weitere Resultate, bei A. Lichnerowicz, C. R. Acad. Sci.
Paris 232 (1951), p. 677.
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Ist diese Voraussetzung erfiillt, so bezeichnen wir die Mannigfaltigkeit
mit By

7.2. Wir verwenden fiir die Rechnungen die iiblichen Definitionen
der Operationen g, 65 und 4, nach de Rham, wie sie in 2.2 angegeben
sind. Da an dieser Stelle keine anderen Operationen auftreten, lassen
wir die Indizes H wieder weg. @" bezeichne wieder die Vektorgruppe
aller »-Formen, H" die der harmonischen r-Formen.

Bei ungeradedimensionalen Mannigfaltigkeiten wiirden in den meisten
Definitionen noch gradabhingige Vorzeichen auftreten. Dies ist der
Grund dafiir, dal die folgenden Beweise und die Sitze selbst fiir solche
Mannigfaltigkeiten nicht gelten.

7.3. Aus den Definitionen ist ersichtlich, da die Formeln (54) und
(56) auch auf einer Mannigfaltigkeit BT gelten. Ebenso ist nach (K¥)
An = 0. Analog zu unserem Vorgehen im Komplexen fiithren wir die
linearen Operationen ein :

Lo =¢-n?, a)
e (119)
Agr=(—10%Lxg¢" . b)
und definieren wieder wie in § 4 @, H}, ,97, ,H". Es gilt
LA=4L , a)
(120)
AAd=44, b)

und somit

Satz 7*. Ist ¢ harmonisch, so sind auch L¢" und A¢" harmonische
Formen.

Wir brauchen analog wie frither nur die eine Formel, etwa (120a) zu
beweisen. Wegen (K*) ist
dL—Ld=0. (121)

Da uns ein Operator analog zu C hier nicht zur Verfiigung steht, definie-
ren wir direkt

dg" =M P, .. ,dxtda. . .da'r . (122)
Es ist wieder

(@d+dd)g" =h P, ., devdatdz’. . da*r
dat dx¥ dxtr. . .da'r

+h:Pil...i,-;u;c
=hi (P, —P, ) dxvdatdats. . .datr=0. (123)

1o %p; 85 U 100087 U3
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Verwenden wir ein in einem Punkt p, geoditisches Koordinatensystem,
so ist dort, wegen [hi], =[hyl,,

[6L ¢, = b¢" - n* — B{ B, ;. da* da’. . .da'r = | Léy" — d~¢r]wo .

Nach dem Schlufl mit geodétischen Koordinaten (analog zu 1.6) ist also
iiberall

oL —Lé = —d . (124)

(121), (123) und (124) zusammen ergeben (120a).
Aus Satz 7" und der Voraussetzung (K*) folgt der

Satz 6*. Die Formen 4@, ¢ = 1,...,k sind harmonisch und # 0.
Korollar : In einer B2 ist p22 > 1 fiir ¢ <k (und m — k < ¢ < m).

Im folgenden werden wir nur die Operatoren L und A benotigen. Nach
Satz 7* konnen wir uns wie in den Paragraphen 4 und 5 darauf beschrin-
ken, die Sitze fiir @ zu beweisen, sie sind dann fiir H” mitbewiesen.

Der Induktionsbeweis fiir die Sétze 8, und 9, beruht auf der folgenden
Formel, die fiir effektive Formen gilt :

ALy = —(m —r7r)yp" . (98)

Wenn wir diese Formel noch bewiesen haben, so ist unser Programm
erfiillt, da alle weiteren Beweise des § 5 sich wortlich auf den Fall der
B2™ iibertragen lassen. Der Beweis beniitzt die Voraussetzung, dal der
Rang von 7 iiberall gleich 2k ist und gelingt nur fir die Grade r < k.
In den Sitzen 8" usw. tritt daher immer k an die Stelle von m.

In jedem Punkt der B3% lassen sich Koordinaten z!...z2™ finden,
derart, daf3 dort gilt %
n= X datdg™ .

i=1

Mit diesen Koordinaten sei zum Beispiel

@r =
i1...%a k1...kbm+i1...m+iam+ll...m+zcda:i1...dxi“dmk1...dwbbd:vm‘*‘i‘...dxm+i“dxm+l‘...da:m+l°,
k, #1, fir alle u, o,
dann ist
ALy = —(k—r +a)¢",
LAy =—ag¢ ,
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das heillt, wenn A ¢" = 0,

ALy = —(k—r)¢r  (r<k) . (125)

Es gelten also die Sitze :

Satz 8*. Fir r <k —2 ist L ein Isomorphismus von @" auf sich.

Satz 9*. Fir r <k ist @ die direkte Summe von @, und L @2,

Satz 10*.  Fir r > 2m —k + 2 ist A ein Isomorphismus von & auf
sich.

Satz 11*. Fir » > 2m —k ist @" die direkte Summe von (@ mit
A D+2,

Satz 12*. Fir r <k —2 ist L ein Isomorphismus von @" in @r+2
und bewirkt einen von H" in H™*2, Fir r >2m —k + 2
ist A ein Isomorphismus von @” in @"-2 und bewirkt einen
von H" in H™2

Satz 12a*. Die zu 5 gehorende Kohomologieklasse ist in den Graden
< k kein Nullteiler im Kohomologiering.

Satz 13*.

O —= Q2L LPE ...+ Ll grle] r<k . a)

H— H4LH= ... i gl grle] r<bk . b)

. 2m—r ,— 2m—r
Pr — qu+A@r+2+... [[ ]] 2[ r=2m—=Fk. c)
. . 2m—r 2m—r
Hr= Hr+ A Hr+2 ... [[ ]] 7”2[ 2m —k . d)
Satz 14*. p’zzl—{—}:e{; r<k , a)
j=0
2m
Pr=14+ 3 r>2m—=Fk . b)
j=r
Lemma. (L @2, ¢7) = (@2, A y") r<k.
Satz 17*. Fir h#¢ und r <k ist (¢}, ¢}) =0 .
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