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Sur les sous-groupes fermés connexes

d’un groupe de Lie clos

Par Jeax DE SieBENTHAL, Lausanne

Introduction

1. L’étude d’un groupe G ne peut s’achever si ’on n’en connait pas
les sous-groupes. Lorsque ¢ est un groupe de Lie, on peut se proposer de
rechercher tous les sous-groupes continus connexes de ce groupe ; en se
plagant au point de vue local, S. Lie a montré qu’on peut se ramener a
un probléeme purement algébrique, théoriquement résoluble dés qu’on
connait les constantes de structure de G'!'). De fagon plus précise, si
X,;, X,, ..., X, est une base de ’anneau R(G) du groupe G, avec la

n
loi de composition [X,, X,] = X ¢;;;, X, on peut trouver tous les sous-
k=1

groupes connexes de (' qui sont des groupes de Lie au sens local en
déterminant tous les sous-anneaux de R(@), c’est-a-dire tous les sous-
espaces B de R(G) tels que X, Y ¢ R entrainent [X,Y]e R. Ainsi
posé, le probleme n’est pas facile a aborder.

Deux simplifications s’imposent d’emblée : d’abord, il suffit de chercher
un sous-groupe dans chaque classe de sous-groupes conjugués ; ensuite,
on peut se borner a la recherche des plus grands sous-groupes de ¢,
cette expression désignant ici les sous-groupes propres connexes qui ne
sont pas contenus dans un autre sous-groupe propre connexe de G.

2. Le probleme envisagé est le suivant

(a) Déterminer les sous-groupes fermés connexes d’un groupe de Lue clos
(ou compact).

Tout sous-groupe continu d’un groupe de Lie étant un groupe de Lie?),
on peut appliquer la méthode algébrique décrite ci-dessus, et déterminer

1) 8. Lie, Theorie der Transformationsgruppen, t. I, p. 209 (Teubner, Leipzig
1888).

%) E. Cartan, La théoriedes groupes finis et continus et 'analysis situs (Mém.
Se. Math., t. 42, 1930, p. 22).
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tous les sous-anneaux R de R(G). Cela fait, il reste &4 examiner si le
sous-groupe fermé connexe engendré par B a méme dimension que R
(voir chapitre 11, § 4).

Le probléme algébrique basé sur les constantes de structure peut & son
tour étre réduit & un probléme plus simple; en effet, le groupe clos G
supposé semi-simple est déterminé localement par ses parametres angu-
laires3), qui sont 2m formes linéaires 4 u,(x), ..., -, (%), x étant
un point d’un espace euclidien R! & ! dimensions, dont la métrique est
donnée par la forme quadratique X'[u;(x)]%; l'entier I est le rang du
groupe. La figure constituée par ’espace R'! et par les plans y,(x) =0
(mod. 1) est le diagramme de G'1%); le diagramme R* d’un sous-groupe
est alors un sous-diagramme du précédent. A ce point de vue, le probléme
s’énonce ainsi

(b) Trouver les conditions mécessaires et suffisantes pour qu’un sous-
espace linéaire de R! soit le support d’un sous-diagramme représentant un
sous-groupe fermé connexe.

Il convient de remarquer qu'un méme sous-diagramme peut repré-
senter plusieurs sous-groupes, naturellement isomorphes, dont il serait
intéressant de savoir 8’ils sont conjugués. Le groupe G n’est pas distingué
des groupes clos qui lui sont localement isomorphes. N

On peut donner au probléme (b) un aspect plus intuitif ; soit p; le vec-

teur de R! défini par pu,(x) = — ;,; Il existe dans l’ensemble
- - -> -> e
4y, g, oo, ., I vecteurs fondamentaux ¢,,..., ¢, (¢;-¢; <0)

qui déterminent le diagramme et 'anneau R (G); ils vérifient certaines

conditions simples énoncées par van der Waerden?®). Les h vecteurs
— —> ’ 2z
01s--.,05, fondamentaux pour le sous-groupe étudié, sont des com-
. . , s - —-> . . ;e
binaisons linéaires de ui vérifient encore les conditions
(P 1> a‘Pl
citées. L’énoncé correspondant est

s —>
(c) Sotent @,,@s,...,q@,; l vecteurs fondamentaux du groupe clos G ;
-—> o & e, .
trouver h vecteurs ¢.,..., 0, ayant les propriétés suivantes
- - ) ., . - -
(1) 91,..., 0, Sont des combinaisons linéarresde ¢,,..., ¢,.

(2) zl,. .. ,Zh forment la figure fondamentale d’un groupe clos.

3) van der Waerden, Die Klassifikation der einfachen Lieschen Gruppen
(Math. Zeitschr., t. 37, 1933, p. 448).
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(3) Il exuste dans G un sous-groupe fermé connexe admettant 31 - ,zh
comme figure fondamentale.

3. A ma connaissance, le probléeme posé en (a) n’a jamais été abordé
systématiquement au sens indiqué en (b) ou (c). Cela n’empéche nulle-
ment ’existence d’un grand nombre d’énoncés sur les sous-groupes des
groupes de Lie clos ou non ; ces énoncés ouvrent diverses voies :

Les sous-groupes commutatifs maximums d’un groupe clos G ont fait
I’objet d’études précises, par E. Cartan*) au point de vue infinitésimal,
et par H. Hopf®) au point de vue global. La notion de sous-groupe com-
mutatif maximum est d’ailleurs & la base de la représentation de G par
son diagramme.

Les sous-groupes d’isotropie (; des espaces symétriques clos ont été
étudiés de fagon systématique par E. Cartan ®), en partant des auto-
morphismes involutifs de G' dont ces sous-groupes sont caractéristiques.
Je signale encore que A. Malcev?) a déterminé les sous-groupes semi-
simples des groupes de Lie complexes, & 1’aide des représentations liné-
aires de ces groupes.

La résolution compléte du probléme posé en (a) permettrait par
exemple de faire une étude d’ensemble des espaces homogeénes clos
G|G,, et de savoir en particulier si la classe des espaces symétriques clos
contient la plupart des premiers ou non. Un autre probléme pourrait
étre abordé: étant donné un groupe clos G' et un sous-groupe fermé
connexe ¢, de ¢, quand @, est-il homologue & zéro dans G (au sens de la
topologie combinatoire)? On sait d’apres E. Cartan qu'un sous-groupe
simple & trois parametres n’est jamais homologue & zéro; il en est de
méme de tout sous-groupe invariant fermé connexe.

Dans un autre ordre d’idées, je mentionne qu’on peut démontrer le
théoréme suivant : il n’y a dans le diagramme D (G) d'un groupe clos ¢
qu’un nombre fini de sous-diagrammes D((#,). De plus, toute chaine de
sous-groupes G, (G, ¢ --- (G peut étre représentée dans D(F) par
une chaine D(G,) ¢ D(Gy) ¢ --- ¢ D(G); l'ensemble de ces chaines est
encore fini. Il serait peut-étre intéressant d’étudier ces ensembles finis,
et de savoir de quelles structures on pourrait les munir.

4) E. Cartan, La géométrie des groupes simples (Annali di Mat., t. 4, 1927, p. 212
& 214).

5) H. Hopf, Uber den Rang geschlossener Liescher Gruppen (Comment. Math.
Helv., t. 13, 1940, p. 119—143).

8) E.Cartan, Sur certaines formes riemanniennes remarquables des géo-
métriesd groupefondamental simple (Ann. Ec. Norm. (3) XLIV, 1927, p. 3456—467).

7Y A. Malcev, Onsemi-simplesubgroupsof Liegroups (Bull. Acad. Sci. U.R. 8. 8.,
Sér. Math. 8, p. 143—174, 1944). D’aprés le résumé: Math. Rev., t. 6, p. 146.

212



4. Une note déja parue indique que le probléme (a) est résolu dans le
cas ou le rang du sous-groupe est égal au rang du groupe 8). D’ailleurs, ce
méme probléme est aussi résolu lorsque le rang du sous-groupe est égal
a un®). Les pages qui suivent n’apportent pas la solution compléte ; elles
présentent un certain nombre de résultats généraux, appliqués & un cas
particulier important.

Le chapitre 1 pose les notions classiques relatives & un groupe clos G,
d’aprés E. Stiefell®) : diagramme, ensemble X'(G) des parameétres angu-
laires de G/, groupe fini @ (@) des automorphismes intérieurs de G' qui
laissent invariant un sous-groupe commutatif maximum donné ; j’intro-
duis de plus la notion de diagonale du diagramme: ¢, =@, ="--

=@, =0; @ 4=--=¢, #0, etla figure de Schlafli F(¢) qui re-
présente la figure ;1, _(;2, N ?;, par ! points reliés par certains traits.

Cela posé, j’associe (chapitre II) au groupe G et au sous-groupe G, un
tableau

01 gy vv vy Oy
1 92:ﬂ1>°"’ﬂn2
Qh:y17"'7ynh
dans lequel ¢,, 05,..., 0, sont » paramétres angulaires fondamentaux
de G'; oy, 00,..., «,, sont les formes de X'(G) qui se réduisent a g, dans

R:, .. Le tableau I est le principal objet de cette étude (§ 5, 6, 7). Dans
ce méme chapitre, je montre qu’il suffit de considérer les sous-groupes de
G qui ne sont pas contenus dans un sous-groupe propre de rang maximum
de G'; ce sont les sous-groupes (H). Alors, tout w € 2'(G) est une combi-
naison linéaire & coefficients entiers des formes du tableau I.

Les chapitres III et IV contiennent 1’étude des sous-groupes remar-
quables dont le tableau I contient ! parametres angulaires fondamen-
taux et ceux-la seulement (sous-groupes (H),). La figure de Schlifli
& (@) doit étre appliquée d’une certaine facon sur ce tableau (§ 9, 10, 11).
La discussion fournit les résultats suivants: si le rang A de G, est au
moins égal & 2, les seuls sous-groupes (H), des groupes clos simples sont
les sous-groupes caractéristiques d’automorphismes involutifs externes!),

8) A. Borel et J. de Siebenthal, C. R. Acad. Se., t. 226, p. 1662—1664; voir aussi: Com-
ment. Math. Helv,, t. 23, 1949, p. 200—221.

9) J. de Siebenthal, C. R. Acad. Sc., t. 230, 1950, p. 910—912.
10) E. Stiefel, Comment. Math. Helv., t. 14, 1942, p. 350—380.
) E. Cartan, cf. note 6,
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a trois exceptions pres: G, ¢ B;, G, ¢ Ay, G, ¢ D,'®). Les inclusions
Cy,cEg et D, c Ay, ne rentrent pas dans le cas étudié.

Le cas ou le rang du sous-groupe (H), est égal & un est trés différent :
tout groupe clos ¢ non abélien contient un sous-groupe (H), de rang un,
dit sous-groupe principal. Ce sous-groupe admet une définition indépen-
dante du diagramme : un sous-groupe (H) de rang un est dit principal
8’il contient un élément régulier dans G'. Lorsque G est de I'un des types
B, 1>3), C, (1>2), F,, E,, Ky, le sous-groupe principal est toujours
maximum.

CHAPITRE I
Groupes clos

§ 1. Diagramme d’un groupe clos

1.  Toroides maximums. Soit G un groupe de Lie clos connexe ; du point
de vue topologique, G est un espace de Hausdorff bicompact %), ou compact
au sens de N. Bourbaki. Pour étudier @, il convient de mettre en évi-
dence les sous-groupes commutatifs maximums de G, ou toroides maxi-
mums 7' de G ; ils sont tous connexes et ont la méme dimension (chaque
T est un produit direct de [ cercles) ; ’entier I est le rang du groupe G.
On a les propriétés suivantes4) :

(a) Etant donné un élément a € G, il existe un toroide maximum T qui
contient a .

(b) Etant donnés deux toroides maximums T et T', il existe un élément
be@ tel que bTH-1 = T' (K. Cartan).

(¢) St a est un élément de G échangeable avec tous les éléments d’un
toroide maximum T de G, a appartient a T.

2. Groupe fini ®(GF). Le normalisateur N (7') du toroide maximum
T est un sous-groupe de G constitué par un nombre fini de composantes
connexes ; I'une d’elles est précisément 7', qui est un sous-groupe inva-
riant de N (7). Soit a un élément de N (T'); 'automorphisme intérieur
x —axa~', xeG induit une transformation de 7' sur lui-méme ; toutes
ces transformations forment un groupe fini @ (@) isomorphe au groupe
quotient N (T')/T. A chaque groupe clos G est ainsi associé un groupe
fini @(@) de transformations du toroide 7'.

12) Ces inclusions sont bien connues.
13) voir note 2 de l’introduction; cf. No. 9.

14) voir note 5 de 'introduction et H. Hopf et H. Samelson (Comment. Math. Helv., t. 13,
No 4, Hilfssatz 4).
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3. Eléments réguliers et singuliers. Un élément x de G est dit régulier
g’il n’appartient qu’a un seul toroide maximum 7'; x est singulier s’il
appartient & plus d’un toroide maximum. La dimension du normalisa-
teur de x est égale au rang ! si = est régulier ; cette dimension est supé-
rieure a [ si x est singulier.

4. Propriétés des éléments singuliers d’un toroide maximum. Voici ces
propriétés d’apreés H. Hopf15) :

L’ensemble des éléments singuliers du toroide maximum 7' est constitué
par la réunion des éléments de m sous-groupes fermés U,, U,,..., U,,;
chacun d’eux est & I — 1 dimensions, et est formé de deux composantes
connexes au plus. Si ¢ %4, la dimension de Plintersection U;~ U,
est égalea [ — 2.

Le groupe fini @ transforme l’ensemble des sous-groupes U; en lui-
méme ; il est engendré par m involutions S,, S,,..., S, ; l'involution §,
laisse invariant chaque point de U,; dans un systéme de coordonnées
orthogonales canoniques définies au voisinage de 1’élément neutre, S; est
représentée dans 7' par la symétrie par rapport au (I — 1)-plan U.

L’intersection des sous-groupes U,, U,,..., U, est le centre de
(discret si G est semi-simple).

5. Diagramme et paramétres angulaires.

(a) G semi-stmple. Au groupe semi-simple G sont associés un espace
vectoriel réel R! et un ensemble X' (G) de 2m formes linéaires 4+, (x),. . .,

+9,.(x), xeR': les paramétres angulaires de @ ; la somme ' [3,(x)]?
i=1
définit dans R! une métrique euclidienne. Les (I — 1)-plans &;(x) = 0

(mod 1) (dits singuliers) constituent le diagramme de G1¢), et le groupe
engendré par les symétries par rapport a ces plans est un groupe spatial
I’ dont chaque opération conserve le diagramme.

R! peut étre considéré comme le recouvrement universel du toroide
maximum 7 = T%. Les plans singuliers ¢; = 0 (mod 1) recouvrent
alors le sous-groupe singulier U,, et le groupe I correspond au groupe @.
On peut choisir dans R! un point O origine appartenant au recouvrement
de I’élément neutre de ¢, les parametres angulaires s’annulant tous en O.

15) H. Hopf, Maximale Toroide und singulidre Elemente in geschlossenen
Lieschen Gruppen (Comment. Math. Helv., t. 15, 1942, p. 69).

16) La notion de diagramme a été mise en évidence, & ’aide de méthodes globales, par
E. Stiefel; voir: Uber eine Beziehung zwischen geschlossenen Lieschen Grup-
pen... (Comment. Math. Helv., t. 14, 1942, p. 350—380).
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Les plans singuliers issus de O forment un ensemble qui est conservé par
les symétries par rapport & 'un quelconque d’entre-eux; le groupe
engendré par ces symétries est d’ailleurs isomorphe au groupe fini @ (G)
considéré au numéro précédent. Les plans en question déterminent un
certain nombre de régions permutées transitivement par le groupe @ ;
chacune d’elles est limitée exactement par ! faces & I — 1 dimensions?'?),
et peut étre désignée par le terme d’angle polyédre fondamental du dia-

gramme ; il existe I parameétres angulaires ¢,, @,,..., ¢; de G tels que la
région considérée soit définie par les inégalités ¢, >0,...,¢, > 0;
@1, Ps,- - -, @; sont alors | parameétres angulaires fondamentaux de @,

et forment une suite dite fondamentale. Il est aisé de voir que tout para-
métre angulaire de G appartient & au moins une suite fondamentale. La
différence de deux éléments d’une telle suite ne peut étre un parametre
angulaire, sinon ce dernier s’annulerait en un point intérieur & la région
¢, =>0,...,¢9, >0, contrairement & I’hypothése faite sur celle-ci. Tout
élément de 2'((7) est une combinaison linéaire & coefficients entiers nuls
ou de méme signe des éléments d’une méme suite fondamentale.

(b) G non semi-simple. G est alors localement isomorphe au produit
direct @, d’un groupe semi-simple G; et d’un groupe commutatif clos Z, .
Si » désigne 1'application de recouvrement : ¢ = v(¥,, le toroide Z =vZ,
appartient & 7', et G’ = vG, est la composante semi-simple de G. Le
diagramme de G est la somme directe du diagramme de @' et d’un espace
linéaire de dimension d(Z) égale a celle de Z. Les parameétres angulaires
de G sont ceux de sa composante semi-simple G'.

6. Vecteurs du diagramme. ¥ étant un parametre angulaire, il existe

- -
un vecteur ¢ de R! tel que 'on ait J(z) = — 9. 7. Les 2m vecteurs
ainsi construits forment le systéeme des vecteurs du diagramme de G ;

ils jouissent de propriétés énoncées par van der Waerden®) :

- -
(a) Soit 4 un vecteur du diagramme ; k9 est un vecteur du diagramme

pour k=1 et k= — 1 seulement.

- -
(b) Soient & et ¥’ deux vecteurs du diagramme ; le nombre 2

est entier. 92

4

> >
4

-> > - -
(¢) Soient 9, ¥ deux vecteurs du diagramme ; & — k¥’ est encore

17) E. Cartan, Complément au mémoire: Surla géométrie des groupessimples
(Annali di Mat., t. 5, 1928, p. 253—260).

18) Voir note 3 de 'introduction.
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-> -
.93/

un vecteur du diagramme lorsque k est un entier variant de 0 & 2 ﬁ_} .
Pre

Il résulte en particulier de la propriété (c) que si ¢,, @,,..., ¢, est

une suite fondamentale, on a : :;z;;, <0, sinon ¢, — ¢; ¢ 2(G).

7. Paramétres angulaires dominants. Supposons G simple ou semi-

simple ; I’angle polyédre fondamental ¢, > 0,..., ¢, > 0 contient un
polyedre fondamental du groupe spatial I', défini par les inégalités
>0,...,9,>0; o, <l,...,0,<1l; w,...,w, sont s parametres

angulaires de G : les parameétres angulaires dominants de ce groupe (ce
sont des combinaisons linéaires & coefficients entiers non négatifs de
@15+ .., @;). Les parametres angulaires extraits de ¢,, ¢,,..., ¢, qui
figurent dans I’expression de 1'un de ces parametres angulaires dominants
ne figurent dans aucun autre. S’il n’y a qu'un seul parametre angulaire
dominant, le groupe G est simple ; le polyédre fondamental est alors un
simplexe.

8. Sous-groupe simple de rang un associé a un paramétre angulaire.
Soit ¢#; un parametre angulaire de G, et U, le sous-groupe singulier de 7'
recouvert dans R! par les plans ¢; = 0 (mod 1). Le centralisateur de
U, dans G est un sous-groupe de rang !, de dimension ! 4+ 2, non abé-
lien. La dimension du centre de ce sous-groupe étant égale & [ — 1, sa
composante semi-simple est un sous-groupe g simple de dimension trois,
associé & +¢,. g coupe 7' suivant un sous-groupe ¢ a une dimension dont
le recouvrement dans R! contient une droite R! orthogonale & 4, = 0;
I'anneau R(g) de g est de la forme R! + Il , oully, est un plan & deux
dimensions, associé également au parametre 9, ; ce 2-plan est invariant

par tous les automorphismes intérieurs de G' déterminés par les éléments
de 7.

9. Recouvrement du centre de G'. Supposons G semi-simple; le re-
couvrement dans R! du centre de G est un réseau dit central ; un point
x ¢ R' appartient & ce réseau si les parametres angulaires fondamentaux
@15 Pas- - -, @, prennent des valeurs entiéres sur le point x.

§ 2. Figures de Schliifli des groupes simples

10. Définitton. Soit ¢,, @,,..., ¢, une suite fondamentale de para-
meétres angulaires de G supposé semi-simple; je fais correspondre a
chaque forme ¢; un point P;, P, étant relié & P; par 0, 1, 2, ou 3 traits

suivant que ’angle des vecteurs ;i et 7& est égal & 90°, 120°, 135°, ou
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150°. La figure constituée par ces points et par ces traits est par défini-
tion la figure de Schlifli §(GF) du groupe G (on peut lui adjoindre le
point qui représente le parametre angulaire dominant, ce qui n’est pas
nécessaire ici).

. .. . A -
Si G est semi-simple, la suite ¢,, ¢,,..., ¢, se décompose en deux
. . . -> - e -
suites partielles au moins: ¢,,..., ¢, et @,.,,..., ¢,, tout vecteur de

la premiére étant orthogonal & tout vecteur de la seconde, et réciproque-
ment. Ainsi, la condition nécessaire et suffisante pour que la figure ¥ (G)
soit connexe est que le groupe ¢ soit simple.

11. Paramétres angulaires fondamentaux des groupes simples et figures
de Schlifli associées. Les expressions classiques des parameétres angu-
laires des groupes simples!?) ne mettent pas en évidence les parametres
angulaires fondamentaux. Je vais donner dans chaque cas la substitu-
tion convenable, le paramétre dominant, et la figure §(G).

Groupe A,: Les parameétres angulaires sont: +7,, 7, — 1, (¢ #9;

t,)=1,2,...,01). Posons: ¢, =1y, 3= — 7, + Ty, @3 = — Ty + T4,
ee o, @y = — T;_; + 1;; tout parameétre angulaire est une combinaison
linéaire & coefficients entiers nuls ou de méme signe de ¢,, ¢,,..., ¢,.

Le parameétre angulaire dominant est 7, = ¢, + @, +-- -+ ¢,.

Groupe B,: Les paramétres angulaires sont: 4-7,, +7, 4+ 7; (¢ 5% 7;
1,7j=1,2,...,1). On peut poser: ¢,= 1, @3= — 17,1+ 7,,
Y3 = — Ty + T3,..., 0, = — T,y + 7,; le parametre angulaire domi-
nantest 7v,_;, 4+ 1, = 2¢, +2¢,+ -+ 2¢,_, + ¢;.

Groupe C,: Les parametres angulaires sont: +427,, 4+ 7; 4+ 7
(¢t #£9; 1,9=1,2,...,1). On peut poser ¢, = 21,, @ = — 7; + Ty,
@3= — Ty + T3,...,0;, = — T, + 7;; le parameétre angulaire dominant
est 27, =@, + 2¢,+ 293 +-- -+ 2¢,.

Groupe D,: Les parametres angulaires sont 4+, 4+ 17, (2 #J;
(¢5%47; 1,9=1,2,...,1). On peut poser ¢, =1, + 75, o= —7g
+ 7y, 3= — T+ 73,..., 9, = — 7., + 7;; le parameétre angulaire
dominant est ¢, + @, + 2¢;, + 29, + -+ 2@, + @, = 1,y + T,

Groupe Eg¢: Les parametres angulaires sont :

9 — ;5 o+ o+ @r), @+ @+ + @)
(¢, g, k distinets; 7,7, k=1,2,...,6).

18) B. Cartan, La géométrie des groupes simples (Annali di Mat., t. 4. 1927, p. 218
a 224).
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On peut poser @, =17, — 7y, @s= 7Ty — T3, P3= T3 — Ty, Qg = T4
— T5, Q5= Ts — Tg, Pg = T4 + T5 + 7g et le paramétre angulaire do-
minant est @, + 2@, + 3¢; + 29, + @5 + 20,.-

Groupe E,: Les parameétres angulaires sont

T, — T, (it Tttt T, nt -t 1g=0
(¢, 9, k, mdistinets; 2,9, k,m=1,2,...,8).

On obtient une suite fondamentale en posant

1= — T+ Ta, o= — Tpa+ T3, 3= — T3 + T4,
1= —Ty+ Ts, 5= — T35+ Tg, Pg = — Tg + T3,
Q; =T, + T+ T3 + 74.

Le parametre angulaire dominant est ¢, + 2¢, + 3¢; + 49, + 3¢;
+ 2¢5 + 295.

Groupe Ey: Les parametres angulaires sont

7, — T, +(r;,+ 1,4+ 1), avec T, + T+ 7y =0
(¢,7, kdistincts; ¢,5,k=1,2,...,9).

On peut poser

Pr= Ty — Tz, Pa= T3 — Ty, QP3g =Ty — T5, Pqg— T5 — T,
Qs = Tg — Tg, Pg=T; — Tg, P7 =Ty — Ty, Pg= T3+ Tg+ Ty

et le parametre angulaire dominant est 2¢, + 3¢, + 4¢; + 5¢, + 6¢;
+ 49 + 29, + 3¢s.

Groupe F,: Les parametres angulaires sont

+7, + 1+ 75, b ol 2R el 730 ol 29 ik 7Y
(v#7; t,7=1,2,3,4).

Onpeut poser ¢, = 7,, o =3(— 71+ T2+ T3 — T,), @3 = — T3 + T4,
@y = — T, + 13 et le paramétre angulaire dominant est: 2¢, 4 4¢,
+ 393 + 2¢,.

Groupe Gy : Les paramétres angulaires sont +17,, +7,, +(t, — 75),
+ (73 — 275), 4(7y —37), +(27; — 37y). On peut poser @, = 1,,
@, = T, — 37,, et le paramétre angulaire dominant est 3¢, + 2¢,.

Les figures de Schlafli respectivement associées a ces groupes simples
sont :
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P, P, P, P 1 2 3 4 1

41 0—0—0—————0 0t O—0—0—0—-———0
ol
1 2 3 4 l 3 4 5 l
Bi O=—0—~0—0—————0 Dy /o———o——~o*~~~—- ()
02
1 2 3 4 5 1 2 3 4 5 6
Eg o———o——Tvo———o E, 0—0—0—0—0—0
o6 1 2 3 4 5 6 7 o7
Es O—0—0—0—0—C—O0
1 2 3 4 o8 1 2
Fy, O—0=—0—-0 G, O=—0
Fig. 1

11 résulte du mémoire de van der Waerden déja cité que les vecteurs ?,?1
et ;2 relatifs aux groupes B,;, U, forment un angle de 135° de méme pour

- -> .
les vecteurs 2 et 3 de F, ; les vecteurs ¢, et ¢, relatifs au groupe G, forment
un angle de 150°; les autres angles sont tous égaux a 90° ou 120°.

12.  Propriétés des figures de Schlifli. Je suppose ici que G est un
groupe simple.

(a) Soit F(F) la figure de Schlafli associée & un groupe simple. Un
trait reliant deux points de (@) peut étre simple ou multiple ; je dirai
que deux points P, et P, sont en relation non nulle §’il existe un trait
simple ou multiple reliant ces deux points. L’ordre d’'un point P ¢ & (G)
est par définition le nombre des points de (@) qui sont en relation non
nulle avec P ; cet ordre est égal a 1, 2, ou 3. Il y a dans &(G) au plus
trois points d’ordre 1, et au plus un point d’ordre trois.

Si G est un groupe de 1'un des types 4,, D,, By, E,, E;, §(G) ne con-
tient que des traits simples ; si G est de 'un des types B, ou C,, la ligne
polygonale qui relie P, & P, ne contient également que des traits simples ;
& (F,) contient deux traits simples. Remarquons que §(G) ne contient
jamais de cycle a une dimension.

(b) Soit P un point de (G) d’ordre un; la ligne polygonale issue
de P, arrétée au plus tard au point P’ d’ordre trois (s’il existe), est par
définition une terminaison & n» éléments si elle contient n points de
& (@), P’ non compris. Un coup d’ceil sur les figures précédentes montre
que & () contient au plus deux terminaisons & n > 2 éléments.

(¢) Soient P; et P, deux points de §(G) reliés par un trait simple,
et §; la symétrie de R' par rapport au (I — 1)-plan ¢,=0; ona
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(8:8;) ;i = ;,; il résulte de cette relation que le groupe @(G) opére
transitivement sur les points d’une ligne polygonale & traits simples, & (G)
n’étant pas nécessairement conservée.

(d) Sile groupe simple connexe ¢ admet un automorphisme externe,
on peut choisir ce dernier en sorte qu’il permute les paramétres angu-
laires fondamentaux ¢,, @,,..., ¢;2%). L’effet produit sur §(G) est une
permutation des points P; qui conserve {((); dans les cas 4,, D,, E,
on a respectivement les permutations :

1 2...1—11 1 23...1 123456
I 1—1 2 1 213...l) 543216
ol

3 4
Si G est du type D,, F(G) est \O——O . Il existe 6 permutations

o2 Fig2
des points P,, P,, P, conservant & (D,) et le point P,.

§ 3. Diagonales du diagramme

13. Définition. Soit P, : ¢, > 0,...,9, = 0 un angle polyédre fon-
damental du diagramme d’un groupe semi-simple G, ¢,, @,,..., @,
étant ! parameétres angulaires fondamentaux de G'. Par définition, la
demi-droite R, d’équation

(plztpzz"':q)k:o (1)
P = =@ >0

est une diagonale de l’angle polyédre F,. Si k=0, on a ¢, = ¢,
=...= @, et la diagonale est dite principale.

Comme R peut appartenir a plusieurs angles polyédres fondamen-
taux, on peut se demander si elle est une diagonale dans chacun d’eux.
Le théoréme suivant répond & cette question

14. Théoréme. Une diagonale de U'angle polyédre fondamental F,
est diagonale dans tout angle polyédre fondamental qui la contient.

Ainsi, étant donnée une demi-droite dont les équations ont la forme
(1), on pourra la considérer comme une diagonale du diagramme. Seule
la diagonale principale contient un élément régulier, et le théoréme est
pour elle évident, car elle n’appartient qu’a un seul angle polyédre fon-
damental.

20) E. Cartan, Le principede dualité et la théorie des groupessimples et semi-
simples (Bull, Sc. Math,, t. 49, 1925, p. 365).
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15.  Démonstration. La démonstration est basée sur le fait que si
o e P(@), la demi-droite o R, est encore une diagonale de o P,.

Lemme. Sovent p,, pg,..., pu; €t v,,...,v, deux suites fondamentales ;
St ¥y, Vg,..., v; Sont des combinaisons linéaires a coefficients non négatifs
de py, pg,..., 1, alors la seconde suite est une permutation de la pre-
miére.

Les systemes u,>0, »,>0 (¢ =1,2,...,1) définissent deux angles
polyedres fondamentaux F,, F,. Soit zeF,; on a u;(x)>0 (: =1, 2,
..., 1), et d’aprés ’hypothése »,(x)>0 (¢ =1,2,...,1), dou zeP,.
B, et I, ayant en commun un point intérieur z coincident et le lemme
résulte de ce fait.

Cela étant, soient F, (p; > 0) et I (u; > 0) deux angles polyedres
fondamentaux contenant R. et x e R’ voisin de I’origine. Le normali-
sateur N (z) de x est un sous-groupe de rang I de G ; le centre Z de N (x)
a une dimension ! — k; il y a donc k parametres ¢, et k£ paramétres u,
qui s’annulent identiquement sur R! , par exemple ¢, @,,..., ¢, et
Hys Base -5 M, qui forment deux suites fondamentales de N (z). Il
existe une opération » e @(N(x)) qui applique ¢,, @;,..., ¢, sur une
permutation »;, vy,...,v, de pu;,...,u; e @u4,..., @, sur v,
..., v, respectivement ; de plus ox = x. Maintenant, chaque », est une
combinaison linéaire a coefficients entiers nuls ou de méme signe de
Uiy Pase o, g5 COMMeE ¥.,,...,», sont positifs sur x, ces formes,
exprimées & l'aide des u,, ont des coefficients non négatifs. En résumsé,
Py o5 My €6 vy,..., v, vérifient les hypothéses du lemme, et ¢ F, = P,
= F,. De la résulte u;,, =---=u, sur B! et le théoréme est établi.

CHAPITRE II
Théoremes généraux sur les sous-groupes

§ 4. Diagramme et sous-anneaux

1. Diagramme d’un sous-groupe. Soient @ un groupe de Lie clos, et
G, un sous-groupe fermé connexe de G ; c’est un groupe de Lie, engendré
dans G par un sous-espace linéaire de ’anneau R (G')%). Soit maintenant
T™ un toroide maximum du sous-groupe G, ; il existe un toroide maxi-

-mum 7% de G qui contient 7. Remarquons que l'intersection de G, et de
T" se réduit & 7" ; en effet, un élément x commun & G, et & T est un élé-

21) voir note 2 de I'introduction.
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ment de ;, échangeable avec chaque élément de 7™ ; d’aprés la propo-
sition (c) du § 1, x appartient a 7.

Th = T~ @G, .

Si R et R! sont les supports des diagrammes de G, et G, correspondant
respectivement aux toroides 7™ et T!, on a R* ¢ R'. Il est a priori
évident que le sous-espace R" doit vérifier un certain nombre de condi-
tions ; en particulier, la diagonale principale de G, n’est pas quelconque ;
elle va jouer un réle important dans ce qui suit (§ 8 et chapitre III). De
plus, si 'on dispose d’une autre paire 7" T'!, avec T'* ¢ T, T ¢@Q,,
T'" c@, on peut construire un automorphisme intérieur de G qui
applique 7" sur T" et T'' sur T": dans ce sens. 'inclusion R" ¢ R! ne
dépend pas des toroides 7™ et T choisis.

2. Sous-groupes fermés et sous-anneaux. A tout sous-groupe fermé
connexe (f; de G correspond un sous-anneau de R (@), de support R(@,);
inversement, étant donné un sous-anneau R de R(G), quand le sous-
groupe fermé connexe @, engendré par R a-t-il méme dimension que R?
Un théoréeme précis peut étre établi, dont I’énoncé sera précédé d’un
lemme :

Lemme 1. Soit N le sous-groupe clos engendré par R dans G ; R est un
sous-anneau tnvariant de R(N).

Tout d’abord, R engendre un germe ¢ ; g est 'intersection d’un voisi-
nage de I’élément neutre e de G et de la variété totalement géodésique
formée par les sous-groupes & un parametre de G tangents & R en e?22).
Cela étant, NV est I’ensemble des éléments af' ay?...a%* et des éléments
d’accumulation de ces produits, avec a,eg; k,«;, ®,,...,«, sont des
entiers rationnels arbitraires (k>0). a; g entraine a,Ra;' = R d’ou,
par construction de N, on voit que R est invariant par le groupe ad-
joint linéaire S(N) de NV, c. q.f.d.

Cela étant, le groupe linéaire mentionné laisse R(N) et R invariants ;
R se décompose en une somme directe de sous-anneaux orthogonaux
deux & deux: R,, R,,..., R,, r,, les h premiers étant simples et inva-
riants dans R(N), le dernier étant un sous-anneau commutatif, invariant
dans R(N) également. Par définition, ce dernier sous-anneau est la com-
posante commutative de ’anneau I ; r, est aussi le sous-anneau commu-

22) B. Cartan, La géométrie des groupes de transformations (Journ. math. pures
et appliquées, t. 6, 1927, chap. I).
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tatif invariant maximum de R, soit le centre de R, Le théoréme en vue
peut maintenant s’énoncer :

Théoréme 1. Soient G un groupe de Lie clos connexe, R(G) Vanneau
de Lie de G, R un sous-anneau de R(G), et r, la composante commutative
de R. La condition nécessaire et suffisante pour que R engendre un sous-
groupe fermé de dimension d (R) est que r, engendre un sous-groupe fermé de
dimension d(r,).

Deux lemmes sont encore nécessaires.

Lemme 2. Sotent G et G’ deux groupes de Lie clos localement 1somorphes,
G’ recouvrant G, et o Uapplication de recouvrement ; o applique tout en-
semble fermé de G' sur un ensemble fermé de G .

Cela provient simplement du fait que G’ recouvre ¢ un nombre fini de
fois. De la résulte que o applique un sous-groupe fermé de G' sur un sous-
groupe fermé de G, ayant la méme dimension.

Lemme 3. Sotent G et G' deux groupes de Lie clos localement isomorphes,
G’ recouvrant G, et o Uapplication de recouvrement ; sotent g un germe dans
G, et g = o-1g le germe correspondant dans G' ; st g engendre dans G un
sous-groupe fermé de dimension d(g), il en est de méme de g' dans G'.

g engendre dans G' un sous-groupe ® connexe, fermé par hypotheése.
De méme, g’ engendre dans G’ un sous-groupe %’ du groupe abstrait G' ;

la fermeture de G’ est un sous-groupe G’ du groupe topologique &' . Soit
z e ®'; il existe une suite d’éléments z,, z,,...,2,,... de &' conver-

b no*

geant vers z; chaque z, est un produit d’éléments de g’'. o applique la
suite x; sur une suite ox; de ® ; ® étant fermé, 1’application continue o

ameéne x sur un élément du groupe ®. Ainsi, ona: ¢® (®; og' =g
entraine ¢®' = ®, car ®' et ® sont connexes. Comme o conserve la

dimension, on a nécessairement d(®') = d(®), c.q.f.d.

Je passe a la démonstration du théoréme :

La condition est suffisante : On peut simplifier en se servant du lemme 1,
et en considérant R dans R(N). Dans la décomposition précédente :

R=R + R+ -+ R, + 1,

les sous-espaces R, R,,..., B, sont invariants et irréductibles par
S(N), quise réduit a ’identité dans r,. Cela étant, on a:

R(N)=R+Rh+1+Rh+2+"‘+ Rk+rz ’
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R,.., R,.5,..., B, ayant les propriétés de R,, R,,..., B,, S(N) se ré-
duisant a l'identité dans r, et dans r = r, + r,.

Chaque sous-espace R, est un anneau qui engendre un groupe simple
clos g, ; il existe un groupe clos N', produit direct de ¢,, g,,...,9, et
d’un groupe commutatif clos ¢, N’ étant localement isomorphe a N.
L’isomorphisme local ¢' considéré applique R(N') sur R(N), R(g,)
sur R,, et R(c) sur r; je désigne par ¢ I'application de recouvrement
N’ — N qui coincide avec ¢’ au voisinage de 1’élément neutre.

Cela posé, I'isomorphisme inverse ¢’ —! applique 7, sur un sous-anneau 7}
de R(N'), engendrant dans ¢ un sous-groupe commutatif clos ¢; ayant la
méme dimension que 7| (en vertu de I’hypothése et d’aprés le lemme 3.)
Considérons dans N’ le sous-groupe fermé N' = g,Xg,X --- Xg,X¢;.
Son image par o dans N est un sous-groupe fermé N, de N (lemme 2),
ayant méme dimension, avec R(N,)= R, + R, +---+ R, + r,. La
condition est bien suffisante (alors k= h et r = r)).

La condition est nécessaire. Si R engendre un sous-groupe fermé N,
ayant méme dimension que R, le sous-anneau r, engendre un sous-
groupe commutatif clos ¢, de N,, contenu dans le centre de N,. Comme
la dimension du centre de NV, est cellede r,,ona: d(C,) = d(r,), c.q.f.d.
Une conséquence de ce théoreme est la suivante :

Proposition. Tout sous-anneauw semi-simple de Uamneaw de Lie d’un
groupe clos engendre un sous-groupe fermé ayant méme dimension?3).

Une autre conséquence importante est la suivante : soient G un groupe
clos, R un sous-anneau de R (@), et r la composante commutative de R ;
r appartient toujours & un sous-anneau commutatif maximum de E(G).
Ainsi, il est possible de reconnaitre, dans le diagramme, si un sous-anneau
R de R(G) engendre un sous-groupe fermé ayant méme dimension.

§ 5. Eléments assoeiés 4 un paramétre angulaire du sous-groupe G,

3. Paramétres angulaires du groupe G associés & un parameétre angu-
lavre du sous-groupe.

L’ensemble X(G,) des paramétres angulaires du sous-groupe G, de ¢
est certainement lié & X(G); le théoréme suivant donne une premiére
précision.

23) Utilisé implicitement par E. Cartan dans le cas ou R est simple et de dimension 3
(C. R. Acad. Sc.: Sur les nombres de Betti des groupes clos, t. 187, p. 196...
étendue & la variété. . .). Voir aussi: K. Cartan, Sur lesreprésentationslinéaires des
groupes clos (Comment. Math. Helv,, t. 2, IV, 1930, p. 269—283).
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Théoréme 2. Sotent G un groupe de Lie clos, G, un sous-groupe fermé
de @, et R le support du diagramme de G, , contenu dans celui de @ , désigné
par R'. Si g est un paramétre angulaire de Q,, il existe un paramétre angu-
laire o de Q égal & o sur R™.

Soit fz(&,t) le polynome caractéristique de G, ¢t étant un vecteur de
Panneau R(G), et & une indéterminée?*). Lorsque ¢ décrit R(@,), on a

fo(&,1) = fo,(§,0)-f(£,8)  teR(@G) (1)

le polynome caractéristique de G, divise celui de G'. Maintenant G est
clos; lorsque ¢ décrit R!, f,(&,t) se décompose en un produit de fac-
teurs du premier degré en &:

fo(E,0) =& IT [E—2nip, )]+ 2nipm ()]  teR, i=V—1
1,...,m (2)

les formes —+pu,(t),..., +u, () étant les parametres angulaires de G ;
de plus, si ¢t décrit B*, on a:

fo, (€,8) =& IT [& —2mig,())][¢ + 2mig,(H)] te R (3)

,,,,,

ou -+ g,(),..., 4 0,(¢) sont les paramétres angulaires de ¢,. (1) donne
fa(&,8) = fo (&,8) - f(E,8) teRM.

Ainsi, il existe 2p facteurs [& 4 27 u,(t)] du second membre de (2) qui
deviennent respectivement identiques aux 2p facteurs [& 4 24 o,(t)]
lorsque ¢ décrit R*. En particulier, étant donné un parameétre angulaire
o(t) de G4, il existe un paramétre angulaire u(¢) de G tel que o(t) = u(t),
t e R, c. q.f.d. On peut énoncer aussi le résultat de la maniére suivante :

L’ensemble des paramétres angulaires de G se réduit dans R* & un en-
semble de formes qui contient I’ensemble des paramétres angulaires de G,.

. - . »
Passons aux vecteurs du diagramme ; le vecteur o associé au para-

métre angulaire ¢ de G, est défini par : ¢ (z) = ——'Z- Z, z ¢ B*. Onasi iy

se réduit & ¢ dans R*:

s > > -
W;cx =0 et 0- w;,=p?
> >
. . ¢ i 0 > . ->
quel que soit x e R*; il enrésulte — —- =|p|. Ainsi, le vecteur ¢ est
le|

24) H. Weyl, Darstellung kontinuierlicher halbeinfacher Gruppen II (Math.
Zeitschr., t. 24, 1926, p. 356).
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donné par la projection du vecteur 3,. sur la droite R! support de z

Dans ce qui suit, je désigne par w,, w,,..., w, la suite de tous les
parameétres angulaires de G qui se réduisent dans R* au parameétre angu-
laire ¢ de G, ; celte suite est associée au paramétre o .

4. Sous-groupes de G associés au paramétre angulaire ¢ de G,. Soient
Wy, W,,..., w, les parameétres angulaires de G associés au parameétre
angulaire ¢ de &, et g, le sous-groupe simple de rang un de G, associé &

0%). Comment g, est-il contenu dans G'?

On a R(g,) = R*+1II; R! est la droite support du vecteur 9 ; IT est
un 2-plan du sous-espace XII,, xeZ(@). Soit I, +---+1I, le
sous-espace Z2'II], minimum qui contient I ; ce plan étant invariant par
tous les automorphismes intérieurs ¢,, a ¢ 7™, les parameétres angu-
laires u,,..., u, sont nécessairement égaux en tout point z de R*, et
égaux & w,(z). Autrement dit, u,,...,u, est une suite contenue dans
w;,..., w,; cela signifie encore que I/ appartient au sous-espace
o, +---+1

Maintenant, soit G, le sous-groupe de rang ! de G dont les parametres
angulaires sont toutes les combinaisons linéaires & coefficients entiers de
®y,..., ®, qui appartiennent & ZX(G). g, est visiblement un sous-
groupe de G,,.

Remarque. Il ressort du raisonnement précédent que g, appartient &
la composante semi-simple de @, car il en est ainsi de I ; en particulier,

. . -> o .
g, appartient & la composante semi-simple de G, ; ¢ est ainsi une combi-

. . . = == -> —> .
naison linéaire de w,,...,w,: ¢ = 4, w;+---+ 4,mw,. Cette relation,

n n
jointe a Xi-',_)’:”gz, entraine Zz =32(Z A), 2 A=
1 1
Il résulte encore de cette remarque que tout sous-groupe semi-simple

G, de G appartient & la composante semi-simple de ¢, car il en est ainsi
de chaque sous-groupe ¢,, ¢ ¢ 2(@,).

§ 6. Sur les groupes finis associés au groupe G et au sous-groupe G,

5. Les considérations du § 5 permettaient d’établir une relation entre
les ensembles finis X'(Q) et 2'(@,) ; ici, j'établis deux théorémes qui relient
les groupes finis @ (@) et D (G,).

25) Voir chapitre I, § 1, No 8.
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Théoréme 3. Soient G un groupe de Lie clos connexe, G, un sous-groupe
fermé conmexe de G, et Th T deux toroides, maximums respectivement
dans G, et dans G, avec Th ¢ T'; soit @, une opération du groupe fini
@ (G,) conservant T ; il existe une opération ¢ du groupe @ (G) qui conserve
Th et T, en induisant dans T" la méme transformation que @, .

L’énoncé suivant est équivalent & I’énoncé proposé : étant donné une
composante aT?* de N (T*) dans G, il existe une composante b7" de
N(T) telle que I: ¢, T* = T"; 1I: ¢, et ¢, induisent dans 7 la méme
transformation.

Démonstration. L’automorphisme intérieur ¢, conservant T conserve
le centralisateur Z de T*, et en particulier le centralisateur connexe Z’.
Comme Z’' contient T, ¢, applique 7" sur un toroide 7™ maximum dans
Z' ; d’apres la proposition (b) du § 1, il existe un élément c ¢ Z’ tel que
@, T* = T'. Considérons 'automorphisme @,¢, = @,; @ CONserve
évidemment 7", puisque ¢,7" = T*, et que ¢, laisse invariant chaque
élément de 7™ ; on voit que ¢,, conserve T en induisant dans ce toroide
la méme transformation que ¢,. De plus, on a par construction ¢, 7"
= ¢, T" ; @,, conserve T'; on peut donc poser ca = b e N(TY), c.q.f.d.

Remarquons que si 7" contient un élément régulier, Z’' est identique
a T! d’out ceT'; on peut méme prendre ¢ = e; cela signifie que a7™
appartient & une composante a7 de N (7T")-®(G,) est un sous-groupe de
D(A).

6. On peut énoncer comme suit la relation établie entre @(G,) et
D(Q).

Théoréme 3’'. Le groupe @(@,) est isomorphe au groupe F|F', ou F et
F’ sont des sous-groupes de N (T") ; F est le sous-groupe des composantes de
N(T" quv laissent T* invariant, en induisant dans ce toroide des trams-
formations de D(G,); F' «F est le sous-groupe des composantes de
N(TY) qui induisent dans T* la transformation identique.

On peut dire que @ (G,) est 'homomorphe d’un sous-groupe de D ().
En effet, F’ est d’abord un sous-groupe invariant de F' :si a, ¢ ¥, a, ¢ F',
Paja,q;r € Téduit & l'identité dans 7". Soit maintenant bT" la compo-
sante de N (7"%) associée a la composante aT® de N (T*) comme tout a
Pheure ; 'application :

aTt — (bTHF'

est un isomorphisme de N (7") sur F/F'; cela résulte du fait que deux
composantes distinctes de N (7™) induisent dans 7™ deux transforma-
tions distinctes.
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7. Le théoréme 3 peut étre précisé si I’on introduit les sous-groupes
Gyetyg,.

Théoréme 4. Sotent G un groupe de Lie clos connexe, G, un sous-
groupe fermé connexe de G, et R!, R les supports des diagrammes respectifs
de G, G,, avec R'> R"; soit p un paramétre angulaire de G, ; il existe
une opération de @ (G,) qui conserve R" en induisant dans ce sous-espace
la symétrie par rapport au (b — 1)-plan ¢ = 0.

Considérons les sous-groupes G, et g,: on a R(g,) = R' + I avec
R' ¢ R"; d’apres le théoréme 3, il existe une opération ¢ de @(GF,) qui
conserve R! et R!, en induisant dans R?! la symétrie par rapport & I’ori-
gine ; or o ¢ ®P(G,) montre que chaque point du sous-espace w, =---
= w, = 0 est conservé par cette opération ; mais si x est un point du
sous-espace ¢ =0, on a sur x: w,(x) =---= w,(x) =p(x) =0 dou
ox = x. En résumé, ¢ laisse invariante la droite R! ¢ R* en induisant
sur cette droite la symétrie par rapport a l’origine, et conserve chaque
point du sous-espace & (h — 1) dimensions de R* qui est orthogonal &
R'. Autrement dit, ¢ conserve R" en induisant dans ce sous-espace la
symétrie par rapport & ¢ = 0, c.q.f.d. Dans ce qui suit, je pose:
o = 8,; c’est Uopération de D(GF,) associée au parametre angulaire ¢ ;
elle jouit de la propriété suivante :

Soit w un parametre angulaire du groupe G ; Uopération S, associée au
paramétre angulaire ¢ du sous-groupe G, ajoute & w une combinaison li-
néaire o coefficients entiers des parametres angulaires w,, w,,..., o,
associés a o

S,0=0+mao,+ -+ mo, .

En effet, la symétrie S,, ue2 (G) applique u'eZ(G) sur S,p'
= u' -+ mu ol m est entier ; sachant que S, est un produit de symétries
S, on obtient alors la formule désirée.

§ 7. Tableaux associés & un sous-groupe

8. Soient gy, 0s,...,0, h parameétres angulaires fondamentaux du
sous-groupe G,, et o,,..., 04, Ops1s--.> 0, les parametres angulaires
positifs de G, (combinaisons linéaires & coefficients entiers non négatifs
de g, 0s,.-.,0,). Les h suites associées respectivement & p,,...,0,
forment par définition le tableau I (¢, G,) ; les suites associées aux autres
forment par définition le tableau I’ (@, G,);
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Ql:ocl,ocg,...,_(xnl i 5
. On+1 + V1> S Vnpay
I 0:PiyBase B, %
) Op 81,...,8np
On-Y1> Va2 - "7"71};

Il me semble que I’étude du tableau I est indispensable pour résoudre le
probléme des sous-groupes, au sens indiqué dans I'introduction. J’établis
maintenant deux théorémes, qui unissent les résultats des deux para-
graphes précédents :

9. Théoréme 5. Soit o, une opération de @ (G,) appliquant un para-
métre angulaire o de G, sur un paramétre angulaire ¢’ de ce méme sous-
groupe ; il existe une opération o de D (Q) appliquant la suite w,,..., w,
associée a p biunivoquement sur la suite wi,..., w,, associée & o'

D’aprés le théoréme 3, il existe une opération o de @ (@) qui laisse R*
et R! invariants, en appliquant g sur ¢'; j'examine 'effet de o sur les
paramétres angulaires de (.

) - — ) - -+, o,
o applique w, surun vecteur ow, du diagramme, et ¢ sur p’'. Considé-
. —_ > > > " —> - - >
rons la relation: w, -z =p-x, zeR*; ona (ow,) (ox)=w, - et
> = > > . — —> > . .
o'ox =p-x; dou (ow,)(ox) =p'(ocx) quel que soit x e R", c’est-a-
. . -> ., . -> . S -> =
dire, puisque ox décrit R® lorsque x décrit R*: — (cw,)-x = —p' -z,
ou ocw, =g dans R"; ow, étant un parameétre angulaire de G qui se
’ . 2 2 . !/ L4 \
réduit & o’ dans R” est 'un des parametres angulaires w; associés & o'

Le méme raisonnement s’applique & w,,..., w,: ¢ détermine une appli-

cation de la suite w,, w,,..., w, dans la suite o;,..., w,, nécessaire-
ment biunivoque ; en considérant de méme o-! et w},..., w,,, on voit
qu’on peut énoncer le théoréme 5, avec n = n'.

En particulier, si o, applique ¢ sur —p, alors ¢ applique ®,,..., o,
sur une permutation de — w,,..., —w,.

Les suites ®,,..., w, et },..., w, considérées jouissent de la pro-

priété suivante : on peut numéroter oj,..., », en sorte que cw; = w; ;
alors Xm,w, ¢ Z(@) entraine Xm,;w; « Z(F). En ce sens, on peut dire
que les suites w; et w; sont isomorphes. Si Gy est de 1'un des types 4,,
D,, E,, les suites du tableau I (@, (,) sont deux & deux isomorphes, ce
qui prouve & quel point la structure de ce tableau est particuliére.

10. Théoréme 6. Les éléments du tableau I' sont des combinaisons
linéaires & coefficients entiers des éléments du tableaw I.
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Soit ¢ un parameétre angulaire de @, figurant dans le tableau I’, et
w,,..., w, la suite associée. Il existe un paramétre angulaire extrait de
01- - -, 0, S0it g, par exemple, et une opération ¢, de @ (G,) appliquant
01 sur o. Mais o, est un produit de symétries s, ,...,s, par rapport
aux (b — 1)-plans ¢, = 0,...,0, = 0. Si dans ce produit, on remplace
chaque facteur s,, par le facteur S, associé (théoréme 4), on obtient une
opération o qui applique encore g, sur ¢g. On a, par exemple : ocx;, = w,
ou (I18,)x, = w,; or, d’aprés la fin du § 6, le premier membre de la
derniere relation est une combinaison linéaire & coefficients entiers des
parametres angulaires de G qui figurent dans le tableau I. ¢ étant une
application biunivoque de la suite «,,...,«, sur la suite w,,..., o,,
la conclusion précédente est encore valable pour w,,..., »,, et le théo-
reme est établi.

§ 8. Réduction du probléme des sous-groupes

11. L’étude des sous-groupes fermés connexes d’un groupe de Lie
clos a déja été commencée dans un mémoire antérieur?®); remarquons
que les résultats obtenus dans ce dernier permettent de trouver en fait
tous les sous-groupes invariants simples ou semi-simples des sous-groupes
de rang maximum du groupe ¢¢. Tous ces sous-groupes ont une propriété
commune : ils sont contenus dans un sous-groupe propre de rang maxi-
mum. Mais le groupe G contient certainement des sous-groupes d’une
autre espéce, ne vérifiant pas la propriété indiquée. Je dis que si 'on
connait tous les sous-groupes de @ qui ne sont pas contenus dans un
sous-groupe de rang maximum, on peut déterminer tous les sous-groupes
de G : en effet, soit G, un sous-groupe de @ ; il existe dans G' un sous-
groupe G, de rang maximum ! ayant la propriété d’étre un des plus petits
sous-groupes de rang ! qui contiennent G, ; alors, G, est, dans (,, un sous-

groupe n’appartenant a aucun sous-groupe de rang [, et 'affirmation est
établie.

Définition. Soit G un groupe de Lie clos de rang 1 ; un sous-groupe fermé
connexe de G vérifie Uhypothése (H) lorsqu’il n’est pas contenu dans un
sous-groupe de rang l de G.

Je dirai aussi qu’un tel sous-groupe @, est un sous-groupe (H) de G,
en écrivant G, < G. La réduction du probleme des sous-groupes ainsi

congue ne laisse subsister qu'un nombre assez petit de types d’inclusion
intéressants.

26) Voir la note 8 de 'introduction.
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Comme la diagonale principale d’un sous-groupe (H) parait jouer un
certain role dans cette étude, il me semble utile d’établir d’abord une
propriété de la diagonale principale des sous-groupes semi-simples de
rang maximum du groupe G, bien que cette propriété ne rencontre dans
les pages suivantes aucune application.

12.  Un théoréme sur les sous-groupes de rang maximum.

Théoréme 7. Sotent ® un groupe de Lie semi-simple clos de rang A,
et ®' un sous-groupe de &, semi-simple, de rang A ; alors la diagonale prin-
cipale de ®' me contient aucun élément régulier.

La démonstration doit d’abord étre donnée pour les groupes simples,
sous la forme du lemme suivant :

Lemme. Soient ¢, ¢s,...,;, | paramétres angulaires fondamentaux
d’un groupe simple G, et o = m;p, +---+ mp, le paramétre angu-
lavre dominant de G. Soit © un indice tel que m; soit un entver premier
supérieur o 1 ; alors la droite R d’équation :

P1r=¢2= """ =P =P~ " == 0
est singuliére.

Remarquons que ¢ ne peut étre le groupe simple 4,, dont le parametre
angulaire dominant w est o = ¢, + @, +-- -+ ¢, (m, tous égaux a 1).
L’équation de R! s’écrit :
¢1=t,¢2=t,...,?i_1=t, (pi—}-l:t”"’Wl:t’ (Pz——:"“'a'zt (1)

avec

_ldm e m A my - -4y

m;

i

La démonstration du lemme s’effectue en vérifiant pour chaque groupe
simple (4, exclu) que a, est un entier, et qu’il existe un parametre angu-
laire w de G qui s’annule identiquement sur R!, considérée sous la forme
(1). Par exemple, pour B,: w=2¢,+ 2¢,+ -+ 2¢,_; +¢;; a;
===, ,=0—1; 0o =9+ g +---+ ¢, etc.

Passons & la démonstration du théoréme 7 : soit " un sous-groupe de
rang A de ® tel que ®' soit maximum dans ®”. Si R! est singuliere dans
®”, elle est aussi singuliére dans . Je peux donc supposer que &’ est
maximum dans G.

Soient @,,G,,...,G, les sous-groupes invariants simples de ®,
®1,...,0%; 1 paramétres angulaires fondamentaux de G, f;,..., f,
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l, parametres angulaires fondamentaux de G,,...,y,..., ¥, I; para-

métres angulaires fondamentaux de G ; soient w,,. .., w, les parameétres
angulaires dominants de G,,@,,..., (, respectivement ; soit enfin:

6, >0 (e=1,2,...,0); B, =0 t=1,2,...,1,); .

yzZO (@:1’29'>lk);

w; <1 ; we <1 I (O P |

le polyédre fondamental de G, désigné par P (®).

®’ étant maximum, il existe un élément x de ® tel que &’ soit le
normalisateur connexe de x?’); on peut supposer que x appartient a
P(®); &' étant semi-simple, z est un sommet de P(®); soient:

061="'=-‘0‘i_1:0‘z‘+1='":0‘11:51:'":%k:o? o; =

m;

les coordonnées de = ; m, est un entier premier supérieur a un. Les para-
métres angulaires fondamentaux de &' sont alors :

“1,. DY O('i'—'l’ OC,H_I,. ..,(Xll, —(1)1, ﬂl" “ ey ﬂlz,..., yl" LY ylk

et I’équation de la diagonale principale de &’ s’écrit alors

Ky =+ :(xi__l::———a)lzoci_*_l: :a’,ll;—:ﬂlz - :ylk=t>0
ou:
0‘1:"'zo"i-—-l:(xi-}‘l:...:(xll:ﬂlz"':‘yu(;:t
/
Lfmy - dmgtmgy o tm, (1)
i

l

D’apres le lemme, il existe un parametre 2’ p,«; qui s’annule identique-
1

ment pour les valeurs des «; données par (1) ; autrement dit, il existe un

parametre angulaire de ® qui s’annule identiquement sur R!, et la dé-
monstration est achevée.

13.  Sur les sous-groupes (H) d’un groupe clos. L’hypothése (H) permet
d’établir facilement quelques théorémes.

Proposition 1. Soient G un groupe de Lie clos, et G, un sous-groupe (H)
de @ ; le centre de G, est Uintersection de G, et du centre de Q.

Soit Z(@) le centrede G';si zeZ(G)~G,, ona xeZ(R,); inverse-
ment, soit xzeZ(G,); si xzeZ(Q@), G, appartient au normalisateur

37) A. Borel et J. de Siebenthal, Les sous-groupes fermés de rang maximum des
groupes de Lie clos (Comment. Math. Helv. 23, 1949, corollaire du théoréme 5, p. 214).
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N (x), qui est un sous-groupe de G ayant méme rang que @, distinct de G ;
cela contredit ’hypothese faite sur ¢, ; donc

Z(@) =26y | . (1)

En particulier, si G est semi-simple, tout sous-groupe (H) de G est aussi
semi-stmple.

On peut modifier la formule (1) de fagon a faire apparaitre le toroide T™,
maximum dans @, ; en effet, soit 7" un toroide maximum de @ conte-
nant 7% ; Pintersection 7"~ G, seréduita 7" (§4,n° 1) T* = T'~ @,.
Or, Z(G)) cT* et Z(@Q)c T!; soit xeZ(@)~G,; ona xeZ(G)~ T,
de plus, zeZ(@)~T* entraine zeZ(F)~G,; donc: Z(G)~G,
= Z(G)n Th, et

Z(Q)) =Z (G)~ T"

Proposition 2. Soient G un groupe de Lie clos, et G, Gy deux sous-groupes
propres de G tels que G, ¢ Gy, G, étant un sous-groupe (H) ; alors les rangs
de G, G,, G forment une suite croissante.

Supposons que le rang de ¢, soit égal au rang de G, ; soient 7" un toroide
maximum de @, (T est aussi toroide maximum de @,), et 7" un toroide
maximumde G, telque T? ¢ T*. Ona: Z(G,) ¢ T Z(G,) ¢ T", Z(Q) ¢ T".
Comme G, et G, n’appartiennent & aucun sous-groupe de rang maximum,
ona: Z(G)=ZG@)~T" Z(G,) =ZG)~T" soit Z(G,) =Z(Q,).
G, est ainsi un sous-groupe de @G,, ayant méme rang, et méme centre ;
d’aprés un théoréme établi antérieurement ), G, et G, sont identiques.
En supposant @, #@,, on a nécessairement r(G,)<r({,). G, étant un
sous-groupe (H) de @, on a de méme r(Q@,) <r(Q).

Une conséquence immédiate de la proposition 2 est :

Soit Q,cGycGy¢--- (G une suite croissante de sous-groupes de G,
le premier Q, étant un sous-groupe (H) de G ; alors les rangs de ces sous-
groupes forment une suite croissante

r(G) <r(@)<r(@)<---<r(@) .

Proposition 3. Soient G un groupe de Lie clos semi-simple de rang 1, et
G, un sous-groupe (H) de G ; tout paramétre angulaire de G est une combi-
naison linéaire & coefficients entiers des éléments du tableau I (G, G,).

28) cf. note 27, théoréme 5, p. 214.
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G étant semi-simple, et G, un sous-groupe (H) de G, @, est aussi semi-
simple. Considérons le sous-groupe G' de rang [ de G dont les parameétres
angulaires sont toutes les combinaisons linéaires & coefficients entiers
contenues dans X'(@) des éléments des tableaux I et I'. Tous les sous-
groupes g,, ¢ « 2(?,) de G, appartiennent & ce sous-groupe?) ; par con-
séquent, comme G, est semi-simple, G; ¢ G'. On a donc nécessairement
G = @', c’est-a-dire que les combinaisons linéaires & coefficients entiers
des éléments des tableaux I et I' contenues dans 2'(G) recouvrent X' (Q@).
D’apreés le théoreme 6, il en est de méme des combinaisons linéaires a
coefficients entiers des éléments du tableau I; c’est ce qu’il fallait dé-
montrer.

En particulier, le tableau I contient [ parameétres angulaires indépen-
dants.

14. Swur la diagonale principale d’un sous-groupe (H).

L’examen de la diagonale principale d’un sous-groupe (H) montre que
celle-ci ne peut occuper qu’une position tres particuliere dans le dia-
gramme du groupe G ; de plus, les parametres angulaires du tableau I
prennent une forme spéciale ; de fagon précise : '

Théoréme 8. Soient G un groupe de Lie clos, G, un sous-groupe (H) de
G ; alors la diagonale principale de G, est une diagonale de G .

De plus, st cette diagonale est définte par ¢, =---= ¢, =0,
Pry1 = - = @, dans G et par o, =---= g, dans G, tout paramétre an-

k
gulaire de Q associé a U'un des g,,..., 0, estdela forme @, ; + 2 m,;p;,
les m, étant des entiers mon nmégatifs. i=1

La diagonale principale R de G, d’équation ¢, =---=g, =1>0
appartient & un angle polyédre fondamental P (&) de G au moins, qu’on
peut supposer défini par ¢, > 0,...,¢, >0, ¢,,..., 9, étant | para-

meétres angulaires fondamentaux de Gf'. Soient ¢,,..., ¢, ceux de ces
parameétres qui s’annulent identiquement sur R'.

Soient ay,. .., %, 5 Brsevvs Bayio 5 Vise -5 VY, €S suites respective-
ment associées & ¢, 02, .., 0,; chaque parametre angulaire de la suite
Kgseeos Proeees Vn, €St une combinaison linéaire & coefficients nuls ou de
méme signe de ¢,,..., ¢,. Sur tout point z de R, on a ¢,>0,...,
0,>0 soit «,>0,...,8,>0,...,9, >0. Les parametres angulaires
O1s- s B1se s Vo, sont des combinaisons linéaires & coefficients entiers
non négatifs de ¢,,..., ¢,. Considérons par exemple :

29) § 5, No 4.
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By = M@y + -+ Mp@y + My Q1+ -+ My,

et soit z le point de R, tel que g,(z) =---= g,(2) = 1. Les paramétres
angulaires ¢,,..., ¢, prennent sur z des valeurs entiéres, car z appar-
tenant au centre de (; appartient au centre de G, d’aprés ’hypothese
(H) et d’apres la proposition 1; ces valeurs sont de plus non négatives,
vu que ze P((). Ona ¢,(2) =---= ¢,(2) = 0 et certainement ¢, ()
# 0, sinon on aurait identiquement ¢,,;, = 0 sur R!. En résumé, sur z

1= My 1@0p01(2) + -+ -+ mye,(2)

(x4, (2) entier positif, m,_ ; entier positif ou nul). Parmi les m,_;, qui ne
sont pas tous nuls, un seul n’est pas nul, égal & 1; le facteur ¢, ;(2) qui
Paccompagne est lui-méme égal & 1. Ainsi, x, est de la forme ¢, ;

k
+ 2m;p;; il en est de méme de «,,..., B1,. .., ¥y, -
1
D’aprés cela, on a sur R': ¢, =---= ¢, = 0, et I'égalité des ¢, ;
qui figurent dans Pexpression de «;,..., B1,...,Y,,; mais si g, par
exemple ne figurait pas dans ces expressions, G ne pourrait étre un sous-
groupe (H). Enrésumé,onasur R': ¢, =-- =@, =0, @3, == ¢,

et cette droite est une diagonale de @, ce qui achéve la démonstration.
Le chapitre suivant est basé sur une conséquence importante du
théoréme 8 :

Proposition 4: Si la diagonale principale d’un sous-groupe (H) est
réguliere, les paramétres angulaires du tableaw I forment une permutation
de @i, @s,..., ;.

En effet, si R est réguliére, on a k = 0, et les parameétres «,,...,
Bis- s Vn, sont de la forme ¢,,...,p,; comme deux parameétres du
tableau I ne peuvent étre identiques, et que la suite «y,..., B;,..., vy,
contient [ parameétres angulaires indépendants (d’apres la remarque rela-
tive & la proposition 3, la suite «,...,#;,...,7,, est nécessairement
une permutation de ¢,,..., ¢;, et la proposition est établie.

Je désigne par sous-groupe (H), un sous-groupe (H) dont la diagonale
principale est de la forme ¢, =-.--=¢, =0, @, =:--= ¢,;. Alors,
un sous-groupe (H) & diagonale principale réguliere est un sous-groupe
(H),. L’étude des sous-groupes (H), est notablement plus simple que celle
des sous-groupes (H),.,; cela est di au fait que le centralisateur de la
diagonale principale du sous-groupe est un toroide maximum.
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CHAPITRE III

Sous-groupes (H), de rang supérieur a un

§ 9. Vecteurs du diagramme de G,. Suites orthogonalés

1. Soient ¢ un groupe de Lie clos semi-simple de rang I, et G, un
sous-groupe (H), de G'. Le tableau I (¢, ;) contient exactement [ para-

metres angulaires ¢,,..., ¢,, fondamentaux pour G.
0100, Kgye v v Gy
0 B> Bas v s Ba,
I
On V1> V25 - wyn},

Ainsi, la figure de Schlafli (@) doit étre appliquée convenablement sur

ce tableau. Remarquons que le produit scalaire de deux vecteurs quel-

- —> —>
conques extraits de «;,...,f;,...,y,, est négatif ou nul, et que tout

parametre angulaire de G est une combinaison linéaire & coefficients
entiers nuls ou de méme signe de «,.. ., Cpys Broeeos Vay -

=3 - - ->
2. Comparons les vecteurs g, aux vecteurs «y,...,f8;,..., Vu,.
D’apres la remarque faite & la fin du § 5, on a par exemple :

e
—31: }*1;1’1‘ A20‘2 aabREE o Anzn .

Proposition 1: Le vecteur o est une combinaison linéaire & coefficients posi-
tifs des vecteurs qui lui sont associés.

>, o o > ~
En effet, g, étant une combinaison linéaire de «,,..., x, est un vec-

V4 -_) -+ V4 5 I'd
teur du sous-espace engendré par «,,...,«,. Ces vecteurs étant indé-

pendants forment une base, et les composantes du tenseur métrique dans

- = . . .
cette base sont: a,;,=«,- x;, avec a,; <0 (1 % 5). D’aprés un lemme de

Stieltjés3?), on a a¥ > 0. Cela étant, les composantes covariantes a;

- . . , - > —>2 "
de g, dans le repére envisagé sont p - «, = p; et sont toutes positives;

les composantes contravariantes a’, données par a’ = a*’a; sont encore
toutes positives, et la proposition est établie.

30) Stieltjes, Oeuvres complétes, t. 2, LI, p. 73—75.
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3. Longueur du vecteur Z)) On peut facilement évaluer la longueur du

. ., —_> -> . A
vecteur p associé aux vecteurs w,,..., w, lorsque ceux-ci ont la méme
longueur, égale & 1'unité.
. . > > - ., -
Proposition 2. Soient x,, x,,..., «, les vecteurs associés au vecteur g,
L —> -> — 1
de Gy; si |oy| =]ay|=--=|x,|=1, alorsona (1) |p,]| g—‘-/—:
n

. >
Pégalité n’étant atteinte que lorsque les o ; sont orthogonaux deux o deux.

: . - . -
Avec les notations précédentes, on a gi = XY a1, 4;; or A, = A, = ¢}

- -, > v,
e 2 2 i .
d’ou pi = g3 05 (2 a¥), soit:
i,j
>y 1 _ > >
01 = Tyga By = Kg* Xy

i,]

Pour établir la relation proposée, il suffit de montrer qu’on a Y a¥ >n ;
o

comme les a¥/ sont positifs ou nuls, on peut se borner a établir la relation

2 a®¥>mn, ou encore a®* >1. On a par exemple:

i

22 Aon

Or 4=a,D+ a4, +---+ a,,4,,; les mineurs 4,; sont positifs
ou nuls, et les coefficients a,, sont négatifs ou nuls. On peut poser (a,;, = 1)
D
=
Maintenant, si I'un des a;; (¢ % ) n’est pas nul, 'un au moins des a®
(¢ #% ) est positif, sinon (a¥) est une matrice diagonale, ainsi que son
inverse (a;;). Ona Y a** >n et Ya'>n.
t,)

4. Les parameétres angulaires de G peuvent étre facilement comparés

a ceux du sous-groupe ¢, considéré, a I’aide du théoréme suivant :

A=D—Fk; k>0; D=A4+k; l—i——;—c—zl.

Théoréme 1. Soit w un paramétre angulaire de G ; il existe un para-
metre angulaire ¢ de G, tel que w soit une combinaison linéaire & coefficients
entiers nuls ou tous de méme signe des paramétres angulaires de G associés
aop.

~ Comme le support R* du diagramme de @, contient un élément régulier,
w ne s’annule pas identiquement dans R, et se réduit dans R* & une
forme linéaire w ; w = 0 définit un (A — 1)-plan de R*. On a
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W = M@, + My@y + -+ -+ Mm@,
my, my,..., m, entiers >0

—— / / /
W =My 0y + MyQy + -+ My,
my, m,,..., m, entiers non tous nuls, > 0

Deux cas doivent étre distingués :

(a) @ = 0 coincide avec l'un des (h — 1)-plans p,= 0 du dia-
gramme de ¢, ; on peut supposer qu’il s’agit de g, = 0. Alors o, = 0
entraine w = 0 quels que soient g,,..., 0,; il en résulte my =- .. =m,
=0 et ®w =myg,, ®=mn% +- -+ n,x,. Le théoréme est vérifié
dans ce cas.

(b) @ = 0 ne coincide pas avec 'un des g, = 0; on peut supposer
01, 02,-- ., 0, choisis en sorte que w s’annule en un point intérieur a
0:>0,...,0,>0; l'expression donnée ci-dessus pour w prouve que cela
n’est pas possible. Seul le cas (a) peut étre envisagé et le théoréme est
établi.

Corollaire. Tout parametre angulaire de G se réduit dans R* & un mul-
tiple non nul d’un paramétre angulaire de G, .

5. Soient p, et g, deux paramétres angulaires du tableau I
(01,0: € Z(@)) et &y, 0s,.. es %n 5 Bi> Bas- ., Bn, les suites respective-

., . > -5 - ->
ment associées ; que peut-on dire des vecteurs o ,,..., %, , B1,.. -, fy,

- -
lorsque g, et g, sont orthogonaux ?

: : > >

Proposition 3. Si les vecteurs g ; et o ; du tableau I (G, G,) sont orthogo-
naux, alors tout vecteur associé au premier est orthogonal & tout vecteur
associé au second.

En effet, 31 et 32 étant orthogonaux, g, + g, n’est pas un élément de
- -
2(G,). Si Z,, par exemple, n’est pas orthogonal & $,, on a Zl-ﬂl <0 et

x, + f, appartient & X' (G). Mais «, + B, se réduit dans B* & o, + o,
qui n’est pas le multiple d'un parametre angulaire de G, . Z:l est néces-

>
sairement orthogonal & #,; comme on peut faire ce raisonnement pour

tout couple «;, f,, la proposition est établie.
Il est facile de donner une démonstration qui n’utilise pas le théo-

. > > - - > —>
reme l;ona g, =44 o+ -+ 4, a, et gy=ppf+ -+ pyBy,,
les coefficients 4,,..., 4, , g, - ., 1y, 6tant tous positifs (proposition 1).
Formons le produit scalaire

239



-> - -

—
010 =2 A u;0iB; .
-
Les produits ;i - B; sont tous négatifs ou nuls, tandis que les coefficients

.. > > - =
A;p; sont positifs. Alors: (1) g, -p;=0 entraine (2) «;-,=0 quels
que soient ¢ et j. Remarquons que (2) entraine (1).

6. Proposition 4: St G est simple, il en est de méme de tout sous-
groupe (H), .

En effet, si le sous-groupe G, semi-simple n’est pas simple, la suite

-> - , . . — -
0y,...,05 e décompose en deux suites partielles ¢,,...,0, et
—> _> * N V4 A
Qniy1s-++5 Q@n» tout vecteur de la premiére étant orthogonal a tout vec-
teur de la seconde. Alors, d’apres la proposition 3, tous les vecteurs
., - d =
associés aux vecteurs g,,..., 0, sont orthogonaux & tous les vecteurs
., — i . . . .
associés aux vecteurs g;,..,...,0;; G serait semi-simple, ce qui est

contraire & ’hypothése. G, est bien simple.

§ 10. Couple de suites non orthogonales

7. NSi les vecteurs 31 et _g>2 ne sont pas orthogonaux, la somme p =
0, + 0, est un paramétre angulaire de G,. Je me propose d’étudier les
suites associées aux parameétres angulaires p,, g, et p; + g, ; soit donc
le tableau restreint:

011 Opy Kgyunny Gp
0% By Baseo s o,
0 I Wy, Wy, W,

- > . . - -
Comme g, p,<<0, la position relative des deux vecteurs g, et g,

est donnée par I'un des trois graphiques suivants:

A4, Gy
—> -
- e .7,
2 // ¢2=10
”
'
< O

Fig. 3

On peut, en changeant au besoin les notations, supposer que 31 et ?
ont la méme longueur; l'opération de @ (G,) qui produit dans R” la
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symétrie par rapport & g, = 0 applique alors g, sur ¢. Le nombre des
parameétres angulaires associés a p, est égal au nombre n des paramétres
associés & o. L’opération o de @ (G,,) associée & la symétrie précédente
applique la suite «,, ,,..., «, sur la suite w,, w,,..., w,; je choisis
les notations en sorte que ¢ «, = w;. On peut former les relations:

> - - -
or=ho, +Lay+---+1,x, A; >0 (t=1,2,...,n)
- —> -> -
2=t By + pefy 4+ -+ p B, w>0 (I=1,2,...,7)

e —> e
e =X w1+}’2w2+°"+}‘n—£n

8. Considérons la relation o a; =w;; 0=2S8,, ajoute & x, une ex-
pression m, B, + .- -4 m,f,:

O& =y =0y +mp+mPs+---+mp, (1)
®1, Bis- .., B, étant extraits de ¢, p,,..., p;, et le coefficient de «,
étant positif, les entiers m,,m,,. .., m, sont positifs ou nuls; (1) devient
dans R* ,

e =1+ (2 my) (2)
1
r
d’ot Y m, = 1; ainsi, parmi les nombres m,,..., m,, un seul n’est pas
1

nul, et est égal & un ; je le désigne par m;. On peut écrire
ooy = oy =05+ f; . (3)

Supposons qu’il existe un parameétre 8, tel que «, 4 f; = w,. D’apres
la relation (3), on & wy, = 6y = &y + B, € &+ f;=0ny+ B, avec
© #%1'; mais cette relation est impossible, puisque les paramétres «,, §;,
%y, f;» sont indépendants. On peut énoncer :

it p —> P g .
Proposition 5 (a). Etant donné un vecteur «; associé & o, il existe un
- - > >
vecteur 3; associé @ g, et un seul tel que « ;-f;<<O0.

Remarque : le raisonnement précédent montre que, étant donné un

e P —> gy
vecteur w; associé a p, il existe un vecteur « ; associé a ¢, et un vecteur
> -

b . 8 2 2 .
B; associé & g ,, la somme des deux derniers étant égale au premier, avec

Gai = O)i.
J’étudie maintenant la relation 31 -+ 32 = z; elle peut s’écrire
n . r - - - 5 -
2 Ao+ 2 piBi= Moy + ﬁil) 4ot Ay, + ﬁz’n) )
1 1
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- - gl . o,
les vecteurs «4,..., x,, f1,.- ., B, étant indépendants ; le second membre

a été écrit en tenant compte de la remarque précédente. Comme u,,..., u,
- -
sont positifs, tous les vecteurs f,,..., B, figurent au premier membre ;

—>
ils figurent donc tous au second membre. Un vecteur f; donné figure

£ s \ . 3 . . ‘)
nécessairement dans I’'une des parenthéses ; il existe ainsi un «; tel que

- > . . ,
« ¢ + B; soit un vecteur du diagramme. D’ot1 :

-> -
Proposition 5 (b). Etant donné un vecteur B, associé & p,, tl existe au

. — > >
moins un vecteur « ; associé o g, tel que « ;-f;<0.
Les énoncés 5 (a) et 5 (b) peuvent étre complétés par le suivant :

—> -
Proposition 5 (c). Les vecteurs B; associés a g , sont orthogonaux deux &
deuzx.

En effet, soient B, et B, deux parameétres angulaires associés & g,;
d’aprés 5 (b), il existe deux paramétres «, et «, tels que «, + 8, = w,
et «,+ f, = w,; d’aprés 5 (a), f, est 'unique §, non orthogonal & «,.
Ainsi, oo, =0, + ff; donne j =s et oo, =«, + f, = w,; de méme
o, =0, + f,=w,. On a

-> > = —
102

- - ->
Kgt K== Wy* Wy, ou: o

- -
t= (5 + Bs) (& + By)

- > e , > >
Comme s#t¢t, ona o«,-8,=0, o«o,-8,=0, dou «, -a,=
-

- -> > -> >
%gr s+ B, Py et By f,=0 quel que soit s 7~ 1.
Les propositions 5 entrainent le théoréme suivant :

9. Théoréme 2. 8i les vecteurs 31 et 32 extraits de 31,. ‘s _5,, forment
un angle de 120°, on a :
-> > > > . ) -> > . . -~
xiro;=p ;=0 (i %)) a;rBy=0 (5#7); x;- i <<0

Autrement dit, la figure de Schlifli qui représente les suites associées

ap et ap,est: ?
\ 11~

En effet, il résulte de I’hypothése que les vecteurs —51 et 32 ont la méme
longueur et qu’ils peuvent étre permutés dans les raisonnements précé-
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dents. Alors, les vecteurs d’'une méme ligne sont orthogonaux deux a
deux, et un vecteur de I'une des lignes est orthogonal a tous les vecteurs
de 'autre, sauf & 'un d’entre eux, c. q.{. d.

Remarque: On a nécessairement n >>r, comme le montre la démons-
tration de 5 (b).

§ 11. Sur les inclusions possibles

10. Soient G' un groupe simple clos, et ; un sous-groupe (H), de G,
de rang k; le but de ce paragraphe est de trouver quand l'inclusion
G, ¢ @ est possible en vertu des conditions nécessaires établies au para-
graphe 10, dans le cas ou le rang & de (; est au moins égal & deux. Je
montre d’abord que le sous-groupe ¢; n’est pas quelconque :

Proposition 6. Parmi les sous-groupes (H), propres d’un groupe simple
G, il n’y a jamais Vun des groupes A,, D,, K¢, E,, E; (h > 2).

supérieur & un; alors les vecteurs zl,. e 3,, ont tous la méme
longueur ; @ (G,) opere transitivement sur eux. Si G, est du type 4,,
¥ (G,) est représentée par la figure 4. Les suites associées ont un
nombre d’éléments fixe, égal & n. Il résulte du théoréme 2 que la
Fig. 4 figure de Schlafli & (G) a la structure indiquée par la figure 5. 1l
ne peut y avoir d’autres traits que ceux qui sont indiqués; pour deux

i Supposons que G, soit de I'un des types 4,, D,, E,, avec un rang
|
|
!
|
O

...>
lignes associées & g, et o; avec g, -Zj<0, cela résulte du théoreme 2 ;

si Zz . Z,. = 0, c’est une conséquence de la proposition
2 du § 9. Ainsi, on a nécessairement n» = 1, sinon G
n’est pas simple. Un raisonnement analogue peut étre
appliqué aux cas D, et E,, c. q. 1. d.

G, est nécessarrement de Uun des types B,, C,, F,, G,.
Remarquons que la proposition 6 est évidente pour G,
Fig. 5 = D, qui n’est pas simple. Il est commode de séparer
maintenant les cas A =2 et h>2.

l
!
I

1

O—-——-—0—0

O—---—0—0

O——--—0—0

1. Le rang de G, est supérieur a 2.
11. A son tour, le groupe G n’est pas quelconque :

Proposition 7 : Tout groupe de U'un des types B,, C,, F, ne contient aucun
sous-groupe (H), propre de rang supérieur & deux.
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0 - - > > - - .
[ei] =losl, 01:02<0, 0,-0;,=0 (:>2); alorsla

figure de Schlifli est appliquée sur le tableau I (@, @,)

—— comme indiqué dans la figure 6, le contenu des (A — 2)

Fig. 6 derniéres lignes n’étant pas précisé. Soit n le nombre des
éléments dans chacune des deux premiéres lignes; on ne peut avoir
n > 3, sinon la figure connexe & (&) présenterait plus de deux terminai-
sons & deux éléments au moins (Chapitre I, n° 12 (b)). Si » = 2, F(Q)
présente deux terminaisons & trait simple, et @ n’est pas de I'un des types
g B, ou C;; comme il y a plus de quatre éléments dans § (@), G n’est

I ? o Le rang de G, est supérieur & 2; je peux supposer

pas non plus du type F,. Cela étant,si n =1, chaqueligne associée 3
01, 0s,- - -, 0, e contient qu’un seul élément ; dans le cas contraire,
i il se présente la figure 7, la premiére ligne non marquée contenant
. deux éléments au moins. D’aprés la proposition 5 (a), le dernier
(g point marqué est d’ordre 3 au moins, ce qui ne peut se présenter si
;3',," - G est de 'un des types B;, C,, F,. Mais alors, le rang de G, est égal
au rang de G, ce qui entraine G, = . La proposition est établie.
Maintenant, dans la recherche des sous-groupes (H), propres de G, de
rang supérieur & deux, je peux me borner a chercher, dans les groupes
simples du type 4,, D,, E,, les sous-groupes de I'un des types B,, C,, F,.
Il convient de se donner le sous-groupe G, et de chercher les groupes G
tels que G, < G.
0

12. Cas ou G, est un groupe simple du type B, ou C,,. & (G,) est (Fig. 8) :

> > ) . o
i On a Qi'ei+1<0 (Z=1’2a-":h"“1), simomn 919920 et
- - .
‘ lgtlzlgll (’l’=2)3:--°7h"‘1) avec .

|

g - 1 - -

{ }E:hl _ = ou I—Q:l — V3 -

i& AERE A

(I) suivant que Gy = B, ou G; = (,. Le nombre des éléments
Fig.8 associés & l'un des pyrametres g, gz,...,0;-; est constant,

égal & m ; soit encore s le nombre des parameétres associés & g,.
Comme au numéro 11, on ne peut avoir n > 3. En discutant les cas
=1et n =2 conformément aux propositions 5, et en se servant
o er 1 i
de I'inégalité [ZI g——V__ (n°3 du §9), on obtient s =1 ou 2, et les
n

résultats consignés dans le tableau ci-dessous, qui contient aussi 'unique
cas @, = F,.

244



Tableaw des inclusions G, £ G possibles, le rang de G, étant > 2.

1 1
1 0 - ?1 V3 01 - P11 P Va &1 - 9 T
1 1

1 @ 1 P V= 0 ! PP =] 0 P2 @i

| V2 V2 ]
l 1 I 1 I |

1 On—1 - ‘Pl—\z Vo | &1 ¢ Pro1Prtr Va | @1 Pr—1 Prre

1 ‘

Vs | @ | 1 fen o | ot oo
B, <Dy, Cr Ay B c 4y,

1 Les vecteurs z] ye ->—9>h obtenus ont les
o 01 ' P1 @5 longueurs indiquées a gauche de chaque ta-
7 g q g q

1 bleau I (G, @,); ils correspondent bien aux in-
Vs | @i o clusions indiquées au-dessous de chaque I.

1 05 1 @ II. Le rang de G, est égal a deux.

y _ | 13. Ce cas ne peut étre traité comme précé-

@ - s demment, puisque @G, est nécessairement 'un

des groupes B, ou G,, les deux vecteurs fon-

F,cE, , A
damentaux n’ayant pas la méme longueur.
Par contre, on peut faire usage du théoréeme 1, § 9. Le tableaul (¢, G,) est

I { 01: %1, Koy o oy Gy

92:.51,ﬂ2,- . "/37

avec les notations du no 6 (§ 10). Si @, = B, ou @, = @,, les paramétres
angulaires positifs du sous-groupe envisagé sont respectivement:

{91 01+ 02 {91 01+ 02 30+ 02
Q2 20, + 0 Q2 20, + 0 301+ 20,

14. Proposition 7" : Tout groupe de Uun des types B,, C,, F, excepté
éventuellement B, ne contient aucun sous-groupe (H), de rang 2.

Posons d’abord G = B, ou C,; la figure de Schlifli §(G) peut étre
appliquée sur le tableau I de deux fagons:

DY VT VY-
o 71 I 1TV e
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Je tiens compte ici des propositions 5 (a), (b) et (c). Dans la premiére
ligne, chaque figure est contenue dans la suivante; il en est de méme
dans la seconde ligne. Les parameétres angulaires fondamentaux sont
numérotés en partant de 1’élément extréme gauche. Alors, avec ces no-
tations, w = 2¢, + 2¢, + 2¢; + ¢, est un paramétre angulaire de B,,
Bs, B,,...; (ligne (b)), qui se réduit &4 49, + 3p, dans le sous-éspace
R?; mais cette forme n’est pas le multiple d’'un parameétre angulaire de
By ou de G,. Les dispositions indiquées par la ligne (b) doivent étre
éliminées.

Pour étudier la ligne (a), je pose w = 2¢;, + ¢, + ¢; + @4, qui est
un parameétre angulaire de B;, Bg,...; on a, dans R2, o = 49, }+ g,
qui n’est pas le multiple d’un paramétre angulaire de B, ou de G;. En
résumé, parmi les groupes B,, seul B; contient éventuellement un sous-

groupe (H), de rang 2. Un raisonnement analogue élimine tous les groupes
C,,0C,..., et F,.

15. Quels sont maintenant les groupes de 1'un des types 4,, D,, E;
qui peuvent contenir un sous-groupe (H), de rang 2?

Proposition 8. Les seuls groupes de U'un de types A,, D,, Eq, K., By qua

sont susceptibles de contenir un sous-groupe (H), de rang 2 sont A4, A,,

G = A,. Deux dispositions sont possibles (Figure 10) :
Q Q Q O Q 00
w NS NV NN NN
O O O O O O ®)

o —0 —
o I Ty 11771 |
O O O O o Fig. 10
Dans une méme ligne, chaque figure contient la précédente. Les para-
métres angulaires sont numérotés en partant de 1’élément extréme
gauche. Avec ces notations, w = ¢, + @, +---+ @, est un paramétre
angulaire de A,, A3, 4,,... (ligne (a)), se réduisant & 5¢, + 20, dans
R?. Les groupes A, (1>7) sont exclus (disposition (a)). A5 doit étre

-‘;_5_— " ]—Q:I 2_17% . Seuls restent A; et A,.

Etudions la disposition (b); o = ¢, + ¢35 +:--+ ¢, est un para-
métre angulaire de 4,, 4,, 4,,... se réduisant & 49, + 3p, dans R?;
Aq disposé suivant (b) ne convient pas, et 4; non plus, comme tout &
I’heure. Seul reste A4,.

éliminé, car |g,| =
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En résumé, si un groupe A, contient un sous-groupe (H), de rang 2,
on a nécessairement G = A;, 4,, 4,.

G=D, 1>3). Ona D;=A,, qui convient. Pour D,, seule la
disposition ol le point triple est seul dans la seconde ligne est compatible
avec les propositions 5. Ces mémes propositions montrent que D;, Dy. ..
ne conviennent pas.

G =Ey, E,, E;. Les figures de Schlafli montrent qu’il existe dans les
trois cas une terminaison & deux éléments issue du point triple. Il en
résulte que ce dernier ne peut figurer dans la seconde ligne. S’il figure
dans la premiére ligne, on a les dispositions suivantes Fig. 11

O— L O (= 0 O—O
i i 4 5 & i/ | 4
0O O O
La derniére ne convient pas (propositions 5) ; les deux autres également

comme on le voit en calculant dans R? la valeur des parameétres angu-

laires dominants des groupes Kq, F,. La proposition 8 est maintenant
établie.

Tableaw des inclusions G, e G possibles, le rang de G, étant égal @ 2.

1 1 1
= | & P P > | @1 PP =] 01 - P1 Ps—Ps Ps
V2 2 V6
N I A NS
1 Q2 - P2 Vo | @ P Ps Vo | @ P s
B, c A, B, cA, G, CAg
“—1‘* 1 - %1 93 @ V2 01 - 91 @
V‘?; 1 - 1 3 4 7_-:;: 1 71 3
N/ N\
1 Q2 - P2 £ Q2 - @2
—> _> - 3 3 .
Les figures p,,..., 0, obtenues correspondent aux inclusions indi-

quées, les longueurs [Zi | ayant été calculées au moyen de la formule

du no 3 §9. Les deux premiéres inclusions ont déja été obtenues au
numéro 12.
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16. En résumé, dans 1’étude des sous-groupes (H), de rang > 2, les
conditions nécessaires des § 9 et 10 ont montré qu’il ne peut subsister
qu'un nombre trés restreint d’inclusions, présentées dans les tableaux
des numéros 12 et 15. Nous verrons que ces inclusions se présentent
effectivement au chapitre suivant, qui traite des sous-groupes (H), de
rang un ; dans ce cas, les méthodes du présent chapitre sont inopérantes.

CHAPITRE 1V

Sous-groupes (H)o de rang un
§ 12. Existence des sous-groupes (H), de rang un

1. S’il existe dans @ un sous-groupe (H), de rang un, le tableau I
relatif & ce sous-groupe est :

0+ P1:P25--., ¢ -

Seules les propositions 1 et 2 du § 9 conservent un sens, sans donner
d’ailleurs de critére. En se servant des méthodes infinitésimales, on peut
montrer que tout groupe de Lie clos semi-simple contient un sous-
groupe (H), de rang un. Cette proposition est établie dans ce § 12 qui
n’emprunte aux chapitres II et III que la définition des sous-groupes (H).

2. Anneau complexe R3). C’est un espace vectoriel complexe, somme
directe de deux sous-espaces R! et R2™. En choisissant dans R! une
base S, on peut décomposer R en deux sous-espaces R} et R, qui sont
respectivement la composante réelle et la composante imaginaire de R!.

Soit 2 I’ensemble des racines de R; il est constitué par 2m formes
linéaires - u,(x),..., +u,,(2) des coordonnées d’un point x variable
dans R'; on a: .

pi(x) = X a;a

j=1 .
les 7 étant les coordonnées de x dans la base S. Les coefficients a,; sont
des nombres rationnels réels.
Il existe un isomorphisme additif de 2 sur un sous-ensemble 2, de
vecteurs de R!; & la racine « ¢ X correspond un vecteur h,¢ZX,, avec:

ha + hﬂ == ha+f3

h :=~—h “(ha)#o

31) Cf. H. Weyl, Darstellung kontinuierlicher halbeinfacher Gruppen (Math.
Zeitschr., t. 24, 1926, p. 371—375).

248



De plus, il existe une correspondance biunivoque entre 2' et un en-
semble de 2m vecteurs €uys €opyre s Cum Cmpimy formant une base de
R2m, Cela posé, la structure de 'anneau de Lie semi-simple ‘R est définie

par les formules :

[h,h'] =0 (b, R R [e,eg] = Nageoip

[h,ea] = x(h)en Nog =0 si o+ BES

[eaye—-a]zha Naﬂ # 0 si oc+ﬁez
Nop réel; Nuyg=N_q,_p

En particulier, si

y=}.16“1+116_“1 ++2mefum+ z';ne_:um
on a

(B y] = pa (k) Arey, — pa(R) Ayey +- -+ pn(B) A ey, — pm(R) Aoy, -

3. Anneau réel R & structure close. Soit 11, le plan de R*™ lieu des
vecteurs be, +be_,; le sous-espace R = R+, +---+1,,
est un sous-anneau de R, & structure réelle close ; il engendre un groupe
clos G semi-simple. Les racines de R sont les formes —+pu;(z), e R};
on peut poser: u;(x) = 1v;(x),»;(x) étant une forme linéaire des co-
ordonnées de x dans la base 8.

Cela étant, le groupe adjoint linéaire de @ laisse invariante dans R

une forme quadratique définie positive se réduisant dans R} a X ().

- e
s 4 — !
En posant v;=1th,;, ona »(x)= —v», -z, zek,.

Je suppose maintenant que - ,,..., 47, sont des combinaisons
linéaires entiéres de »,,...,v,, a coefficients nuls ou de méme signe.
Alors v, =y, =-..=9,>0 définit une diagonale principale R, de R.,

-> > . .. . .
etona g, =v,-v,<0 (¢#9;¢,7=1,...,1). En particulier, u, — u,
n’est pas une racine de R.

4. Euxistence du sous-groupe (H), de rang un. Soit he R'; on a

ui(h) =---= p;(h) = ¢t (t paramétre réel). Posons
y:)‘lep.1+Zle-—pl_l'—""’_}’lep,l'!_i—le—ul (yER)
ou _ _
Y= (A1, A4,. .5 4, &)
puis

Y = (A, —1 Ay, i A, —iA)  (@=V—1)

ces deux vecteurs déterminent un plan I7clI, +---+ II,. On a
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hoyl = (itdy, —itdy,...,ith,—it )=ty ,
[h’y,]'—:(—tln““tz,-

Le plan IT est invariant par la transformation infinitésimale ». Mainte-
nant

l s
[y:y,] = —21 ? Z’:‘ Af[ep.,-’ 6_"7.] + 2

e — A, —tA)=—ty .

1,...,0 _ —_—
PN CEIH IR B e ) §
<17

Comme u; — u; n’est pas un parametre angulaire, on a (1 # §):
l —_ i —

Peut-on disposer des 4, en sorte que [y, y'] ¢ R'? Etudions le vecteur

1
— == . . — .
o =23 A; A;v;. Lorsque 4,,..., A, varient, o décrit dans R} I’ensemble
1
. . i, N . ap -> > .
des combinaisons linéaires & coefficients positifs de »,,...,»;, (premier

quadrant). Posons —v: -—v: =g,y (@,9=1,...,1); alors g% > 03%2). Les
>
composantes covariantes h; du vecteur A =h sont égales, & 1 par

l ->
exemple. Alors: h* = }'¢g* >0, ce qui signifie que 2 appartient au
=1 _ A
premier quadrant. Le systéme 4,4, =h' admet la solution 1,= Vhi
(9=1,...,1). Avec ces valeurs de 4,,..., 4;, on a

(h,yl=1ty" [h,yl1=—ty ly,y]1=s8h (t, s nombres réels)

ce qui montre qu’il existe un sous-anneau simple r & trois paramétres
dans R, contenant la diagonale principale R!, avec r = R+ II, et

11, +---+1I, étant le sous-espace XII, ; minimum qui contient I7.
On peut énoncer :

Théoréme 1. Soient G un groupe de Lie semi-simple clos, @,, @,,.., ¢,
l paramétres angulaires fondamentaux de G, ¢, =---= @, une diagonale
principale B de G, et IT,, le plan de R(G) associé au paramélre g, ; il existe
dans G un sous-groupe g simple de rang un, tel que R(g) = R' + II.
I, +---+ 11, éant le sous-espace XII,. minimum qui contient II.

C’est le théoréme 1 du chapitre IT qui permet de passer du sous-anneau
r au sous-groupe ¢g. Je dis maintenant que g est un sous-groupe (H),
de Q.

En effet, supposons g ¢ G’, G’ étant un sous-groupe de rang ! de G.
g contient un sous-groupe ¢ & un paramétre recouvert par R! et ¢ appar-

82) Voir note 30 du chapitre ITI.

250



tient & un toroide maximum 7% de Q'; comme ¢ contient un élément
régulier dans G, T" est I'unique toroide maximum de G qui contient ¢ et
est précisément le toroide recouvert par R!. G’ est ainsi déterminé par
T et par I, ,...,II, ; @, @,,...,p, sont alors des paramétres angu-
laires de G/, d’ot G' =G, et ¢ I G'. La diagonale principale R! de ¢
étant réguliére dans G, on a bien g¢ HcoG. D’ou :

Théoréme 1’. Tout groupe de Lie clos semi-simple contient un sous-
groupe (H), de rang un.

Généralisons un peu: si G n’est pas abélien, sa composante semi-

simple contient un sous-groupe (H), de rang un, qui est aussi (H), dans
G, d’ou:

Théordme 1”7. Tout groupe de Lie clos non abélien contient un sous-
groupe (H), de rang un.

Il est avantageux de caractériser les sous-groupes trouvés d’'une ma-
niére qui ne fasse pas apparaitre le diagramme. Considérons un sous-
groupe (H) de rang un g contenant un élément z régulier dans G. 11 existe
un sous-groupe fermé & un parametre de g joignant 1’élément neutre e
a z; ce sous-groupe contenant un élément régulier est représenté dans le
diagramme R’ de G par une droite qui contient un élément régulier ;
comme g n’est pas contenu dans un sous-groupe de rang I, cette droite
R est une diagonale principale de R'. Si I’équation de R! est ¢, = ¢,
=...=@, Ou @,,...,p, sont | parametres angulaires fondamentaux
de G, le plan I7 tel que R(g) = R! + II appartient nécessairement a
II, +---+1,, sinon g est contenu dans un sous-groupe de rang I. En
résumé, un sous-groupe (H) de rang un qui contient un élément régulier

est un sous-groupe (H), de rang un, et est représenté par la diagonale
principale R' dans R’

Théoréme 1”. Tout groupe de Lie clos non abélien contient un sous-
groupe (H) de rang un contenant un élément régulier.

Dés maintenant j’appelle sous-groupe principal un tel sous-groupe de
rang un.

§ 13. Propriétés des sous-groupes principaux

5. Un sous-groupe principal contient un élément régulier et n’est pas
contenu dans un sous-groupe de rang maximum de G ; ces propriétés
sont invariantes par tout automorphisme ; donc, tout sous-groupe déduit
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d’un sous-groupe principal par un automorphisme est encore un sous-
groupe principal. Il se trouve méme que les sous-groupes principaux
forment une seule classe de sous-groupes conjugués.

Théoréme 2. Deux sous-groupes principaux Sont conjugués.

Soient ¢, et g, deux sous-groupes principaux dans le groupe G ; consi-
dérons deux toroides 7' et T, maximums respectivement dans g, et g, ;
ils appartiennent respectivement 4 deux toroides 7'} et T}, maximums
dans @, conjugués dans G ; soit ¢ I'automorphisme intérieur de G' qui
applique T sur T} ; o applique g, sur un sous-groupe simple de rang un,
et 75 sur T3 ¢ T:. On peut donc supposer T} et T} dans un méme
toroide 7. Dans R!'= R(T%), R(T}) et R(T,) sont deux diagonales
principales ; il existe un automorphisme intérieur de @ qui conserve 7"
en appliquant T; sur T;. En résumé, on peut se ramener au cas ou ¢,
et g, coupent un toroide 7" suivant un sous-groupe 4 un parameétre
représenté dans R! par une méme diagonale principale R'.

Soient donc: R(g,) = R' +1I, R(g,) = R'+ II'; les plans I et I’
sont tous deux contenus dans le sous-espace II, +----+ I, les para-

meétres ¢,,..., ¢, étant fondamentaux, et ¢, =.--= ¢, étant I’équa-
tion de R N N N N N
Considérons le repere ¢,,...,¢; de R, et soit v =7, ¢, 4+ -4+ 7, ¢,

un vecteur de RE! (r,>0). En adoptant les notations du § 12, on voit
qu’il existe dans /7 deux vecteurs

(Ays Ayrees A A) €6 - (G Ay, —% Ayyennyi Ay, —i A (1)
-> —_
dont le crochet est v, avec 4, 4, =r;. De méme, il existe dans /7' deux
vecteurs

A, A, L A et @A, —i AL A, —i k) (2)

de crochet s;;), avec §>0, }.;. Z = sr,;; alors il existe dans /7' deux
vecteurs (.s_% Myoos, st 1), (is_% Ayen, —is? 2) de crochet .
Je désigne ces deux vecteurs par la notation (2). Ainsi,ona A, ; = 4; 4;
_ Ti.

Les nombres 1, et A; ont le méme module; il existe ! nombres réels
Vi,...,7; tels que l;- = ¢*™"Vj },; de plus, on peut trouver dans R' un
point y tel que @;(y) = v;. Alors ’automorphisme intérieur déterminé
par y applique les vecteurs (1) sur les vecteurs (2) et g, sur g,. Ces deux
sous-groupes sont bien conjugués.
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6. L’existence des sous-groupes principaux permet de formuler
autrement ’hypothése (H),.

Théoréme 3. La condition mécessaire et suffisante pour qu’un sous-
groupe G, de G soit un sous-groupe (H), est que G, contienne un sous-groupe
principal dans G .

La condition est suffisante : Soient g et G, deux sous-groupes de G tels
que ¢ ¢G,;, g étant un sous-groupe principal dans G. Tout d’abord,
G, est un sous-groupe (H) de G, sinon g serait contenu dans un sous-
groupe de rang maximum ! de G, ce qui n’est pas. Maintenant, un sous-
groupe G; de G, qui contient g a nécessairement un rang inférieur au rang
de ¢, (proposition 2 § 8); donc g n’est pas contenu dans un sous-groupe
de G, ayant méme rang; g est un sous-groupe (H) de G,. La diagonale
principale de g est ainsi une diagonale de @,, et comme elle est réguliére
dans G par hypothése, elle est aussi réguliére dans G, ; ¢’est une diagonale
principale de G,. Ainsi, la diagonale principale de G, est réguliére, et G,
est un sous-groupe (H), de G.

Cette démonstration entraine la remarque suivante :

Remarque: Siv g ¢ G, est principal dans Q, g est principal dans Q,.

La condition est nécessaire : Considérons un sous-groupe (I, sous-groupe
(H), de G ; jedis que G, contient un sous-groupe principal de G'. Soit g un
sous-groupe principal dans G, ; la diagonale principale B! de g admet I’équa-

tion g, =-:-=g,, ol g,,...,0, sonth parametres angulaires fondamen-
taux de G;,. Comme @, est un sous-groupe (H), de G, ¢, =---= g, en-
tralne ¢, =--.-= @, ou ¢,,..., ¢, sont !l parameétres angulaires fonda-

mentaux de G'; ainsi R!' est une diagonale principale de G, et Ze R
est une combinaison linéaire & coefficients positifs de ?p>1,. e ;l. Soit
R(g) = R' + II; II appartient au sous-espace [/ o Tt 7 pp qui est
lui-méme contenu dans le sous-espace Il, -----+ Il, ; ce dernier est
de plus le sous-espace X II,, minimum contenant /7, sinon _g> ne pourrait
5
étre une combinaison linéaire & coefficients positifs de gl,. .., ¢;. De la
résulte ¢ ke G, et g est un sous-groupe principal de G.
0

Remarque : Un sous-groupe g principal dans un sous-groupe (H), de &
est principal dans G .

7. Théoréme 4. Soient G =G' + Q" +--- un groupe de Lie clos,
G’ étant la composante connexe de I'élément neutre, @ une autre composante
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connexe, et g un sous-groupe principal de Q'. Il existe dans Q" un élément x
échangeable avec chaque élément de g .

11 existe dans G” un élément y tel que I’automorphisme déterminé par
y laisse invariants un toroide maximum 7" de @' ainsi qu’un angle
polyédre fondamental dont la diagonale principale est celle de g; cet
automorphisme laisse donc invariants 7" et chaque point d’une diagonale
principale R! de G. Il applique le sous-groupe principal ¢, de diagonale
principale R! sur un autre sous-groupe principal ¢’ de méme diagonale
principale. Or, g et ¢’ sont conjugués dans G’ ; il existe dans 7" un élé-
ment a tel que ¢, applique ¢’ sur g; ¢,, applique 7" sur lui-méme, con-
serve g et chaque point de R'; de plus, il induit dans le plan I tel que
R(g) = R' + II une certaine rotation; on peut trouver enfin dans 7"
un élément b tel que g¢,,, ait les mémes propriétés que ¢,, en induisant
dans II la rotation nulle. L’élément x = bay est échangeable avec
chaque élément de g, et appartient & GQ”.

§ 14. Applications

8. Sous-groupes principaux maximums.

Proposition : Soit G un groupe de Lie clos me contenant aucun sous-
groupe (H), de rang supérieur @ un. Tout sous-groupe principal de G est
maximum.

En effet, soit G; un sous-groupe connexe de G contenant le sous-groupe
principal g; d’apres le théoreme 3, G, est un sous-groupe (H), de G,
nécessairement identique a g d’apres ’hypothése, c. q. f. d.

Remarque : Un sous-groupe principal dans U'un des groupes B,, C,, F,
est maximum (B, exclu). Cela résulte de la proposition précédente et des
propositions 7 et 7’ du chapitre I1I. On voit ainsi qu’il existe des groupes
simples clos de dimensions aussi grandes qu’on le veut dans lesquels existent
des sous-groupes simples a trois paramétres non conlenus dans un sous-
groupe propre de dimension supérieure.

9. Sur les inclusions B, < D,.,, B, Ay, C,CAy_,, F, Eg. Soit
G=@G"+G"+--. Tun des groupes D,,,, A,,, A1, E4; chacun
d’eux contient une composante connexe G'” ne contenant pas I’élément
neutre, avec, dans cette composante, un élément y déterminant un auto-
morphisme o, ; cet automorphisme conserve un toroide maximum 7% de
G’', un angle polyédre fondamental P(G)¢@, > 0,...,¢9, > 0, chaque
point de la diagonale principale B! d’équation ¢, =:-.= ¢;, et produit
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sur les parameétres angulaires fondamentaux une permutation involutive
(Chapitre I, 12 (d)). D’apreés le théoréme 4, il existe dans G ” un élément «
tel que o, produise dans R’ les mémes effets que o, , en laissant invariant
chaque point d’un sous-groupe principal g de ¢, de diagonale R!.
Considérons le sous-groupe @, de G’ formé des éléments échangeables
avec x. Comme il contient g, c’est un sous-groupe (H), de G'; R(G,)
coupe R! suivant ’ensemble des solutions du systéme obtenu en égalant
les parametres @, qui sont permutés par o,, c’est-a-dire suivant le sous-
espace R étudié au chapitre précédent. GG, est ainsi un sous-groupe (H),
de rang h. Or les parametres angulaires fondamentaux d’un tel sous-
groupe sont les formes linéaires obtenues en considérant les valeurs dans
R" des parameétres ¢,,..., ¢,. Le tableau I relatif au sous-groupe @, est
ainsi précisément le tableau trouvé au § 11. Les inclusions de diagramme
considérées alors correspondent bien a des inclusions de groupes.

10. Sur Uinclusion G, ¢ B;. Montrons que le groupe B, contient un
sous-groupe (H), du type G,. Les parametres angulaires fondamentaux
de B, peuvent étre choisis ainsi :

@1 = Ty, Yo = — Ty + T, Y3 = — Ty — T3

on 4+, +Tv,4+7 (¢#+#7; ¢,5=1,2,3) sont les paramétres angu-
laires de B, sous la forme habituelle. Le plan R? défini au § 11 admet
I’équation ¢, = ¢@;, soit 7, + 7, + 7, = 0. Les matrices de B; qui
représentent les éléments de R? sont de la forme

1
D, 0 cos 2w T, —sin 27w 7,
, == . , —0
D, , D, (sm2nr,. 208 25, avec T,+7T,+ T,
0 Dy (j=1,2,3)

Or, ces matrices appartiennent & une représentation linéaire orthogo-
nale réelle du groupe G,. Ainsi, le groupe B, contient un sous-groupe G,
qui coupe 7" suivant un toroide 7'2 recouvert par le plan R2 d’équation :
@, = ;. Les parametres angulaires de ce sous-groupe sont parmi les
formes linéaires obtenues en réduisant les parameétres angulaires de B,
dans le plan R2?, c’est-d-dire en tenant compte de ¢, = ¢; dans l’en-
semble :

1 @1t @ @1+ @t @ 20, + @2 + @3 20, + 29, + @3
+ i@ @tz 29+ @,
@3
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On obtient

1 et e: 20te 31t es 30t 20
+ 10 01+ e 20, + 02

01
Les paramétres angulaires fondamentaux du sous-groupe étudié sont
visiblement g, et g, ; le tableau I est dans ce cas

I 91: P1, P3
Q02+ @Ps

ce qui signifie que le sous-groupe étudié est un sous-groupe (H), de B,.
L’inclusion G, ¢ B, signalée comme possible au § 11 est effective.

11. Sur les inclusions G, ¢ Ay et G, ¢ D,. D’apres les numéros 9 et
10, le groupe A4, contient un sous-groupe (H), du type B,, qui contient
a son tour un sous-groupe (H), du type G,; un sous-groupe principal
dans @, est principal dans B;, donc principal dans 4. Il en résulte que
Ag contient un sous-groupe (H), du type G5, et que I'inclusion mention-
née au § 11 est réelle. Ce méme raisonnement s’applique & l’inclusion
G, ¢ D,, car D, contient un sous-groupe (H), du type B,. On pourrait
aussi utiliser le raisonnement fait au numéro 9, en considérant la compo-
sante connexe de D, qui produit sur la figure de Schlafli ¥ (D,) une
permutation circulaire des trois points distincts du point d’ordre trois.

(Regu le 16 octobre 1950.)
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