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Sur les sous-groupes fermés connexes

d'un groupe de Lie clos

Par Jean De Siebeothal, Lausanne

Introduction

1. L'étude d'un groupe G ne peut s'achever si l'on n'en connaît pas
les sous-groupes. Lorsque G est un groupe de Lie, on peut se proposer de
rechercher tous les sous-groupes continus connexes de ce groupe ; en se

plaçant au point de vue local, S. Lie a montré qu'on peut se ramener à

un problème purement algébrique, théoriquement résoluble dès qu'on
connaît les constantes de structure de G1). De façon plus précise, si

Xlf X2, Xn est une base de l'anneau R(G) du groupe avec la
n

loi de composition [Xt, X3] U ct3k Xk, on peut trouver tous les sous-

groupes connexes de G qui sont des groupes de Lie au sens local en
déterminant tous les sous-anneaux de R(G), c'est-à-dire tous les sous-

espaces R de R (G) tels que X, Y c R entraînent [X, Y~\ e R. Ainsi
posé, le problème n'est pas facile à aborder.

Deux simplifications s'imposent d'emblée : d'abord, il suffit de chercher

un sous-groupe dans chaque classe de sous-groupes conjugués ; ensuite,
on peut se borner à la recherche des plus grands sous-groupes de G,
cette expression désignant ici les sous-groupes propres connexes qui ne
sont pas contenus dans un autre sous-groupe propre connexe de G.

2. Le problème envisagé est le suivant

(a) Déterminer les sous-groupes fermés connexes d'un groupe de Lie clos

(ou compact).
Tout sous-groupe continu d'un groupe de Lie étant un groupe de Lie2),

on peut appliquer la méthode algébrique décrite ci-dessus, et déterminer

*) S. Lie, Théorie der Transformationsgruppen, t. I, p. 209 (Teubner, Leipzig
1888).

2) E. Cartan, La théorie des groupes finis et continus et l'analysis situs (Mém.
8e. Math., t. 42, 1930, p. 22).
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tous les sous-anneaux R de R(G). Cela fait, il reste à examiner si le

sous-groupe fermé connexe engendré par R a même dimension que R
(voir chapitre II, § 4).

Le problème algébrique basé sur les constantes de structure peut à son
tour être réduit à un problème plus simple ; en effet, le groupe clos G

supposé semi-simple est déterminé localement par ses paramètres
angulaires3), qui sont 2 m formes linéaires ±/Wi(#)> ±/um(x), x étant
un point d'un espace euclidien R1 à l dimensions, dont la métrique est
donnée par la forme quadratique Z[/Lit(x)]2 ; l'entier l est le rang du
groupe. La figure constituée par l'espace R1 et par les plans [a1(x) =e 0

(mod. 1) est le diagramme de G10) ; le diagramme Rh d'un sous-groupe
est alors un sous-diagramme du précédent. A ce point de vue, le problème
s'énonce ainsi

(b) Trouver les conditions nécessaires et suffisantes pour qu'un sous-

espace linéaire de R1 soit le support d'un sous-diagramme représentant un
sous-groupe fermé connexe.

Il convient de remarquer qu'un même sous-diagramme peut
représenter plusieurs sous-groupes, naturellement isomorphes, dont il serait
intéressant de savoir s'ils sont conjugués. Le groupe G n'est pas distingué
des groupes clos qui lui sont localement isomorphes.

On peut donner au problème (b) un aspect plus intuitif ; soit fit le

vecteur de R1 défini par /Lct (x) — [x t
• x Il existe dans l'ensemble

zfc/*i> zb/^2? • • • » zizf^m l vecteurs fondamentaux <pl9..., <pt ((pt- (p^ < 0)

qui déterminent le diagramme et l'anneau R(G) ; ils vérifient certaines
conditions simples énoncées par van der Waerden9). Les h vecteurs

Qi, • • • ,Qh, fondamentaux pour le sous-groupe étudié, sont des

combinaisons linéaires de y t,... y x qui vérifient encore les conditions
citées. L'énoncé correspondant est

(c) Soient (p1} ç?2,... <pl l vecteurs fondamentaux du groupe clos G ;

trouver h vecteurs qly... çh ayant les propriétés suivantes

(1) g i > • • • > g a sont des combinaisons linéaires de <p x,... (p t.

(2) Qi9> •• 9Qn forment la figure fondamentale d'un groupe clos.

8) van der Waerden, Die Klassifikation der einfachen Lieschen Gruppen
(Math. Zeitschr., t. 37, 1933, p. 448).
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(3) II existe dans G un sous-groupe ferme connexe admettant çt gh

comme figure fondamentale.

3. A ma connaissance, le problème posé en (a) n'a jamais été abordé
systématiquement au sens indiqué en (b) ou (c). Cela n'empêche nullement

l'existence d'un grand nombre d'énoncés sur les sous-groupes des

groupes de Lie clos ou non ; ces énoncés ouvrent diverses voies :

Les sous-groupes commutatifs maximums d'un groupe clos G ont fait
l'objet d'études précises, par E. Cartan*) au point de vue infinitésimal,
et par H. Hopf5) au point de vue global. La notion de sous-groupe com-
mutatif maximum est d'ailleurs à la base de la représentation de G par
son diagramme.

Les sous-groupes d'isotropie Gx des espaces symétriques clos ont été
étudiés de façon systématique par E. Cartan6), en partant des auto-
morphismes involutifs de G dont ces sous-groupes sont caractéristiques.
Je signale encore que A. Malcev1) a déterminé les sous-groupes semi-
simples des groupes de Lie complexes, à l'aide des représentations
linéaires de ces groupes.

La résolution complète du problème posé en (a) permettrait par
exemple de faire une étude d'ensemble des espaces homogènes clos

GjGx, et de savoir en particulier si la classe des espaces symétriques clos
contient la plupart des premiers ou non. Un autre problème pourrait
être abordé : étant donné un groupe clos G et un sous-groupe fermé
connexe Gx de G, quand Gt est-il homologue à zéro dans G (au sens de la
topologie combinatoire) On sait d'après E. Cartan qu'un sous-groupe
simple à trois paramètres n'est jamais homologue à zéro ; il en est de
même de tout sous-groupe invariant fermé connexe.

Dans un autre ordre d'idées, je mentionne qu'on peut démontrer le
théorème suivant : il n'y a dans le diagramme D (G) d'un groupe clos G

qu'un nombre fini de sous-diagrammes D(6?1). De plus, toute chaîne de

sous-groupes G1cG2c • • • c G peut être représentée dans D (G) par
une chaîne D{GX) c D(G2) c • • • c D{G) ; l'ensemble de ces chaînes est
encore fini. Il serait peut-être intéressant d'étudier ces ensembles finis,
et de savoir de quelles structures on pourrait les munir.

4) E. Cartan, La géométrie des groupes simples (Annali di Mat., t. 4, 1927, p. 212
à 214).

5) H. Hopf, Ûber den Rang geschlossener Lieseher Gruppen (Comment. Math.
Helv., t. 13, 1940, p. 119—143).

6) E.Cartan, Sur certaines formes riemanniennes remarquables des géo-
métries à groupe fondamental simple (Ann. Ec.Norm. (3) XLIV, 1927, p. 345—467).

t) A. Malcev, On semi-simple subgroupsof Lie groups (Bull. Acad. Soi. U. R. S. S.,
Sér. Math. 8, p. 143—174, 1944). D'après le résumé: Math. Rev., t. 6, p. 146.
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4. Une note déjà parue indique que le problème (a) est résolu dans le
cas où le rang du sous-groupe est égal au rang du groupe8). D'ailleurs, ce
même problème est aussi résolu lorsque le rang du sous-groupe est égal
à un9). Les pages qui suivent n'apportent pas la solution complète ; elles

présentent un certain nombre de résultats généraux, appliqués à un cas

particulier important.
Le chapitre I pose les notions classiques relatives à un groupe clos G,

d'après E. Stiefel10) : diagramme, ensemble Z(G) des paramètres angulaires

de groupe fini &(G) des automorphismes intérieurs de G qui
laissent invariant un sous-groupe commutatif maximum donné; j'introduis

de plus la notion de diagonale du diagramme : (px cp2 • • •

<Pk ~ 0 î 9^+i ='"=ç)|^0, et la figure de Schlàfli i$(G) qui

représente la figure q>l9 <p2,..., <pl par l points reliés par certains traits.
Cela posé, j'associe (chapitre II) au groupe G et au sous-groupe Gx un

tableau

Q2 •

7nh

dans lequel gl9 q2, gh sont h paramètres angulaires fondamentaux
de G ; ocx, oc2,... <xni sont les formes de Z(G) qui se réduisent à qx dans
Rh... Le tableau I est le principal objet de cette étude (§ 5, 6, 7). Dans
ce même chapitre, je montre qu'il suffit de considérer les sous-groupes de
G qui ne sont pas contenus dans un sous-groupe propre de rang maximum
de G ; ce sont les sous-groupes (H). Alors, tout w e 2'(G) est une combinaison

linéaire à coefficients entiers des formes du tableau I.
Les chapitres III et IV contiennent l'étude des sous-groupes

remarquables dont le tableau I contient l paramètres angulaires fondamentaux

et ceux-là seulement (sous-groupes (H)o). La figure de Schlàfli
3f(#) doit être appliquée d'une certaine façon sur ce tableau (§ 9, 10, 11).
La discussion fournit les résultats suivants : si le rang h de Gx est au
moins égal à 2, les seuls sous-groupes (H)o des groupes clos simples sont
les sous-groupes caractéristiques d'automorphismes involutifs externes11),

8) A. Borel et J. de Siébenthal, C. R. Acad. Se, t. 226, p. 1662—1664; voir aussi:
Comment. Math. Helv., t. 23, 1949, p. 200—221.

9) J. de Siébenthal, C. R. Acad. Se, t. 230, 1950, p. 910—912.

10) E. Stiefel, Comment. Math. Helv., t. 14, 1942, p. 350—380.
11 E. Cartan, cf. note 6.
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à trois exceptions près : #2 c BZi G2c A6, G% c D412). Les inclusions
C4 c 2?e et 2)^ c -4^-1 ne rentrent pas dans le cas étudié.

Le cas où le rang du sous-groupe (H)0 est égal à un est très différent :

tout groupe clos G non abélien contient un sous-groupe (H)o de rang un,
dit sous-groupe principal. Ce sous-groupe admet une définition indépendante

du diagramme : un sous-groupe (H) de rang un est dit principal
s'il contient un élément régulier dans G. Lorsque G est de l'un des types
Bt (l>3), Gx (l>2), F4, JE?7, E8, le sous-groupe principal est toujours
maximum.

CHAPITRE I
Groupes clos

§ 1. Diagramme d'un groupe clos

1. Toroïdes maximums. Soit G un groupe de Lie clos connexe ; du point
de vue topologique, G est un espace de Hausdorff bicompact13), ou compact
au sens de N. Bourbaki. Pour étudier G, il convient de mettre en
évidence les sous-groupes commutatifs maximums de G, ou toroïdes
maximums T de G ; ils sont tous connexes et ont la même dimension (chaque
T est un produit direct de l cercles) ; l'entier l est le rang du groupe G.
On a les propriétés suivantes14) :

(a) Etant donné un élément a eG, il existe un toroïde maximum T qui
contient a.

(b) Etant donnés deux toroïdes maximums T et Tf, il existe un élément

beG tel que bTb~x T1 {E. Cartan).

(c) Si a est un élément de G échangeable avec tous les éléments d'un
toroïde maximum T de G, a appartient à T.

2. Groupe fini 0(G). Le normalisateur N(T) du toroïde maximum
T est un sous-groupe de G constitué par un nombre fini de composantes
connexes ; l'une d'elles est précisément T, qui est un sous-groupe invariant

de N(T). Soit a un élément de N(T) ; l'automorphisme intérieur
x ->axa~l, x eG induit une transformation de T sur lui-même ; toutes
ces transformations forment un groupe fini @(G) isomorphe au groupe
quotient N(T)/T. A chaque groupe clos G est ainsi associé un groupe
fini 0(G) de transformations du toroïde T.

12) Ces inclusions sont bien connues.
18) voir note 2 de l'introduction; cf. No. 9.

14) voir note 5 de l'introduction et H. Hopf et H. SameUon (Comment. Math. Helv., t. 13,
No 4, Hilfssatz 4).
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3. Eléments réguliers et singuliers. Un élément x de G est dit régulier
s'il n'appartient qu'à un seul toroïde maximum T ; x est singulier s'il
appartient à plus d'un toroïde maximum. La dimension du normalisa-
teur de x est égale au rang l si x est régulier ; cette dimension est
supérieure à l si x est singulier.

4. Propriétés des éléments singuliers d'un toroide maximum. Voici ces

propriétés d'après H. Hopf15) :

L'ensemble des éléments singuliers du toroide maximum T est constitué

par la réunion des éléments de m sous-groupes fermés Ulf U2,... Um ;

chacun d'eux est kl — 1 dimensions, et est formé de deux composantes
connexes au plus. Si i =£ j 9

la dimension de l'intersection Ut^ TJj

est égale à l — 2.
Le groupe fini 0 transforme l'ensemble des sous-groupes Ut en lui-

même ; il est engendré par m involutions St, 82,... Sm ; Pinvolution St
laisse invariant chaque point de Ut, dans un système de coordonnées

orthogonales canoniques définies au voisinage de l'élément neutre, St est

représentée dans T par la symétrie par rapport au (l — l)-plan U.
L'intersection des sous-groupes Ux, U2, • • Um est le centre de G

(discret si G est semi-simple).

3 Diagramme et paramètres angulaires.

(a) G semi-simple. Au groupe semi-simple G sont associés un espace
vectoriel réel Rl et un ensemble U(G) de 2m formes linéaires

x)> x € Rl : les paramètres angulaires de G ; la somme £ \pt{x)Y

définit dans Rl une métrique euclidienne. Les (l — l)-plans &t{x) 0

(mod 1) (dits singuliers) constituent le diagramme de G16), et le groupe
engendré par les symétries par rapport à ces plans est un groupe spatial
F dont chaque opération conserve le diagramme.

Rl peut être considéré comme le recouvrement universel du toroïde
maximum T T1. Les plans singuliers &t 0 (mod 1) recouvrent
alors le sous-groupe singulier Ut, et le groupe F correspond au groupe 0.
On peut choisir dans Rl un point O origine appartenant au recouvrement
de l'élément neutre de G, les paramètres angulaires s'annulant tous en O.

15) H. Hopfy Maximale Toroide und singulare Elemente m geschlossenen
Lieschen Gruppen (Comment. Math. Helv., t. 15, 1942, p. 69).

18 La notion de diagramme a été mise en évidence, à l'aide de méthodes globales, par
E. Stoefel; voir: Ûber eme Beziehung zwischen geschlossenen Lieschen Gruppen

(Comment. Math. Helv., t. 14, 1942, p. 350—380).
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Les plans singuliers issus de 0 forment un ensemble qui est conservé par
les symétries par rapport à l'un quelconque d'entre-eux ; le groupe
engendré par ces symétries est d'ailleurs isomorphe au groupe fini @(G)
considéré au numéro précédent. Les plans en question déterminent un
certain nombre de régions permutées transitivement par le groupe 0 ;

chacune d'elles est limitée exactement par l faces à l — 1 dimensions17),
et peut être désignée par le terme d'angle polyèdre fondamental du
diagramme ; il existe l paramètres angulaires cpXi <p2,..., <pt de G tels que la
région considérée soit définie par les inégalités <px > 0,..., (pl > 0 ;

9?i> ^2>- • • > 9^ sont alors l paramètres angulaires fondamentaux de G,
et forment une suite dite fondamentale. Il est aisé de voir que tout
paramètre angulaire de G appartient à au moins une suite fondamentale. La
différence de deux éléments d'une telle suite ne peut être un paramètre
angulaire, sinon ce dernier s'annulerait en un point intérieur à la région
9>i > 0,..., ç>j > 0, contrairement à l'hypothèse faite sur celle-ci. Tout
élément de 27(6?) est une combinaison linéaire à coefficients entiers nuls
ou de même signe des éléments d'une même suite fondamentale.

(b) G non semi-simple. G est alors localement isomorphe au produit
direct Gx d'un groupe semi-simple G[ et d'un groupe commutatif clos ZL.
Si v désigne l'application de recouvrement : G vGl9 le toroïde Z vZ1

appartient à î7, et G' vG[ est la composante semi-simple de G. Le
diagramme de G est la somme directe du diagramme de G' et d'un espace
linéaire de dimension d(Z) égale à celle de Z. Les paramètres angulaires
de G sont ceux de sa composante semi-simple G'.

6. Vecteurs du diagramme. & étant un paramètre angulaire, il existe
->

un vecteur ê de Rl tel que l'on ait ê(x) — & - x. Les 2 m vecteurs
ainsi construits forment le système des vecteurs du diagramme de G ;

ils jouissent de propriétés énoncées par van der Waerden18) :

-> ~>

(a) Soit ê un vecteur du diagramme ; k& est un vecteur du diagramme
pour k 1 et Je — 1 seulement.

-> ->
-> ->

# #.^
(b) Soient â et ûr deux vecteurs du diagramme ; le nombre 2

est entier. *

#2

(c) Soient #, ê' deux vecteurs du diagramme ; # — kê' est encore

17) E. Cartan, Complément au mémoire: Sur la géométrie des groupes simples
(Annali di Mat., t. 5, 1928, p. 253—260).

18) Voir note 3 de l'introduction.
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un vecteur du diagramme lorsque k est un entier variant de 0 à 2 •

II résulte en particulier de la propriété (c) que si <pl9 cp2,. cpt est

une suite fondamentale, on a : q>t* (p0 < 0, sinon cpt — <p} € Z(G).

7. Paramètres angulaires dominants. Supposons G simple ou semi-

simple ; l'angle polyèdre fondamental <px > 0,. (pt > 0 contient un
polyèdre fondamental du groupe spatial F, défini par les inégalités
cp1>0,. (pi>0 ; co1<l,..., cw,<l ; œl9...9œ8 sont s paramètres
angulaires de G : les paramètres angulaires dominants de ce groupe (ce
sont des combinaisons linéaires à coefficients entiers non négatifs de

ç?i,..., 9>i). Les paramètres angulaires extraits de q?1, <p2,..., <pt qui
figurent dans l'expression de l'un de ces paramètres angulaires dominants
ne figurent dans aucun autre. S'il n'y a qu'un seul paramètre angulaire
dominant, le groupe G est simple ; le polyèdre fondamental est alors un
simplexe.

8. Sous-groupe simple de rang un associé à un paramètre angulaire.
Soit &t un paramètre angulaire de G, et Ut le sous-groupe singulier de T
recouvert dans R1 par les plans &t 0 (mod 1). Le centralisateur de

Ut dans G est un sous-groupe de rang l, de dimension 1 + 2, non abé-
lien. La dimension du centre de ce sous-groupe étant égale à l — 1, sa

composante semi-simple est un sous-groupe g simple de dimension trois,
associé à ±#t. g coupe T suivant un sous-groupe t à une dimension dont
le recouvrement dans R1 contient une droite R1 orthogonale à &t 0 ;

l'anneau R(g) de g est de la forme R1 + 77^, où 77^ est un plan à deux
dimensions, associé également au paramètre &t ; ce 2-plan est invariant
par tous les automorphismes intérieurs de G déterminés par les éléments
de T.

9. Recouvrement du centre de G. Supposons G semi-simple; le
recouvrement dans R1 du centre de G est un réseau dit central ; un point
x e R1 appartient à ce réseau si les paramètres angulaires fondamentaux
<Pi 9 9?2 > • • • 9 <Pi prennent des valeurs entières sur le point x.

§ 2. Figures de Schlâfli des groupes simples

10. Définition. Soit <pl9 ç?2,..., (pt une suite fondamentale de
paramètres angulaires de G supposé semi-simple ; je fais correspondre à

chaque forme q>t un point Pt, Pt étant relié à Po par 0, 1, 2, ou 3 traits

suivant que l'angle des vecteurs <pt et (p} est égal à 90°, 120°, 135°, ou
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150°. La figure constituée par ces points et par ces traits est par définition

la figure de Schlâfli f$f (G) du groupe G (on peut lui adjoindre le

point qui représente le paramètre angulaire dominant, ce qui n'est pas
nécessaire ici).

Si G est semi-simple, la suite ç>l5 ç>2?• • • Ç9? se décompose en deux

suites partielles au moins : <p <p j et <p x,+1,..., cp x, tout vecteur de
la première étant orthogonal à tout vecteur de la seconde, et réciproquement.

Ainsi, la condition nécessaire et suffisante pour que la figure g (G)

soit connexe est que le groupe G soit simple.

11. Paramètres angulaires fondamentaux des groupes simples et figures
de Schlâfli associées. Les expressions classiques des paramètres angulaires

des groupes simples19) ne mettent pas en évidence les paramètres
angulaires fondamentaux. Je vais donner dans chaque cas la substitution

convenable, le paramètre dominant, et la figure

Groupe Ax : Les paramètres angulaires sont : ± t,, xt — x} (i =fi j ;

i, j 1, 2,..., Z). Posons : <pt rl5 <p2 — rx + r2, <pz — r2 + r3,
ç>, — Tj_! + xx ; tout paramètre angulaire est une combinaison

linéaire à coefficients entiers nuls ou de même signe de q)x, ç>2 > • • • > Wi •

Le paramètre angulaire dominant est xx çpx + <p% + • • • + <Pi-

Groupe Bx : Les paramètres angulaires sont : ^ xt. i rt 4; t§ (i ï^ j j

i,j=l,2,...,l). On peut poser: (p1=rli <p2 — rx + r2,
ç)3 — r2 + r3,..., <pt — Tj^! 4- re ; le paramètre angulaire dominant

est rl_1 + xx 2cpx + 2çp2 -\ h 2ç?j_1 + <Pi>

Groupe Cl : Les paramètres angulaires sont : ± 2 rt, ± rt ± f^

(i^j; i,j=l,2,...,l). On peut poser «^ 2r1? ç?2 — Tj + t2j
(p3 — T2 -f- t3, Ç9j — !:,_! + ^? ; le paramètre angulaire dominant
est 2rE <px + 2^2 + 2ç?3 H [- 2ç?2.

Groupe Dt : Les paramètres angulaires sont ± ?* dh t^ (i 7^ ;* ;

(^ ¥" j ; t, 1, 2,..., Z). On peut poser 9^ rt + x2, ç?2 — xx

+ *2, n= — r2+ xs,...,(pl= — xx_x + xx ; le paramètre angulaire
dominant est ç?! + ç?2 + 2ç?3 + 2ç?4 -f • • • + %<Pi~i + <Pi *i-i + ?i-

Groupe EQ : Les paramètres angulaires sont :

<Pi — <Pj\ ± (<Pi + <Pj + <Pk)> ± (^1 + 92 H h <Pe)

(i, /, & distincts; i,j,k= 1, 2,..., 6).

19) jE7. Cartan, La géométrie des groupes simples (Annali di Mat., t. 4, 1927, p. 218
à 224).
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On peut poser tpx xx — t2, <p2 r2 — t3, ç>3 r3 — r4, ç?4 t4
— ^5 > 9^5 *5 — ^e > <Pe T4 + r5 + Te e^ Ie paramètre angulaire
dominant est ç?x + 2ç>2 + 3ç?3 + 2ç?4 + ç>5 + 2ç?6.

Groupe E1 : Les paramètres angulaires sont

ti— *i> ±(rt + r} + rk + rj, rx + x% H h t8 0

(i, j, k, m distincts ; i, j, &, m 1, 2,. 8).

On obtient une suite fondamentale en posant

9^4 — *4 + r6, 9?5 — r5 + r65 ^6 — r6 + t7,
9^7 TX + T2 + T3 + T4.

Le paramètre angulaire dominant est (px + 2ç?2 + 3ç?3 + 4ç?4 + 3ç?5

Groupe Es : Les paramètres angulaires sont

rt — r,, ± (t» + t, + ^fc) > avec rx + r2 + • • + r9 — 0

(i,j,Jc distincts ; i, ?', Je 1, 2,..., 9).

On peut poser

(px r2 — r3? ç?2 r3 — t4, ç>3 r4 — t6, <p4 r5 — r6,
9^5 T6 ~~ T7 9?6 T7 — T8 J 9^7 T8 ~~ T9 9^8 T7 ~f T8

et le paramètre angulaire dominant est 2<pt + 3ç?2 + 4<p3 -f 5ç?4 +

Groupe F4 : Les paramètres angulaires sont

±rt, ± rt ± t,, i(±T! ± t2 dz t3 ± r4)

On peut poser ^ rl5 9?2 =i(— rx + r2 + r3 — r4), ç?3 — t3 -f r4,
9?4 — r2 + ^3 ©t le paramètre angulaire dominant est : 2q>x + 4ç>2

Groupe G2 ' Les paramètres angulaires sont ir1} ± ^2? i (Ti — ^2)

±(r1 — 2t2), ±(fi — 3ra), ±(2tj — 3r2). On peut poser ^ r2?

ç?2 xx — 3t2, et le paramètre angulaire dominant est 3ç>x + 2ç?2.

Les figures de Schlàfli respectivement associées à ces groupes simples
sont :
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12 3 4

Fig. 1

II résulte du mémoire de van der Waerden déjà cité que les vecteurs q>x

et cp 2 relatifs aux groupes Bx, Gx forment un angle de 135° de même pour
les vecteurs 2 et 3 de Fé ; les vecteurs cp x et cp 2 relatifs au groupe G2 forment
un angle de 150° ; les autres angles sont tous égaux à 90° ou 120°.

12. Propriétés des figures de Schlâfli. Je suppose ici que G est un
groupe simple.

(a) Soit 3((?) la figure de Schlâfli associée à un groupe simple. Un
trait reliant deux points de 5(6?) peut être simple ou multiple ; je dirai
que deux points P{ et Pi sont en relation non nulle s'il existe un trait
simple ou multiple reliant ces deux points. L'ordre d'un point P e 5(6?)
est par définition le nombre des points de 5 (G) qui sont en relation non
nulle avec P ; cet ordre est égal à 1, 2, ou 3. Il y a dans 5 (G) au plus
trois points d'ordre 1, et au plus un point d'ordre trois.

Si G est un groupe de l'un des types Al9 Dx, EQ, El9 E8, g (G) ne
contient que des traits simples ; si G est de l'un des types Bx ou Cx, la ligne
polygonale qui relie P2 à Px ne contient également que des traits simples ;

5(F4) contient deux traits simples. Remarquons que %(G) ne contient
jamais de cycle à une dimension.

(b) Soit P un point de $(G) d'ordre un; la ligne polygonale issue
de P, arrêtée au plus tard au point P' d'ordre trois (s'il existe), est par
définition une terminaison à n éléments si elle contient n points de

5(G), P' non compris. Un coup d'œil sur les figures précédentes montre

que %{G) contient au plus deux terminaisons à n > 2 éléments.

(c) Soient P^ et Pj deux points de 5(6?) reliés par un trait simple,
et 84 la symétrie de Rl par rapport au (l — l)-plan cpi; 0; on a
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(StSj) (pt (pj ; il résulte de cette relation que le groupe &(G) opère
transitivement sur les points d'une ligne polygonale à traits simples, g (G)

n'étant pas nécessairement conservée.

(d) Si le groupe simple connexe G admet un automorphisme externe,
on peut choisir ce dernier en sorte qu'il permute les paramètres angulaires

fondamentaux q>l9 <p2,..., (pt20). L'effet produit sur ^(G) est une
permutation des points Pt qui conserve g {G) ; dans les cas At, Dv E6

on a respectivement les permutations :

II 2...1—1 l\ II 2 3 l\ II 2 3 4 5 6\
\l l~l 2 1/ \2 1 3 l) \5 4 3 2 1 6/

O\3 4
Si G est du type D4, 5(6?) est o O Il existe 6 permutations

O2 Fig.2

des points Pl9 P2, P4 conservant 5(D4) et le point P3.

§ 3. Diagonales du diagramme

13. Définition. Soit P^ \(px '>O9...9(pl > 0 un angle polyèdre
fondamental du diagramme d'un groupe semi-simple G, tpx, <p2,..., cpt

étant l paramètres angulaires fondamentaux de G. Par définition, la
demi-droite B\ d'équation

<Pk+i • • * <Pi > ° I

est une diagonale de l'angle polyèdre P^. Si k 0, on a <px ç?2

ç>t et la diagonale est dite principale.
Comme R1^ peut appartenir à plusieurs angles polyèdres fondamentaux,

on peut se demander si elle est une diagonale dans chacun d'eux.
Le théorème suivant répond à cette question

14. Théorème. Une diagonale de Vangle polyèdre fondamental P^

est diagonale dans tout angle polyèdre fondamental qui la contient.

Ainsi, étant donnée une demi-droite dont les équations ont la forme
(1), on pourra la considérer comme une diagonale du diagramme. Seule

la diagonale principale contient un élément régulier, et le théorème est

pour elle évident, car elle n'appartient qu'à un seul angle polyèdre
fondamental.

20) E. Cartan, Le principe de dualité et la théorie des groupes simples et semi-
simples (Bull. Se. Math., t. 49, 1925, p. 365).
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15. Démonstration. La démonstration est basée sur le fait que si

a €0(6), la demi-droite oR\ est encore une diagonale de

Lemme. Soient fa, jbt2,..., pt et vx,..., vx deux suites fondamentales ;

si vx, v2,..., vt sont des combinaisons linéaires à coefficients non négatifs
de fa, p2i. px, alors la seconde suite est une permutation de la
première.

Les systèmes pt > 0, vt > 0 (i 1, 2,..., Z) définissent deux angles
polyèdres fondamentaux P^^Py. Soit xeP^; on a pt(x)>0 (i 1, 2,

Z), et d'après l'hypothèse vt (x) > 0 (i 1, 2,..., Z), d'où x e Pv.

ij^ et i^, ayant en commun un point intérieur x coïncident et le lemme
résulte de ce fait.

Cela étant, soient Pç (<cpt > 0) et P^ (pt > 0) deux angles polyèdres
fondamentaux contenant jR^_ et x e R}+ voisin de l'origine. Le normali-
sateur N(x) de x est un sous-groupe de rang Z de G ; le centre Z de N(x)
a une dimension Z — h ; il y a donc & paramètres (pt et & paramètres pt
qui s'annulent identiquement sur Rx+, par exemple 9^, <p2,..., q?k et

fa, fa,..., fa, qui forment deux suites fondamentales de N(x). Il
existe une opération v e 0(^(0;)) qui applique <px, ç?2,..., <pk sur une
permutation vx, *>2,..., vk de px,..., pk et ç^+1 ,...,<px sur *>fc+1,

vt respectivement ; de plus ax x. Maintenant, chaque vt est une
combinaison linéaire à coefficients entiers nuls ou de même signe de

px, p2,..., px ; comme vk+x,..., vx sont positifs sur x, ces formes,
exprimées à l'aide des pt, ont des coefficients non négatifs. En résumé,

px,..., px et vx,..., vx vérifient les hypothèses du lemme, et aP(p= Pv

PhL. De là résulte pk+x - - - px sur Rx+ et le théorème est établi.

CHAPITRE II
Théorèmes généraux sur les sous-groupes

§ 4. Diagramme et sous-anneaux

1. Diagramme d'un sous-groupe. Soient G un groupe de Lie clos, et
Gx un sous-groupe fermé connexe de G ; c'est un groupe de Lie, engendré
dans G par un sous-espace linéaire de l'anneau Rfô)21). Soit maintenant
Th un toroïde maximum du sous-groupe Gx ; il existe un toroïde maximum

T^ de G qui contient Th. Remarquons que l'intersection de Gx et de

Tl se réduit à Th ; en effet, un élément x commun à Gx et à Tl est un élé-

21 voir note 2 de l'introduction.
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ment de Gx échangeable avec chaque élément de Th ; d'après la proposition

(c) du § 1, x appartient à Th.

Si Rh et R1 sont les supports des diagrammes de GxetG, correspondant
respectivement aux toroïdes Th et Tl, on a Rh c Rl. Il est a priori
évident que le sous-espace Rh doit vérifier un certain nombre de conditions

; en particulier, la diagonale principale de Gx n'est pas quelconque ;

elle va jouer un rôle important dans ce qui suit (§ 8 et chapitre III). De
plus, si l'on dispose d'une autre paire T'h, T'1, avec T'h c T'1, T'h c Gl9
T'1 c G, on peut construire un automorphisme intérieur de G qui
applique T'h sur Th, et T'1 sur Tl : dans ce sens, l'inclusion Rh c Rl ne
dépend pas des toroïdes Th et T1 choisis.

2. Sous-groîipes fermés et sous-anneaux. A tout sous-groupe fermé
connexe G1 de G correspond un sous-anneau de R(G), de support Rfëj) ;

inversement, étant donné un sous-anneau R de R(G), quand le sous-

groupe fermé connexe Gx engendré par R a-t-il même dimension que R
Un théorème précis peut être établi, dont l'énoncé sera précédé d'un
lemme :

Leinme 1. Soit N le sous-groupe clos engendré par R dans G; R est un
sous-anneau invariant de R(N).

Tout d'abord, R engendre un germe g ; g est l'intersection d'un voisinage

de l'élément neutre e de G et de la variété totalement géodésique
formée par les sous-groupes à un paramètre de G tangents à R en e22).

Cela étant, N est l'ensemble des éléments a*1 a^2.. .a%k et des éléments
d'accumulation de ces produits, avec at e g ; Je, <xl9 oc2,..., <xk sont des

entiers rationnels arbitraires (&>0). ateg entraîne atRa~x — R d'où,
par construction de N, on voit que R est invariant par le groupe
adjoint linéaire 8(N) de N, c. q. f. d.

Cela étant, le groupe linéaire mentionné laisse R(N) et R invariants ;

R se décompose en une somme directe de sous-anneaux orthogonaux
deux à deux : Rx, R2,..., Rh, r1, les h premiers étant simples et
invariants dans R(N)< le dernier étant un sous-anneau commutatif, invariant
dans R(N) également. Par définition, ce dernier sous-anneau est la
composante commutative de l'anneau R ; rt est aussi le sous-anneau commu-

22) E. Cartan, La géométrie des groupes de transformations (Journ. math, pures
et appliquées, t. 6, 1927, chap. I).
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tatif invariant maximum de R, soit le centre de i?. Le théorème en vue
peut maintenant s'énoncer :

Théorème 1. Soient G un groupe de Lie clos connexe, 22(6?) Vanneau
de Lie de G, R un sous-anneau de R(G), et rx la composante commutative
de jR. La condition nécessaire et suffisante pour que R engendre un sous-

groupe fermé de dimension d (R) est que rx engendre un sous-groupe fermé de

dimension d (rx).

Deux lemmes sont encore nécessaires.

Lemme 2. Soient G et G' deux groupes de Lie clos localement isomorphes,
G' recouvrant G, et a Vapplication de recouvrement ; a applique tout
ensemble fermé de Gf sur un ensemble fermé de G.

Cela provient simplement du fait que G' recouvre G un nombre fini de
fois. De là résulte que a applique un sous-groupe fermé de G' sur un sous-

groupe fermé de G, ayant la même dimension.

Lemme 3. Soient G et G' deux groupes de Lie clos localement isomorphes,
G' recouvrant G, et a Vapplication de recouvrement ; soient g un germe dans

G, et gr c~1g le germe correspondant dans G' ; si g engendre dans G un
sous-groupe fermé de dimension d(g), il en est de même de gf dans G'.

g engendre dans G un sous-groupe © connexe, fermé par hypothèse.
De même, g! engendre dans Gf un sous-groupe ©' du groupe abstrait G' ;

la fermeture de ©' est un sous-groupe ©' du groupe topologique G1. Soit

x c ©' ; il existe une suite d'éléments xx, x2,..., xn,... de ©' convergeant

vers x ; chaque xt est un produit d'éléments de g1. a applique la
suite x{ sur une suite ax{ de © ; © étant fermé, l'application continue a

amène x sur un élément du groupe ©. Ainsi, on a : a©' c © ; ag' g

entraîne cr©' ©, car ©' et © sont connexes. Comme a conserve la

dimension, on a nécessairement d(©') d(©), c. q. f. d.
Je passe à la démonstration du théorème :

La condition est suffisante : On peut simplifier en se servant du lemme 1,
et en considérant R dans R(N). Dans la décomposition précédente :

les sous-espaces Rl9 i?2,..., Rh sont invariants et irréductibles par
S(N), qui se réduit à l'identité dans rt. Cela étant, on a :

R(N) R + ^ + Rh+2 +• • •+ Hk + r2
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Rh+1, Rh+2,..., Rk ayant les propriétés de Rx, R2,..., Rh, S (N) se
réduisant à l'identité dans r2 et dans r r1 + r2.

Chaque sous-espace Rt est un anneau qui engendre un groupe simple
clos gt ; il existe un groupe clos N', produit direct de gx, g2,..., gk et
d'un groupe commutatif clos c, Nf étant localement isomorphe à N.
L'isomorphisme local a' considéré applique R(Nr) sur R(N), R(gt)
sur Rt, et R(c) sur r; je désigne par a l'application de recouvrement
N' -> N qui coïncide avec a' au voisinage de l'élément neutre.

Cela posé, l'isomorphisme inverse a'"1 applique rx sur un sous-anneau r[
de R(Nf), engendrant dans c un sous-groupe commutatif clos c[ ayant la
même dimension que r[ (en vertu de l'hypothèse et d'après le lemme 3.)
Considérons dans Nf le sous-groupe fermé Nr — gxXg2X • • • X^XcJ.
Son image par a dans N est un sous-groupe fermé N± de N (lemme 2),

ayant même dimension, avec R(NX) Rx + R2 + • • - -\- Rh -{- rx. La
condition est bien suffisante (alors k h et r r^.

La condition est nécessaire. Si R engendre un sous-groupe fermé Nx
ayant même dimension que R, le sous-anneau r1 engendre un sous-

groupe commutatif clos cx de N±, contenu dans le centre de N1. Comme
la dimension du centre de iVx est celle der1?ona: d (Cj) d (rx), c. q.f. d.
Une conséquence de ce théorème est la suivante :

Proposition. Tout sous-anneau semi-simple de Vanneau de Lie d'un
groupe clos engendre un sous-groupe fermé ayant même dimension23).

Une autre conséquence importante est la suivante : soient G un groupe
clos, R un sous-anneau de R(G), et r la composante commutative de R ;

r appartient toujours à un sous-anneau commutatif maximum de R(G).
Ainsi, il est possible de reconnaître, dans le diagramme, si un sous-anneau
R de R(G) engendre un sous-groupe fermé ayant même dimension.

§ 5. Eléments associés à un paramètre angulaire du sous-groupe G,

3. Paramètres angulaires du groupe G associés à un paramètre angulaire

du sous-groupe.

L'ensemble S{G^ des paramètres angulaires du sous-groupe Gx de G

est certainement lié à £{G)\ le théorème suivant donne une première
précision.

23 Utilisé implicitement par E. Cartan dans le cas où R est simple et de dimension 3

(C. R. Acad. Se: Sur les nombres de Betti des groupes clos, t. 187, p. 196...
étendue à la variété Voir aussi: E. Cartan, Sur les représentations linéaires des

groupes clos (Comment. Math. Helv., t. 2, IV, 1930, p. 269—283).
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Théorème 2, Soient G un groupe de Lie clos, Gt un sous-groupe fermé
de G, et Rh le support du diagramme de Gx, contenu dans celui de G, désigné

par Rl. Si g est un paramètre angulaire de Gx, il existe un paramètre angulaire

m de G égal à g sur Rh.

Soit fG(i,t) le polynôme caractéristique de G, t étant un vecteur de
l'anneau R(G), et £ une indéterminée24). Lorsque t décrit R(GX), on a

/«(*>*) /Ol(f, *)•/(*,*) ttRW (1)

le polynôme caractéristique de Gx divise celui de G. Maintenant G est
clos; lorsque t décrit M1, fQ(Ç,t) se décompose en un produit de
facteurs du premier degré en | :

fG(i,t)-=if n [£- V^T

les formes ±^i(0>« • •> ±^mM étant les paramètres angulaires de G ;

de plus, si t décrit Rh, on a :

l t)] teR* (3)

où ± £i(0 > • • • > =b £i,(0 S(>nt les paramètres angulaires de G^. (1) donne

Ainsi, il existe 2^o facteurs [f ± 2nifjLi(t)'\ du second membre de (2) qui
deviennent respectivement identiques aux 2p facteurs [Ç ± 2ni Q,(t)]
lorsque t décrit Rh. En particulier, étant donné un paramètre angulaire
ç(t) de Gl9 il existe un paramètre angulaire ju(t) de G tel que ç(t) pi(t),
t € Rh, c. q. f. d. On peut énoncer aussi le résultat de la manière suivante :

L'ensemble des paramètres angulaires de G se réduit dans Rh à un
ensemble de formes qui contient Vensemble des paramètres angulaires de G±.

Passons aux vecteurs du diagramme ; le vecteur g associé au para-
tètre angulaire q de Gx

se réduit à q dans Rh :

mètre angulaire q de G1 est défini par : q (x) — q • x x c Rh. On a si cot

q2a)t x q ' x et q • cot q

quel que soit x ç Rh ; il en résulte —^ 10 • Ainsi, le vecteur g est

24) H. TFeyJ, Darstellung kontinuierhcher halbemfacher Gruppen II (Math.
Zeitschr., t. 24, 1926, p. 356).
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donïié par la projection du vecteur œt sur la droite R1 support de q
Dans ce qui suit, je désigne par oox, co2,..., con la suite de tous les

paramètres angulaires de G qui se réduisent dans Rh au paramètre angulaire

g de Gx ; cette svÀte est associée au paramètre q.

4. Sous-groupes de G associés au paramètre angulaire q de Gx. Soient

a)x, co2,..., con les paramètres angulaires de G associés au paramètre
angulaire q de Gx, et gp le sous-groupe simple de rang un de Gx associé à

g25). Comment gp est-il contenu dans 6??

On a R(gp) jB1 + il ; R1 est la droite support du vecteur q ; IJ est

un 2-plan du sous-espace EIIa, <X€£(G). Soit 11^+- - • +FF k le

sous-espace EII^ minimum qui contient IJ ; ce plan étant invariant par
tous les automorphismes intérieurs q>a, a e Th, les paramètres angulaires

jux,. in,k sont nécessairement égaux en tout point z de Rh, et
égaux à cot(z). Autrement dit, fxly..., jbtk est une suite contenue dans

co1,..., con ; cela signifie encore que 77 appartient au sous-espace

Maintenant, soit Gp le sous-groupe de rang l de G dont les paramètres
angulaires sont toutes les combinaisons linéaires à coefficients entiers de

a)l9...,œn qui appartiennent à Z(G). gp est visiblement un sous-

groupe de Gp.

Remarque. Il ressort du raisonnement précédent que gp appartient à

la composante semi-simple de G, car il en est ainsi de II ; en particulier,

gp appartient à la composante semi-simple de Gp ; q est ainsi une combinaison

linéaire de oo1,.. a>n : q Âx a)1 + • • • + ûn°>h' Cette relation,
_^. _^ _^» _^» _£. n n

jointe à coî-g=£2, entraîne Q2 Q2(£ Àt), 2J^t=l-
i i

II résulte encore de cette remarque que tout sous-groupe semi-simple
Gx de G appartient à la composante semi-simple de G, car il en est ainsi
de chaque sous-groupe gp, q € E{GX).

§ 6. Sur les groupes finis associés au groupe G et au sous-groupe G1

5. Les considérations du § 5 permettaient d'établir une relation entre
les ensembles finis Z(G) et Z(GX) ; ici, j'établis deux théorèmes qui relient
les groupes finis 0(G) et <&(GX).

25) Voir chapitre I, § 1, No 8.
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Théorème 3. Soient G un groupe de Lie clos connexe, Gx un sous-groupe
fermé connexe de G, et Th, Tl deux toroïdes, maximums respectivement
dans G1 et dans G, avec Th c Tl ; soit <px une opération du groupe fini
0{GX) conservant Th ; il existe une opération y> du groupe @(G) qui conserve
Th et Tl, en induisant dans Th la même transformation que cpx.

L'énoncé suivant est équivalent à l'énoncé proposé : étant donné une
composante aTh de N(Th) dans Gx, il existe une composante bTl de

N(Tl) telle que I : q>bTh Th ; II : cpa et cpb induisent dans Th la même
transformation.

Démonstration. L'automorphisme intérieur cpa conservant Th conserve
le centralisateur Z de Th, et en particulier le centralisateur connexe Z1.

Comme Z' contient Tl, çpa applique Tl sur un toroïde T* maximum dans
Z' ; d'après la proposition (b) du § 1, il existe un élément c eZr tel que
cpcT* Tl. Considérons l'automorphisme (PcWa — tPca'i <Pca conserve
évidemment Th, puisque <pa Th Th, et que cpc laisse invariant chaque
élément de Th ; on voit que q?ca conserve Th en induisant dans ce toroïde
la même transformation que <pa. De plus, on a par construction <pcaTl

<pcT* ; cpca conserve Tl ; on peut donc poser ca b e N(Tl), c. q. f. d.

Remarquons que si Th contient un élément régulier, Z! est identique
à Tl, d'où c e Tl ; on peut même prendre c e ; cela signifie que aTh

appartient à une composante aTl de N(Tl)-0(G1) est un sous-groupe de

0(G).

6. On peut énoncer comme suit la relation établie entre ^(G^ et
0(G).

Théorème 3'. Le groupe ^>{GX) est isomorphe au groupe F/F', où F et

Ff sont des sous-groupes de N(Tl) ; F est le sous-groupe des composantes de

N(Tl) qui laissent Th invariant, en induisant dans ce toroïde des

transformations de ^(G^)) F'c F est le sous-groupe des composantes de

N(Tl) qui induisent dans Th la transformation identique.

On peut dire que 0(GX) est Vhomomorphe d'un sous-groupe de &(G).
En effet, F' est d'abord un sous-groupe invariant de F : si ax€ F, a2 e F'',

(Paxa%a\x se réduit à l'identité dans Th. Soit maintenant bTl la composante

de N(Tl) associée à la composante aTh de N(Th) comme tout à

l'heure ; l'application :

aTh->(bTl)F'
est un isomorphisme de N(Th) sur F/F' ; cela résulte du fait que deux

composantes distinctes de N(Th) induisent dans Th deux transformations

distinctes.
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7. Le théorème 3 peut être précisé si l'on introduit les sous-groupes

Théorème 4. Soient G un groupe de Lie clos connexe, Gx un sous-

groupe fermé connexe de G, et R1, Rh les supports des diagrammes respectifs
de G, Gl9 avec R1 } Rh ; soit q un paramètre angulaire de Gx ; il existe

une opération de @(Gp) qui conserve Rh en induisant dans ce sous-espace
la symétrie par rapport au (h — l)-plan q 0.

Considérons les sous-groupes Gp et gp : on a R (gp) — R1 -f- 77 avec
R1 t Rh; d'après le théorème 3, il existe une opération a de 0(Gp) qui
conserve R1 et R1, en induisant dans R1 la symétrie par rapport à l'origine

; or a e 0(Gp) montre que chaque point du sous-espace œ1 • • •

œn 0 est conservé par cette opération ; mais si x est un point du
sous-espace g 0, on a sur x : co1(x) • • • wn(x) q(x) 0 d'où
ox x. En résumé, a laisse invariante la droite R1 c Rh en induisant
sur cette droite la symétrie par rapport à l'origine, et conserve chaque
point du sous-espace à (h — 1) dimensions de Rh qui est orthogonal à

R1. Autrement dit, a conserve Rh en induisant dans ce sous-espace la
symétrie par rapport à @ 0, c.q.f.d. Dans ce qui suit, je pose :

a Sp; c'est l'opération de 0(Gp) associée au paramètre angulaire q ;

elle jouit de la propriété suivante :

Soit o) un paramètre angulaire du groupe G ; Vopération Sp associée au
paramètre angulaire q du sous-groupe Gx ajoute à a> une combinaison
linéaire à coefficients entiers des paramètres angulaires (o1} (o2,.. (on
associés à q

Spco œ + m1œ1 -\ (- mna)n

En effet, la symétrie S^, [à e S {G) applique [x! eE(G) sur S^/j,'
ii1 + m ix où m est entier ; sachant que Sp est un produit de symétries

/SL on obtient alors la formule désirée.

§ 7. Tableaux associés à un sous-groupe

8. Soient Qi,Q2i' • •> Qh ^ paramètres angulaires fondamentaux du

sous-groupe Gx, et ^,...,^5 ^^+1,. qp les paramètres angulaires
positifs de Gx (combinaisons linéaires à coefficients entiers non négatifs
de Qi, Q2>* • '» Qh)< Les h suites associées respectivement à gi,...,(fo
forment par définition le tableau I (G, G^) ; les suites associées aux autres
forment par définition le tableau F (G, GJ;
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Q Q û
Pi > P2 » • • • » P«2

: * ' ' * * ' nh+i

II me semble que l'étude du tableau I est indispensable pour résoudre le

problème des sous-groupes, au sens indiqué dans l'introduction. J'établis
maintenant deux théorèmes, qui unissent les résultats des deux
paragraphes précédents :

9. Théorème 5. Soit ax une opération de 0(GX) appliquant un paramètre

angulaire g de Gx sur un paramètre angulaire q' de ce même sous-

groupe ; il existe une opération a de 0(0) appliquant la suite œl9..., œn

associée à q biunivoquement sur la suite œx,.. co'n, associée à çf.

D'après le théorème 3, il existe une opération a de 0(0) qui laisse jR*

et Rl invariants, en appliquant q sur gf ; j'examine l'effet de a sur les

paramètres angulaires de 0.
'a applique cox sur un vecteur aa>x du diagramme, et q sur q'. Considérons

la relation : ù)X'X qx, xeRh; on a (acox)'(ax) œx-x et

ç'-ax q -X ; d'où (aa)x)(ax) q1 (ax) quel que soit x c Rh, c'est-à-

dire, puisque ax décrit Rh lorsque x décrit Rh : — (crco x) • x — q ' • x
ou ao)x Qf dans Rh ; aœx étant un paramètre angulaire de 0 qui se

réduit à q' dans Rh est l'un des paramètres angulaires a)[ associés à gf.
Le même raisonnement s'applique à co2,..., con : a détermine une
application de la suite cox, co2,..., con dans la suite co{,.. cofn, nécessairement

biunivoque ; en considérant de même a~ * et œrx,..., œfn,, on voit
qu'on peut énoncer le théorème 5, avec n n'.

En particulier, si ax applique q sur — q alors a applique cox,..., con

sur une permutation de — cox,..., — con.

Les suites cd19. œn et co{,..., œn considérées jouissent de la
propriété suivante : on peut numéroter o)x,..., wrn en sorte que acot o)[\
alors Zmlojl€ E(O) entraîne Zmtœ[ *E(G). En ce sens, on peut dire

que les suites oot et w[ sont isomorphes. Si Gx est de l'un des types Al}
Dt, Et, les suites du tableau I (O, Gx) sont deux à deux isomorphes, ce

qui prouve à quel point la structure de ce tableau est particulière.

10. Théorème 6. Les éléments du tableau F sont des combinaisons
linéaires à coefficients entiers des éléments du tableau I.
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Soit g un paramètre angulaire de Gx figurant dans le tableau F, et

wl,..., wn la suite associée. Il existe un paramètre angulaire extrait de

£i>-••>(?&> soit ^ par exemple, et une opération ^ de 0(GX) appliquant
q1 sur g Mais ox est un produit de symétries spi,..., sph par rapport
aux (h — 1)-plans gx 0,.. gh 0. Si dans ce produit, on remplace
chaque facteur sp. par le facteur 8p. associé (théorème 4), on obtient une
opération a qui applique encore gx sur g. On a, par exemple : aoc1 co1

ou (nSpi)ocx co1 ; or, d'après la fin du § 6, le premier membre de la
dernière relation est une combinaison linéaire à coefficients entiers des

paramètres angulaires de G qui figurent dans le tableau I. a étant une
application biunivoque de la suite ocx,..., ocn sur la suite co1,. con,

la conclusion précédente est encore valable pour o>2,.. con, et le théorème

est établi.

§ 8. Réduction du problème des sous-groupes

11. L'étude des sous-groupes fermés connexes d'un groupe de Lie
clos a déjà été commencée dans un mémoire antérieur26) ; remarquons
que les résultats obtenus dans ce dernier permettent de trouver en fait
tous les sous-groupes invariants simples ou semi-simples des sous-groupes
de rang maximum du groupe G. Tous ces sous-groupes ont une propriété
commune : ils sont contenus dans un sous-groupe propre de rang maximum.

Mais le groupe G contient certainement des sous-groupes d'une
autre espèce, ne vérifiant pas la propriété indiquée. Je dis que si l'on
connaît tous les sous-groupes de G qui ne sont pas contenus dans un
sous-groupe de rang maximum, on peut déterminer tous les sous-groupes
de G : en effet, soit Gx un sous-groupe de G ; il existe dans G un sous-

groupe G2 de rang maximum l ayant la propriété d'être un des plus petits
sous-groupes de rang l qui contiennent Gx ; alors, Gx est, dans G2, un sous-

groupe n'appartenant à aucun sous-groupe de rang Z, et l'affirmation est
établie.

Définition. Soit G un groupe de Lie clos de rang l ; un sous-groupe fermé
connexe de G vérifie l'hypothèse (H) lorsqu'il n'est pas contenu dans un
sous-groupe de rang l de G.

Je dirai aussi qu'un tel sous-groupe G± est un sous-groupe (H) de G,
en écrivant Gx c G. La réduction du problème des sous-groupes ainsi

conçue ne laisse subsister qu'un nombre assez petit de types d'inclusion
intéressants.

26) Voir la note 8 de l'introduction.
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Comme la diagonale principale d'un sous-groupe (H) paraît jouer un
certain rôle dans cette étude, il me semble utile d'établir d'abord une
propriété de la diagonale principale des sous-groupes semi-simples de

rang maximum du groupe G, bien que cette propriété ne rencontre dans
les pages suivantes aucune application.

12. Un théorème sur les sous-groupes de rang maximum.

Théorème 7. Soient © un groupe de Lie semi-simple clos de rang A,

et ©' un sous-groupe de ©, semi-simple, de rang X ; alors la diagonale
principale de ©' ne contient aucun élément régulier.

La démonstration doit d'abord être donnée pour les groupes simples,
sous la forme du lemme suivant :

Lemme. Soient q>l9 <p29.. .9<pl9 l paramètres angulaires fondamentaux
d'un groupe simple G, et cd m1q>1 -{---- -\- ml(pl le paramètre angulaire

dominant de G. Soit i un indice tel que mt soit un entier premier
supérieur à 1 ; alors la droite R1 d'équation :

<Pi 92 * • • 9V-i <P%+\ • - <fi — co

est singulière.

Remarquons que G ne peut être le groupe simple Ax, dont le paramètre
angulaire dominant co est co cpt + (f2 ~f~ * * * + <Pi (mi tous égaux ai).
L'équation de R1 s'écrit :

1 + m1 H h m,_x + mt+1 H \- mx

La démonstration du lemme s'effectue en vérifiant pour chaque groupe
simple (At exclu) que a% est un entier, et qu'il existe un paramètre angulaire

œ de G qui s'annule identiquement sur R1, considérée sous la forme
(1). Par exemple, pour Bt : co 2(p± + 2cp2 + • • • + %<Pi-i + <Pi \ ®i

a2 • • • al_1 1—1; 7ô <px + cp2 ~\ \- <pl9 etc.
Passons à la démonstration du théorème 7 : soit ©" un sous-groupe de

rang A de © tel que ©' soit maximum dans ©". Si R1 est singulière dans

©", elle est aussi singulière dans ©. Je peux donc supposer que ©' est
maximum dans ©.

Soient G1}G2,.. ,,Gk les sous-groupes invariants simples de ©,
#!,..., och lx paramètres angulaires fondamentaux de Ol9 pl9...9f}l2
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l2 paramètres angulaires fondamentaux de G2,..., yx,..., ylk lk
paramètres angulaires fondamentaux de G ; soient co1,..., œk les paramètres
angulaires dominants de G1,G2i.. .,Gk respectivement ; soit enfin :

oct >0 (t 1,2,...,?!); pt >0 (* 1, 2, Z,); ...;
y, >0 (i l,2,...,Zfc);
&>! < 1 ; co2 < l ; ; cofc < 1

le polyèdre fondamental de ©, désigné par P(©).
©' étant maximum, il existe un élément x de © tel que ©' soit le

normalisateur connexe de x21) ; on peut supposer que x appartient à

P(©) ; ©' étant semi-simple, x est un sommet de P(©) ; soient:

• • • ylh 0 ; ^ -—

les coordonnées de x ; mt est un entier premier supérieur à un. Les
paramètres angulaires fondamentaux de ©' sont alors :

<*i > • • • > <*t-i > at+i > • • • 9 och, — œ1, px,. Ph,..., yt,..., ylk

et l'équation de la diagonale principale de ©' s'écrit alors

<xx at-1 — a>1 aî+1 • • • och px • • ylJc t>0
ou:

ocx • • • a1_1= al+1 • • • <xh /?! • • • ylk t

_ l+m1 + ..-+ m,.! + ml+1 + • • -+mh
0Ci — — Ojv a — ~ ¦ ~-~~~~~—

mt
h

D'après le lemme, il existe un paramètre Z Vi&t qui s'annule identique-
i

ment pour les valeurs des <xt données par (1) ; autrement dit, il existe un
paramètre angulaire de ® qui s'annule identiquement sur JS1, et la
démonstration est achevée.

13. Sur les sous-groupes (H) d'un groupe clos. L'hypothèse (H) permet
d'établir facilement quelques théorèmes.

Proposition 1. Soient G un groupe de Lie clos, et Gx un sous-groupe (H)
de G ; le centre de Gx est Vintersection de Gx et du centre de G.

Soit Z(G) le centre de G ; si x e Z(G) <^Gl9 on a x €Z{GX) ; inversement,

soit xeZ(G1); si xeZ(G), Gx appartient au normalisateur

27) A. Borel et J. de Siebenthal, Les sous-groupes fermés de rang maximum des
groupes de Lie clos (Comment. Math. Helv. 23, 1949, corollaire du théorème 5, p. 214).
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N(x), qui est un sous-groupe de G ayant même rang que G, distinct de G ;

cela contredit l'hypothèse faite sur Gx ; donc

(1)

En particulier, si G est semi-simple, tout sous-groupe (H) de G est aussi
semi-simple.

On peut modifier la formule (1) de façon à faire apparaître le toroïde Th,
maximum dans Gx ; en effet, soit Tl un toroïde maximum de G contenant

Th ; l'intersection Tl ^ Gx se réduit à Th § 4, n° 1) Th Tl^Gx.
Or, ZiGJcT* et Z(G)cTl; soit x€Z(G)r,G1; on a x eZ{G)r, Th;
de plus, xeZ{G)rsTh entraîne x€Z(G)^G1; donc : Z(G)^ G1

Proposition 2. Soient G un groupe de Lie clos, et Glf G2 deux sous-groupes
propres de G tels que G1cG2, Gx étant un sous-groupe (H) ; alors les rangs
de 6rx, G2, G forment une suite croissante.

Supposons que le rang de G± soit égal au rang de G2 ; soient Th un toroïde
maximum de Gx (Th est aussi toroïde maximum de G2), et Tl un toroïde
maximum de G, tel que Th c Tl. On a : Z{GX) c Th, Z(G2) c Th, Z(G) c Tl.
Comme Gx et G2 n'appartiennent à aucun sous-groupe de rang maximum,
on a : Z (Gx) =Z(G)^ Th, Z (G2) =Z(G)r^ Th, soit Z (Gx) Z (G2).

Gx est ainsi un sous-groupe de G2, ayant même rang, et même centre ;

d'après un théorème établi antérieurement28), Gt et G2 sont identiques.
En supposant Gt ^G2i on a nécessairement r(G1)<r(G2). G2 étant un
sous-groupe (H) de G, on a de même r(G2)<r(G).

Une conséquence immédiate de la proposition 2 est :

Soit Gx c G2 c Gz c • • • c G une suite croissante de sous-groupes de G,
le premier Gx étant un sous-groupe (H) de G ; alors les rangs de ces sous-

groupes forment une suite croissante

r(O1)<r(6a)<r(G8)<- • * <r(G)

Proposition 3. Soient G un groupe de Lie clos semi-simple de rang l, et

Gt un sous-groupe (H) de G ; tout paramètre angulaire de G est une
combinaison linéaire à coefficients entiers des éléments du tableau I (G, Gt).

28) cf. note 27, théorème 5, p. 214.
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G étant semi-simple, et Gx un sous-groupe (H) de G, Gx est aussi semi-
simple. Considérons le sous-groupe G1 de rang l de G dont les paramètres
angulaires sont toutes les combinaisons linéaires à coefficients entiers
contenues dans S (G) des éléments des tableaux I et I'. Tous les sous-

groupes gp, g € £(Gt) de Gx appartiennent à ce sous-groupe29) ; par
conséquent, comme Gx est semi-simple, GxcG'. On a donc nécessairement
G Gr9 c'est-à-dire que les combinaisons linéaires à coefficients entiers
des éléments des tableaux I et F contenues dans E(G) recouvrent E(G).
D'après le théorème 6, il en est de même des combinaisons linéaires à

coefficients entiers des éléments du tableau I ; c'est ce qu'il fallait
démontrer.

En particulier, le tableau I contient l paramètres angulaires indépendants.

14. Sur la diagonale principale d'un sous-groupe (H).
L'examen de la diagonale principale d'un sous-groupe (H) montre que

celle-ci ne peut occuper qu'une position très particulière dans le

diagramme du groupe G ; de plus, les paramètres angulaires du tableau I
prennent une forme spéciale ; de façon précise :

Théorème 8. Soient G un groupe de Lie clos, Gx un sous-groupe (H) de

G ; alors la diagonale principale de Gx est une diagonale de G.
De plus, si cette diagonale est définie par <p± • • • (pk 0,

cpk+1 (pt dans G et par gx • • • çh dans Gl9 tout paramètre an-
i

gulaire de G associé à l'un des q19 gh est delà forme (pk+J -f X ml^l,
les mt étant des entiers non négatifs. l=1

La diagonale principale R1^ de Gx, d'équation qx • • • gh t > 0

appartient à un angle polyèdre fondamental P(G) de G au moins, qu'on
peut supposer défini par <px > 0,.. (pt > 0, <px,..., <pl étant l
paramètres angulaires fondamentaux de G. Soient cp±,..., q>k ceux de ces

paramètres qui s'annulent identiquement sur jR1.

Soient ocl9..., ocni ; pl9.. /JWî ;.. ; yl9. ynh les suites respectivement

associées à q± £2,..., gh ; chaque paramètre angulaire de la suite
<kx /?!,..., ynh est une combinaison linéaire à coefficients nuls ou de

même signe de <p1,..., cpt. Sur tout point z de R\, on a qx > 0,...,
Qh > 0 soit oc1>0,. /?!>(),..., ynh>0. Les paramètres angulaires

oc1,..., /?!,. ynh sont des combinaisons linéaires à coefficients entiers
non négatifs de <pl9.. .9<pt. Considérons par exemple :

29) § 5, No 4.
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«x m1(p1 H h mk<pk + mk+1<pk+1 H h mlq>l

et soit z le point de i2+ tel que qx(z) • • • gh(z) 1. Les paramètres
angulaires q>x,..., q>% prennent sur z des valeurs entières, car z

appartenant au centre de Gx appartient au centre de G, d'après l'hypothèse
(H) et d'après la proposition 1 ; ces valeurs sont de plus non négatives,
vu que z e P(G). On a (px{z) • • • <pk(z) 0 et certainement <pk+i(z)
=£ 0, sinon on aurait identiquement (pk+j 0 sur jR1. En résumé, sur z

1 m>k+i<Pk+i(z) H Vi^iVi(z)

(<pk+j(z) entier positif, mk+j entier positif ou nul). Parmi les mk+j, qui ne
sont pas tous nuls, un seul n'est pas nul, égal à 1 ; le facteur <pk+j(z) qui
l'accompagne est lui-même égal à 1. Ainsi, ocx est de la forme cpk+j

k

+ EntiVi ; il en est de même de oc2,..., f}x,..., ynfi.
i

D'après cela, on a sur R1 : q>x • - - <pk 0, et l'égalité des cpk+j

qui figurent dans l'expression de ocx,..., px,.. yn% ; mais si cpk+1 par
exemple ne figurait pas dans ces expressions, G ne pourrait être un sous-

groupe (H). En résumé, on a sur R1 : cpx • • • <pk 0, (pk+1 • • • <pt

et cette droite est une diagonale de G, ce qui achève la démonstration.
Le chapitre suivant est basé sur une conséquence importante du

théorème 8 :

Proposition 4 : Si la diagonale principale d'un sous-groupe (H) est

régulière, les paramètres angulaires du tableau I forment une permutation
de (px, (p2,..., cpi.

En effet, si i?1 est régulière, on a k 0, et les paramètres ocl9...,
Pi 9 • • • 7nh son^ de la forme <p±,..., cpl ; comme deux paramètres du
tableau I ne peuvent être identiques, et que la suite ocl9..., pi9..., ynfi
contient l paramètres angulaires indépendants (d'après la remarque relative

à la proposition 3, la suite ocl9...", pl9. ynh est nécessairement

une permutation de <pl9..., cpl, et la proposition est établie.
Je désigne par sous-groupe (H)k un sous-groupe (H) dont la diagonale

principale est de la forme cpx • • • <pk 0, cpk+1 ==•••= 9^. Alors,
un sous-groupe (H) à diagonale principale régulière est un sous-groupe
(H)o. L'étude des sous-groupes (H)o est notablement plus simple que celle
des sous-groupes (H)k>0 ; cela est dû au fait que le centralisateur de la
diagonale principale du sous-groupe est un toroïde maximum.
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CHAPITRE III
Sous-groupes (H)o de rang supérieur à un

§ 9. Yeeteurs du diagramme de Gv Suites orthogonales

1. Soient G un gioupe de Lie clos semi-simple de rang Z, et Gx un
sous-groupe (H)o de G. Le tableau I (G, Ox) contient exactement l
paramètres angulaires q>x,..., q>t, fondamentaux pour G.

£i : <%i > «2 > • • • «m

Qh '' Yl > 72 • • • Ynh

Ainsi, la figure de Schlafli ^(G) doit être appliquée convenablement sur
ce tableau. Remarquons que le produit scalaire de deux vecteurs quel-

conques extraits de ocl9..., /Sx,..., ynh est négatif ou nul, et que tout
paramètre angulaire de G est une combinaison linéaire à coefficients
entiers nuls ou de même signe de oc1,..., ocni, f$x,..., ynji.

2. Comparons les vecteurs qt aux vecteurs ocx,..., px ynh.
D'après la remarque faite à la fin du § 5, on a par exemple :

Proposition 1 : Le vecteur q est une combinaison linéaire à coefficients positifs

des vecteurs qui lui sont associés.

En effet, g t étant une combinaison linéaire de oc 1,. oc n est un
vecteur du sous-espace engendré par oc l9..., ocn. Ces vecteurs étant
indépendants forment une base, et les composantes du tenseur métrique dans

cette base sont : al} — oc% • oc0, avec at3 < 0 (i =£ j). D'après un lemme de

Stieltjès30), on a a1?* > 0. Cela étant, les composantes covariantes at

de q dans le repère envisagé sont q • at q\ et sont toutes positives ;

les composantes contravariantes a1, données par a1 alla} sont encore
toutes positives, et la proposition est établie.

30) Stieltjes, Oeuvres complètes, t. 2, LU, p. 73—75.
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3. Longueur du vecteur q On peut facilement évaluer la longueur du

vecteur q associé aux vecteurs col5..., œn lorsque ceux-ci ont la même

longueur, égale à l'unité.

Proposition 2. Soient <xl9 oc2,-..» ocn les vecteurs associés au vecteur qx

de G1\ si \ oc1\ =| <xa I • "=l «ni *> a^°rs on a (l) \ Qi\ < —7=-

Végalité n'étant atteinte que lorsque les oc t sont orthogonaux deux à deux.

Avec les notations précédentes, on a q \ Z atJ Xt k3 ; or Àt — Ai q l
d'où ~Ql-~el (27a*J), soit :

s= ZatJ at3 (xt
->

¦ «,

Pour établir la relation proposée, il suffit de montrer qu'on a Z o>%1 > n ;

comme les ai? sont positifs ou nuls, on peut se borner à établir la relation
Z ali > ^, ou encore alt > 1. On a par exemple :

i
a9

/F.11 — -
I «., I ^

Or A alxD + a12A12 + - - - + Q>\nAXn ; les mineurs AtJ sont positifs
ou nuls, et les coefficients atj sont négatifs ou nuls. On peut poser (an 1

D k
A — D — k ; k > 0 ; D zl+&; —r — l -\—-r- > 1

— A A ~
Maintenant, si l'un des ati (i ^ j) n'est pas nul, l'un au moins des alJ

(i zfi j) est positif, sinon (a17) est une matrice diagonale, ainsi que son
inverse (atJ).Ona Zau > n et Zat1 >n-

4. Les paramètres angulaires de G peuvent être facilement comparés
à ceux du sous-groupe Gt considéré, à l'aide du théorème suivant :

Théorème 1. Soit co un paramètre angulaire de G; il existe un
paramètre angulaire q de Gx tel que co soit une combinaison linéaire à coefficients
entiers nuls ou tous de même signe des paramètres angulaires de G associés

àg.
Comme le support Rh du diagramme de Gt contient un élément régulier,

o) ne s'annule pas identiquement dans Rh, et se réduit dans Rh à une
forme linéaire ëô ; êô 0 définit un (h — l)-plan de Rh. On a
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ml(p1

m1,m2i..., mz entiers > 0

m[, m'2,..., m'h entiers non tous nuls, > 0

Deux cas doivent être distingués :

(a) ~co 0 coïncide avec l'un des (h — l)-plans qt 0 du
diagramme de Gx ; on peut supposer qu'il s'agit de qx 0. Alors gx 0

entraîne co 0 quels que soient £2•> • • • > £a î il en résulte m2 • •• mrh

0 et co m!lQ1, eu ^i^Xj + • • • + wWlani. Le théorème est vérifié
dans ce cas.

(b) co 0 ne coïncide pas avec l'un des gt — 0 ; on peut supposer
£i> (?2>- • -> Qh choisis en sorte que ~cô s'annule en un point intérieur à

qx > 0,..., Qh > 0 ; l'expression donnée ci-dessus pour co prouve que cela
n'est pas possible. Seul le cas (a) peut être envisagé et le théorème est
établi.

Corollaire. Tout paramètre angulaire de G se réduit dans Rh à un multiple

non nul d'un paramètre angulaire de Gt.

5. Soient qx et @2 deux paramètres angulaires du tableau I
(qx £2 c ^(Oj)) et »1,oc2,...9(xni; (tx, /?2,..., $n% les suites respective-

ment associées ; que peut-on dire des vecteurs oc ±,.. oc Wl, &,..., fin2

lorsque q x et g 2 sont orthogonaux

Proposition 3. Si les vecteurs q{ et qi du tableau I (G, Gt) sont orthogonaux,

alors tout vecteur associé au premier est orthogonal à tout vecteur
associé au second.

En effet, g x et q 2 étant orthogonaux, qx + £2 n'est pas un élément de

Z((?!). Si oc j, par exemple, n'est pas orthogonal à px, on a oc1-fi1<O et
<%! + & appartient à E(G). Mais 04 + /?x se réduit dans Rh à ^ + £2

qui n'est pas le multiple d'un paramètre angulaire de Gx. otx est néces-

sairement orthogonal à /?x ; comme on peut faire ce raisonnement pour
tout couple ott, pj, la proposition est établie.

Il est facile de donner une démonstration qui n'utilise pas le théo-

rèmel;ona e1=A1a1H V Kx^ni et Q2 ^ipi-\ h y>n$nV
les coefficients Aj,..., Àni, ju1,. jun2 étant tous positifs (proposition 1).
Formons le produit scalaire

239



gx-g2 S Xt^3oct-p3

Les produits oc t - p} sont tous négatifs ou nuls, tandis que les coefficients

XtiA,3 sont positifs. Alors : (1) g x
• g2 0 entraîne (2) oc t -Po 0 quels

que soient i et j. Remarquons que (2) entraîne (1).

6. Proposition 4 : Si G est simple, il en est de même de tout sous-

groupe (H)o.

En effet, si le sous-groupe Gt semi-simple n'est pas simple, la suite

Ql9 gh se décompose en deux suites partielles gx,.. gh, et

Q hf+i>- - • > Q h > tout vecteur de la première étant orthogonal à tout
vecteur de la seconde. Alors, d'après la proposition 3, tous les vecteurs

associés aux vecteurs g ±,..., g h, sont orthogonaux à tous les vecteurs

associés aux vecteurs g h,+1,..., g h ; G serait semi-simple, ce qui est
contraire à l'hypothèse. Gx est bien simple.

§ 10. Couple de suites non orthogonales

7. Si les vecteurs gt et g2 ne sont pas orthogonaux, la somme g

Qi H~ £2 es^ un paramètre angulaire de Gx. Je me propose d'étudier les

suites associées aux paramètres angulaires gx, g2 et qx + g2 ; soit donc
le tableau restreint:

q1: ocx, oc2,..., ocn%

Q2 : Pi -> P2
•> • • • 5 Pn2

g : œl9 co2,. wn

Comme gx • g2<0 la position relative des deux vecteurs gt et g2
est donnée par l'un des trois graphiques suivants:

Fig.3

On peut, en changeant au besoin les notations, supposer que g x et g
ont la même longueur ; l'opération de 0 (GJ qui produit dans Rh la
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symétrie par rapport à q2 0 applique alors q1 sur q Le nombre des

paramètres angulaires associés à q± est égal au nombre n des paramètres
associés à q L'opération a de 0 {GQ2) associée à la symétrie précédente
applique la suite <xl9 oc2,..., <xn sur la suite coj, co2,..., con ; je choisis
les notations en sorte que a <xt cot. On peut former les relations :

Qi= ^1*1 + 4^2 +• • •+ K&n 4»>0 (i= 1, 2,. w)

A*,>0 (Z 1, 2,. .,r)

8. Considérons la relation a oct coj ; a 8Q ajoute à <%x une
expression Wj ft + • • - + mrpr:

o<x1 œ1 oc1 + m1p1 + mip2 + - - + mri8r (1)

(Xi, Pi,* •., f}r étant extraits de ç>1, ç?2,.. q?t, et le coefficient de ckx

étant positif, les entiers m1, m2,..., mr sont positifs ou nuls ; (1) devient
dans Eh r

Q Qi + Qt(Zmt) (2)
1

d'où Z mt 1 ; ainsi, parmi les nombres ml9..., mr, un seul n'est pas
i

nul, et est égal à un ; je le désigne par m}. On peut écrire

a <%! co1 ocx + p3 (3)

Supposons qu'il existe un paramètre p% tel que <xx + P% co2. D'après
la relation (3), on a o>2 o* <x2 oc2 + ^,, et ax + j8t oc2 + jfft/, avec

i yéz if, mais cette relation est impossible, puisque les paramètres oclt Pt,

oc2, pt, sont indépendants. On peut énoncer :

Proposition 5 (a). Etant donné un vecteur <xt associé à glt il existe un

vecteur p0 associé à q2 et un seul tel que oct-p3<0.

Remarque : le raisonnement précédent montre que, étant donné un

vecteur oot associé à g, il existe un vecteur oc t associé à q x et un vecteur
-> _>
Pi associé à q 2, la somme des deux derniers étant égale au premier, avec

aoct cot.
J'étudie maintenant la relation qx+ q2 q ; elle peut s'écrire

1 1
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les vecteurs oc x,..., oc n, fa,..., fa étant indépendants ; le second membre

a été écrit en tenant compte de la remarque précédente. Comme pbx,..., /j,r
-> ->

sont positifs, tous les vecteurs fa,..., fa figurent au premier membre ;

->
ils figurent donc tous au second membre. Un vecteur fa donné figure

nécessairement dans l'une des parenthèses ; il existe ainsi un oc t tel que
_^ ->
oc t + P9 s°i^ un vecteur du diagramme. D'où :

_> _>

Proposition 5 (b). Etant donné un vecteur fa associé à q2, il existe au
-> -> -> ->

moins un vecteur oct associé à qx, tel que oct-{}3<O.

Les énoncés 5 (a) et 5 (b) peuvent être complétés par le suivant :

Proposition 5 (c). Les vecteurs fa associés à q 2 sont orthogonaux deux à
deux.

En effet, soient fa et fa deux paramètres angulaires associés à g2 ;

d'après 5 (b), il existe deux paramètres oc8 et oct tels que oc8 + fa co8

et oct + fa œt; d'après 5 (a), fa est l'unique fa non orthogonal à &8.

Ainsi, o oc8 ocs -{- fa donne j s et cr <%g oc8 + ft, w8 ; de même
or oct oct + /?t cot. On a

-> -> —» —> -> -> -> ~^ -> "^
as • at co8 • cot ou: <*«•<**=(««+ ft) Ut + ft)

Comme s -=fct, on a oc8 - fa— 0 oct • fa= 0
y d'où (x,'«t

^s' ^1 + Ps' Pt et & ' fa O quel que soit « ^ f.
Les propositions 5 entraînent le théorème suivant :

9. Théorème 2. Si les vecteurs q1 et g2 extraits de q x q h forment
un angle de 120°, on a:

Autrement dit, la figure de Schlàf li qui représente les suites associées

à gt et à @2 es^ :

En effet, il résulte de l'hypothèse que les vecteurs q x et q 2 ont la même

longueur et qu'ils peuvent être permutés dans les raisonnements précé-
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dents. Alors, les vecteurs d'une même ligne sont orthogonaux deux à

deux, et un vecteur de l'une des lignes est orthogonal à tous les vecteurs
de l'autre, sauf à l'un d'entre eux, c. q. f. d.

Remarque : On a nécessairement n > r, comme le montre la démonstration

de 5 (b).

§ 11. Sur les inclusions possibles

10. Soient G un groupe simple clos, et Gx un sous-groupe (H)o de G,
de rang h ; le but de ce paragraphe est de trouver quand l'inclusion
GxcG est possible en vertu des conditions nécessaires établies au
paragraphe 10, dans le cas où le rang h de Gx est au moins égal à deux. Je
montre d'abord que le sous-groupe G± n'est pas quelconque :

Proposition 6. Parmi les sous-groupes (H)o propres d'un groupe simple
G, il n'y a jamais Vun des groupes Ah, Dh, E6, E7, E8 (h > 2).

I Supposons que G± soit de l'un des types Ah, Dh, Et, avec un rang
| supérieur à un ; alors les vecteurs q t,..., q h ont tous la même

longueur ; ^(G^ opère transitivement sur eux. Si Gx est du type Ah,
2f(C?i) est représentée par la figure 4. Les suites associées ont un

O nombre d'éléments fixe, égal à n. Il résulte du théorème 2 que la
Fig. 4

ggUre (je Sehlafli % (G) a la structure indiquée par la figure 5. Il
ne peut y avoir d'autres traits que ceux qui sont indiqués ; pour deux

lignes associées à Qt et q3 avec q %
• q 3 < 0, cela résulte du théorème 2 ;

o o q si ^ #^ 0, c'est une conséquence de la proposition
I | | 2 du § 9. Ainsi, on a nécessairement n — 1, sinon G

9 9
| n'est pas simple. Un raisonnement analogue peut être

i - i
j appliqué aux cas Dh et Et, c. q. f. d.ii 1 Gx est nécessairement de Vun des types Bh, Ch, jP4, G2.

q q o Remarquons que la proposition 6 est évidente pour Gx

plg 5 D2 qui n'est pas simple. Il est commode de séparer
maintenant les cas h — 2 et h > 2.

I. Le rang de Gx est supérieur à 2.

11. A son tour, le groupe G n'est pas quelconque :

Proposition 7 : Tout groupe de l'un des types Bl,Cl, -P4 ne contient aucun
sous-groupe (H)o propre de rang supérieur à deux.
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Le rang de Gx est supérieur à 2 ; je peux supposer
-> -> -> -> -> ->
i£i| —1@2|> £i*(?2<0j £i£t O (i>2); alors la

^ figure de Schlàfli est appliquée sur le tableau I (G, Gx)

comme indiqué dans la figure 6, le contenu des (h — 2)
Fig. 6 dernières lignes n'étant pas précisé. Soit n le nombre des

éléments dans chacune des deux premières lignes ; on ne peut avoir
n > 3, sinon la figure connexe g (G) présenterait plus de deux terminaisons

à deux éléments au moins (Chapitre I, n° 12 (b)). Si n 2, 5(6?)
présente deux terminaisons à trait simple, et G n'est pas de l'un des types
o Bt ou Cx ; comme il y a plus de quatre éléments dans $(G), G n'est

1

pas non plus du type F±. Cela étant, si n 1, chaque ligne associée à
Y Qi > £2 > • • • > Qh ne contient qu'un seul élément ; dans le cas contraire,

1 il se présente la figure 7, la première ligne non marquée contenant
deux éléments au moins. D'après la proposition 5 (a), le dernier

6 point marqué est d'ordre 3 au moins, ce qui ne peut se présenter si

~r~ G est de l'un des types Bx, Cl9 jP4. Mais alors, le rang de G± est égal
au rang de G, ce qui entraîne Gx G. La proposition est établie.

Maintenant, dans la recherche des sous-groupes (H)Q propres de G, de

rang supérieur à deux, je peux me borner à chercher, dans les groupes
simples du type Al9 Dl9 Ei9 les sous-groupes de l'un des types Bh, Ch9 F^.

Il convient de se donner le sous-groupe G± et de chercher les groupes G

tels que G1cG.
Ho

12. Cas où Gl est un groupe simple du type Bh ouCh. 5(GJ est (Fig. 8) :

On a Qi • Qi+i<0 (i 1, 2,. A — 1), sinon Qi-Qj O et

\Qi\ (* 2,3,...,*-l) avec:

^JL ou

O suivant que Gx Bh ou Gx Ch. Le nombre des éléments

Fig. 8 associés à l'un des pyramètres Ci, ç2,..., (fo_i est constant,
égal à n ; soit encore s le nombre des paramètres associés à Qh.

Comme au numéro 11, on ne peut avoir n > 3. En discutant les cas

n 1 et n 2 conformément aux propositions 5, et en se servant

de l'inégalité | q \ < (n ° 3 du § 9), on obtient 5=1 ou 2, et les
Vn

résultats consignés dans le tableau ci-dessous, qui contient aussi l'unique
cas Gx F4.
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Tableau des inclusions 01c0 possibles, le rang de 0^ étant > 2.

1

V2
1

V2

1

V2

1

0i • Çh 9

1

h

Qh-i : 9V-i <Pk+i\ /
Qh : <Pn

1

V2
1

1

*

0i • <F

02 • 9

i y *

0A-1 : Ç>A-1 9^+2

Qh : 9?*—9Vfi

V2
1

1

1

•"A v. ^

0i : 9

03 '

04:

a+j

9?6

Les vecteurs ^ j,..., g h obtenus ont les

longueurs indiquées à gauche de chaque
tableau I (G, Gx) ; ils correspondent bien aux
inclusions indiquées au-dessous de chaque I.

IL Le rang de Gx est égal à deux.

13. Ce cas ne peut être traité comme
précédemment, puisque G1 est nécessairement l'un
des groupes B2 ou G2, les deux vecteurs fon-

4 6 damentaux n'ayant pas la même longueur.
Par contre, on peut faire usage du théorème 1, § 9. Le tableau I (G, Gx) est

I j <?! ;*i>«-•••>«» (r<n)
l 02 • Pi » P2 » • • • > Pr

avec les notations du no 6 (§ 10). Si Gx JS2 ou GX G2, les paramètres
angulaires positifs du sous-groupe envisagé sont respectivement:

01 01 + 02 f 01 01 + 02 ^ 01 + 02

14. Proposition 7f : Tout groupe de Vun des types Bli Clf F± excepté
éventuellement B3, ne contient aucun sous-groupe (H)o de rang 2.

Posons d'abord G Bt ou Cx ; la figure de Schlâfli 5 (G) peut être
appliquée sur le tableau I de deux façons:

(a)

Fig. 9
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Je tiens compte ici des propositions 5 (a), (b) et (c). Dans la première
ligne, chaque figure est contenue dans la suivante ; il en est de même
dans la seconde ligne. Les paramètres angulaires fondamentaux sont
numérotés en partant de l'élément extrême gauche. Alors, avec ces

notations, co 2 (px -f- 2 Ç92 -f- 2 9?3 -f- çu ©st un paramètre angulaire de jB4

2?5, B7,... ; (ligne (b)), qui se réduit à 4^ + 3^ dans le sous-éspace
B2; mais cette forme n'est pas le multiple d'un paramètre angulaire de

2?2 ou de 6?2. Les dispositions indiquées par la ligne (b) doivent être
éliminées.

Pour étudier la ligne (a), je pose co 2(px + ç?2 + 9^3 ~h 9^4> <lui es^

un paramètre angulaire de B5, B6,... ; on a, dans R2, co 4gx + @2>

qui n'est pas le multiple d'un paramètre angulaire de B2 ou de O2. En
résumé, parmi les groupes Bx, seul JS3 contient éventuellement un sous-

groupe (H)o de rang 2. Un raisonnement analogue élimine tous les groupes
C3,C4,..., et#4.

15. Quels sont maintenant les groupes de l'un des types Aly D%, Et
qui peuvent contenir un sous-groupe (H)0 de rang 2

Proposition 8. Les seuls groupes de Vun de types Al9 Dl9 E9, E7, EB qui
sont susceptibles de contenir un sous-groupe (H)o de rang 2 sont As, Aé,
A9,Dt.

G At. Deux dispositions sont possibles (Figure 10) :

O O O O O

Dans une même ligne, chaque figure contient la précédente. Les
paramètres angulaires sont numérotés en partant de l'élément extrême
gauche. Avec ces notations, co q>1 -f- <P% + • • • + Ç>7 est un paramètre
angulaire de ^47, ^8, u49,... (ligne (a)), se réduisant à 5^ + 2^2 dans
jR2. Les groupes A% (l > 7) sont exclus (disposition (a)). Ah doit être

éliminé, car | g x | —— | q 21 -— Seuls restent Az et A6.
y o V 2t

Etudions la disposition (b) ; œ ç?! + Ç>2 + * * * + 9>7 es^ un
paramètre angulaire de J[7, ^48, A9,... se réduisant à 4q1-\- 3q2 dans J?2 ;

A6 disposé suivant (b) ne convient pas, et A5 non plus, comme tout à

l'heure. Seul reste -44.
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En résumé, si un groupe Ax contient un sous-groupe (H)o de rang 2,

on a nécessairement G A9, Aài A6.
G Dt (l > 3). On a D3 Az, qui convient. Pour D4, seule la

disposition où le point triple est seul dans la seconde ligne est compatible
avec les propositions 5. Ces mêmes propositions montrent que D5, D6...
ne conviennent pas.

G Ee, E7, E8. Les figures de Schlàfli montrent qu'il existe dans les

trois cas une terminaison à deux éléments issue du point triple. Il en
résulte que ce dernier ne peut figurer dans la seconde ligne. S'il figure
dans la première ligne, on a les dispositions suivantes Fig. 11

m rrv mr
La dernière ne convient pas (propositions 5) ; les deux autres également
comme on le voit en calculant dans R2 la valeur des paramètres angulaires

dominants des groupes 2?6, E7. La proposition 8 est maintenant
établie.

Tableau des inclusions GX<:G possibles, le rang de Gx étant égal à 2.

Qi ¦ Vi 93

\/
02 : 9^2

1

2

1

V2

0i • 9^2 9^3

i

02 : Vi <P*

1

v<&

1

V2

Qi ¦ fi Va <Pi V*

\ / \/

1

W
i

Q\ '¦ <Pl <P3 <Pi

\i /
Qi '¦ 92

V2

V2

0i • 9^i 9^3

v/
G» c

Les figures q19. gh obtenues correspondent aux inclusions

indiquées, les longueurs | q €
\ ayant été calculées au moyen de la formule

du no 3 § 9. Les deux premières inclusions ont déjà été obtenues au
numéro 12.
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16. En résumé, dans l'étude des sous-groupes (H)o de rang >2, les
conditions nécessaires des § 9 et 10 ont montré qu'il ne peut subsister
qu'un nombre très restreint d'inclusions, présentées dans les tableaux
des numéros 12 et 15. Nous verrons que ces inclusions se présentent
effectivement au chapitre suivant, qui traite des sous-groupes (H)o de

rang un ; dans ce cas, les méthodes du présent chapitre sont inopérantes.

CHAPITRE IV

Sous-groupes (f/)o de rang un

§ 12. Existence des sous-groupes (JJ)0 de rang un

1. S'il existe dans G un sous-groupe (H)o de rang un, le tableau I
relatif à ce sous-groupe est :

Q : <Pi> 92>- —><Pi •

Seules les propositions 1 et 2 du § 9 conservent un sens, sans donner
d'ailleurs de critère. En se servant des méthodes infinitésimales, on peut
montrer que tout groupe de Lie clos semi-simple contient un sous-

groupe (H)o de rang un. Cette proposition est établie dans ce § 12 qui
n'emprunte aux chapitres II et III que la définition des sous-groupes (H).

2. Anneau complexe 5R31). C'est un espace vectoriel complexe, somme
directe de deux sous-espaces 91* et 5R2w. En choisissant dans 9t* une
base S, on peut décomposer 9Î1 en deux sous-espaces R[ et E\, qui sont
respectivement la composante réelle et la composante imaginaire de W.

Soit 27 l'ensemble des racines de 5R ; il est constitué par 2 m formes
linéaires ±/a1(ic),..., ±/v(#) des coordonnées d'un point x variable
dans ffl ; on a : t

les X* étant les coordonnées de x dans la base 8. Les coefficients a{j sont
des nombres rationnels réels.

Il existe un isomorphisme additif de E sur un sous-ensemble Sn de
vecteurs de R[ ; à la racine oc € S correspond un vecteur ha€ Zh, avec :

81) Cf. H. Weyl, Darstellung kontinuierlicher halbeinfacher Gruppen (Math.
Zeitschr., t. 24, 1926, p. 371—375).
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De plus, il existe une correspondance biunivoque entre Z et un
ensemble de 2 m vecteurs en e ,...,e.. e formant une base de
g^2m ceia posé, la structure de l'anneau de Lie semi-simple 91 est définie

par les formules :

[h,
[h,

h']

e_a

0 (h

<x (h) ea

] K

h' € SR') K, ep\

réel;

0

0

si

si

i\

« + PÇZ
OC -f- /S € 2J

En particulier, si

on a

[A, y] ^(fc) Ajc^ - jti^fc) A;e_^ H h pm{h) lm^ - ^m{h) Xme_^

3. Anneau réel B à structure close. Soit 17^ le plan de 5R2m lieu des

vecteurs 6 e^ + 6 e_Mt ; le sous-espace i2 12g + ^t! + * ' + ^m
est un sous-anneau de $R, à structure réelle close ; il engendre un groupe
clos G semi-simple. Les racines de R sont les formes iz/Lt}(x), x e R^ ;

on peut poser: ju>3(x) ivj(x),v}(x) étant une forme linéaire des
coordonnées de x dans la base i8.

Cela étant, le groupe adjoint linéaire de O laisse invariante dans R
une forme quadratique définie positive se réduisant dans R\k S v2j(x).

En posant v0 i h^ on a v^x) — v3 • x x e Rl2.

Je suppose maintenant que ± vx,..., ± ^m son^ des combinaisons
linéaires entières de vx,..., vx, à coefficients nuls ou de même signe.
Alors v1 v2=- • - vt>0 définit une diagonale principale Rt de R\,

et on a gtJ vt • vj < 0 (i # y ; t, y 1,..., Z). En particulier, ^, — ^,
n'est pas une racine de 91.

4. Existence du sous~growpe (H)o de rang un. Soit h e R1; on a

^(h) - - - fil(h) it (t paramètre réel). Posons

y=*i e^ + *i e~^ H h Aj eR + Ij e_lAl {y € R)
ou _ _

y (Ai, A^..., Aj, Aj)

puis _ _
t/' (i Ax, —i Aj,...,i A,, —i A,) (i ^—1)

ces deux vecteurs déterminent un plan II c ilftl -)- • • • + H^. On a
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[h,y] =(itXl9 — i

Le plan 77 est invariant par la transformation infinitésimale h. Maintenant

Comme /jt — fxt n'est pas un paramètre angulaire, on a (i =£ y) :

Peut-on disposer des A, en sorte que [y, y '] € jB1 Etudions le vecteur
_^ i y _^
m Z Xj XjVj. Lorsque A^..., A, varient, o> décrit dans JSj l'ensemble

1 -> ->
des combinaisons linéaires à coefficients positifs de vl9.. .,vl (premier

quadrant). Posons vt • vi gtj (i, j 1,..., l) ; alors g%i > 032). Les
->

composantes covariantes h^ du vecteur h h sont égales, à 1 par
i ->

exemple. Alors: hk Zgki>0, ce qui signifie que h appartient au
?=i _

premier quadrant. Le système Xs Xi W admet la solution Xi *~hï

(j 1,..., Z). Avec ces valeurs de Aj,...^,, on a

[A, y] £y' [A, y'] — ty [y, yf] s h (t, s nombres réels)

ce qui montre qu'il existe un sous-anneau simple r à trois paramètres
dans jR, contenant la diagonale principale R1, avec r J?1 +77, et

jj^ + •# • + nH étant le sous-espace £11^ minimum qui contient 77.

On peut énoncer :

Théorème 1. Soient G un groupe de Lie semi-simple clos, q>x, q>2i.., <fi

l paramètres angulaires fondamentaux de G, ç1 • • • <pt une diagonale
principale R1 de G, ^tTIv% le plan de 72(6?) associé au paramètre q>t ; il existe
dans G un sous-groupe g simple de rang un, tel que R(g) R1 +77.
H<Pi + • • • + 77^ étant le sous-espace Zny% minimum qui contient II.

C'est le théorème 1 du chapitre II qui permet de passer du sous-anneau

r au sous-groupe g. Je dis maintenant que g est un sous-groupe (H)o
de G.

En effet, supposons g c G', G' étant un sous-groupe de rang l de G.

g contient un sous-groupe t à un paramètre recouvert par R1 et t appar-

M) Voir note 30 du chapitre III.
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tient à un toroïde maximum Tl de G ' ; comme t contient un élément
régulier dans G, Tl est l'unique toroïde maximum de G qui contient t et
est précisément le toroïde recouvert par B1. G' est ainsi déterminé par
T1 et par II(Pi,..., IIn ; ç>i, ç>2 > • • • > Ç>z son^ alors des paramètres angulaires

de Gf, d'où G' G, et </ c G. La diagonale principale B1 de </

étant régulière dans G, on a bien g c G. D'où :

Théorème 1/. Tout groupe de Lie clos semi-simple contient un sous-

groupe (H)o de rang un.

Généralisons un peu : si G n'est pas abélien, sa composante semi-
simple contient un sous-groupe (H)0 de rang un, qui est aussi (H)o dans
G, d'où:

Théorème l". Tout groupe de Lie clos non abélien contient un sous-

groupe (H)o de rang un.

Il est avantageux de caractériser les sous-groupes trouvés d'une
manière qui ne fasse pas apparaître le diagramme. Considérons un sous-

groupe (H) de rang un g contenant un élément z régulier dans G. Il existe
un sous-groupe fermé à un paramètre de g joignant l'élément neutre e

à z ; ce sous-groupe contenant un élément régulier est représenté dans le

diagramme Rl de G par une droite qui contient un élément régulier ;

comme g n'est pas contenu dans un sous-groupe de rang l, cette droite
B1 est une diagonale principale de Bl. Si l'équation de B1 est <px cp2

(pt où <p1,..., cpt sont l paramètres angulaires fondamentaux
de G, le plan 77 tel que B (g) B1 + II appartient nécessairement à

Uç, i + • • • + Hn, sinon g est contenu dans un sous-groupe de rang l. En
résumé, un sous-groupe (H) de rang un qui contient un élément régulier
est un sous-groupe (H)o de rang un, et est représenté par la diagonale
principale B1 dans B1.

Théorème V". Tout groupe de Lie clos non abélien contient un sous-

groupe (H) de rang un contenant un élément régulier.

Dès maintenant j'appelle sous-groupe principal un tel sous-groupe de

rang un.

§ 13. Propriétés des sous-groupes principaux

5. Un sous-groupe principal contient un élément régulier et n'est pas
contenu dans un sous-groupe de rang maximum de G ; ces propriétés
sont invariantes par tout automorphisme ; donc, tout sous-groupe déduit
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d'un sous-groupe principal par un automorphisme est encore un sous-

groupe principal. Il se trouve même que les sous-groupes principaux
forment une seule classe de sous-groupes conjugués.

Théorème 2. Deux sous-groupes principaux sont conjugués.

Soient g1 et g2 deux sous-groupes principaux dans le groupe G ;

considérons deux toroïdes T\ et T\, maximums respectivement dans g1 et g2 ;

ils appartiennent respectivement à deux toroïdes T[ et Tl2, maximums
dans G, conjugués dans G ; soit a Fautomorphisme intérieur de G qui
applique T\ sur T\ ; a applique g2 sur un sous-groupe simple de rang un,
et T\ sur T\ c T[. On peut donc supposer T\ et T\ dans un même
toroïde TK Dans R1 R{Tl), R{T\) et R{T\) sont deux diagonales
principales ; il existe un automorphisme intérieur de G qui conserve Tl
en appliquant T\ sur T\. En résumé, on peut se ramener au cas où gx

et g2 coupent un toroïde Tl suivant un sous-groupe à un paramètre
représenté dans R1 par une même diagonale principale R1.

Soient donc : R{gx) R1 + 77, R(g2) R1 +IIf ; les plans 77 et 77'
sont tous deux contenus dans le sous-espace n<Pi + • • • + nn, les
paramètres q>i,..., <pt étant fondamentaux, et ç?x • • • <pt étant l'équation

de U1.

Considérons le repère tpl9.. .f<pt de R1, et soit v rx çpx + • • • + fl q>t

un vecteur de jB1 (z^X)). En adoptant les notations du § 12, on voit
qu'il existe dans Tl deux vecteurs

(Al5 Ai,..., A,, Â|) et- (i X1, — %Jl9. ..,i A,, — i Â, (1)

dont le crochet est v, avec Xt Àt rt. De même, il existe dansII' deux
vecteurs

(A(, Âj,..., A7,, X;j et (i A(, -i ^,...,i A;, -i k\) (2)

de crochet sv, avec s>0, A^ Aj sr^; alors il existe dans 77' deux

vecteurs (s~* A{,..., s~* A,), (**"* A{,...,— is~* Aj) de crochet tT.

Je désigne ces deux vecteurs par la notation (2). Ainsi, on a %5 A, Aj Ay

Les nombres A^ et Aj ont le même module ; il existe Z nombres réels

vx,..., vl tels que Aj e27Tivi Xt ; de plus, on peut trouver dans 72* un
point y tel que ç>, (y) v3-. Alors Fautomorphisme intérieur déterminé

par y applique les vecteurs (1) sur les vecteurs (2) et gx sur g2. Ces deux

sous-groupes sont bien conjugués.
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6. L'existence des sous-groupes principaux permet de formuler
autrement l'hypothèse (H)o.

Théorème 3. La condition nécessaire et suffisante pour qu'un sous-

groupe G1deG soit un sous-groupe (H)o est que Gx contienne un sous-groupe
principal dans G.

La condition est suffisante : Soient g et Gx deux sous-groupes de G tels
que g cG1, g étant un sous-groupe principal dans G. Tout d'abord,
Gx est un sous-groupe (H) de G, sinon g serait contenu dans un sous-

groupe de rang maximum l de G, ce qui n'est pas. Maintenant, un sous-

groupe G[ de (tx qui contient g a nécessairement un rang inférieur au rang
de (proposition 2 § 8) ; donc g n'est pas contenu dans un sous-groupe
de Gx ayant même rang ; g est un sous-groupe (H) de Gt. La diagonale
principale de g est ainsi une diagonale de G±, et comme elle est régulière
dans G par hypothèse, elle est aussi régulière dans Gx ; c'est une diagonale
principale de 6?!. Ainsi, la diagonale principale de Gx est régulière, et Gx

est un sous-groupe (H)o de G.
Cette démonstration entraîne la remarque suivante :

Remarque : Si g c Gx est principal dans G, g est principal dans Gx.

La condition est nécessaire : Considérons un sous-groupe Gx sous-groupe
(H)0 de G ; je dis que Gx contient un sous-groupe principal de G. Soit g un
sous-groupe principal dans Gx ; la diagonale principale R1 de g admet l'équation

Qx - - - (jh, où qx Qh sont h paramètres angulaires fondamentaux

de Gx. Comme Gx est un sous-groupe (H)o de G, q± • • • gh
entraîne 9?j • • • — çpl où <pl3. <pl sont l paramètres angulaires

fondamentaux de G ; ainsi jB1 est une diagonale principale de G, et q e R1

est une combinaison linéaire à coefficients positifs de y x,.. cp l. Soit
R(g) R1 -\- IJ; II appartient au sous-espace /7pi + • • • + nph qui est
lui-même contenu dans le sous-espace II<Pi + • • • + nn ; ce dernier est

de plus le sous-espace £IIn minimum contenant i7, sinon q ne pourrait
être une combinaison linéaire à coefficients positifs de q>l9. <pt. De là
résulte g c G, et g est un sous-groupe principal de G.

Remarque : Un sous-groupe g principal dans un sous-groupe (H)o de G

est principal dans G.

7. Théorème 4. Soient G Gf -f @f/ + • • • un groupe de Lie clos,
G ' étant la composante connexe de Vêlement neutre, Gn une autre composante
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connexe, et g un sous-groupe principal de G'.II existe dans Gff un élément x
échangeable avec chaque élément de g.

Il existe dans Qn un élément y tel que l'automorphisme déterminé par
y laisse invariants un toroïde maximum Tl de G* ainsi qu'un angle
polyèdre fondamental dont la diagonale principale est celle de g ; cet
automorphisme laisse donc invariants Tl et chaque point d'une diagonale
principale R1 de G. Il applique le sous-groupe principal g, de diagonale
principale R1 sur un autre sous-groupe principal g' de même diagonale
principale. Or, g et g1 sont conjugués dans G' ; il existe dans Tl un
élément a tel que (pa applique gf sur g ; <pay applique Tl sur lui-même,
conserve g et chaque point de R1 ; de plus, il induit dans le plan II tel que
R(g) jR1 + II une certaine rotation ; on peut trouver enfin dans Tl
un élément 6 tel que <pbay ait les mêmes propriétés que <pay en induisant
dans II la rotation nulle. L'élément x bay est échangeable avec
chaque élément de g, et appartient à Gn'.

§ 14. Applications

8. Sous-groupes principaux maximums.

Proposition: Soit G un groupe de Lie clos ne contenant aucun sous-

groupe (H)o de rang supérieur à un. Tout sous-groupe principal de G est

maximum.

En effet, soit Gt un sous-groupe connexe de G contenant le sous-groupe
principal g; d'après le théorème 3, Gx est un sous-groupe (H)o de G,
nécessairement identique à g d'après l'hypothèse, c. q. f. d.

Remarque : Un sous-groupe principal dans Vun des groupes Bt, Cl, F^
est maximum (Bs exclu). Cela résulte de la proposition précédente et des

propositions 7 et 7 ' du chapitre III. On voit ainsi qu'il existe des groupes
simples clos de dimensions aussi grandes qu'on le veut dans lesquels existent
des sous-groupes simples à trois paramètres non contenus dans un sous-

groupe propre de dimension supérieure.

9. Sur Us inclusions BhcDh+1, BhcA2h, OhcA2h^1, FécEQ. Soit
G G' + G" H l'un des groupes Dh+1, A2h, A2h^.1} E% ; chacun
d'eux contient une composante connexe G " ne contenant pas l'élément
neutre, avec, dans cette composante, un élément y déterminant un
automorphisme ay ; cet automorphisme conserve un toroïde maximum Tl de

G', un angle polyèdre fondamental P(G) yx > 0,..., yl > 0, chaque
point de la diagonale principale Jî1 d'équation q>t • • • (pt, et produit
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sur les paramètres angulaires fondamentaux une permutation involutive
(Chapitre I, 12 (d)). D'après le théorème 4, il existe dans G " un élément x
tel que ax produise dans R1 les mêmes effets que ay, en laissant invariant
chaque point d'un sous-groupe principal g de G, de diagonale R1.

Considérons le sous-groupe Gx de G ' formé des éléments échangeables
avec x. Comme il contient g, c'est un sous-groupe (H)o de G' ; R(Gt)
coupe R1 suivant l'ensemble des solutions du système obtenu en égalant
les paramètres cpt qui sont permutés par ax, c'est-à-dire suivant le sous-

espace Rh étudié au chapitre précédent. Gx est ainsi un sous-groupe (H)o
de rang h. Or les paramètres angulaires fondamentaux d'un tel sous-

groupe sont les formes linéaires obtenues en considérant les valeurs dans
Rh des paramètres ç?x,..., <pt. Le tableau I relatif au sous-groupe Gx est
ainsi précisément le tableau trouvé au § 11. Les inclusions de diagramme
considérées alors correspondent bien à des inclusions de groupes.

10. Sur Vinclusion G2 c Bz. Montrons que le groupe B3 contient un
sous-groupe (H)Q du type G2. Les paramètres angulaires fondamentaux
de Bz peuvent être choisis ainsi :

où ± Tt, zb Tt ± r3 (i ^ j ; i, j 1, 2, 3) sont les paramètres angulaires

de B3 sous la forme habituelle. Le plan R2 défini au § 11 admet
l'équation (p± <pz, soit xx + t2 + r3 0. Les matrices de Bs qui
représentent les éléments de R2 sont de la forme

r> a \ / cos 2 7t r, — sin 2 rc t. \
D2 I ' J \sm2jrT, co8 2tit} J '

/
avec

0 D3/

Or, ces matrices appartiennent à une représentation linéaire orthogonale

réelle du groupe G2. Ainsi, le groupe jB3 contient un sous-groupe G2

qui coupe ï73 suivant un toroïde T2 recouvert par le plan R2 d'équation :

(px (pz. Les paramètres angulaires de ce sous-groupe sont parmi les

formes linéaires obtenues en réduisant les paramètres angulaires de BB

dans le plan R2, c'est-à-dire en tenant compte de <px — ç?3 dans
l'ensemble :

it { 9^2 9^2 ~i~ 9^3 ^ 9^i ~^~ 9^2
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On

±

obtient

II
Ql \~ Q2 2

£i + £2

01 + 02

Les paramètres angulaires fondamentaux du sous-groupe étudié sont
visiblement qx et q2 i Ie tableau I est dans ce cas

2- 9>2

ce qui signifie que le sous-groupe étudié est un sous-groupe (jHT)0 de J?3.

L'inclusion O2 c B3 signalée comme possible au § 11 est effective.

11. Sur les inclusions G2 c A$ et (?2c54. D'après les numéros 9 et
10, le groupe AQ contient un sous-groupe (H)o du type B3, qui contient
à son tour un sous-groupe (H)o du type G2 ; un sous-groupe principal
dans G2 est principal dans Bz, donc principal dans A6. Il en résulte que
A6 contient un sous-groupe (H)o du type G2, et que l'inclusion mentionnée

au § 11 est réelle. Ce même raisonnement s'applique à l'inclusion
(î2cD4, car D4 contient un sous-groupe (H)o du type jB3. On pourrait
aussi utiliser le raisonnement fait au numéro 9, en considérant la composante

connexe de D4 qui produit sur la figure de Schlàfli SK-DJ une
permutation circulaire des trois points distincts du point d'ordre trois.

(Reçu le 16 octobre 1950.)

256


	Sur les sous-groupes fermés connexes d'un groupe de Lie clos.

