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Expansion of the Hypergeometric Function
in Series of Confluent Ones and Application
to the Jacobi Polynomials”

By Francesco G. Tricomr

1. The corner-stone of this paper is the use of an expansion of the
confluent hypergeometric function :
& (@) 2™

. —_ o =y = —
Pla,c;z)=aF1@5050) = F 0

in series of Bessel functions, which I first gave in 1941 in the case of the

Laguerre polynomials 2) and which I later on generalized and improved 3).
If we introduce the useful abbreviation

o (____ x)m

B, (0) =2~ ,@Ve) = ¥ e &)

and designate by A4,,(k,l) the coefficients given by the generating
function %)

S A,k )am =k (12t (12t (2] <1)  (2)
m=0

the said expansion can be put into the simple form

—z/2 - "
T @@ o9 =S4 (k:5) (5) Bematba),  k=f a0 ©)

In the papers quoted I have above all emphasized the asymptotic
character of the previous expansion as k£ —oo but I have also shown
that the series converges even in the usual sense at least as long as

1) Research sponsored by the Office of Naval Research.
2) Sviluppo dei polinomi di Laguerre e di Hermite in serie di funzioni di
Bessel, Giorn. Ist. Italiano Attuari 12 (1941), 14—33.

3) Sulle funzioni ipergeometriche confluenti, Ann. Mat. Pura Appl. (4) 26
(1947—1948), 141—175; Sul comportamento asintotico dei polinomi di La-
guerre, Ibidem (4) 28 (1949), 263—289.

%) These coefficients are thoroughly studied in my paper: A class of non-ortho-
gonal polynomials related to these of Laguerre, in progress of printing in
the new Journal d’Analyse Mathématique (Jerusalem).
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0 < x<4k. Now I have seen that, better still, the series (3) ¢s alwdys
convergent in the entire x-plane.

To prove this it is sufficient to proceed in a very similar manner to
the method used in the case of the Neumann series?).

In fact, since

B, (x) =1,(+_|_1)[1 +O0(l»|™)] F—(m%y:ml"“[l + 0 (mY)],
given a series of the form
mj;:;o 2" By, (2) (4)
we have
| @ By (2) [V i;n—”‘— el—)logm/m [ | O (m—1)Jim
and consequently
Tim | ap Bac (2) [ = Tim | 2 "

and this shows that the series (4) has the same circle of convergence as
the associated power series

0

E _a_m_ m (5)

In particular the series (3) is always convergent because the power series
o0 zm
E Am (k ’ l) s
m=0 m

has an infinite radius of convergence since the series without m!, i. e.
the series (2), has the radius of convergence unity.

We notice further that the coefficients A,, satisfy the recurrence rela-
tion
m+1)4, ,,=m+2l—1)4,_,—2k4,_,, (m=2,3,...) (6)
and that the first of them are:

Ag—=1, A, =0, A, —1, A3=—~~§—k, A, = l(l2 1)

|
A5:—2Ic(-3—+—5-),... (7)

2. If we consider that the ordinary hypergeometric function
F(a,b;c; x) can be expressed as the Laplace transform of the func-
tion @, that is

) G. N. Watson, Bessel functions, § 16.2,
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F(a,b;c; ;) (b) == &, [t 1D (a,c;t)], (Reb>0, Res>1) (8)

it immediately occurs to us to seek for /' an expansion analogous to (3).
With a term-by-term integration we have at least formally

F(a,b;c; :) ((z; b}:A ( ,2)2—'»9 [Beb+mE . (kt)] =

__ I'(c) -
=T >

(k —-) o0m Qa1 E . (kD)) .
But

2

I'(c+m)

hence, putting 8 = k/z + 1/2 and with the help of Kummer’s formula
and further simple transformations we obtain (for k = c/2 — a)

by

22z ) 2 L2 (b) c
(a,b,c,m-z—)_(l—i—ﬁ) e m;i_:n O (Ic )(2k) D (c—b,c+m;2).

This result is not merely a formal one because the series on the rigth
side converges like a power series as long as

lz[<2|k]| . (9")

In fact, for reasons similar to those above, a series of the form

Ea P (a,c+ m;z)
m—
has the same circle of convergence as the associated power series X'a,,2™®)
and in our case the power series

® D)y Anlk,c/2)
2 ©Om  @E™

m

has obviously the radius of convergence 2|k |.

However this is not yet sufficient to justify the sign = between both
sides of (9) but this difficulty can be eliminated by observing : i) that we
have surely |4,,| <1 provided that m is large enough ; ii) that — at
least if £ and c are real and positive — by grace of a well-known ine-
quality ?) we have

%) A, Erdélyi, Funktionalrelationen mit konfluenten hypergeometrischen
Funktionen, II., Math. Zeitschr. 42 (1937), 641—670 (§ 10, p. 665).

7) Watson, op. cit. p. 49, form. (1).
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1
I'(c+m) °

Consequently instead of the still doubtful (9) we can write

L 22\ z\° _, "t (O)m c\[ z\™ )
F(a,b,c,m—;)-—(l—l——z-z) e = “(E):A"‘(k’E)("z-E) D(c—b,c+m;2z)+

I'(c) [k b
(2 2 swsten

z
where the function

l -Ec+m—l (k t) l S.

+

c L\™

R,(f)=entr1 3 A, (k , 5) (—5) oy (k1)

if » is large enough and b is also real, is such that

o @2)m @2 & (t2)" goin-t
b _
| Ba(t) ] < €2t 1m§” I'(c +m) < gt I'(c+mn) hé’o h! =# 2" I'(c+mn) -~

Q , ot _I'(b+mn) 2z \b z \®
"/”'/’[e 2" I'(c —{—n)]* I (c + n) (2k———z) (2k ——z)

as nm —oo approaches zero as long as |z |<|2k — 2|, i.e. as long
as Rez<k; hence the expansion (9) is valid at least in the left part of
the circle |z|<2k.

Moreover, considering that inside the circle |z|<<2|%k| both sides
of (9) are analytic functions of z and of the parameters, this last condition
as well as the condition of the reality of ¢, k£, & and the conditions
Re b>0, Re(2k/z) >1 arising from (8) can be disregarded because of the
principle of analytic continuation. The only remaining restriction is (9')
and that ¢ does not coincide with 0, —1, —2,..., a restriction which
can also be disregarded if both sides of (9) are divided by I'(c).

But

3. The importance of the expansion (9) arises principally from the
fact that the order of magnitude of its successive terms decreases rapidly
if | k| is large compared with |z |, a circumstance which is realized
in many important applications.

Moreover we can utilize (3) again to expand the confluent functions
on the right side of (9) by means of Bessel functions and we find thus
the further expansion

F(a,b;c;ﬂ%):(u_z%)be-z/z§0,,(z)(_2"'_)p, (lz|<2|k]) (10)

p=0
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(11)
— r—p—C
k= g~ E=1b 7 -
In particular we have
/
Co@=TO Bk d=1—"zt...,  C=0
I'c+1 1
6= T B v+ 2O D B + 12
4. In a previous paper I gave a general method to deduce from an
asymptotic representation of a certain function a corresponding represen-
tation of its zeros®). For instance, from the expansion (3) we can infer
to each zero j,_, , (r=1,2,...) of the Bessel function J,_,(x) there
corresponds a zero &, of the confluent hypergeometric function
D (a,c; &) such that we have?)
. ji-—-l,r 2¢ (C - 2) + ji—l,r -5
In a similar manner we can obtain useful asymptotic expressions as
k —oco for the zeros in the neighborhood of the origin of the hyper-
geometric function
2z
F(a,b,c,—~—~——2k+z) (13)
starting from the expansion (9) which leads us to the equation
(b) ¢ ( EAY (6)s ¢ _
Do ( ), Ak, Gy Qoz(z)-{-—(;)-;A?‘(k 2k @03(2) » =

(14)
where use is made of the abbreviation

D, 2)=DP(c—b+n,c+m;2). (n,m=0,1,2,...).

Now we consider: i) that from the formulae (7) it follows that A,
and 4, are O(1) as k —oco, A; and 4; are O(k), and so forth ; ii) that

8) Sugli zeri delle funzioni di cui 8i conosce una rappresentazione asinto-
tica, Ann. Mat. Pura Appl. (4) 26 (1947—1948), 283—300.

9) This formula is given (with the remainder O (k%) instead of O (k~5)) as new in my
previous paper but it is already contained in H. Schmidt, Uber Existenz und Dar-

stellung impliziter Funktionen bei singuldaren Anfangswerten, Math. Zeitschr.
43 (1938), 633—5b52.
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from well-known relations about contiguous confluent hypergeometric
functions it follows

2Dy, (2) = e+rDet [ ¢ Dy (2) — (¢ — b) Dy, (2)]

b(b + 1)
z2@03(z>=1‘i(ig~)§l?~[c<c+1)+(2c—b)z+z2][c¢m<z)-——(c—b)cbu(z)] .

We see thus that, under the hypothesis
b=0(k), c¢=0(), =z2=0(@F"1, (koo (15)

the second and the third terms of the equation (13) multiplied by
¢/(c — b) are O(k—32), while the fourth and the following ones are at

least O(k~%). This shows us that equation (14) can be put into the
simplified form

90 (2) + 01 () 5 k)z + O (™) = (16)
where
90 (2) = p i b Dy (2) 90(2) = P11 (2) ,
b)e b)s
00 = 525 | 5 Pale) — 5 20w @) =

_ % [clc—2)+ 2k z— 222][4511(3)—

(Dm(z)] .

Now we apply the method of my paper and we obtain

g1 (2,)
9o () (2 k)

where z, and z* are two corresponding zeros of

z;‘:zr—"

+0 (k)

Dy ) =P (c—b,c;2) (17)
and the function (13) respectively. Better still, since
0350 Fro (o) 4 2k 7—22] — — 2 [0(c—2) + 2K 2] 40 ()
9o (21) 6

we obtain the formula

T |+ o . (18)

Finally we identify z, with the &, of formula (12) noting that £ must
be changed into the k&’ given by the last formula (11), which under our
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hypothesis is of the same order of magnitude as k. Moreover this &,
satisfies the last condition (15). We obtain thus the very simple formula

z;" _ ?o—l r [1+ 26(0—-2)""?'%——1,7'][1_‘_ 20(6_2)+7.3—1,r]+0(k_5)

4k 48 k? 48 k'3
(19)
k—_——;——-a, F=b——; b=0(k), c=0(1), k-oo.
From this z¥, we deduce a corresponding zero of F (a,b;c; {) put-
ting 2 2
. 20
r 2k+z: b ( )

which implies {* = O (k—2).

5. Among other things the previous results can be applied to the
asymptotic study of the Jacobi polynomials P®*#®(z) and its zeros in
the neighborhood of the end-points of the basic interval (—1, 1), a
problem about which very little seems to be known as yet!?). In fact,

by putting 42
z=1— 2%+ 2 (21)
we have
«, B) (0‘+ 1) 22 )
PP () = F( nn+a+ﬁ+la+12k+ (22)

the conditions (15) are satisfied as » —>oco and from (9), (18) and (19)
we get respectively

P(a,ﬁ)(x)___.
142 ‘”' ad P(n +m)P(oc+n+1) o+1
ar(5) o B e Pt An(55) (57) @en-piatmt 1
with ) (23)
k=n+0‘_2}_ ; W=n+a+p+1; lz|<2]|k]|;

10) In Szegé’s Orthogonal Polynomials we find only (p. 186) the formula
lim n~® PP 12/ (2n2)] = (2/2)* Ju (2)
7n—>00
and (p. 189) Hilb’s formula for the Laguerre Polynomials

Pn (cos 6) = V0/sin 6 J,[(n + }) 0] + O (n—3/2)

together with its generalisation for Pg’ +B) (p. 191). Moreover, MacDonald, Proc. London
Math. Soc. (2) 13 (1914), 220—221 has given another, more complicated and not com-
pletely convincing, extension of the same Hilb’s formula. For a different kind of represen-
tation of Py(cos 6) by means of Bessel functions, see the paper of G. Szegd in the same
Proceedings (2) 36 (1937), 427—450.
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2___1 /
=21+ S ) + 0 () (24)
with
k’=n+“+1+ﬂ k48, D(—n—f,0+1;2)=0
and

" j«zx,r ) 2(0‘2"‘ 1)+ .gz,r 2(0‘2"“‘1 + ‘czx,r _
=4k ll+ 482 7 ][H’ 48]3/2 ! ]+0(n °) . (25)

In particular if 8 = 0 the confluent function @ reduces to a Laguerre
polynomial and with the usual notations for these we have

reven = (1 e ) e

= 2
and (lzl<2]|k]) . (26)
A(Ot) 3, 2(x2—1 '(2]” 2
z:=1§,°?,[1+ o Th, ]+0(n~>_ fr [1+ . ]+0(n-5>.
(27)

In the special case « = 0 we get the corresponding formulae for the
Legendre polynomials to which we may add the expansion (10), which
in this case yields the formula

P”(x)=
_ 4 \n+1 —§I(2 +1) =  (2n4+2)(2n+4) 2n+3
~(55) "Ly @VE + 5 g |2V + Gt 7y (2] 3t ¢)] +o
. 28
with 1 8¢ E—(2n+1)2 l1—2x (28)
= @nt 12+ 2& ° T2 34z

With a remainder O(n~%) instead of O(n—*) we can write more simply

4
r 4+ 3

P =(555) O Ie@VB + g ey Lomn| . e

6. To show the utility of the previous formulae we will use (27) for
the numerical evaluation of the two least zeros x; and z, of the Legendre
polynomial P,,(x), whose exact values (with seven figures) are )

x, = 0.973 9065 ,  x, = 0.865 0634 .

11y 4. N. Lowan, N. Davids, A. Levenson, Table of the zeros of the Legendre
polynomials..., Bull. Amer. Math. Soc. 48 (1942), 739—743 and 49 (1943), 939 (er-
rata).
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With the first formula (27), using the values of the first two zeros of

the Laguerre polynomial L,,(x) given by H. E. Salzer and R. Zucker 12),
we find

x, = 09739092 , x; = 0.865 0183 .
while the second formula (27) gives us
¥y = 0.973 9092 ,  z, = 0.865 0308 .

The agreement is very good, especially for the last zero z,.
On the contrary if use is made of the very simple asymptotic formula

n

% = (1—— 81n2 -+ 81@3) cos (%;}:% n) +0(nY), [r—~—é~ = 0(1)] (30)

given in one of my last papers!®) we have
x; = 0.973 8309 , z, = 0.865 0512

which is better for z, but less good for z,, in accordance with the fact
that the formula (30) is especially suitable for the evaluation of the
central zeros of P, (x).

(Eingegangen den 17. Juli 1950.)

12) Table of the zeros and weight factors of the first fifteen Laguerre
polynomials, Ibidem 65 (1949), 1004—1012.

13) Sugli zeri dei polinomi sferici ed ultrasferici, Ann. Mat. Pura Appl. (4)
31 (1950), 93—97.
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