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Zum Satz von Looman-Menchoff

Von Kurt MEIER, Zuoz

Einleitung

Der erste Teil der vorliegenden Arbeit enthélt eine vereinfachte und
sehr elementare Beweismethode zum bekannten Satz von Looman-
Menchoff'), welche sich auch leicht zum Beweis verschiedener Verschir-
fungen dieses Satzes erweitern lift.

Satz 1 (Looman-Menchoff). Voraussetzungen :

I. f(2) sei im Gebiet G stetig (z = = + ty).

II. Die Ableitungen % und % existieren in jedem Punkt ze@.
III. In jedem Punkt ze@ sei die Cauchy-Riemannsche Bedingung
o , .of .
5z T ¢ i 0 erfiillt.

Behauptung : f(2) ist holomorph in G.

Damit der Beweisgedanke klar zum Ausdruck kommt, beweise ich
den Satz in dieser einfachsten Form. Bekanntlich diirfte man in Voraus-
setzung II noch eine abzdhlbare Menge von Ausnahmepunkten zulassen
und in IIT sogar eine solche vom Fldchenmafll 0.

D. Menchoff bemerkt zu diesem Satz und seinen verschiedenen Er-
weiterungen 2), dafl ihr Beweis weitgehende funktionentheoretische Hilfs-
mittel erfordert, wihrend zu ihrer Formulierung nur elementarste Be-
griffe notwendig sind. Er schreibt deshalb : Es wire interessant, Beweise
zu diesen Sdtzen zu finden, die keine Begriffe und Methoden der moder-
neren Funktionentheorie erfordern. Der erste Teil der vorliegenden Arbeit
ist ein Schritt in dieser Richtung.

So stiitzt sich zum Beispiel der Looman-Menchoffsche Beweis auf eine
ziemlich komplizierte Ungleichung?), deren Beweis starken Gebrauch
von der Lebesgueschen Theorie macht. Im vorliegenden Beweis hingegen

1) vgl. die Beweisdarstellung in [1] p. 9—16, oder in [2] p. 199—200.
2) vgl. [1] Einleitung.
3) vegl. [1] p. 10—11.
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ist die Anwendung dieser Ungleichung durch eine ganz elementare Be-
trachtung ersetzt, welche sich auf die Cauchysche Integralformel und
das Maximumprinzip stiitzt.

Die Abschnitte 4 und B schlieen sich iibrigens noch fast vollsténdig
an den Menchoffschen Beweis an und beniitzen einen leicht zu beweisen-
den Satz von R. Baire?), aus welchem hervorgeht, dal3 eine perfekte
Punktmenge der komplexen Ebene auf sich von zweiter Kategorie ist.

Der von D. Menchoff dargestellte Beweis stiitzt sich am Schlull auf
den Satz von Morera. An seiner Stelle steht im folgenden Beweis ein
Satz von L. Lichtenstein®), der sich mit noch einfacheren Mitteln be-
weisen lift.

Der zweite Teil dieser Arbeit enthilt eine Verschiarfung zum folgenden

Satz von D. Menchoff ¢). Voraussetzungen :
I. f(z) sei stetig im Gebiet G.

II. Zu jedem Punkt z, G (abzdhlbare Menge von Ausnahmepunkten
zuldssig) existieren zwei verschiedene Geraden d,; (j = 1, 2), welche
sich in diesem Punkte z, schneiden, so dal3 die Grenzwerte

b f@) — )

z2—>2,2 €d; R—2

(7‘:1>2)

vorhanden sind und denselben endlichen Wert besitzen.

Behauptung : f(z) ist holomorph in G.

Um die zu beweisende Verschirfung dieses Satzes formulieren zu
kénnen, sind einige neue Begriffe notwendig :

Es sei 2, ein Punkt des Gebietes G. Durch z, + z(f) (0 <t < 1) werde
ein Jordanbogen C dargestellt, welcher vom Punkt z, ausgeht (z(0) = 0).
Die Werte des Argumentes ¢(t) = argz(f) seien so festgelegt, daBl

p(t) fir 0<t<1 stetig ist. Wir setzen :

liminf p(t) =& , lim sup ¢ (t) = B
t—>0 t-—>0
und betrachten im folgenden nur solche Kurven C, fiir welche § — x<2x
ist. Der Kurve C ordnen wir den Winkelraum w(z,;«, ) zu, welcher
definiert ist als die Menge der Punkte z,+ o¢'¥ mit ¢>0 und
xSy =p.

4) vgl. [2] p. 54.
8) vgl. [3].
%) vgl. [4].
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Wenn wir im folgenden sagen, die Funktion f(z) besitze im Punkt z,
die Eigenschaft @, so bedeutet dies:

Es existieren drei Jordanbogen C,; (j = 1, 2, 3), welche vom Punkt 2,
ausgehen, und deren zugeordnete Winkelrdume paarweise punktfremd
sind, derart, daB3 die drei Grenzwerte

z2—>2,2€C;j 2 — 2

j=1,2,3)

vorhanden sind und denselben endlichen Wert besitzen.

Mit dieser Definition 1a8t sich der zu beweisende Satz nun folgender-
mafen aussprechen :

Satz 2. Voraussetzungen :
I. f(z) sei im Gebiet G stetig.

II. In allen Punkten z G besitze f(z) die Eigenschaft @ (zuldssig ist
eine abzdhlbare Menge von Ausnahmepunkten).

Behauptung : f(2) ist in G holomorph.

I. Beweis zu Satz 1 (Looman-Menchoff).

A. Bezeichnungen. S(z;r) sei die offene Kreisscheibe mit Mittel-
punkt z und Radius r. Unter H(z;7r) verstehen wir die Halbkreis-
scheibe, deren Punkte z 4 pe'? charakterisiert sind durch 0<p<r,

3 . . .
— —Z— <@ _4_:7f . Ferner bezeichnen wir mit w(z ;o,8)(—n<a<f <+ )

den Winkelraum, dessen Punkte den Bedingungen ¢>0, o« <¢ <8
geniigen.

Der Einfachheit halber nehmen wir an, G sei die Vollebene. Mit P
bezeichnen wir die perfekte Menge der Punkte z, in welchen f(z) nicht
reguldr analytisch ist. Wir setzen voraus, P sei nicht leer.

F() #w=1,2,3...) sei die Menge der Punkte ze P, in welchen
[fe+h) —f@) [ <v|h| und [f(z+ih) —f@)| <v|h]|, sofern

| B = (b reell)

B. Infolge der Stetigkeit von f(z) sind die Mengen F (») abgeschlos-
sen, und ferner folgt aus Voraussetzung II leicht P = X' F (). Nach dem
in der Einleitung erwidhnten Satz von R. Baire existiert daher eine natiir-
liche Zahl N, sowie eine Kreisscheibe S(a; R) (@ ¢ P, R>0), so daBl
F(N)2 P-S(a; R). Man darf dazu annehmen 2RN<1.
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Wir bezeichnen nun mit /7 die abgeschlossene Hiille von P-S(a; R).
{1 ist perfekt und fir z eIl gilt jetzt also:

[fz+h)—fR | =N|k|, [fe+ih)—f@|=N|A, (1)

sofern A < 2R (h reell).

Unabhéngig von der obigen Betrachtung erkennt man ferner, da@ eine
Schranke N’ existiert, so daf

|1@) — @) | <N'|2' —z| fir |2 —2] =} R z¢8(a;3R). (2)

Es sei nun 2z, =z, + ¢y, ein beliebiger Punkt von P-S(a;iR).
Ich beweise zunéchst

| 1(6) —fR) | = M| & —2| fir [&—2]|=}R, 3)

wobei M = max[4N, N’]. Ich fiihre den Beweis nur fiir den Fall
durch,dal £ =04 i7, 0>y, 7= y,. (Ist 0 ==x,, sofolgt (3) direkt
aus (1). Fir die iibrigen Fille ¢ < z,, T = y,; 0 <, T = ¥p;
o =%, T=<y, verliuft der Beweis ganz analog.)

C. Wir spalten nun die perfekte Menge /7 in zwei Klassen K und K'.
Der Punkt z eIl sei eK, falls eine gegen z konvergierende Folge von
3n
'_47 .

Ist demnach ze K/, so gibt es eine natiirliche Zahl I, so daB
H-H(z;—}) = 0. Bezeichnen wir also mit K’(1) (A=1,2,3...) die
Menge der Punkte z e/ mit H-H(z' 1): 0, so gilt K' = X K'(A).

Punkten von I7 existiert : z+ g, ¢! **(k=1,2, 3...) mit —gg%:

A
Ist nun 2z, € K'(4), 2z, € K'(4), so folgt aus der geometrischen Bedeu-
tung sofort |z, — 2, | = % . Jede Menge K’(A) enthilt also nur end-

lichviele Punkte, und folglich ist die Menge K’ abzihlbar.

Fiir das folgende ist nur wichtig, daf K auf I7 iiberall dicht liegt, und
dies folgt daraus, daB I7 pefekt und K’ abzéhlbar ist.

Da jetzt K auf I7 iiberall dicht liegt und f(z) stetig ist, geniigt es, die
Behauptung (3) unter der Annahme z,¢ K-S(a;} R) zu beweisen. In

diesem Fall existiert eine Folge von Punkten von /7, welche im Winkel-

raum w(zo ; — —Z— , + §§> gegen z, konvergiert. Mindestens einer der

Winkelrdume w (zo ;o — -%Z- , + —Z—), w (z ; —f—:— , ig) enthilt daher eine
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gegen 2, konvergierende Teilfolge z) = x) + iy, (A1=1,2,3...). Wir

. 7 7 . e
nehmen an, es sei dies w (zo T -+ —1—) . Der Beweis fiir den an-

dern Fall verlduft analog.

Da o>z, vorausgesetzt wurde (6 =041 7v, 2y = x, + 1y,), exi-
stiert nun ein Index /, so dal x, < 0. Wir bezeichnen mit 4 das Gebiet,
dessen Punkte z =z 4 iy durch x>z, y>y,, |z —2,]<}R
charakterisiert sind. Der Rand dieses Gebietes setzt sich aus den Strecken

—

uv, uw, und dem Kreisbogenstiick vw zusammen (Fig.1). £ = ¢ + i7
liegt nun im Innern oder auf dem Rand von 4.

#N
R
’ g
2, o 2o
o
2, ¢
Fig. 1 Fig. 2 Fig. 3

Fiir £ kommen jetzt folgende Lagemoglichkeiten in Frage :
(¢) &emw. In diesem Fall gilt nach (1) | f(£) — f(zo) |S M | & — 20|
(B) &e7mw. Nach (2) gilt hier ebenfalls | f(&) — f(zo) |= M | £ — 2| -
(y) Fir &ell-A folgt durch Anwendung von (1) (vgl. Fig. 2)
| 1(6) — Fzo) | = | (&) — OV | + | flzo) — F(O) | =
N|E—C|+N|zg—C| <2N|&—2zy| <M|E— 2|
(6) Ist £cuw, so gilt (vgl. Fig. 3)
=2+ lz—2z| S|&—ul+|uw—2)] + |2 —7]
<[&—2 |+ [&—27|+2]&—2]
Damit erhdlt man unter Anwendung von (1) und (y)

| 1(8) — f(z0) | S 1F(E) — (=) | + | f(zo) — f(2) |
SN|E—2 |+ N|zg—2| <4N|&E—20| SM|E— 2|
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() &ed —1II-4. f(z) ist in diesem Fall in & reguldr und ebenso

Nach dem Maximumprinzip existiert daher entweder auf dem Rand
von A oder auf I7-A ein Punkt £* so daBl |F(&)| < |F(£*)|. Nach
() (B) (v) () ist aber |F(E*)| =M. Folghch ist (3) auch in diesem
Fall erfiillt.

Damit ist (3) bewiesen.

D. Ich beweise nun folgendes: In jedem Punkt Z eS8 (a;}R)
— IT-S8(a;}R), also in jedem Punkt ZeS(a;}R), in dessen Umge-
bung f(z) holomorph ist, gilt | (Z)]| < 2M.

Ist ndmlich o(Z) der zu Z gehorige Regularitdtsradius, 2 die Peri-
pherie des Regularititskreises, so ist wegen a ¢ Il sicher p<} R, und
daher existiert auf X sicher ein Punkt 2,e¢l/-S(a;3R). Fir (2 gilt
nun nach (3) |f() —f(z)) | S M| { — 2|, und daraus folgt durch
Anwendung der Cauchyschen Integralformel

I (7Y — 1) — f(z)
f(Z)—2mZZ c—zp “

sofort die Abschitzung
1 1
/ —— ¢ —— . _—
@) =5, - 270 5 -2M-e=2M . (4)
Aus (3) und (4) schliet man jetzt sehr leicht
| f(ze) — f(z)) | S 2M | 23 —2 | fiir 2, e8(a;4R), 2,¢8(a; $R) (5)

Enthilt namlich die Strecke %z, keinen Punkt von /7, so folgt dies
aus (4). Existiert jedoch darauf mindestens ein Punkt 2z’ e IT, so schlie3t
man

| f(z2) — f(z1) | §|f(z2)——f(z')|+
+|f(z1)~—f(z’)[§M|z2-~—z’|+Mlz1—z’|-——M|z2—zll .

E. Die am Anfang gemachte Annahme P 3£ 0 fiihrt nun folgender-
mafen auf einen Widerspruch :

Setzen wir Q(z, h) = f(z—}—hz:f(z) — f(z—l—i;z’z/—_—.f(z) (h reell)
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so gilt fiir zeS(a;4R) nach (5) |Q(z, k)| <4M, 0<|h| <}R und

wegen Voraussetzung III lim @(z,2) = 0. Nach einem Satz von
h—>0

L. Lichtenstein folgt daraus, daf f(z) in S(e¢;4R) holomorph ist. Im
Widerspruch dazu enthélt aber S(a;} R) den Punkt a ell.

II. Beweis zu Satz 2

Hilfssatz. Voraussetzung : Die Funktion f(z) sei im Gebiet G stetig.
Ferner sei die Menge P der Punkte z (@, in welchen f(2) nicht regulir
analytisch ist, nicht leer.

Behauptung : Es existieren Punkte z,e P, zu welchen es in jedem
Winkelraum w(z,;x, ) (x<<f) eine gegen z, konvergierende Folge
von Punkten z,e¢e P (v =1,2,3...) gibt. Die Menge K dieser Punkte
ist auf P von zweiter Kategorie.

Beweis des Hilfssatzes. y, (0 = 1,2,3...) durchlaufe die rationalen
Zahlen des Intervalls (0, 2x). Unter 4 (z,; 0, ) verstehen wir den
Kreissektor, dessen Punkte z 4 pe'® durch

1 1 1
0 - S —
<e<— Yo — <p<y,+ -

charakterisiert sind (o, v natiirliche Zahlen). Ferner sei R(o, 7) die
Menge der Punkte z, e P, fiir welche P-4(z,; 0, ) = 0 ist. Wie man
leicht bestétigt, sind die Mengen R(o, ) abgeschlossen und es gilt

P=K-+ )} R(o,7) .

Wir gehen von der Annahme aus, K sei auf P von erster Kategorie
und leiten daraus einen Widerspruch her.

Aus dem in der Einleitung formulierten Satz von R. Baire folgt nun
zunéchst unter obiger Annahme die Existenz zweier natiirlicher Zahlen s
und ¢, sowie einer Kreisscheibe S(a, R) (a ¢ P), so da@

R(s,t)2IT = P-S(a, R) .

Man darf natiirlich annehmen R < —él—t— .

Mit A4,(z,) bezeichnen wir nun den Sektor A4(z,;s,t) und A4,(2,)
sei der in bezug auf den Punkt 2z, symmetrische Sektor. IT < R(s,t)
bedeutet, daBl I7-A4,(z,) = 0 fiir jeden Punkt 2, e /. Aus der geometri-
schen Bedeutung folgt daraus sofort auch I7-4,(z,) = 0.
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Ich werde nun beweisen, daf3 alle Punkte von /7 auf einer gewissen
rektifizierbaren Kurve C liegen. Dies fiihrt ndmlich sofort auf den ge-
suchten Widerspruch : Die stetige Funktion f(z) miite bekanntlich
auch noch auf /7 regulidr sein. Das wiirde aber bedeuten, da3 /7 leer ist.

Wir fithren ein rechtwinkliges Koordinatensystem (&,7) mit Ur-

\ sprung a derart ein, dal die positive

i n-Achse die Richtung y, besitzt. Mit
II; bezeichnen wir die Normalprojek-
tion von /7 auf die &-Achse. [£,, &,] sei
das kleinste abgeschlossene Intervall,
welches alle Punkte von II; enthilt
(brelly, Eyell;). Als offene Menge
zerfallt [&,, §,] — 11, in eine Folge
von Intervallen ¢, (k =1,2,3...).

Wir haben das (&, n)-System so ge-
wihlt, daB die positive 7-Achse Sym-
Fig.4 | metrielinie der Sektoren A4,(z,), 45(?,)

ist. (Die beiden Sektoren besitzen den

Radius —;— und den Offnungswinkel %) (Fig. 4.)

Die Menge 7 ist in der Kreisscheibe S(a, R) (R < 'él_t> enthalten und

fiir 2o eIl gilt IT-A,(z)) = 0 (j =1, 2). Damit folgt leicht, daB jede
Parallele zur 7-Achse durch einen Punkt §&;ell; genau einen Punkt
2, € II enthilt. Wir bezeichnen seine Ordinate mit @*(&,).

Es sei jetzt @ (&) (6, < & < &;) jene stetige Funktion von &, welche
auf IT; mit @* (&) identisch ist und auf dem Intervall¢, (k=1,2,...)
linear verlduft. Die Bildkurve dieser Funktion im (&, #)-System be-
zeichnen wir mit C'. Wir haben diese Kurve so konstruiert, daf3 sie alle
Punkte von II enthilt.

Man sieht nun leicht, daB I7- 4,(z,) = 0 fiir alle Punkte z,e(C. Dar-

aus folgt fiir &' e [&, &], & €[&, &]
D(&") — D(&)
A

@ (&) ist also jedenfalls von beschrinkter Variation, C also rektifizierbar.

lgM-:-tg(%—--;—) @ + &) .

Beweis.
A. Bezeichnungen. Wir denken uns sdmtliche Tripel «,, «,, &; von
rationalen Zahlen (0 < «;,<o,<x3<2#) numeriert und «f, o, of
sei jenes mit der Nummer z.
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Ist nun o, 7 ein Paar von natiirlichen Zahlen, so bezeichnen wir mit
A,(z;0,7) (j=1,2,83) den Kreissektor, dessen Punkte z + ge'® den

: 1 1 :
Bedingungen 0<p< PR g — - S =o;+ %genﬁgen. Wir betrach-

ten immer nur solche Zahlenpaare o, 7, deren zugehorige drei Sektoren
paarweise punktfremd sind.

Das Komplement der Vereinigungsmenge dieser drei Sektoren in bezug
auf die offene, in z punktierte Kreisscheibe S (z ,%) zerfillt wiederum

in drei Sektoren D,(z;0,7t) (j=1,2,3). Und zwar sei D,(z; 0, 1)
jener Sektor, welcher 4,(z; o, ) vorangeht, wenn man z in positivem
Sinn umlduft.

Wir bezeichnen ferner mit wu,(z;0,7), v,(z;0,7) die beiden den
Sektor D,(z; o, ) einschlieBenden Strahlen. Dabei legen wir die Be-
zeichnung derart fest, dal bei Drehung um z in positivem Sinn der Strahl
u;(z; 0, t) zuerst den Sektor D,(z; o, t) iiberstreicht und dann in
v;(2; 0, 7) lUbergeht.

Der Einfachheit halber nehmen wir wiederum an, G sei die Vollebene.
Mit P bezeichnen wir wieder die perfekte Menge der Punkte z, in welchen
f(2) nicht reguldar analytisch ist und gehen von der Annahme aus, P sei
nicht leer.

Nun definieren wir Mengen F (o, v); und zwar sei z, e P Element
von F (o, 7), falls folgende Bedingung erfiillt ist:

In jedem Sektor D,;(z,;0,7) (j =1, 2, 3) verlaufe ein Jordanbogen
Cilz) z = 2,(t) 0=<t<1)
dessen Punkte, mit Ausnahme der beiden Enden, im Innern dieses Sek-
tors liegen. Der eine Endpunkt z;(0) sei z, und der andere z,(1) liege

auf der Peripherie des Kreises S (zo ; —i—) . Fir zeC;(2) (j=1,2,3)
gelte [f(2) —f(z0)| =0z —2].

B. Nach Voraussetzung II besitzt nun f(z) in jedem Punkt ze¢ P — K
(E abzéhlbare Punktmenge) die in der Einleitung definierte Eigenschaft

@. Daraus folgt leicht, dal jeder Punkt von P — E in mindestens einer
Menge F(o, r) auftritt. Es gilt also

P=E+XF(o, 7).

Die Summe ist dabei iiber alle Paare o, = von natiirlichen Zahlen zu
erstrecken, welche der in A erwéhnten Bedingung geniigen.
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Nach dem in der Einleitung formulierten Satz von R. Baire existieren
also natiirliche Zahlen s, ¢, sowie eine offene Kreisscheibe S(a; R),
(@e P, R>0), so daB Fs,t)2P-S(a; R). Man darf natiirlich an-
nehmen ?) 9
2R<d-sind (62’:{) . (1)

Da s und ¢ von jetzt an fest bleiben, filhren wir folgende abgekiirzte
Bezeichnung ein: A4;(z;8,t) = 4,(2), D;(z;s,t) = D,(z), u,(z; s,t) =
u;(2), v;(z;8,t) =v,(2)-(j=1,2,3). Wir setzen ferner P-S(a; R)
= P(a; R).

uﬂ (20 ) «

v (2,)

vy (2,)
Ci(z)

U, (2y)

Ug (2,)

Fig. 5

Ist also z, € F(s,t), so gilt folgendes (vgl. Fig. 5) :
Es existieren drei Jordanbogen C;(z,) (j =1, 2, 3), so daB

1) —f(z0)| =8|z —2| fir zeCi(z) (j=1,2,3). (2)

Dabei verlduft C,(z,) in D,(z,) und verbindet z, mit einem Peripherie-
punkt des Kreises 8 (zo,—g—) .

Fiir das Folgende ist ferner wichtig, daBl die drei Sektoren 4,(z,)
(j=1,2,3) den Offnungswinkel & besitzen.

Unabhiéngig von den obigen Betrachtungen sieht man endlich leicht

ein, dafl eine Schranke M, existiert, so daB

[1¢) — (@) | = M, |§— 2] fir zeP-S(a; R), |§—2z|=}R. (3)

7) Wegen dieser Ungleichung bleibt in den folgenden geometrischen Konstruktionen
jeweils (2) anwendbar.
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C. a) In diesem Abschnitt machen wir wiederholt von einer leicht
zu beweisenden Ungleichung Gebrauch : Bezeichnet man mit A4(z,,2/,2,)
die abgeschlossene Dreiecksfliche mit den Ecken z,, 2/, 2, und mit ¢’
den zu 2’ gehorigen Innenwinkel, so gilt:

2
]Z—zol+]Z——z1|<—§i;l——é;7}zo-—z1| fir Zed(z,2 ,2). (4

b) Ich beweise zunédchst fir z,e P-S(a; R), 2, P-S (a; R)

1f(21) — f(20) | = My |2, — 2| (Mzz‘g.s%é—> . (5)

Da f(z) stetig ist und F(s,t) auf P-§ (a; B) iiberall dicht liegt,
geniigt es, (5) unter der zusétzlichen Annahme z,eF (s,¢), 2, e F (s, 1)
zu beweisen.

Wir betrachten zu diesem Zweck die den Punkten z, und 2z, zugeord-
neten Kurven C,(z,) bzw. C;(z;) (j = 1,2, 3). Die drei Stiicke der
Kurven C;(2,) (j = 1,2, 3) von z, bis je zum ersten Schnittpunkt mit
der Peripherie des Kreises S(a; R) zerschneiden die offene Kreisscheibe
S (a; R) in drei Gebiete G, (j = 1,2, 3). Dabei sei G, jenes Gebiet,
das sich an C,(z,) anschlieit, wenn man z, in positivem Sinn umliuft.

C; (2,) vy (2,)

Der Punkt 2, liegt nun in einem der Gebiete G; (j = 1, 2, 3) oder auf
einer der Kurven C,(2,) (j =1, 2, 3). Im letzteren Fall ist (5) bereits
nach (2) erfiillt. Ich nehme nun an 2, €#;. Die beiden anderen Fille
(2, €@y, 2, €G;) lassen sich ganz analog behandeln.

Mit 2’ bzw. 2” bezeichnen wir jetzt den Schnittpunkt von v,(z,) bzw.
ug(2,) mit dem aus wu,(z,) und v,(2,) zusammengesetzten Linienzug.
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Es bestehen folgende zwei Moglichkeiten : Entweder liegt 2’ auf w,(z,)
und 2” auf v,(2,) oder 2z’ und 2” liegen auf demselben Strahl u,(z,) oder
v9(2,). Wir betrachten zunéchst die erste Moglichkeit (F'ig. 6).

Man erkennt leicht, da3 die Kurve C,(z,) die aus C,;(z,) und C,(z,)
zusammengesetzte Linie in mindestens einem Punkt Z des Vierecks
(20, %', 21, 2”) schneiden muB}. Der zu 2’ gehorige Innenwinkel des Drei-
ecks A4 (2,,7',2,) ist aber gleich §; ebenso der zu 2” gehorige Innen-
winkel des Dreiecks 4 (z,, 2,, 2”). Daraus folgt nach (4) leicht

2
| Z — z| +]Z—z1|<—s—iﬁ—(5)~§zo—~z1| '

Mit Hilfe von (2) ergibt sich daraus nun die zu beweisende Ungleichung
(5)
[1(z1) — 1) | = [ f(21) — F(Z) | +
F 1 fe) —f@) | Ss|o—Z|+sla—2Z| <My|z—2] .

Der zweite der oben erwihnten Fiélle lieBe sich ganz analog behandeln.

¢) Es bleibt noch zu beweisen, dafl eine Schranke M existiert, so dafl
[ F(21) — ()| = M |2 — 2| (6)

sogar gilt, wenn man nur voraussetzt z,e P (a;1 R), |2, —2,| =% R.

Aus dem oben bewiesenen Hilfssatz geht nun zunéchst hervor, daf
auf P (a; R) Punkte z, existieren, zu welchen in jedem Winkelraum
w(29;%,B) (x<pf) eine gegen z, konvergierende Folge von Punkten
zyeP(a; R) (A=1,2,3,...) existiert. Die Menge K dieser Punkte
ist auf P (a; R) von zweiter Kategorie, also jedenfalls auf P (a; R)
iiberall dicht. Ferner ist die Funktion f(z) stetig. Um die am Anfang
dieses Abschnitts ausgesprochene Behauptung (6) zu beweisen, ist daher
die zusdtzliche Annahme z,e¢ K erlaubt.

Ich fithre den Beweis zunichst nur unter der weiteren Annahme
durch, daBl =z, € 4,(z,).

Bezeichnen wir mit DJf(z,) den zu D,(2,) in bezug auf z, symmetri-
schen Sektor, so existiert nun also eine Folge von Punkten

meP(a;R)-Di(z) (A=1,2,3,...),

welche gegen 2z, konvergiert. Da F(s,t) auf P(a; R) iiberall dicht
liegt, darf man sogar annehmen, die 2z, (A =1,2,3,...) seien Punkte
der Menge £ (s,t).

Wir wihlen nun den Index ! so gro3, daBl z, € 4,(z;) wird.
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Wir betrachten jetzt die Stiicke der Kurven C,(z;,), C,(z;), welche
zwischen z, und dem ersten Schnittpunkt 4, bzw. 4, von C,(z;,) bzw.
C,(z,) mit der Peripherie des Kreises S (z,; 4 R) liegen. 4 sei das von
diesen Kurvenstiicken und der Peripherie von S (z,; 3 EB) begrenzte
Gebiet, welches den Punkt z, enthilt (Fig. 7).

Ug (:l)

C,(z) \

Fiir einen Punkt &e A (abgeschlossene Hiille von 4) bestehen nun
folgende Lagemoglichkeiten :

(x) £eCy(z,) oder &eC,(z).

Man erkennt leicht, daB in diesem Fall der zu z, gehorige Innenwinkel
des Dreiecks 4 (z,, &, 2;) groBer ist als 6 und daher gilt nach (2) und (5) :

1) —f@)| =11 —f@)]+
+ [ f@) —fE)Ss|é—2 |+ M|z —2]
Setzt man M’ = max [s, M,], so schlieBt man nach (4) weiter

2M’

(&) —fl | S M|~z |+ M [20—2| <

| & — 2| = M4| & —2] .

(7)
(B) ¢ liegt auf der Peripherie von S (z,; $R). Nach (3) gilt hier

[f ) —fo) | S M, | E—2] . (8)

(y) £ed-P(a;R). In diesem Fall gilt (5).
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(6) €ed — A-P(a; R). Wir setzen M = max[M,, M,, M,] und
betrachten die Funktion F (&) = f(éz, — i(z") .

— ~0
prinzip existiert entweder auf A4.P (a; R) oder auf dem Rand von 4
ein Punkt &* so dal |F (§*)| = | F(&)|. Nach (5) (7) (8) ist aber
| F (§*)| < M, und es gilt daher auch in diesem Fall

[f) —f@R)I=SM|E—2].

Nach (%) () (y) (6) ist also | f (&) — f (20) | < M | & — 2| fiir £eA.
Diese Ungleichung gilt insbesondere fiir & = z2,.

Die Behauptung (6) ist damit unter der zusédtzlichen Annahme
2, € 4,(2,) bewiesen. Der Beweis fiir die beiden Fille 2z, e 4,(z,) und
z, € 45(z,) verlduft natiirlich ganz analog.

Es ist noch zu zeigen, dal (6) auch fiir 2, e D,;(z,) (j =1, 2, 3) gilt.
Ich filhre den Beweis wieder nur fiir den Fall 2, € D,(z,) durch; denn
die beiden andern Fiélle lassen sich ganz analog behandeln.

Es sei also 2, e D,(2,). Nach unserem Hilfssatz existiert eine Folge
von Punkten z,e P (a; R), welche in AF (z,) gegen z, konvergiert.
AF (z,) bedeutet hier den zu A4,(2,) in bezug auf 2z, symmetrischen
Sektor.

Wir wihlen nun den Index 7 so groB, daBl 2, e D,(z;,) wird. D sei das
Gebiet, welches durch die Strahlen wu,(z;) und v,(2;) aus dem Kreis
S (29; 3 R) herausgeschnitten wird und den Punkt 2, enthélt. Dieses Ge-
biet D tritt nun an Stelle des im vorangehenden Beweis aufgetretenen
Gebietes 4, und die Betrachtung geht ganz analog wie oben weiter.

Nach dem Maximum-

D. Von nun an weicht der Beweis nur noch an wenigen Stellen von
jenem des ersten Teils ab. Man beweist zunichst wieder, dafl

[1(2) —Hz0) | =2M |2 — 2| fir 2z,eS(a;3R),|2—2]|=3%R. (9)

Neu kommt jetzt die Anwendung eines Satzes von W. Stepanoff?)
hinzu, nach welchem man auf Grund von (9) schliefit, dal f(z) fast
iiberall im Kreis S (a; $ R) ein totales Differential im Sinn von Stoltz-
Fréchet besitzt.

Nach einer von D. Menchoff angegebenen Methode®) beweist man
ferner folgendes : Besitzt f(z) in z, ein totales Stoltz-Fréchet-Differen-
tial und zugleich die in der Einleitung definierte Eigenschaft @, so ist

8) vgl. die Formulierung dieses Satzes in 1, p. 27.
9) Diese Methode wird in 1, p. 19—23, auf etwas einfachere Fille angewendet.
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f(2) in 2, differenzierbar, erfiillt also jedenfalls in z, die Cauchy-Riemann-
sche Bedingung % -+ z«%— =0 .

f(z) erfiillt daher in fast allen Punkten zeS (a; {1 B) die Cauchy-
Riemannsche Bedingung.

Schliefllich kann fiir den vorliegenden Fall auch die Beweismethode
des Satzes von L. Lichtenstein wieder fast unveridndert iibernommen

werden. Man hat nur an Stelle Riemannscher Integrale Lebesguesche
zu setzen.

BIBLIOGRAPHIE

[1] D. Menchoff, Les conditions de monogénéité, Act.sc. 329 (1936).
[2] S. Saks, Theory of the Integral, New York 1937.

[38] L. Lichtenstein, Sur la définition générale des fonctions analytiques, Compt.
Rend. Acad. Sc. Paris, 150, p. 1109 (1910).

[4] D. Menchoff, Sur la généralisation des conditions de Cauchy-Riemann,
Fundamenta Mathematicae 25, p. 59—97 (1935).

(Eingegangen 28. Mai 1950.)

195



	Zum Satz von Looman-Menchoff.

