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Zum Satz von Looman-Menchoff
Von Kurt Meier, Zuoz

Einleitung
Der erste Teil der vorliegenden Arbeit enthàlt eine vereinfachte und

sehr elementare Beweismethode zum bekannten Satz von Looman-
Menchoff1), welche sich auch leicht zum Beweis verschiedener Verschâr-
fungen dièses Satzes erweitern lâBt.

Satz 1 (Looman-Menchoff). Voraussetzungen :

I. f(z) sei im Gebiet G stetig (z x + iy).
IL Die Ableitungen -^- und —- existieren in jedem Punkt zeG.

III. In jedem Punkt z e G sei die Cauchy-Riemannsche Bedingung
df + i |/ o erfùllt.
dx dy

Behauptung : / (z) ist holomorph in G.

Damit der Beweisgedanke klar zum Ausdruck kommt, beweise ich
den Satz in dieser einfachsten Porm. Bekanntlich dlirfte man in Voraus-
setzung II noch eine abzâhlbare Menge von Ausnahmepunkten zulassen
und in III sogar eine solche vom FlâchenmaB 0.

D. Menchoff bemerkt zu diesem Satz und seinen verschiedenen Er-
weiterungen2), daB ihr Beweis weitgehende funktionentheoretische Hilfs-
mittel erfordert, wàhrend zu ihrer Formulierung nur elementarste Be-

griffe notwendig sind. Er schreibt deshalb : Es wâre intéressant, Beweise

zu diesen Sâtzen zu finden, die keine Begriffe und Methoden der moder-
neren Funktionentheorie erfordern. Der erste Teil der vorliegenden Arbeit
ist ein Schritt in dieser Richtung.

So stutzt sich zum Beispiel der Looman-Menchoffsche Beweis auf eine
ziemlich komplizierte Ungleichung3), deren Beweis starken Gebrauch

von der Lebesgueschen Théorie macht. Im vorliegenden Beweis hingegen

x) vgl. die Beweisdarstellung in [1] p. 9—16, oder in [2] p. 199—200.
2) vgl. [1] Einleitung.
8) vgl. [1] p. 10—11.
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ist die Anwendung dieser Ungleichung durch eine ganz elementare Be-

trachtung ersetzt, welche sich auf die Cauchysche Integralformel und
das Maximumprinzip stutzt.

Die Abschnitte A und B schlieBen sich ûbrigens noch fast vollstândig
an den Menchoffschen Beweis an und beniitzen einen leicht zu beweisen-
den Satz von B. Baire4), aus welchem hervorgeht, daB eine perfekte
Punktmenge der komplexen Ebene auf sich von zweiter Kategorie ist.

Der von D. Menchoff dargestellte Beweis stutzt sich am SehluB auf
den Satz von Morera. An seiner Stelle steht im folgenden Beweis ein
Satz von L. Lichtenstein5), der sich mit noch einfacheren Mitteln be-
weisen lâBt.

Der zweite Teil dieser Arbeit enthàlt eine Verschârfung zum folgenden

Satz von D. Menchoff6). Voraussetzungen :

I. f{z) sei stetig im Gebiet Cr.

II. Zu jedem Punkt z0 cG (abzahlbare Menge von Ausnahmepunkten
zulàssig) existieren zwei verschiedene Geraden dj (j 1, 2), welche
sich in diesem Punkte zQ schneiden, so daB die Grenzwerte

Um /(*>/<*> (i==1,2)

vorhanden sind und denselben endlichen Wert besitzen.

Behauptung : / (z) ist holomorph in G.
Um die zu beweisende Verschârfung dièses Satzes formulieren zu

kônnen, sind einige neue Begriffe notwendig :

Es sei z0 ein Punkt des Gebietes G. Durch z0 + z(t) (0 ^ t ^ 1) werde
ein Jordanbogen C dargestellt, welcher vom Punkt z0 ausgeht (z(0) 0).
Die Werte des Argumentes <p(t) arg z(t) seien so festgelegt, daB

<p{t) fur 0<£^ 1 stetig ist. Wir setzen :

lim inf q>(t) oc lim sup qp(t) /S

und betrachten im folgenden nur solche Kurven C, fur welche fi — oc < 2 n
ist. Der Kurve G ordnen wir den Winkelraum w(z0; oc, fi) zu, welcher
definiert ist als die Menge der Punkte z0 + q e%xfJ mit g > 0 und

4) vgl. [2] p. 54.

•) vgl. [3].
•) vgl. [4].
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Wenn wir im folgenden sagen, die Funktion f(z) besitze im Punkt z0

die Eigenschaft Q, so bedeutet dies :

Es existieren drei Jordanbôgen G} (7 1, 2, 3), welche vom Punkt z0

ausgehen, und deren zugeordnete Winkelrâume paarweise punktfremd
sind, derart, daB die drei Grenzwerte

f(z)-f(z») {,-= 1,2,3)
Z Z

vorhanden sind und denselben endlichen Wert besitzen.
Mit dieser Définition lâBt sich der zu beweisende Satz nun folgender-

maBen aussprechen :

Satz 2. Voraussetzungen :

I. f(z) sei im Gebiet G stetig.

II. In allen Punkten z eG besitze f(z) die Eigenschaft Q (zulâssig ist
eine abzàhlbare Menge von Ausnahmepunkten).

Behauptung : f(z) ist in G holomorph.

I. Beweis zu Satz 1 (Looman-Menchoff).

A. Bezeichnungen. S(z;r) sei die offene Kreisscheibe mit Mittel-
punkt z und Radius r. Unter H(z;r) verstehen wir die Halbkreis-
scheibe, deren Punkte z + Qei(p charakterisiert sind durch 0<Q<r,

—j- ^ <p â -j- Ferner bezeichnenwir mit w(z ;oc,f})(—tz<oc<(}<-{-7i)

den Winkelraum, dessen Punkte den Bedingungen £>0, oc ^ <p ^ fi
gentigen.

Der Einfachheit halber nehmen wir an, G sei die Vollebene. Mit P
bezeichnen wir die perfekte Menge der Punkte z, in welchen f(z) nieht
regular analytisch ist. Wir setzen voraus, P sei nicht leer.

F (v) (v 1, 2, 3 sei die Menge der Punkte z € P, in welchen
| f(z + h) - f(z) | g v | h | und \f(z + ih) - f(z) | £v\h\, sofern

| h\ ^ — {h reell).

B. Infolge der Stetigkeit von f(z) sind die Mengen F(v) abgeschlos-

sen, und ferner folgt aus Voraussetzung II leicht P ZF(v). Nachdem
in der Einleitung erwahnten Satz von R. Baire existiert daher eine natiir-
liche Zahl JV, sowie eine Kxeisscheibe S (a; R) (a € P, R>0), so daB

F(N)^LP-8(a; R). Man darf dazu annehmen 2RN^ 1.
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Wir bezeichnen nun mit 77 die abgeschlossene Huile von P-8(a; R).

fi ist perfekt und fur z c 77 gilt jetzt also :

| f(z + h) - f(z) \£N\h\, \f(z + ih)~ f(z) | £ N | h | (1)

sofern A ^ 27? (h reell).

Unabhàngig von der obigen Betrachtung erkennt man ferner, da8 eine
Schranke Nr existiert, so daB

\t(zf)—f(z)\^N'\z' — z\ fur \zr -z\=%R Z€8(a;%R). (2)

Es sei nun z0 x0 + iy0 ein beliebiger Punkt von P-B(a\\R).
Ich beweise zunachst

|/(f)-/(«o)| ^Jf|f-«o| fur If-gol^iJÎ, (3)

wobei Jf max [4iV, 2V7]. Ich fûhre den Beweis nur fur den Fall
durch, daB | o + ir, a>x0, r ^ y0. (Ist a x0, so folgt (3) direkt
aus (1). Fur die ûbrigen Fâlle a ^ x0, r ^ yQ ; (7 ^ ^0? T 2/o >

cr ^ o:0, r ^ y0 verlâuft der Beweis ganz analog.)

C. Wir spalten nun die perfekte Menge 77 in zwei Klassen K und Kf.
Der Punkt z cil sei eK, falls eine gegen z konvergierende Folge von

Punkten von 77 existiert : z + Qk é1 (pk (k 1, 2, 3 mit — - ^ cpk ^ —.
Ist demnach z e K\ so gibt es eine natûrliche Zahl l, so daB

II-H (z ; -y) 0. Bezeichnen wir also mit K'(k) (A 1, 2, 3 die
\ l '

/ 1 \
Menge der Punkte z e77 mit 77-^^;-^ 0, so gilt Kr ZK'(X).

Ist nun 22 € K'{X), z2 e Kf(X), so folgt aus der geometrischen Bedeu-

tung sofort | z2 ~ zx \ ^ -y Jede Menge Kf(X) enthâlt also nur end-
À

lichviele Punkte, und folglich ist die Menge K! abzahlbar.
Fiir das folgende ist nur wichtig, daB K auf 77 uberall dicht liegt, und

dies folgt daraus, daB 77 pefekt und Kr abzahlbar ist.
Da jetzt K auf 77 uberall dicht liegt und / (z) stetig ist, genugt es, die

Behauptung (3) unter der Annahme z0 e K-8(a \\ R) zu beweisen. In
diesem Fall existiert eine Folge von Punkten von 77, welche im Winkel-

raum w((z0 ; —— +-t-I gegen zo konvergiert. Mindestens einer der

Winkelrâume w (z0 ; -, + -7-1, w (z ; ¦—- -7-1 enthâlt daher eine
\ 4 4t \44y
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gegen z0 konvergierende Teilfolge z% x\ + iyx (A 1, 2, 3 Wir
nehmen an, es sei dies w lz0 ; — + -H • Der Beweis fur den an-

\ 4 4/
dern Fall verlauft analog.

Da a>x0 vorausgesetzt wurde (f a + i r, z0 xQ + iy0), exi-
stiert nun ein Index l, so dafi xx ^ a. Wir bezeichnen mit A das Gebiet,
dessen Punkte z x + iy durch x>xt, y>y0, \z — zQ\<\R
charakterisiert sind. Der Rand dièses Gebietes setzt sich aus den Strecken

Wv, WW, und dem Klreisbogenstuck Çw zusammen (Fig. 1). | a + ix
liegt nun im Innern oder auf dem Rand von A.

R

¥

F.g

/

\
W

//
u

\

X\ n

d \ *

Fig 2 Fig 3

Fur f kommen jetzt folgende Lagemôglichkeiten in Frage :

(oc) | € Wv. In diesem Fall gilt nach (1) | /(I) - /(z0) I â M |

0?) | € ^ Nach (2) gilt hier ebenfalls | /(|) - /(z0) | ^ Jf |

(y) Flir icIIA folgt durch Anwendung von (1) (vgl. Fig. 2)

/(f) | + | /(z0) ~ /(f) | ^

Ist £ eÏÏw, so gilt (vgl. Fig. 3)

If ~ «I I + 1^0 - », I ^ II - " ~ Z\ ZO - %\

Damit erhàlt man unter Anwendung von (1) und (y)

I f(S) - f(z0) I ^ I /(I) - /(»,) I + I /(«o) - /(«,) I

20 - 2, - 20
| g M || - 20

185



(e) £ € A — IIA f(z) ist in diesem Fall in f regulâr und ebenso

F{z)=f{z)-f{X9)
z z0

Nach dem Maximumprinzip existiert daher entweder auf dem Rand
von A oder auf 77- A ein Punkt £*, so daB | F(£) | S \ F(Ç*) \. Nach
(*) (P) (à) ist aber | F(Ç*) | ^ Jf. Folglich ist (3) auch in diesem
Fall erfullt.

Damit ist (3) bewiesen.

D. Ich beweise nun folgendes : In jedem Punkt Z e S (a;
— I7'8(a;%B), also in jedem Punkt Z e 8(a\\R), in dessen Umge-
bung f(z) holomorph ist, gilt | f(Z) \ ^ 2 M.

Ist nâmlich q(Z) der zu Z gehôrige Regularitâtsradius, E die
Peripherie des Regularitàtskreises, so ist wegen a e 77 sicher q < J iî, und
daher existiert auf E sicher ein Punkt zo€lI-8(a;%R). Fur £ € 27 gilt
nun nach (3) | /(£) — f(z0) | ^ if | f — z0 |, und daraus folgt durch
Anwendung der Cauchyschen Integralformel

sofort die Abschâtzung

i i
(4)

Aus (3) und (4) schlieBt man jetzt sehr leicht

2,-25x1 fur ztcS(a;iB)f z2€S(a;ÏR) (5)

Enthàlt nàmlich die Strecke "z^z^ keinen Punkt von 77, so folgt dies

aus (4). Existiert jedoch darauf mindestens ein Punkt z1 ell, so schlieBt

man

E. Die am Anfang gemachte Annahme P # 0 fûhrt nun folgender-
maBen auf einen Widerspruch :

Setzen wir Ç(2, A) ——:—^ '-±-± ——¦—~ L^L-L (Areell)

186



sogiltfiir z eS(a ;|i?) nach (5) \Q(z,h)\ fJ4Jf, 0<|fe| ^^R und
wegen Voraussetzung III limQ(z,h) 0. Nach einem Satz von

L. Lichtenstein folgt daraus, daB f(z) in 8(a;%R) holomorph ist. Im
Widerspruch dazu enthâlt aber 8(a;%R) den Punkt aelJ.

II. Beweis zu Satz 2

Hilfssatz. Voraussetzung : Die Funktion f(z) sei im Gebiet G stetig.
Ferner sei die Menge P der Punkte z eG, in welchen f(z) nicht regulâr
analytisch ist, nicht leer.

Behauptung : Es existieren Punkte z0 e P, zu welchen es in jedem
Winkelraum w (z0 ; oc, /?) (oc</3) eine gegen z0 konvergierende Folge
von Punkten zv e P (v 1, 2, 3 gibt. Die Menge K dieser Punkte
ist auf P von zweiter Kategorie.

Beweis des Hilfssatzes. %pa (a 1,2,3...) durchlaufe die rationalen
Zahlen des Intervalls (0, 2tt). Unter A (zo;a, r) verstehen wir den
Kreissektor, dessen Punkte z-\-qei(p durch

1 1 ,1— ipa <c cp <c ipa H
T X T

charakterisiert sind (a, r natiirliche Zahlen). Ferner sei R(e, r) die
Menge der Punkte zoe P, fiir welche PA (z0 ; a, r) 0 ist. Wie man
leicht bestàtigt, sind die Mengen R(a, r) abgeschlossen und es gilt

P K + Z R(o, r)

Wir gehen von der Annahme aus, K sei auf P von erster Kategorie
und leiten daraus einen Widerspruch her.

Aus dem in der Einleitung formulierten Satz von R. Baire folgt nun
zunâchst unter obiger Annahme die Existenz zweier naturlicher Zahlen s
und t, sowie einer Kreisscheibe 8(a, R) (a e P), so daB

R(s,t)^II P8(a, R)

Man darf natiirlich annehmen R < —2it

Mit ^i(z0) bezeichnen wir nun den Sektor A(zo]s,t) und ^2(Zo)
sei der in bezug auf den Punkt z0 symmetrische Sektor. 77 ^ R (s, t)
bedeutet, daB lI'A1(z0) 0 fiir jeden Punkt z0 e/7. Aus der geometri-
schen Bedeutung folgt daraus sofort auch 77-zl2(20) 0.
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Ich werde nun beweisen, da8 aile Punkte von 77 auf einer gewissen
rektifizierbaren Kurve G liegen. Dies fûhrt nàmlich sofort auf den ge-
suchten Widerspruch : Die stetige Funktion f(z) miiBte bekanntlich
auch noch auf 77 regulâr sein. Das wûrde aber bedeuten, daB 77 leer ist.

Wir fûhren ein rechtwinkliges Koordinatensystem (f,rç) mit Ur-
sprung a derart ein, daB die positive
^-Achse die Richtung xps besitzt. Mit
77| bezeichnen wir die Normalprojek-
tion von 77 auf die f-Aehse. [£l3 £2] sei

das kleinste abgeschlossene Intervall,
welches aile Punkte von 77^ enthàlt
(|j € 77|, £2 € 77^). Als offene Menge
zerfâllt [fi, f2] "-"-^f *n eine Folge
von Intervallen ik(k — 1,2,3...).

Wir haben das (f, ^-System so ge-
wâhlt, da8 die positive ^-Achse Sym-
metrielinie der Sektoren A1(z0), A2(z0)
ist. (Die beiden Sektoren besitzen den

1 2
Radius —und den Offnungswinkel — (Fig. 4.)

Die Menge 77 ist in der Kreisscheibe S (a, B)\B< —-) enthalten und

fur zo€lT gilt II-A^Zq) 0 (j 1, 2). Damit folgt leicht, daB jede
Parallèle zur ^-Achse durch einen Punkt f0 € 77^ genau einen Punkt
z0 cil enthâlt. Wir bezeichnen seine Ordinate mit 0*(£o).

Es sei jetzt @(i) (^ ^ | ^ £2) Jene stetige Funktion von |, welche
auf 77| mit 0* (£) identisch ist und auf dem Intervall ik (Je 1, 2,...
linear verlâuft. Die Bildkurve dieser Funktion im (£, r\)- System
bezeichnen wir mit C. Wir haben dièse Kurve so konstruiert, daB sie aile
Punkte von 77 enthâlt.

Man sieht nun leicht, daB 77- A^z^) 0 fur aile Punkte zoeC. Dar-
aus folgt fur |' c fo, £2], £" e [|1? ff]

Fig. 4

0(1) ist also jedenfalls von beschrânkter Variation, C also rektifizierbar.

Beweis.
A. Bezeichnungen. Wir denken uns sâmtliche Tripel ocl9 oc2, oc3 von

rationalen Zahlen (0 ^ <x1<(x2<(*z<Zri) numeriert und oc[, ocT2, <x\

sei jenes mit der Nummer t.
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Ist nun or, r ein Paar von natiirlichen Zahlen, so bezeichnen wir mit
Aj(z ; a, t) (j 1, 2, 3) den Kreissektor, dessen Punkte z + çei9> den

Bedingungen 0< £< —, oc) ^<p ^(x) -\ geniigen. Wir betrach-

ten immer nur solche Zahlenpaare a, t deren zugehôrige drei Sektoren
paarweise punktfremd sind.

Das Komplement der Vereinigungsmenge dieser drei Sektoren in bezug

auf die offene, in z punktierte Kreisscheibe Slz, — zerfàllt wiederum

in drei Sektoren D^z; a, r) (j 1,2, 3). Und zwar sei Dô{z ; a, t)
jener Sektor, welcher Aj(z; a, r) vorangeht, wenn man z in positivem
Sinn umlâuft.

Wir bezeichnen ferner mit uj(z;a> r), Vj(z;a, r) die beiden den
Sektor D^z; a, r) einschlieBenden Strahlen. Dabei legen wir die Be-
zeichnung derart fest, daB bei Drehung um z in positivem Sinn der Strahl
ui(z; ay t) zuerst den Sektor Dô(z; a, r) ùberstreicht und dann in
Vj(z ; ex, r) iibergeht.

Der Einfachheit halber nehmen wir wiederum an, G sei die Vollebene.
Mit P bezeichnen wir wieder die perfekte Menge der Punkte z, inwelchen
f(z) nicht regulâr analytisch ist und gehen von der Annahme aus, P sei

nicht leer.
Nun defînieren wir Mengen F (a, r) ; und zwar sei zoeP Elément

von F (a, r), falls folgende Bedingung erflillt ist:
In jedem Sektor Dj(z0 ; a, r) (j — 1, 2, 3) verlaufe ein Jordanbogen

Cj{Zo)l
z zj(t) (O^t^l)

dessen Punkte, mit Ausnahme der beiden Enden, im, Innern dièses Sek-

tors liegen. Der eine Endpunkt z^(0) sei z0 und der andere 2,(1) liège

auf der Peripherie des Kreises S fz0 ; —J Fur z c O,(z0) {j — 1 2, 3)

gelte

B. Nach Voraussetzung II besitzt nun f(z) in jedem Punkt z e P — E
(E abzâhlbare Punktmenge) die in der Einleitung definierte Eigenschaft
Q. Daraus folgt leicht, daB jeder Punkt von P — E in mindestens einer
Menge F (a, r) auftritt. Es gilt also

Die Summe ist dabei liber aile Paare a, r von natiirlichen Zahlen zu
erstrecken, welche der in A erwâhnten Bedingung geniigen.
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Nach dem in der Einleitung formulierten Satz von R. Baire existieren
also natiirliche Zahlen s, t, sowie eine offene Kreisscheibe S (a; B),
(aeP, B>0), so daB ¥s,t) £P • S(a; B). Man darf naturlieh an-
nehmen7) / 2 \

2B<ô-sinô (à — (1)
s

Da s und t von jetzt an fest bleiben, fuhren wir folgende abgekurzte
Bezeichnung ein : Aj(z ; s, t) Aj(z), D^(z ; s,t) Dj(z), uô(z\ s, t)
uj(z), Vf (z ; s, t) vi(z)• (j 1,2,3). Wir setzen ferner P-S(a; B)

P(a;B).

Fig 5

Ist also z0 e F (s, t), so gilt folgendes (vgl. Fig. 5) :

Es existieren drei Jordanbôgen C^Zq) (j= 1,2, 3), so daB

J f(z) - f(z0) | S s | z - z0 | fur ^c C,^) (j =1,2,3). (2)

Dabei verlâuft Ci (z0) in £>,. (20) und verbindet z0 mit einem Peripherie-

2/
Fur das Folgende ist ferner wichtig, daB die drei Sektoren ^(z0)

(j 1,2,3) den Offnungswinkel <5 besitzen.
Unabhângig von den obigen Betrachtungen sieht man endlich leicht

ein, daB eine Schranke Mx existiert, so daB

|/(f)-/(*)| ^Miie-z] fur z€P-S(a;B), \ç-z\=ÏB. (3)

7) Wegen dieser Ungleichung bleibt in den folgenden geometrischen Konstruktionen
jeweils (2) anwendbar.
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C. a) In diesem Abschnitt machen wir wiederholt von einer leicht
zu beweisenden Ungleichung Gebrauch : Bezeichnet man mit A (zOîz'>Zi)
die abgeschlossene Dreiecksflâche mit den Ecken z0, z\ zx und mit f
den zu zr gehôrigen Innenwinkel, so gilt :

\Z\<\Z-zo fur (4)

b) Ich beweise zunâchst fur z0 € PS (a; B), zx€ PS (a; B)
4

ô - sin ô

Da f(z) stetig ist und F(s,t) auf P-S(a;B) ûberall dicht liegt,
genûgt es, (5) unter der zusâtzlichen Annahme z0 cF (s, t), zxeF (s,t)
zu beweisen.

Wir betrachten zu diesem Zweck die den Punkten z0 und zx zugeord-
neten Kurven C3(z0) bzw. C3(z1) {j 1,2, 3). Die drei Stiicke der
Kurven C3(z0) (j — 1,2,3) von z0 bis je zum ersten Schnittpunkt mit
der Peripherie des Kreises S (a; B) zerschneiden die offene Kreisscheibe
S (a; B) in drei Gebiete G3 (j 1, 2, 3). Dabei sei O3 jenes Gebiet,
das sich an Cj(zQ) anschlieBt, wenn man z0 in positivem Sinn umlàuft.

Fig 6

Der Punkt zx liegt nun in einem der Gebiete Os (j 1, 2, 3) oder auf
einer der Kurven Cô{zq) (y 1,2, 3). Im letzteren Fall ist (5) bereits
nach (2) erfûllt. Ich nehme nun an zx € Ox. Die beiden anderen Fâlle
(zx € O2, zx € Os) lassen sich ganz analog behandeln.

Mit zf bzw. zfl bezeichnen wir jetzt den Schnittpunkt von v3 {zx) bzw.
uQ(Zi) mit dem aus %(z0) und ^2(^0) zusammengesetzten Linienzug.
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Es bestehen folgende zwei Môglichkeiten : Entweder liegt z1 auf %(z0)
und zff auf v2(zQ) oder 2'und z/; liegen auf demselben Strahl ux{zq) oder
v2(z0). Wir betrachten zunâchst die erste Môglichkeit (Fig. 6).

Man erkennt leicht, da8 die Kurve O^fo) die aus C1(z0) und C2(z0)

zusammengesetzte Linie in mindestens einem Punkt Z des Vierecks
(z0, z'', zl9 z") schneiden mufi. Der zu z' gehôrige Innenwinkel des Drei-
ecks A (zQ, zr, zx) ist aber gleich ô ; ebenso der zu z" gehôrige
Innenwinkel des Dreiecks A (z0, zl9 z"), Daraus folgt nach (4) leicht

l- ~oi i~ ~ii- sin((5) i-o -ii •

Mit Hilfe von (2) ergibt sich daraus nun die zu beweisende Ungleichung
(5):

\^s\z1-Z\+s\z0-Z\<M2\z1-z0\
Der zweite der oben erwâhnten Fâlle lieBe sich ganz analog behandeln.

c) Es bleibt noch zu beweisen, da8 eine Schranke M existiert, so da8

| / (Zl) - f (z0) | ^ M | 2l - z0 | (6)

sogar gilt, wenn man nur voraussetzt z0 c P (a \\ JR), \zx — zo\ ^^ R.
Aus dem oben bewiesenen Hilfssatz geht nun zunâchst hervor, daB

auf P (a; R) Punkte z0 existieren, zu welchen in jedenx Winkelraum
w(zo;oc,f}) {(x<(5) eine gegen z0 konvergierende Folge von Punkten
zx € P (a ; R) (A= 1,2,3,...) existiert. Die Menge K dieser Punkte
ist auf P (a ; R) von zweiter Kategorie, also jedenfalls auf P (a ; R)
uberall dicht. Ferner ist die Funktion f(z) stetig. Um die am Anfang
dièses Abschnitts ausgesprochene Behauptung (6) zu beweisen, ist daher
die zusâtzliche Annahme z0 € K erlaubt.

Ich ftihre den Beweis zunâchst nur unter der weiteren Annahme
durch, daB zx € A1(z0).

Bezeichnen wir mit D*(z0) den zu D3(zQ) in bezug auf z0 symmetri-
schen Sektor, so existiert nun also eine Folge von Punkten

zxeP(a;R)-D*(z0) (A 1,2,3,...),
welche gegen z0 konvergiert. Da F(s,t) auf P(a;R) uberall dicht
liegt, darf man sogar annehmen, die zx (A 1,2,3,...) seien Punkte
der Menge F(s,t).

Wir wâhlen nun den Index l so groB, daB zx c A^zJ wird.
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Wir betrachten jetzt die Stûcke der Kurven C1(zl), C2(zt), welche
zwischen z0 und dem ersten Schnittpunkt Ax bzw. A2 von C1(zl) bzw.

(^(Zj) mit der Peripherie des Kreises S (z0; ^R) liegen. A sei das von
diesen Kurvenstiicken und der Peripherie von S (zQ ; \ R) begrenzte
Gebiet, welches den Punkt zx enthâlt (Fig. 7).

UX (2,)

Fig 7

Fur einen Punkt £ e A (abgeschlossene Huile von A) bestehen nun
folgende Lagemôglichkeiten :

(*) ÇtC^Zt) oder feC,^,).

Man erkennt leicht, da8 in diesem Fall der zu zl gehôrige Innenwinkel
des Dreiecks A (z0, |, zt) grôBer ist als ô und daher gilt nach (2) und (5) :

- / (z0) | £ | / (f - / (*,)

z0 - z,

Setzt man Jf' max [s, if2], so schlieBt man nach (4) weiter

(/S) | liegt auf der Peripherie von S (z0 ; \R). Nach (3) gilt hier

| / (I) - / (z0) I ^ Mx || - 20 | (8)

(y) Ç eAP(a; R). In diesem Fall gilt (5).
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(ô) Ç€A — AP(a;R). Wir setzen M max [Jfl5 Jf2, Jf3] uïid

betrachten die Funktion F(£) " ' ~~ "z°' Naeh dem Maximum-
ç — 20

prinzip existiert entweder auf AP (a; R) oder auf dem Rand von A
ein Punkt f*, so daB |.F (£*) | ^ | JF(f) |. Nach (5) (7) (8) ist aber
| F (f *) | ^ M, und es gilt daher auch in diesem Fall

i / a - / (*o) i ^ m ii ~ *01.

Nach (oc) (p) (y) (ô) ist also | / - / (z0) | ^ Jf | f - zQ | fur ^ c A.
Dièse Ungleichung gilt insbesondere fur | 2X.

Die Behauptung (6) ist damit unter der zusàtzlichen Annahme
z1€A1(zQ) bewiesen. Der Beweis fur die beiden Fâlle z1€A2(z0) und
z1€Az(z0) verlâuft natiirlich ganz analog.

Es ist noch zu zeigen, daB (6) auch fur zx c D^Zq) (j 1,2,3) gilt.
Ich fûhre den Beweis wieder nur ftir den Fall z1 e Dx (z0) durch ; denn
die beiden andern Fâlle lassen sich ganz analog behandeln.

Es sei also zx c D1(z0). Nach unserem HiKssatz existiert eine Folge
von Punkten zx € P (a ; B), welche in A* (z0) gegen z0 konvergiert.
^* (zo) bedeutet hier den zu A2(z0) in bezug auf zQ symmetrischen
Sektor.

Wir wâhlen nun den Index l so groB, daB zx c D1(zl) wird. D sei das

Gebiet, welches durch die Strahlen ^(zj) und v^Zj) aus dem Kreis
8 (z0 ; £ i?) herausgeschnitten wird und den Punkt zx enthâlt. Dièses
Gebiet D tritt nun an Stelle des im vorangehenden Beweis aufgetretenen
Gebietes J, und die Betrachtung geht ganz analog wie oben weiter.

D. Von nun an weicht der Beweis nur noch an wenigen Stellen von
jenem des ersten Teils ab. Man beweist zunâchst wieder, daB

-zo| fur zo€S(a;iR), \z~zo\ ^$R. (9)

Neu kommt jetzt die Anwendung eines Satzes von W. Stepanoff8)
hinzu, nach welchem man auf Grand von (9) schlieBt, daB f(z) fast
ûberall im Kreis S (a ; J R) ein totales Differential im Sinn von Stoltz-
Fréchet besitzt.

Nach einer von D. Menchoff angegebenen Méthode9) beweist man
ferner folgendes : Besitzt / (z) in z0 ein totales Stoltz-Fréchet-Differen-
tial und zugleich die in der Einleitung definierte Eigenschaft Q, so ist

8) vgl. die Formulierong dièses Satzes in 1, p. 27.
*) Dièse Méthode wird in 1, p. 19—23, auf etwas einfachere Fâlle angewendet.
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f(z) in zQ differenzierbar, erfullt also jedenfalls in z0 die Cauchy-Riemann-

sche Bedingung -~- + % -~— 0

f(z) erfullt daher in fast allen Punkten zeS(a; %B) die Cauehy-
Riemannsche Bedingung.

SchlieBlich kann fur den vorliegenden Fall auch die Beweismethode
des Satzes von L. Lichtenstein wieder fast unverândert ûbernommen
werden. Man hat nur an Stelle Riemannscher Intégrale Lebesguesche
zu setzen.
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