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Linear Accessibility
of Boundary Points of a Jordan Region
A. J. Lorwater and G. Pmraniax (Ann Arbor, USA)

A problem of long standing in the theory of conformal mapping con-
cerns the finding of conditions on a set £ on a Jordan curve C that are
necessary and sufficient in order that the conformal mapping of the
region bounded by C onto the unit disc should cast the set £ into a set
of Lebesgue measure zero on the unit circle C;. Seidel and Walsh [2],
and Tsuji [3], have shown that the condition of not being accessible
from the interior by curves of finite length is sufficient. On the other
hand, Lohwater and Seidel [1] have shown that the condition of being
of linear measure zero is not necessary ; they have constructed a Jordan
region ¢ whose boundary contains a collinear set ¥ of positive measure
with the property that the image of £ on C, is of measure zero. In this
particular example, the points in £ happen not to be lineary accessible
(see definition below), and it becomes natural to ask whether in the
general case the set of linearly inaccessible points on C is always mapped
into a set of measure zero on C,. The present note describes an example
that answers this question in the negative.

Definition. A4 point P on the boundary of a region G is linearly accessible
provided there exists a point Q such that the rectilinear segment PQ is in-
terior to G, save for the point P.

Theorem. There exists a function, regular in the open wunit disc, and
schlicht and continuous in the closed unit disc, which maps the unit disc into
a region bounded by a simple closed Jordan curve C in such a way that the
set of linearly accessible points on C is the image of a set of measure zero on
the unait circle.

Let k& be a real constant (0<k<1); let {n;} be a sequence of in-
tegers satisfying the conditions

nl-——: ]. s
Ny = 805 27 (1 — k)4 (Gj=1,2,...) (1)



and let
fl (z) =2,
fi(®) =fia (&) + kzmifyy (2)/n; (1=2,3,...) . (2)

It will be shown that the sequence {f;(z)} converges to a function f(z)
which is schlicht in the open unit disc and continuous on the closed unit
disc, and that it maps a set of measure 2z into a set of linearly inacces-
sible boundary points. It seems fairly obvious that the function also
maps the unit circle into a Jordan curve ; but to avoid tedious arithmetic
in the proof, it will be necessary to assume that the index =, is large
enough so that certain inequalities are satisfied.

To sketch the intuitive ideas that suggested the construction and the
proof, we consider first the functions

D, (z) =z, .
D;(z) =z +k }7:
r=2

ztr

n’l‘

The maps I'; of the unit circle C; by these functions have the following
properties : the curve I', can be obtained by putting into the unit circle
ny — 1 waves of appropriate shape and of amplitude 2k/n,; the curve
I’; can be obtained by imposing n;, — 1 waves of appropriate shape and
of amplitude 2k/n; upon the curve I', ;. But a difficulty arises with
regard to schlichtness : a major portion of those arcs of I', which lie out-
side (inside) of the curve I',_; represents stretched (compressed) arcs of
I'._; ; and no matter how small the constant %t is chosen, every curve
I', of sufficiently high index contains arcs constituting such highly
compressed images of the corresponding arcs on C; that some of the
“waves” of I',,; become loops. In case of the functions f;(z), this
difficulty is overcome by means of the factor f;._l (2) that occurs in the
right member of (2). Geometrically, this factor has the following effect :
If C; is the map of C; by f,(z), and if the arc 4 on C,_; corresponds to
a stretched (compressed) portion of C,, the waves imposed on 4 in the
formation of C, are relatively large (small); all the waves are of much
the same shape, and looping of the approximation curves C; and their
limit curve C is avoided.

At each point on certain arcs of C,,, the tangent line to C,,; makes
an angle of approximately sin—'% with the tangent line at the cor-
responding point on C,. Certain portions of these arcs on C,; are images
of arcs on C,, that stand in a similar relation to C,, ; etc. Upon drawing
a sketch of the curve C; (with k£ near unity), it becomes apparent how
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a certain portion of every arc of the limit curve C is twisted so that its
points are linearly inaccessible from the interior, except by means of
line segments shorter than the diameter of the arc. The rest is obvious,
and it remains only to sketch the details of the analytical version of the
proof.

Lemma 1. The degree of the polynomial f;(z) s less than 2n;.

This lemma follows from the relations (1) and (2) by induction. It

implies that
-1

J
f,(Z) = N amzm ’
m=1
where the coefficients a,, are real, non-negative, and independent of the
index 4.

Lemma 2. When § = 2,3,..., the coefficients a,, satisfy the conditions
U <3 n;% (1 — k)to-D (n; <m<n; 4+ 2n,_, —3) ,
m:O (n, + 20, —3 < m<n;,,) .

The second condition follows from Lemma 1, the first condition from
the inequality (1) (by induction, and with the aid of term-by-term
differentiation of the polynomial f,_,).

(-]

Lemma 3. Ya <oo.

e’ m
m=1

This result follows from the inequality

nj+2'n7'1
Y ooa,<3inl(1—k)ro-n

'

m=nj
which in turn follows from Lemma 2. The sum of the infinite series
2 a,z" (|z|< 1) shall henceforth be denoted by f(2).
Lemma 4. If |z|<1, f'(z) #0.
With the notation Di*? = df, +p(z)/dfj(z), the identity

21 1)

Ditt =1 + k2" 4+ k 3
U T My f () 8)

gives the inequality
| i (&) | = (1 — k)20-0 (4)
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for 4 =1, (4)is trivial ; if (4) holds for a specific index §, term-by-term
differentiation of the polynomial f(2) gives the estimate

2"+ ;'(z)
< 277 k(1 — k)2i+2 | ()

N1 f; ()

from which it follows that | DJ*'|>(1 — k)2, and (4) is established for
all indices j. Since lim f;(z) = f'(2), uniformly in every closed region
in the open unit disc, the lemma is proved.

Lemma 5. If |z| <1, |f(z)—f,()]<2/n. .
The estimate (5) gives the inequality | D;:“l <2, and it follows that

fr(z) [Py < kzzr R

o0
b
r:

!f(z) — ()| <k

<k2-U14(1—kr+ Q=84 ]/n4.,
and the result follows immediately.

Lemma 6. If u and v are two complex numbers (|u|<|v]|), and if
the appropriate branches of the respective arguments are chosen, then

<—g-|u/v .

arg(u + v) — argv

This follows from the law of sines.

Lemma 7. If |z| <1, appropriate choice of branches gives the rela-
tions
!/
arg f,(z) = 0,

arg fi(z) = w,(z) + X arg(1+ke™Y) (j=2,3,...), (6)

where 1'::.,
nk
For j=2,3,..., equation (3), the estimate (5), and Lemma 6
imply that

Uy fztr+1 7
arg f;(Z) — 21 arg [1 + kznr-l-l——l + 2 r (2)]
r=

Mrr [ (2)
—1

= w,(z) + 72 arg (1 4 kz"r+171)
r=1
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where w,(z) = 0, and (for §j>2)
i-1
| w, (2) | <~g—k 3 27 (1 — k)2 < -’-’4&(1 — k) .
r=2

k
1—Fk°

k sin 0 du
— -1
Lemma 8. If u = tan T T kcosd’ then da‘g

The proof is an exercise in the differential calculus.

Lemma 9. If 2zn; ** < p— @ <x, then |f(e'¥) — f(e'®)| > 2ny ¥/°.

Let ¢¥ = u, ¢'®=v. Then Lemma 5 gives the inequality

| f @) —f@)|>]fi(w) = fi(0) [ — 2/n,

=2sinw;(p — 2/[m,

> 2 (sin n; *

/3 __ nz—l) .

Lemma 10. If 2an;5° <y — ¢ < 2an; 2% then
F(eY) — 1) | >zl (1=2,3,...),
provided n, exceeds a certain number which is independent of the index j.

Again, with the notation as above,
[ f @) —f@)|>]f;@) —f©)] — 2/ng, .

With the notation of Lemma 7,

f () — 1, (o) = J £} (2) dz =
’l/) .
= feXP {’b[—g + 60 + w; (e*®) + ézarg(l + keie(nr-l))]]m(ew”do _
L

In order to obtain a lower bound for the modulus of the integral, we
need an upper bound on the length 4, of the interval over which the
quantity in brackets varies as 0 varies from ¢ to y. The respective
contributions to 4; from 0, w,, and the last term under the summatior
are less than

2an; ', Iak(l —k)5, and 2sintFk ;
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and, by Lemma 8, the contribution from the remaining terms is less than

2n k
n;":’3 1—k

[n2-1+n3~1+-~-+n,_1-—l]=0(n;”3).

It follows that
A<2s8in"'k+ Lnk(1—k)°] + O(n; %) <24,

where 7 is independent of j, and less than /2 if n, is sufficiently large.
Therefore, for sufficiently large values of n,

[150) = 1,(0) | > (» — 9) o0s (5 — ) min | £;(2)|

lz] =1
> 2nn;%/? cos (-7-;— - 17) (1 — k)26-D
> 20547,
and the lemma follows immediately.

Lemma 11. If n, is sufficiently large, the function f(z) maps the unit
circle into a Jordan curve C'.

By Lemma 3, the mapping of C; by f(z) is continuous and single-
valued. By Lemmas 9 and 10, the same is true for the inverse mapping,
and the lemma is established.

Lemma 12. The set of all points on C; whose image by f(z) is linearly
accessible from the interior of C is of Lebesgue measure zero.

It will be convenient to say that a point P on C is R-accessible provided
there exists a rectilinear segment PQ, of length R and interior to C
except for the point P. Lemma 12 will be proved when it is shown that
for every positive number R the set of R-accessible points on C has
measure zero. This in turn will be established when it is shown that if
A is an arc of length L on C,, there exists on 4 a collection of finitely
many subarcs, of total length ¢L (where ¢ is independent of L), such
that the image of each point on any of these subarcs is not R-accessible.

Let R be a positive number ; let g =sin*k, « = (1 — k), where
h is a small positive constant, and let s be an integer greater than 3m/w.
For every positive integer =, the set of points z on C, at which the ine-

quality
x <arg (1 + k2") < B
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holds is composed of n symmetrically distributed arcs whose total
lenght 1 is independent of n. It follows that if 4 is an arc of length L,
and j is a positive integer (}/n;_, > 1/L), there exists a set 4] on
A, composed of arcs of total length A L(1 + O(n;')), such that

x <arg (1 + k2"~7) < B

on A;. Let the two outermost arcs of A be deleted ; and from each of

the remaining arcs, let the two outer thirds be deleted. The remainder,

of total length AL[1+ O (n;')]/3, shall be denoted by A, .
Again, each arc of A, contains arcs on which .

x <arg (1 + kz"+17Y) < B .

These arcs occur in groups of approximately =,,,/n; arcs. From each
of these groups, let the two outermost arcs be deleted ; from each of the
remaining arcs, let the two outer thirds be deleted ; and let the remainder
be denoted by A4,;.

If this process is carried out s times, there results a set B, = 4

~

J+s—1>
composed of arcs of total length (4/3)°L (1 + O (1/n,)). Let u be any
point in B, ; then u is the end point of arcs y;, y,,..., y, of respective
lengths

27 2nm 2n
3n; T 3n;, " T 3myye—y
on which the respective inequalities
x < arg (1 4+ kz"i+r~ 1) < B (r=20,1,...,8 —1)

hold. Moreover, it may be assumed that u is either the left end point
of each of these arcs, or the right end point of each -of these arcs.

Suppose, to be definite, that w = ¢'”, and that the point v = ei?
lies in the arc y, when 0 <y — ¢ < 27n/3n;. Then, when

27 27
n2l® Sy —9¢< n2/3
jrt+1 i+t

arg (f(u) - f('”)) = arg [fj+t(u) — fire(@) ] +0(1)

il
=2ty wlu,v) + X arg (1 + keiotr)

2
j+t

+ Sarg(1+ kei®or-) 4+ o(1) .
r=j
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The first four terms of the last member are nearly constant in y,, except
for the quantity w(w,v), which will be discussed presently. The last
term lies between

G+)Q—h)p and (G+i+1)B.

The term w(u,v) varies fairly widely ; but its modulus never exceeds
TE(l — k)
1 k(1 — k)5 .

It follows that as v runs through y, (which includes y,, v,, ..., ¥,_,),
the argument of f(u) — f(v) runs through a range of approximately 3.
Because the map of C; is continuous, the proof of the lemma is complete,
and the Theorem is established.
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