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Sur un théoréme de Schwarz

Par RENE GARNIER, Paris

Dans le supplément & son Mémoire couronné, Schwarz annongait qu’il
n’existe qu’un segment de surface minima S, sans singularité, admettant
les cotés d’un quadrilatére gauche @ pour frontiére compléte 1) ([18],
p- 111). Il ne semble pas que Schwarz ait jamais publié la démonstration
de ce théoréme. Beaucoup plus tard, 7ibor Radé établissait sous une
forme remarquable des conditions suffisantes d’unicité pour la solution
du probléme de Plateau relatif & une courbe de Jordan fermée, C : §’il
existe un point O, & distance finie ou non, tel que la projection centrale
ou cylindrique de C' & partir de O soit une courbe convexe simplement
couverte, il ne peut passer par ' qu’un segment de surface minima
([14], p. 8). Sa démonstration, trés simple, s’appuie sur des propriétés
des équations aux dérivées partielles du type elliptique.

Nous nous limiterons ici au théoreme de Schwarz, mais nous 1’établi-
rons par une voie toute différente de celle de 7'. Radé. La méthode ac-
tuelle fait intervenir les intégrales de I’équation VI de Painlevé; et par
un retour imprévu, elle en révele des propriétés nouvelles : elle étend aux
tntégrales de VI la notion de fonction contigué, introduite par Gauss pour
les fonctions hypergéométriques; elle établit la formule qui relie deux
fonctions contigués et fournit une infinité de cas d’intégrabilité de I’équa-
tion V1.

Par son origine la méthode se rattache aux travaux de Weierstrass ;
elle reste ainsi dans la ligne générale du Mémoire de Schwarz. C’est d’ail-
leurs par la méme voie que j’ai résolu [7] le probléme de Plateau pour les
polygones (puis, pour des contours continus plus généraux?).

I. Préliminaires

1. Hypothéses fondamentales. Le segment S sera représenté par les
formules de Weierstrass :

1) Les numéros entre [ ] renvoient & la Bibliographie de la p. 172.

2) Les résultats exposés dans ce Mémoire ont été résumés dans deux Notes des
C. R. Ac. Sc., t. 217, 1943, p. 60 et p. 320. Je suis heureux de rappeler qu’ils ont fait
P’objet d’'une Conférence & I'Université de Genéve, le 14 juin 1949. On me permettra de
rendre hommage ici & la mémoire d’un colldgue éminent et d’un ami regretté, Rolin
Wavre!
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X=R[{G*—H¥dz, Y =R[i(@ + H)dz, Z=R [2GHdz (1)

ou X, Y, Z sont des coordonnées rectangulaires, G et H des fonctions de
la variable z, analytiques dans le demi-plan supérieur I7[R(1x) <0], et
telles que @ soit représenté biunivoquement sur I’axe réel. Nous ferons
les hypothéses suivantes :

1. @2, GH et H? sont holomorphes dans I1 et sur Uaxe réel, sauf, peut-étre,
aux affixes respectifs z, =0, x, =1, x3 =1, x, =00 des sommets A,,
AZ) Aa: A4 de Q'

II. S admet un plan tangent bien définie en A; (j =1,...,4) et va-
riant par continuité au voisinage de A;.

Ces hypothéses tendent & introduire un segment S aussi « régulier»
que possible. La premiére partie de I (... dans I7 ...) n’est d’ailleurs
que la traduction d’une hypothése faite couramment dans 1’énoncé du
probléme de Plateau : on demande & la surface cherchée d’étre représen-
table conformément sur 'intérieur d’un cercle par des fonctions harmo-
niques continues ([15], p. 32). La seconde partie de I (... sur laxe
réel ...) permet le prolongement par symétrie de S & travers chaque
coté de Q. 5

Rappelons que 7= T = __zf- (x, B, y cosinus directeurs de la

normale & 8); une rotation des axes de coordonnées (ou de §) s’exprime

AB — .
B Z) , sur G et H (W, imagi-
naire conjuguée de W) ; ainsi @ et H satisfont & une équation linéaire du
second ordre

par une substitution S de Cayley, soit (

Y+ p@) Y +qx) Y =0, (E)

dont les coefficients p(x), g(x) sont indépendants de la position de S
par rapport aux axes de coordonnées et réels sur I'axe réel R(ix) = 0

(7], p. 65).

2. Etude du voisinage d’un sommet. Dirigeons ’axe OZ parallélement
& la normale N & § en un sommet quelconque 4; (j =1,...,4), dont
Paffixe sera prise égale & 0 dans ce numéro ; v est donc nul avec x. Fai-
sons décrire & x un lacet L issu d’un point de /7 et entourant 0 ; sur S le
point M, d’affixe x, subit une rotation autour de it ; pour la substitu-
tion & correspondante on a donc B = 0. G et H se changent respective-

ment en AQ et AH ; ce sont, par conséquent, deux intégrales canoniques,
Q(x) = x*g(x), H(x) = 2Bh(x), avec & + B entier et g(x), h(x) uni-
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formes autour de 0. Montrons que 0 n’est pas un point essentiel de g(x) et
h(@). Or h@) _ 1 2mh(2) _ 9(2)
g(x) 2 g(z) x¥

avec y > 0 et m entier >0 ; d’apres II ¢(x), devant tendre vers 0 avec

x et étant uniforme, est holomorphe en x = 0.
Mais

T = xh-o

H

Z =R [ 2a2P-mg2(2) p(x)dz ,

et o« + f — m est entier; si g(x) admet x = 0 comme point essentiel,
il en sera de méme de l'intégrale précédente ; soit f(x) = Z + ¢Z, cette
intégrale. La fonction ¢/*) admettant encore # = 0 comme point essen-
tiel, ¢ et par suite Z ne pourraient rester bornés au voisinage de 4, (sur
S, ou sur un des segments déduits de S par rotation autour de N). Ainsi,
quitte & augmenter « ou f de nombres entiers (>0 ou <0), on peut
supposer g(x) et h(x) holomorphes et # 0 pour z = 0, avec de plus,
f>ou, car N coincide avec OZ. Les affizes 0, 1, ¢, co des sommets de @
sont donc des points réguliers de (E) au sens de Fuchs.

3. Détermination des exposants caractéristiques. — Désignons par «,,
B, les exposants caractéristiques des intégrales canoniques de (Z) en
z; (j =1, 2,3); pour les déterminer, il est loisible de supposer momen-
tanément 1’axe des Z normal & S en 4;. D’apres la fin du N°2 on a
B;>o;, et d’aprés (1): n(2a; + 1) = V,, en désignant par V; la mesure
de ’'angle plan formé par les vecteurs-unités joignant 4, aux points de
S infiniment voisins («contingent» de G. Bouligand). D’ailleurs, o«; 4 f;
est un entier m, (N° 2), avec m,; > 0 (car Z doit rester fini), et, puisque
f;>x;, on a

1V, R
(Xj-——--'E —5—7;‘, ﬁj—"é""'z_n"}"mj (2)5
avec
v, .
m5>“7':""1 (7: 13 2, 3) ’ (3)5

(ce qui s’accorde bien avec m,>0). L’étude de x =oco, affixe de 4,,
se fait & l’aide de la transformation z|2~!; elle donne pour les expo-
sants caractéristiques

17, 37,
0‘4-§+—2;, ﬂ4——'-2*——2“;+m4, (2)4

V, étant défini comme V;, et 'on a pour I’entier m, (= 0):

.V
m4>‘;4"—“1 . (3)4
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En dehors des affixes z; des sommets de @, (¥) peut encore posséder
des points singuliers z), o G2, GH, H? restent holomorphes (N° 1). En

de tels points, les exposants caractéristiques sont égaux a des moitiés
/ /

d’entiers, _”_;i et —-—% + m;, avec m, >0, m, entier et
my —my > 1 (ou =2, si my,=0)3) , (3);

Les points x) sont en nombre fini, N : car, d’aprés la forme de G (z) et
H (x) autour d’un point z; (N° 2) et en vertu de résultats analogues qu’on
pourrait établir au voisinage d’un point quelconque ¢ intérieur & I (ou
réel), on voit aisément que ni z;, ni{ ne peuvent étre points d’accumu-
lation de zéros de GH’ — HQ'.

Soit alors, dans (E)

3 N 4
A Py
pw—%x—%+§x~%’

écrivant que la somme des résidus a distance finie et & I'infini est nulle,

et observant que p; = 1 —m,;, pj = 1—m;, on trouvera (relation de
Riemann-Fuchs)

3 N
2(A—m)+2QA—my)=38+m, ,
soit ! !

s N 4
2m;+Y(m,—1)=0 .
1 1

Or, on a vu que m; >0, m, >0, et d’aprés (3),, my =1, donc
m;=0 (j=1,...,4) et m, =1, m), = 0, ce qui délermine les expo-
sants caractéristiques «;, f; et entraine diverses conséquences :

a) D’apres (3);, on a 0<V,<m (j=1,...,4); le segment S «s’at-
tache » au contour par «’intérieur» des angles de @ (au sens de la Géométrie
élémentaire) 4).

b) On ne peut avoir m),>0; G et H ne sannulent donc pas simultané-
ment ; en particulier, S ne contient pas de point de ramification (m), =1,
m, = 2).

c) Il 'y a pas, non plus, de point méplat (m), =0, m; >2). En défi-
nitive, (E) ne peut posséder de point apparemment singulier. Posant alors

3) Un point :v;, pour lequel m;l =0, m; = 1 est un point d’holomorphie de p(x)
et ¢q(x), car @ (x) ne peut contenir de terme logarithmique (n° 1, I).

4) Dans [7] (p. 104—107), j’ai montré qu’il passe au moins une surface minima par
@, mais sans préciser son mode d’attache au contour.
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3

¥, .
n; —%’ (7"“1:'-'74);

il viendra
0<n,<} (4)

et d’aprés (2); (j=1,...,4) () s’écrira

e )r

x x—1
(m—3)? | (m—3* | (n—13)° d o _
——[ 2 (::——1)2 T (x—t)® + x(r—1) + x(x——l)(x—t)]y— 0
avec (®

d= (=P = (= ) = (3~ (u— 4P —1 .

4. Les invariants du groupe de (€). Pour achever la détermination de
(€) il faudrait pouvoir calculer ¢ et «. Mais nous n’avons pas encore
exprimé toutes les conditions du probléme. L’axe OZ étant pris normal &
Sen A,,ona (N°2): G(x) = ax*g(x), H(x) =bxBh(x), les fonctions
holomorphes g(z) et h(x) se réduisant & 'unité pour = = 0, et il faut
encore calculer a et . Or, quand z, partant d’un point de 17, décrit des
lacets autour de * =0, x =1, x=1¢, G(x) et H(x) subissent des
substitutions de Cayley, S,, S,, S, ; ces substitutions correspondent & des
rotations d’amplitudes connues autour des normales & S en 4,, 4,, 4,;
elles sont donc connues dés que 1’on a fixé la direction OX, normale & OZ.
Ainsi (€) doit étre telle que son groupe de monodromie & (construit a
partir de deux intégrales convenablement choisies) admette pour base
S, S3, 85. Or, sauf dans le cas ou (€) admet une intégrale & dérivée
logarithmique rationnelle (cas qui ne saurait se présenter que si les nor-
males & S en 4,, 4,, A, sont paralleles, c’est-a-dire si @ est un quadrila-
tére plan), le groupe ® peut étre défini par les invariants 4 + 4 (N° 2)
des substitutions unimodulaires 8,, S,, S;, S, 8, 858, 88,8, (=83")9%),
compte tenu du choix des axes. La forme (€) qu’on vient de trouver
pour () exprime précisément que les invariants de S,, 8,, S;, S, ont les
valeurs 2cos V; (j=1,..., 4); quant aux invariants de S,8,, et S;8,,
ils ont aussi des valeurs commues: la substitution S,8;, par exemple,
correspond & un produit de deux symétries autour des cotés 4,4, et
A,A,; elle a donc pour invariant 2 cos V,,, V;, mesurant 'angle des
vecteurs 4, — A, et 4, — A,.

Admettons qu’on ait su déterminer ¢ et « (dans (€) de maniére que
les invariants de S, 8, et 8,8, aient des valeurs données. On montre alors

6) Ici, et un peu plus loin, dans ce NO 4, nous omettons la démonstration de cer-
taines propriétés simples.
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qu’on peut choisir univoquement b?: a2 et @ en exprimant que S, est une
substitution de Cayley et que le coté A, A, a une longueur donnée ; le
remplacement de b:a par —b:a change d’ailleurs le segment de sur-
face S en un segment symétrique.

Enfin, réciproquement, on montre que des fonctions G et H satis-
faisant aux conditions .précédentes définissent, par I'intermédiaire de (1)
une surface minima passant par un quadrilatere égal & Q.

Ainsi, résoudre le probléme de Plateau pour ¢ revient essentiellement
4 déterminer ¢ et x de maniére que les invariants de 8,8, et S; S, aient
des valeurs données. Ces invariants sont des fonctions analytiques de ¢
et o ([13], p. 310) ; mais, pratiquement, il parait bien difficile de montrer
que les équations qu’on formerait ainsi ont une solution et une seule. Par
contre, une fois ces propriétés établies, on pourrait peut-étre aborder par

cette voie le calcul effectif de la solution du probléme de Plateau pour le
quadrilatere.

5. Introduction de I’équation VI. — Pour lever la difficulté, il convient
de rattacher le probléme actuel au probléme de Riemann ¢). Cherchons
donc d’abord & construire une équation linéaire du second ordre (€,) de
la classe de Fuchs, admettant deux intégrales qui subissent autour de
quatre points arbitrairement choisis des substitutions linéaires données ;
moyennant une transformation homographique sur x, on pourra adopter
pour ces points les affixes 0, ¢, 1, co comme plus haut, mais actuellement ¢
sera variable. Le nouveau probléme n’est autre que le probléme de Rie-
mann pour I'équation (€,). A 'encontre de (), 'équation (€,) devra

posséder un point apparemment singulier x = 4,, variable avec ¢; elle
sera. donc de la forme

x—1 x—1 x? (x—1)2 (x —1)2
L 2t—1 (€)
d,—3 32 T2 P _
+ x(x——fl) T (x — A,)2 T z(x—1)(x—1t) + x(x—1)(x—A,) h=0.

Il faudra d’abord exprimer que le groupe de (€,) est indépendant de la
valeur attribuée & t. Or, pour qu’il en soit ainsi, il faut et il suffit, comme
Pa montré R.Fuchs ([2], p. 308) que A= 1,(¢) soit une intégrale de

I'équation (découverte, & la méme époque, et indépendamment de lui,
par B.Gambier [3]:

8) C’est d’ailleurs le procédé utilisé dans [7], p. 55, pour la résolution du probléme
de Plateau relatif & un polygone quelconque.
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1/1 1 1 1 1 1
n— ~ |~ e __ — /
A 2(z+z—1+1_t)’1 (t+t~1 t—.,z)’1

+ 2“:2;;_1_)350 [a1+bl+cl 11— (al +~i—){—,¢
= ]

x =u,(f) et B= p,() s’exprimant en fonction de ', 4, ¢ par les for-
mules
o rE—1)e
C4AA—1(@A—1)

-——-}s(l——l)(l t)[al'*'i'_l_ b1+% + Cy + d1+%] (5)

e

(A —1)2 (A —1)? A(A—1)
tt—1) ., 1
b= —A+g (6)
on a de plus ([5], p. 250)
, 2 AA—1)
& ‘I”‘;l—:*‘t“‘l‘ 20"@'-_:7)2“———0 ) (7)

les équations (5), (7) forment un systéme équivalent & VI?7).

En définitive, il faudra choisir une intégrale particuliére de I’équation
du second ordre VI de maniére que les invariants des substitutions
S, 8, et 8,8, de (€,) (qui sont déja indépendants de ¢) aient des valeurs
données. Ce probléme de Riemann une fois résolu, il faudra montrer
encore

1. qu’il existe une valeur ¢, de ¢ telle que A(f) se confonde avec 0,
1, ¢, ou oo et que I’équation (E,) correspondante est de la forme () ;

2. que l'équation (€) ainsi formée & partir de 1'une quelconque des
quatre équations précédentes est unique.

La démonstration du théoréme de Schwarz va donc s’appuyer, néces-
sairement, sur les propriétés des intégrales de VI, et nous sommes ainsi
amenés & rappeler quelques résultats essentiels concernant ces fonctions.

6. Propriétés de A(t) pour t #% 0, 1, co. — P. Painlevé a établi [10],
une proposition fondamentale : toute intégrale A(t) de VI est holomorphe
ou méromorphe pour t =1, quelconque (% 0, 1, oo). Il a montré de
plus qu’il existe une infinité d’intégrales qui pour ¢ =14, (# 0, 1, o)

7) A une réserve prés ([5], p. 251) sans importance actuellement.
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prennent 1’'une des valeurs singuliéres 4, = 0, 1, ¢,, co; en se limitant
aux parties principales, on a, par exemple :

A—=c¢ V4a1+l(t__to)+..., (8)
ty— 1

PR to (o — 1) 1
2Va,+b +c,+d +1 1=

(6= +1; ¢ = +1), le second terme de chaque développement conte-
nant une constante arbitraire 8).

"I_"', (9)

Théoréme. Soient 2°, A’° et o® les valeurs initiales de A(t), A’'(t) et
o(t) pour t =1, (20,1, c0); A(f) et x(t) [ou 1: A et 1:u] sont des
fonctions holomorphes de 2° (£ 0, 1, t,, o) et A'® (£00); dans le cas
ou 2° a une valeur singuliére, A(t) et o(t) [ow 1: A4 et 1:x] sont des fonc-
tions en général ®) holomorphes de 2° (£ t)) et o® (F#£o0), ou de 2° (= t,)
et (x+ B)° = &° (Foo).

Ce théoréme étend une proposition analogue énoncée sans démonstra-
tion par Painlevé pour I’équation A" = 642 + ¢([9], p. 46). Pour I'éta-
blir, nous procéderons comme l’a fait Painlevé pour démontrer un théo-
réme analogue concernant les équations du premier ordre ([8], p. 36).

Soient @ (#£ 0, 1, o0), I (#£0,1, a, o), I’ (5#0c0) trois quantités
quelconques ; la méthode des fonctions majorantes montre qu’il existe
trois nombres positifs RB;, R,, R, tels que pour

|t —a| < By, |ty—a| <R, | 2—1| <Ry, | V=1 <R,

et ¢ fixe, 'intégrale de VI, soit A =¢ (¢; A% A’ ¢,), définie par les condi-
tions initiales #,, 4%, 2’°, est une fonction holomorphe de A°, 1’9, {, dans
le voisinage de 1, I/, a respectivement. Montrons que le théoréme reste
vrai lorsque ¢ varie sur un chemin quelconque £, allant de @ & un point
quelconque 7' (sans contenir 0, 1, oo). Supposons d’abord que sur £2
ne prenne aucune valeur singuliére, et soit 4 un parameétre qui serve a

8) On peut le voir, soit directement sur VI, soit en raisonnant sur (5), (7), ou pour

Ag = ty, sur un systéme analogue vérifié par }T = At"1 et Z =a + f {systéme (f),
[5] p. 292}.

%) Dans certains cas: A9 =0 et 4a, + 1 =0, A°=1 et 4b, +1=0; 20 =14,
et 4¢; +1=0; A=o00 et a; +b;, +¢, +dy + 1 =0, les fonctions sont algé-
broides autour des valeurs singulidres de A°; mais ces cas ne se présentent pas dans
le probléme actuel (cf. NO 18).
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représenter € biunivoquement, en croissant de 0 & 1 quand ¢ va de a
jusqu'a 7T sur 8 ; désignons par «’ la borne inférieure des valeurs de «
pour lesquelles le théoréme ne serait plus exact, et soit t(u') = v. Il
résulte du théoréme fondamental de Painlevé, énoncé au début de ce
numéro, que si 6 tend vers 7 sur 'arc (@, ) de 8, B =¢ (0; 2° 2'°¢,)
et y=gp (0; 2°, 4’0, t;) tendent vers des valeurs b et ¢, réguliéres par
hypothése. Nous savons de plus qu’il existe trois nombres positifs R,
R;, R;, analogues & R,, R,, R, et tels que pour

Ry R, R, R;
R’ R!
<y < B (10)

A=g¢ (t; Ay, A1, 0) et A = ¢, (t; A;, A/, 6) sont holomorphes en 4,,
21, 6 ; mais on peut prendre 6 assez voisin de 7 sur £ pour que les quatre
premieres inégalités (10) soient vérifiées sur tout I’arc (0, 7) de £ ; ainsi, ¢
(t; 4, A1, 6) et ¢ (v, A, A7, 6) sont holomorphes quand 4, et | vérifient
les deux derniéres inégalités (10). Mais on obtient ¢ (7; 4% 1'°, ¢,) en
remplagant dans ¢ (7; A;, A, 0) les variables 4, et A] respectivement par
@ (0,20, 20 1) = B, et A, par g4 (0; A% A%, t,) = y, et ces deux derniéres
fonctions B et y sont, par hypothése, holomorphes en ° 21’°. Donc ¢
(r; A% A9, t,) est bien holomorphe en A%, 1’° autour de [ et I’. L’existence
d’une borne inférieure u’<1 étant inadmissible, le théoréme est encore
exact en 7.

Supposons maintenant que les valeurs b et ¢ soient singuliéres; par
exemple, soit & = 0. On remplacera VI par un systéme (5), (7) qui,
résolu en A’ et «’, sera a coefficients holomorphes pour ¢ =17, 1=0,
& = &, (ou algébroides, si 4a, + 1 = 0, cas qui ne saurait se présenter
dans notre probléme ; N° 18), et ’on répétera le raisonnement précédent
en faisant jouer & « le role antérieur de A’. 11 en sera de méme pour b = 1
ou oo; dans ce dernier cas, on verrait que 1:2(7r; 2% A'°¢,) est une
fonction holomorphe de 4°, A’°, Pour b = 7, on substituerait a (5), (7)

un systéme en & et }: , qui reste régulier pour 4 =1¢ (N°7).

De méme, si les valeurs initiales 7 et I’ sont singuliéres, on leur substi-
tuerait les valeurs initiales de A et x (oude 1:1 et «, ou, si Il =4¢,, de
A et &°).

Un raisonnement identique & celui de tout & ’heure montrerait que,
pour ¢t =7, A est une fonction holomorphe (ou exceptionnellement

148



méromorphe) des constantes a,, b,, ¢,, d, figurant dans VI, autour de
valeurs finies attribuées a ces constantes.

7.  Propriétés de A(t) pour t voisin de 0, 1, co. Moyennant des trans-
formations homographiques simples sur ¢, 1, on peut échanger dans VI
les points singuliers 0, 1, co19); on peut donc se borner & étudier les
intégrales de VI au voisinage de ¢ = 0.

Or on peut construire le long de 1’axe réel des branches d’intégrales,
dites «caractéristiques de premiere espéce et du type général» ([5],
p- 250) telles que, ¢t tendant vers 0, « tende vers une valeur arbitraire
(mais telle actuellement que l’expression

§? = 4a, + 4¢, + 1 — 4«, (11)

soit comprise entre 0 et 1), tandis qu’en {,, suffisamment pres de 0, 4
prenne la valeur 4, ; 4, peut étre choisi arbitrairement pourvu que |¢,: 4, |
soit inférieure & une quantité ne dépendant que de a,, b,, ¢,, d,, s? c’est-
a-dire, actuellement, & une quantité purement numérique. On obtient
ces caractéristiques aprés avoir fait le changement de variable

A

A
f dl .
WPG
ou 2o

P(A) =4(a, +b1 +C1+d1 + 1)}‘(}"‘ 1) + (4b1+ 1)}"‘”82(}L "'“ 1) ;

() se trouve ainsi transformée en

t%zl—%ﬁ’(‘u,,zx—ao,t) , (5")

ou |F | reste petite au cours des approximations successives que 1’on
effectue sur (5') et la transformée de (7). Et I’on montre ([5], p. 315) que,

pour s £ 0
i=4le)+E+ro(y) (12)

A, B, C étant des fonctions de ¢ restant bornées quand ¢ tend vers 0;
lorsque ¢ tend vers 0 sur ’axe réel, A tend vers 0 comme kt* (pour s

10) [5], p. 250. En particulier, la transformation ¢t =1—#, A=1— 4, a =¥,
b=a', a =—a se compléte, dans (§,) par = 1 — 2’. On notera, de plus, la
transformation A; = At51, ¢t =131, by =¢5, ¢, =1by, ay=agtzl, P = Pfatz!
qui change (&,) et VI en des équations analogues, et 4, =¢ en Aq = 1.
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réel >011); pour s =0, le second membre de (12) devient un polynome
du deuxiéme ou du premier degré en log ¢, & coefficients fonctions de ¢. Il
résulte de 13, en particulier, que, pour s réel les zéros de 4, ou 2 — 1, ou
A~ 1 me peuvent s’accumuler au voisinage de t = 0. Pour s réel >0 on a

encore
! 1
1im———~t;' =8, et limﬂ=8+
t—>0 t—>0 2

(13)

d’apreés (6).
Mais il existe encore une seconde espéce de caractéristiques du type

*
général ([5], p.290); on pose At1= A, x +pB =4,

)‘ %
di .
TEE =
J VBd
avec 2o
PA)=— (da,+ 1)(A— 1)+ (dey + 1) A+ 82 A(A — 1),
=4+ +1—4d) ; (11)

on montre que pour >0, ona §=1—s ([5], p. 324), et les approxima-
¥*

tions convergent uniformément pour |#4,| = | 4, | assez petite; on a
d’ailleurs . .
% * t\é * * t\—8 *
A:A(~)+B—|—O(——) . (12)
bo b
* X *

A, B, C restant bornées quand ¢ tend vers 0. Si § = 0, le second membre
est remplacé par un polynome du deuxiéme ou du premier degré en log ¢.

Pour ¢ appartenant a (0, f,) et assez petit, soit pour ¢ = {,, quitte
4 diminuer ¢,, « (f) est une fonction holomorphe de «,, de 4, et de

11) En posant @ — ay = y, Ag = ¢, on peut remplacer (5), (7) par un systédme

tl’=l[8+f(9,l,%¢)] ’
t@’=g[1‘-“3+f(9v}n'}’st)]9
ty'=poe@(e, 4,1,

Jet 9 —2¢ 4 @ étant holomorphes et nulles pour ¢ = 4 =9y =t = 0. L’appli-
cation des théorémes de Picard ([12], p. 18) & ce systéme montre qu’il existe des inté-
grales A(t) de VI développables suivant les puissances entiéres croissantes de C t8
et C-1¢1-8 et nulles avec ¢ (C, constante arbitraire); mais le domaine ol on calcule
ainsi A(¢), et qui appartient aux caractéristiques des deux espéces, est moins étendu que
celui des caractéristiques; en particulier, il ne peut contenir les points ou I’on a, soit
A = o0, soit g = oo (c'est-d-dire A = 0), points qui appartiennent respectivement
aux domaines de convergence des caractéristiques de premiére ou de deuxiéme espéce.
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a,,b,, ¢, d, (ouencore & (¢) est holomorphe en «,, 4, et a,,b,,¢c,,d,), avec
5% , par exemple, voisin de 1, de sorte que «, est holomorphe en o« (t,) et A,.
0

Concurremment & ces caractéristiques, il en existe d’autres, dites du
type exceptionnel ([5], p. 280, 294), car elles n’existent que pour dey
valeurs exceptionnelles de «,; elles sont telles que, ¢ tendant vers O,

A tende vers une certaine valeur A £ 0 (ou 4, vers % #o0). Dans le
probléme actuel nous n’aurons pas a les étudier speclalement car elles

rentrent dans les types (12) ou (12) avec C =0 ou C’ =0.

Enfin, on démontre cette propriété essentielle, qui joue pour ¢ = 0, 1,00
le méme role que le théoréme fondamental de Painlevé (début du N° 6) :
quand t tend vers 0 (par exemple), toute intégrale de VI se laisse représenter

par une caractéristique de l'un des types (et espéces) précédents ([5], p. 295
a 312).

II. Comparaison de (&,) et (€,)

8. Les équations (€,) et (€,) en u et w. Reprenons maintenant notre
probléme suivant la méthode indiquée & la fin du N © 5. On peut réaliser
une équation (), soit & partir d’'une équation (€,) ow A,(t) tend vers 0,
soit & partir d’'une équation analogue, que nous désignerons par (G,),
ou a,,...,d,, 4, «,;, f, seraient remplacés par a,,...,d,, 45, &y, B,, €t
ou Ay(t) tendra vers oo; d’ailleurs, en raison de 1’équivalence [N° 7 et
note 10] des valeurs singuliéres de 4, il n’y a pas lieu d’envisager d’autres
hypothéses. Nous allons montrer que, de toutes facons, on aboutit @ la
méme équation (€).

Pour que (€,) tende vers (€), il faut prendre d’abord

by=mny(n,—1), ¢;=mnz(ny;—1), a1+bl+01+d1+1=(n4*%)2 (14)

Soit alors ¢, une valeur telle que 4,(f,) = 0; d’apres (6) et (8) S tend vers
LeVda, +1+41), et
al + % + dl _— %

i B,
i x(x——l)+(x-——ll)2+x(x-—1)(a:——ll)

vers une fonction rationnelle dont la partie principale, en z = 0, est

%+___m1+1

x!
On doit donc avoir
eVida, +1=1—¢@2n—1) (5==%1); (15)

151



d’aprés (4) e=-+1, et si I'on pose Y,=z"1(x— 1)(z—¢t)(x— A,)]tu,
u vérifiera une équation (€;) dont les exposants caractéristiques seront
(quel que soit ¢) donnés par le tableau :

0 1 t y) (%)
1—¢
3 L tn, Ng Ng 0 — 2+ n,
3+ ¢
21~——'n1 1—n, 1 —mny 2 —1—n, .

Partons maintenant de (&,) et supposons que pour ¢ ={, (# 1, ou
= 1,) A;(t) =o00; on procédera comme pour (E,), en remarquant d’apres
(6) et (9) que —fB,: A, tend vers 1 — &’ V'a, + b, + ¢, +d,+ 1; en
égalant & 1 4 e;(n, — 1) (e, =41) [cf. (2),] les exposants caractéris-
tiques pour x =oo de I’équation limite, il viendra

25,V“2+bz+02+d2+ 1 =1+ ¢(@2n,—1) (5==1) (16)

d’ot1 encore &/=-1, et sil'on pose ¥, =[x(z — 1)(x — t)(x — Ay)]tw,
w vérifiera une équation (€,) dont les exposants caractéristiques seront
(quel que soit ¢t) donnés par le tableau :

0 1 t A 00
— 3
7,y Ny g 0 ———E-tiz——}—m
1 —n, 1 —n, 1 —m, 2 —-11562-- .-

9. Passage de (€)) & (€;). On peut écrire (€;) sous la forme

/4 w’ ﬂz = ;
w2 —lew+ o= |e = @
avec
(/2% bg Cy dz X2
Q@) =—%+ @—1¢F T @1 T ee—1 T z@=—D)@=9 °

et comme x = A, est apparemment singulier, on a
B 24,— 1
B(A—1) (R, —1)

Montrons alors qu’on peut former un systeme linéaire absolument cano-
nique

+ Pa=Q (%) . (17)

w' = a(x)w + b(x)z
2 =c(x)w + d(x)z,

(18)

Il
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4, 4, A, __ B, B, B,

a(%) = x +x~—1+x—t ’ b(x) = x +zv——1+x~—t (19)
__01 C, O, __Dl D, D,

o (@)= x+x——l+x——t ’ () = x+x—l+x——t’

et qui est vérifié par I'intégrale générale w (x) de (&;) (conjointement avec
une fonction associée z(x)). A cet effet, nous prendrons

hx(x— 2A) — By(ds — 1)

a(x) = x(x —1)(x —1t) (20)
avec
h=3+ ey (n, — }) (21)
et
b(a) = — 2 (22)

x(x —1)(x —1) :
en différentiant (18), et en utilisant (E}) on trouvera

! 1 a(x) ﬂz /
Y =5 [x_z.,, +Q@) + 4t — (:v)—a2<x>]w+

[x—li; — el = %/f:))]z ;

le coefficient de z est bien de la forme prescrite, avec

quant au coefficient de w, il ne contient pas de terme en (x — A,)~2
et 8’écrit a priori

C C C

1 + 2 + 3

x x—1 x —1

C,
X — Ag

+ +C5,

C, et C; étant indépendants de x. Mais on vérifiera que (17) entraine
C, = 0 et que (16) et (21) donnent Cj; = 0.

Les exposants caractéristiques de z et w étant les mémes, en général,
on prévoit qu’on peut trouver une constante k£ telle que pour z =0
un (et un seul) des exposants de

v=Fkw + 2

soit supérieur d’une unité & I'un des exposants de w. Or ceux-ci, n, et
1 — n,, sont égaux, si I'on veut, & 1 + & (3 — n,), & ayant la méme
signification qu’au N° 8; si r désigne I'un quelconque d’entre eux, il
existe une solution de (18) telle que w = a"(1 - --) et
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done, si 'on définit t par
kB, — A4, 4%+ &3 —n) =0, (24)

les exposants de ven x = 0 seront égauz @ ceux de u, en x = 0 (aug-
mentés peut-étre, de e et ¥ > 0) , et cela, quel que soit ¢, .
D’autre part, supposons que (18) posséde une intégrale telle que pour

T w=(g) @

z
on trouvera pour cette méme solution
1\r'—1
z=-—-—-(h-—|—'f’)('—§) (l+“‘);

v appartiendra donc & 'exposant ' — 1 ou & 7’ + & (¢ > 0) selon que
h+7r"#0 ou = 0. D’aprés la valeur (21) de 4, et d’aprés les valeurs
de 7’ données & la fin du N°8, ona A + 7 = (1 + &)n, ou (I — ¢)

(I — ny) et les exposants de v pour  =oo seront —2 4 n, + 1 ;82 £
1
et —1 —n, + ‘;828

Enfin, les exposants de v pour x =1 et z =1¢ sont de la forme
nyg+¢&, 1 —n,+¢&" et ng+ &”, 1 —ng+ €7, tous les ¢ étant des
entiers >0. On verra d’ailleurs, tout & ’heure (n° 10), que d’aprés (24)
v satisfait & une équation n’ayant qu’un point apparemment singulier, 4,
d’exposants 0 et 2 ; en écrivant que la somme des exposants de I’équation
en v relatifs & 0, 1, ¢, oo, 1 est égale & 3 (relation de Riemann-Fuchs), on
trouvera

81+8(2)+8+8’+8”+8”,+81V=O;

ainsi, !, e@, ¢, &/, .. ., !V sont nuls et les équations vérifiées par u et v ont,
non seulement le méme groupe — celur de (€) — mais encore les mémes expo-
sants relatifs aux mémes points singuliers. 11 en résulte, comme nous allons
voir, que les équations vérifides par u et v sont identiques (lemme d’uni-
cité 12)).

Tout d’abord, soient (u,, u,) et (v;, v,) deux systémes fondamentaux
respectifs des deux équations, ces systémes étant choisis de maniére &

12) C’est un cas particulier du théoréme de I'unicité de I'équation réduite d’une
classe ([16], p. 388); un théoréme analogue («Fundamentallemman») a été établi par
L. Schlesinger pour les systémes absolument canoniques ([17], p. 234). On pourra com-
parer ces démonstrations & celle du texte.
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subir les mémes substitutions sur les mémes contours. Si ’on détermine
A et B par les équations v, = 4 (x)u; + B(x)u; (b =1, 2), on voit
immédiatement que A (x) et B(x) sont uniformes et sans points essen-
tiels : ce sont des fonctions rationnelles. Mais on a

ul ’Uz - u2 'Ul

B(x) = 7 .
Uy Uy — Uy Uy

Supposons B = 0. D’aprés la forme de (]) u,u; — u,u; aen x =0
un zéro d’ordre 1 exactement ; u,v, — %#,v, a un zéro d’ordre >2, donc
B(x) a un zéro d’ordre >1 et il en est de méme pour B(x)en z =1,
x=1¢t. En x = 4,, w,u, — uyu] a un zéro d’ordre 1 exactement, tandis
que wu,v, — #,v; est holomorphe; pour B=£0 on aura donc

x1+m1 (:C . 1)1+m2 (x . t)1+m3

x—A

B (z) = B, P(x) ;

(my, my, my entiers >0; P(x), polynome de degrée M > 0). Mais
U Uy — Uyu; admet x =oco comme pole d’ordre 2 et w,v, — v u,
comme pole d’ordre 3 au plus, soit 3 — m, (m, > 0). Il vient ainsi

2+my+my+my+M=1—m,,

équation qui n’admet aucune solution en entiers m;, M > 0. Ainsi,
By, =0 et v, = A(x)u;; mais les exposants caractéristiques étant les
mémesen x = 0, 1,¢, co et les u,, v, étant holomorphes partout ailleurs,
A (x) se réduit & une constante.

10. Relation entre A, et A;. — Les équations vérifiées par v = kw + 2
et w se forment aisément & partir de (18); on trouve :

!
v’ — (a-}-d—{—%—,—)v’—}—[ad——bc——kb’——d’—{—%(kb—{—d)]'vzo (25)

avec
A(x) = k*b(z) + k[d(x) — a(x)] — c(x)
et
ab’

w”——(a—{—d—l—%,—)w’—l—(ad——bc—a’—l— 5 )w=0. (26)

Ces équations doivent &tre identifiées & () et (&;). Or la comparaison
des termes en z~2, (xz — 1)~2, (¢ — £)~2 dans les coefficients de u et v
pour (E)) et (25), de w pour (E.) et (26) donne, compte tenu de (24),

A;,D;, — B,C;,=n;(1 —n,) (j=1,2,3).

155



On tire de 13 et de (23) :

k*B; +k(D; — 4;) — C;= =S

B, (kB;—A;+n)(kB;—A;+1—mn,) ;
()=1,2,3)

pour j = 1, I'une des parenthéses du second membre est nulle, d’apres
(24), et, cela, quel que soit ¢,. Ainsi

A B x — A

A=yt~ g —1)(x—10) °

(27)

la derniére égalité résultant de la comparaison des termes en v’ et en u’
de (25) et de (€;). La comparaison des parties principales pour x=oco
des coefficients de #, v, w ne donne rien de nouveau. Mais on déduit

de (27): 1—4, A KB, +k(Dy—4,)—0C,

Ah—t B kB, +k(D,—4,)—0,

— By, (kBy —Ay+my)(kBy— A4, +1—ny)
B, (kBy—A;+ ny)(k By — A3+ 1 — my)

Or on peut tirer k de (24), et si ’on pose, pour abréger

4, 4, 1 1 1 @ o
ne =g -+ |-gralm—g)|+5  G-29,

ek

on trouvera :
1—4 By ¢3(ng) (1 —my) (28)

M—t By @s(ng)ps(l —ng) ~

D’aprés (18), (19), (20), A,, A,, A, sont linéaires en B,, donc en A,, les
coefficients — ainsi que B,, B,, B,, d’apreés (19), (22) — dépendant ration-
nellement de A, et ¢: ainst, A, est une fonction rationnelle de Z;, Aoy t, du
second degré en A, 13).

11. Uwnicité de la valeur de t,. — Faisons tendre ¢ vers un pole ¢, de
Ay3(2). Pour | A,| trés grande on a
A, A (12~—t)_~_h__/§2_(1_4t——1_”.); (29)

it St LR i S A
B, B, Mt Lu—n 7 %

or,on a vu (N° 8) que —f,: 1, tend vers 3 — e,(n, —3%); d’aprés (21)
la limite de (29) est done —1 — &,(2n, — 1) = h,, quantité non nulle,
d’apres (4). De méme,

13) La comparaison des termes en 1:z— 1, et en 1:z —¢, dans (§;) et (25)
donnerait de méme des relations du premier et du deuxiéme degré en A, }.; (& coef-
ficients dépendant de A, 4,, ¢), Nous ne les développerons pas actuellement.

1566



4, 4, ( ﬂz)
i W 1 h
Bl B3 + 2

expression qui tend vers h,t. D’ailleurs B,, B,, B, tendent vers oo, de
sorte que

1—4 By, Bi4.--  A—1

et B RET. .ty ST

expression qui tend vers — 1:¢; ainsi, la valeur t, qui rend A, infini an-
nule ausst A,(t) (et, cela, quels que soient ¢, et &,).

12.  Unicité de I'équation (€). — Pour prouver que les équations (E)
formées & partir de (€,) et (€,) sont identiques, il nous reste & établir que
o1 (b)) = xy(fy). Comme A, (t) £ &y £ As(ly), o.(2) et oxy(¢) sont holo-
morphes en ¢, [cf. (5), (7)]. D’aprés (25) et (26), il nous suffit donc de
montrer que, ¢ tendant vers ¢,, le résidu de

A’ b’

7 (kb—}—d)——a——g

/

pour x =1¢ tend vers 0. Or le résidu de 97 est

b
g A 4 +A( 1 1 1 )=ﬂ2+h(12——t).

t t—1 t—2i, t t—1 tt—1)
A/
le résidu en x =1 de—z—(kb—{—d) est
B Ai—1 kB,+D, kB;+ D,

R”(t-—l)(t-—al) (e By + Do) — t =1

mais, d’apres (23) et (24), on a
kB, + D,=f, avec [f=1%+¢(n, —%), (30)

donc

EB+D=1+(—DF +B(F ) (=29

a ’aide de (19) et (22) on trouve alors :
Ba (A Ay — 87) hiy (A — 1) n h
0t — 1) Ay (t— ) ' E—D(E—4y) " t—1

A —1 —t f 1 f—1 t(Ay—1)
(t~——/11>(t-—1)[1+(’ ”z( 1)] T T A1)

R—-8=

+

T t—1
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Or, d’apres (8), (9), (15), (16), (21) et (30), on a, au voisinage de #,:

W)= —2 1= Yy,

t,— 1
Hto(to——l) 1
lz(t)—- 2(h—l) t_to+"':
b _ .

en n’écrivant que les parties principales ; et, & ’aide de ces formules, on
constatera que R — 8§ tend vers la méme limite que

h—2 [(f—1t , h(f —1) 3
_tz(tml)[h—l +t]"‘(h—-1)t(t—-1)+t-—1
1 f—1 f 1 (f—1t
*fmfﬁﬁ+7i7)“7“t_1+a~nz"0'

Quand ¢ tend vers t,, (€;) et (€;) tendent donc vers la méme équa-
tion (€), et cela, quels que soient les choix de ¢, et ¢,.

13.  Relations entre intégrales d’équations VI contigués. — Les résultats
que nous venons d’établir ont une signification qui déborde le probléme
de Plateau et entraine des conséquences importantes dans la théorie des
équations de Painlevé. En effet, soient deux équations VI, construites
respectivement avec des constantes a, b, ¢, d telles que, si I’on pose

a+i=0—%)7, b+i=0—1%1)7F c+i=0—1%)7,
a+b+c+d+1=(@—4%)>,

& .y ’ .
les v prennent les valeurs n, — ?1 , Mg, Ny, My, pour la premiére équation
> .
et n,, ny, ny, ny+ —2—2~ pour la seconde; nous venons d’établir que les

intégrales de ces équations sont liées par (28). Cette formule — et ses
analogues, qu’on obtiendrait par permutation des valeurs singuliéres de 4
[No7 et 19] — généralisent les relations entre les fonctions hypergéo-
métriques contigués. En effet, ([5], p. 340), pour

v+ vyt vy vy =1% (31)

(les notations »,, »,, v;, v, remplacant respectivement les notations
Tos T1, Ts, 7o de [5]), VI admet toutes les intégrales de 1’équation de

Riccate
tt—1)V 29— 1 29, —

1 2,
A= G—9 i ‘ti=1 Tai=¢" (32)
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qui se laisse intégrer par la formule

t(t—1) 04
2m+vy+v,—1) O

ol @ satisfait & une équation hypergéométrique de constantes 14)

A=t+

(33)

o= —2(v + vy, +v;— 1), f=1—2v,, y=2—2v;, — 2v, .

Si 'on prend &, = — ¢, la relation (31) est conservée dans le passage
d’une équation VI & P’autre, et 'on a pour les équations de Gauf corres-
pondantes :

Ko == 0y — &, B2 =B, Y2a="%Y1— & 5

ce sont bien des équations contigués. D’ailleurs la relation de Gauf
entre les intégrales des deux équations hypergéométriques associées aux
équations (32) se traduit actuellement par une relation homographique
entre 4, et 4, (& coefficients fonctions de ¢), qui se substitue a (28).

14. Cas d’intégrabilité de VI. Les relations entre les fonctions A(¢)
contigués entrainent une autre conséquence remarquable. Pour a, b,
¢, d égaux & — %, c’est-a-dire pour v, =% (j=1,...,4), VI se réduit
a une équation VI, rencontrée autrefois par E. Picard ([10], p. 298), et
qui s’intégre par les formules

® t 1
e [l (& _[d
- 5 s 1 5 ’ 2 ‘E ’
oo 0 t

[62 = 4z(z — 1)(z — )],

et A= ¢@[4d,0,() + Ayw,(t),t]; @(u,t) désigne la fonction elliptique
de u définie par l'inversion de la premiére intégrale, et A,, 4, sont des
constantes arbitraires. D’aprés le début du N° 13, I’équation VI sera
intégrable en termes finis pour toutes les valeurs des v; qui sont égales a des
moitiés d’entiers.

III. Le probléme de Riemann pour (€,)

15. Signification géométrique de s. — Nous pouvons donc maintenant
nous limiter & (€,), et il nous faut montrer d’abord (N° 5 ; ad fin.) qu’on
peut construire une intégrale de VI (et une seule) telle que le groupe de

14) On ne confondra pas les notations a, f§, prises actuellement dans le sens usuel
des notations des fonctions hypergéométriques, avec les fonctions a(t), f(t) intro-
duites antérieurement.
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I’équation (€,) formée a l'aide de cette intégrale (4, «) soit le groupe &
défini par Q (probléme de Riemann pour (€,)). Admettons, pour fixer les
idées, que, quand ¢ tend vers 0, 1 tend vers 0 ; dans ’équation limite de
(€,) le coefficient de «—2 en facteur de Y, est égal &

a1+31;+01+i‘+%—0‘10_%“t1_i351

avec oy, = lim «,(¢). D’apres (11) et (13) cette expression est égale &
t—>0

-3—2— - —'29— . L’invariant I de la substitution §,S, (N° 4), étant indépendant
de ¢, est égal & sa valeur calculée sur I’équation-limite, soit 27 | e-2mir
(r, exposant caractéristique de ’équation-limite en x = 0), c’est-a-dire
4 2cos ms1%). Rapprochons de la valeur 2 cos V;, donnée pour I au
Ne 4, et observons que 0 <s<1, 0<V,,<m; il viendra alors (cf. [7],
p. 96) ms =V,,. On procédera de méme pour calculer 1’invariant de
S;8,.

Dés lors, pour que le groupe de monodromie ® de (E€,) soit le groupe de
substitutions définies (N° 4) par les produits de deux symétries autour des
cotés de Q, il faut et il suffit que U'intégrale (A, &) du systéme (5), (7) soit telle
que, t tendant respectivement vers 0 et 1, «x () tende vers deux limites connues,
que nous désignerons désormais par o, et o, 1),

16. Résolution du probléme de Riemann. — Or nous savons déja cons-
truire une infinité d’intégrales [A(t), «(f)] de (5)—(7), telles que ¢ ten-
dant vers 0, «(t) tende vers «,; chacune de ces intégrales est définie par
la valeur A, prise par A(¢) pour (>0) assez petit; il résulte d’ailleurs
d’un théoréme essentiel (fin du N° 7) que, ¢ tendant vers 1, la fonction
« (t) poursuivie de 0 & 1, tend vers une valeur limite, soit ol(4,); il est
aisé de voir que «'(4,) est une fonction holomorphe de 4,: car on peut
toujours prendre ¢, assez pres de 1 sur (0, 1), avec A(¢,) # ¢, et oo, pour
que o ! soit fonction holomorphe de «(¢,) et A(f,) 1) ; mais, en vertu du

15) Dans le cas exceptionnel (N° 7) ou lim A(¢) = k2 0, on trouverait de méme
que l'invariant I est égal & — 2 cos 7 8. t—>0

18) On ne confondra pas cette derniére notation avec la notation a;, désignant la
fonction a,(¢) figurant dans (E,). Actuellement «; est une constante telle que 4b; + 4c¢,
+1+4+4q; =352, avec ms; = Vo3, V3 mesurant 'angle des vecteurs A,—A4; et 4,
— A;. L’expression qu’on vient de trouver pour s, se déduit de (11) moyennant la
transformation z; = 1 — .

17) Cf. N° 7, p. 151, le théoréme analogue pour le voisinage de ¢ = 0.
p g

(La fin de cet article paraitra dans le prochain numéro)
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théoréme de Painlevé (N° 6), «(t;) et A(f;) sont fonctions holomorphes
de A(t) et «(f,) 28) c’est-d-dire (N°7) de 4, (et de «,, qui est fixe).

Faisons alors varier 4, par valeurs réelles & partir d’une valeur Ay ;
je dis qu’on peut toujours trouver une valeur Ay et ume seule telle que
ot (Age) = &%y

En effet, soit, par exemple, «!(4y)<cx,;; supposons que par variation
continue de A, on puisse résoudre I’équation o!(4) = u pour «!(Ay)
< u <M <«,, mais non plus pour M <u<«x,, et montrons que I’hypo-
these est absurde. Do

Soient A, =1; les zéros réels de R Ces zéros sont en nombre fini,
1 0
car 32— est holomorphe sur ’axe réel et n’est pas identiquement nul %),
0
Entourons-les d’intervalles y,, d’étendue arbitrairement petite, ¢. Si 4,

est en dehors de ces intervalles, on aura

3ol | .
-a—l—o—l > m>0; donc, si u, est

la valeur de u correspondant & une telle valeur de A,, la solution A,(u)
de I'équation «!'(4,) = u sera holomorphe dans un cercle de centre w,
et de rayon > o >0 (ou g ne dépend que de &).

Cela étant, faisons tendre » en croissant vers M ; ou bien la racine 1,
de I’équation «!(4,) = # que l'on suit par continuité finira par rester
dans un des intervalles y,, et cela, si petit que soit ¢: 4, tendra donc
vers [; ; ou bien il y aura des points  arbitrairement voisins de M et tels
que 4, soit extérieur aux y,. Mais alors il suffira de prendre M — u<p
pour étre assuré de I'existence d’un intervalle (w’, #”) contenant M & son

13) Ou admettent comme point critique algébrique Ay =0, si 4a; +1=0,...,
dp =00, 8i a; +b, 4+¢ +d;, +1=0 (NO6), cas qui ne sauraient se présenter
actuellement. On peut vérifier I'énoncé du texte pour VI, (N° 14): A, = @[2A4, w,(t,y)
L 24, wy(ty), to]; dag = —1— A2, 4o, = 1 + A2; cf. [5], p. 347.

19) Sinon, il existerait une infinité d’intégrales A(¢), a(t) de (5), (7) admettant
les mémes limites, a4 et a;, pour a(t), quand ¢ tend vers 0 et vers 1. On pourrait alors
construire deux équations (&), & groupes indépendants de ¢, admettant les mémes
coefficients a,, b, ¢;, d;, donc les mémes exposants aux mémes points 0, 1, ¢,, o©
avec deux points apparemment singuliers A, différents; ces équations auraient néces-
sairement des groupes distinets (N© 9). Mais ces groupes, ayant les mémes invariants
(puisque ay, by, ¢;, d;, @y, @; seraient les mémes pour les deux équations) ne pour-
raient étre définis par ces invariants, ce qui exige que les équations (E,) admettent,
chacune, une intégrale & dérivée logarithmique rationnelle (N© 4). Les fonctions A(¢)
satisfont alors & des équations de Riccati ([5], p. 340). Réciproquement, on vérifie
dans ce cas ([5], p. 341) que @, et a; ont les mémes valeurs, — 27,7, et 27,7, (notations
de [5]; cf. NO 13) pour toutes les intégrales de I’équation de Riccati. Si I’on choisit les
axes de maniére que l'intégrale & dérivée logarithmique rationnelle soit G'(x), les nor-
males & S en A4,,..., Ay, seront paralléles & OZ; on voit ainsi que la circonstance
précédente ne saurait se présenter que pour un quadrilatére plan.
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intérieur et o Aj(u) est holomorphe : le prolongement de 4,(u) au dela
de M est donc possible.
Reste & examiner '’hypothese o 4, tend vers I,, point critique algé-
brique de Ay(u); A, —I; est alors développable suivant les puissances de
1

(M — u)_i'7 , avec p entier. Si p est impair, il existera encore une solution
Ay (u) réelle (et une seule) quand « aura dépassé M ; il n’en serait plus de
méme pour p pair. Mais alors il existerait, pour « voisin de M et inférieur
& M, deux valeurs A;, A, voisines de I, et telles que ol (A)) = u = «*(4]).
Il existerait donc deux équations (€,) ayant mémes coefficients a,, b,,
¢y, d; (donc mémes exposants caractéristiques en 0, 1, ¢,, co), mémes
valeurs limites pourx en t = 0 et £ = 1, donc méme groupe de mono-
dromie, et ayant, cependant deux points apparemment singuliers diffé-
rents A, Ay, ce qui est contraire au lemme d’unicité (N° 9).
L’équation ol(4,) = «, a donc siirement une racine 4,, et d’aprés une
nouvelle application du lemme d’unicité, cette racine est unique2°).

IV. Les quadrilatéres symétriques

17.  Variation continue du quadrilatére . — L’intégrale A,(¢f) une fois
construite, il s’agit de montrer que ’équation A,(t) = 0 admet une solu-
tion et une seule dans (0, 1) (N° 5). La méthode qu’on va suivre procéde
par variation continue du quadrilatére ¢ . En maintenant fixes les plans
A A, A et A, A, A,, ainsi que les sommets 4, A,, on peut faire varier 4,
et 4, le long, par exemple, de segments de droites, de maniére qu’a la fin
de la variation A4, et 4, coincident avec les deux sommets de deux
triangles isoscéles rectangles, d’hypoténuse 4,4,, et cela, sans que le
quadrilatére cesse d’étre gauche. Le groupe ® pourra donc toujours [cf.1?)]
étre défini par les invariants précédemment introduits, ¢’est-a-dire par
a,b,c,d, ), x;, qui peuvent étre considérés comme des fonctions holo-
morphes d’un parametre v (servant & représenter les trajectoires de 4,
et 4,). Il s’agit de montrer que pendant cette variation le nombre des zéros
de A,(t) sttués dans (0, 1) reste constant?').

20) Dans ses grandes lignes, la méthode de continuité suivie au N© 16 reproduit
avec certaines simplifications une méthode développée ([6] p. 300) pour résoudre le
probléme de Riemann relatif aux équations du deuxiéme ordre & n + 3 points
singuliers, et & exposants s (NO 15) et s, [cf.1%)] complexes.

21) L’énoncé précédent suppose implicitement que le nombre de ces zéros est fini;
mais la chose est immédiate, car dans I'intervalle ouvert (0, 1) A(¢) est méromorphe, et,
d’autre part, les zéros réels de A(¢) ne peuvent pas s’accumuleren =0, nien =1
(No 7).
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18. Invariabilité du nombre des zéros de A (t). — Observons d’abord

que pour ¢ fixe (= t), A,(t) est une fonction holomorphe de a,, b,, ¢, d,
(N° 6, ad fin.), o(t,) et A,() (= 4); or, sif, est pris voisin de 0,
x(t,) est fonction holomorphe de «,, 4,, @, b, ¢;, d; (N°7); d’autre
part, sauf dans un cas qui ne peut se présenter pour un quadrilatére
gauche [cf. )], 4, est fonction holomorphe (ou algébroide) de «, (N° 16)

(et de a,, by, ¢,, d,); donc A,(¢,v) est une fonction holomorphe (ou
algébroide) de v et les zéros ¢t de A; varient par continuité avec v.

Mais, comme 0<V,<m, 4a,+ 1= [l —¢ (—Iy—} — I)J [cf. (15)] me

peut jamars s’annuler ; d’apres (8) la fonction A,(t) ne posséde jamais que
des zéros stmples, et ces zéros, par variation continue ne peuvent jamais
venir & coincider. Il en est de méme pour deux pobles, d’apres (9); il ne
peut donc arriver qu’un zéro disparaisse par suite de la confluence de
deux poéles qui le comprendraient. Ainsi, la seule modification du nombre
des zéros au cours de la variation proviendrait de I’apparition ou de la
disparition de zéros aux extrémités de l'intervalle (0, 1); le phénoméne
peut-il se présenter pour une valeur v, de v? Or, supposons que pour v
voisin de v,, A,(t) possede un zéro voisin de 0; nous savons (N° 15)
que 4,(f) peut étre représenté, pour v voisin v,, et 0 <<t <t,, assez petit,
ind{pendant de » (N° 7) par un développement (12) ; mais actuellement,
A, B, C sont des fonctions de v, holomorphes pour v = v,, et tendant
pour ¢ — 0 vers des limites déterminées, car il est ainsi & chacune des
approximations qui convergent vers A(t); et leur convergence est uni-
forme dans (0, #) ([5], p. 271); mais il résulte aussitot de (12) que 4
ou A — 1 ne possede pas alors de zéro infiniment voisin de 0; donc
[cf. 19)] 4 ne posséde pas, non plus de zéro infiniment voisin de 1.

En définitive, tout revient a établir le théoreme de Schwarz pour un
quadrilatére symétrique par rapport a un plan .

19. Application de la méthode de Schwarz-Darboux. — Or Schwarz a
montré qu’il existe un segment B de surface minima, symétrique par
rapport & B, et passant par un tel quadrilatere: d’apres le N° 18, ce
résultat établit déja un théoréme d’existence pour le probléeme de Plateau
relatif & un quadrilatére quelconque. La méthode de Schwarz [18] utilise
la représentation conforme d’un triangle sphérique sur le demi-plan supé-
rieur & I'aide du quotient de deux intégrales hypergéométriques. Nous
allons retrouver rapidement la solution de Schwarz sous une forme que

lui a donnée Darboux ([1], p. 530) et que nous adapterons au probleme
actuel.
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Désignons par u l'angle aigu que font les demi-plans 4,4,4, et
A, 4,4, issus de 4,4, avec leur bissecteur externe; quand on fait
varier le quadrilatere symétrique @ (formé toujours de deux triangles
isosceles rectangles d’hypoténuse fixe, 4, 4,) de maniére que « tende vers
0, le quadrilatére tend vers un carré. La représentation sphérique de 1'une
des moitiés S’ (ou 4,4,4,) dusegment S qui sont séparées par le plan de
symétrie P passant par 4, A, est un triangle 7", de sommets 4,, 4,, 4;,

d’angles 2{:%—{—1&2(1—{—-”) (cos 2{=~sin2u), 4:1\;:-2—221,

d’aire %2 (1-+ . - -) infiniment petite avec «, car la solution § que nous
cherchons & construire doit tendre vers l'intérieur d’'un carré quand =
tend vers 0. Or ce triangle peut étre représenté conformément sur le
demi-plan supérieur /7 [R(260) <0] par un quotient de fonctions hyper-
géométriques, suivant la formule

OT:'—-" yZ(eyu)

R (34)
thg) yl(e’u)
yl(eau) =F(0‘7 ﬁ, 7: 6) ;
Y20, u) =60YFlo+1—p,+1—9,2—y;0),
avec
1 Y A/__l__'_“'j_
X — %(n—*A AZ+A4——‘Z‘ 2.’.TI+ ’
1 Y / / u? .
i} 2n(7z Al — A4 A)) 2n+ ,
1
= la-dp=to2 . )
7T

T étant P’affixe de la projection stéréographique d’un point du triangle
sur le plan équatorial, faite & partir de I’antipode de 47, et C une cons-
tante par rapport & 6. En exprimant que le coté 0<f<1 du triangle
du plan (t) a pour longueur

V2 sin u

cos u + Vr_rs_lflz_— V" +w(.., (36)

w?(...) désignant, ici et plus loin des fonctions holomorphes de %2,
nulles avec 42, et en observant que
I'el'(c—a—Db)

F(a,b,c;1)= I'ic—a)I'(c—a)

22) On ne confondra pas les parameétres «, f des fonctions hypergéométriques qu’on
va introduire avec les fonctions a et f lides & A(t).
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on trouve )

W . . o T@-pIw—o)Ty—f
v el I =—r ra o gTra—p

(37)

Mais 8’ étant minima, sa représentation sur 7' est conforme, donc
aussi sur /T’. Or celle-ci peut s’obtenir directement, car les asymptotiques
de S’ sont données par o, + o, = Cte et les lignes de courbure, par
g, = Cte, o, = Cte, avec

o1+ io,= (VG H,— H,G,db , (012%%; H;___%f;_l)

G.(0,u) et H,(0,u) étant les fonctions qu’il faut choisir pour repré-
senter 8’ par (1) (Paxe OZ étant pris paralléle & 0A4]). S’ est done repré-
sentée conformément sur un triangle rectiligne isoscéle du plan o, triangle
qu’on peut représenter & son tour sur le demi-plan 17, et cette représen-
tation est unique, une fois fixés en 0, 1, oo les affixes de 4,, 4;, 4,. En
identifiant la représentation précédente avec la représentation classique,
on trouve

VGIH{——HIG{=_%‘I§&_‘L.%_ ,
6% (1 — 0)
avec
no_,_H
Cyl Gl ’
Cdv  yiys—yayt  (L—p) 07 (1—Op—p
db T 2 = 2 ’
d’ot Yi Y3
2
G;(0,u) = K C 97 1(1 — g)+B- 7—%1/1(0 "
K2
H;(0,u)= “'*‘(T‘*“)O P=1(1 — G)+B~7r=% o2 (0,u). (38)

On obtient K2 en exprimant que les cotés du quadrilatére ont une lon-
gueur donnée, I, d’ou:

K~2_il%1ﬂ_]‘% wil 4+ u2(...)]. (39)

23) A Yaide de la relation I'a I'(1 — a) = z coséc m @ on pourra vérifier que la for-
mule (37), o 1+ %2 (...) représente le développement (36), est identique & la formule
(9) de Darboux ([1], p. 438), formule que son Auteur déduit ([1], p. 189—191), par
des calculs assez longs, des relations de passage obtenues par Goursat, dans sa Thése,
pour les intégrales de I’équation hypergéométrique de Gauss.
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En définitive, G,(0, u) et le quotient de H, (0, ») par 4 sont holomorphes
en u> pour v =0 (et 6 40,1, oco).

Le segment S” se laisse représenter de méme sur le demi-plan
R(¢0)>0. Et, si I'on fait la transformation

6 =4x2(l —2), ou 1—0=(1—22)?, (40)

on représentera S = 8’ 4+ 8" sur le demi-plan supérieur (x) par des
fonctions

Gz, u) = 2(1 — 22)F @, [4z(l — ), u] ,
H(x,u) = 2(1 — 22)" H,[42(1 — 2), 4] .

Pour u voisin de zéro ces fonctions peuvent encore s’écrire d’apres (37),
(38), (39) et (40):

H(z,u) = 2%1?%( I )%ux_i(l — x)-i (1— 2x)_iy)(x,u2)

y dx .
fx%(l-x)%(l-zx)% ’

dans ces formules ¢(x, %) et w(x,u?) désignent respectivement deux
séries de puissances en u?, se réduisant & 1 (quel que soit z) pour = 0,
et holomorphes en z pour <0, 0<z<i, }<2z<1l ou x>1; ces
séries en 4? convergent uniformément lorsque « appartient a tout inter-
valle fermé intérieur & (—o0, 0), (0,1), (},1) ou (1, 4 o).

On déduit de 1a une conséquence essentielle : les sommets du quadrila-
tére symétrique Q ont pour affizes 0, 1, 1, oo et les fonctions G(x, u) et
w1H (x,u) sont holomorphes en x et u®> pour u = 0 (et x régulier).

21. Etude du passage a la limite de @ aw carré. — Ainsi, les coefficients
de I'équation linéaire, soit €(u), vérifiée par G(x, u) et H(x,u) sont
holomorphes en # (54 0, }, 1, c0) et en 2 (voisin de 0). Cette équation
se déduit de 1’équation vérifiée par y,(0,u) et y,(0,u) transformée
par (40); elle s’écrit
a2y 1 1 1 dy
d T (# + T ) de

1
x x—1 x—3

(Y s gl - -

x  x—1 (z —3)2 z(x —1

[€(w)]




avec

d=9y*—yl+p)—y+22f+1,

et les exposants caractéristiques relatifs & * =0, }, 1, oo sont respec-
tivement :

le coefficient de — Y dans I’équation limite E(0) est

1 1 1 1 | 9
T@[mz T (x — 17)2*_{_ (x —32|  8z(x—1)°

et 'on peut vérifier que E(0) admet 'intégrale - 1(1 — z)"3(1 — 2x)" ¢,
comme on pouvait le prévoir d’apres (41).

Cela étant, formons les équations [€,(u)] et VI(u) associées & [E(u)],
comme (E,) et VI & (€) (N°5). Le rapprochement de [E(u)] et (€)
(N © 3) donne aussitot a,, b,, ¢;, d,: ce sont des fonctions de u?2, holo-
morphes pour u = 0. On voit encore que le coefficient «, de [&, (u)],
que nous désignerons par o(f,u) est tel que «(1,u) =0. D’apres le
théoréeme de Painlevé et sa généralisation (N ° 6 et dernier alinéa de ce
N°) I'une au moins des fonctions A(¢,%) [intégrale de VI (u)] et A~1(¢,u)
est pour ¢ £ 0,1, co une fonction holomorphe de %2, de A(},u) =0
et de «(3,u) =0; ainsi, A(f,«) ou A7'(f,u) est une fonction holo-
morphe de ¢t et de 42, au voisinage de ¢ = t (#£0,1,00) et de w = 0.

Dés lors, A(t, 0) = lim A(¢, u) est une fonction de ¢, holomorphe ou
u->0

méromorphe pour ¢ =1¢, et qui vérifie I’équation VI (0), limite pour
u >0 de VI(u); de méme o«(f,0) = lim x (¢, u).
u->0

Or, quand % — 0, les expressions limites de a,, b,, ¢;, d;, A(¢,u),
x(t,u) définissent une équation linéaire [E,(0)], limite de [, (u)],
possédant un point apparemment singulier x = A(¢,0), et dont le groupe
de monodromie ® est indépendant de ¢; le long d’un contour fermé fixe
enveloppant des points singuliers 0, 1, ¢, les intégrales de [€,(u)] (& va-
leurs initiales fixes pour # = z, fixe) tendent uniformément vers des inté-
grales de [€,(0)]: les coefficients des substitutions du groupe ® (u) de
[€,(u)] tendent donc vers ceux de &. D’autre part, ® (u) est aussi le
groupe de [E(u)], groupe qui, pour la méme raison, tend vers le groupe de
[€(0)] quand % — 0 : ce dernier groupe est donc identique & & . Mais on a
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vu que [€(0)] admet une intégrale z—1(x — 1)-1(x —3)-1 & dérivée
logarithmique rationnelle ; le groupe de [§,(0)] admet donc des substi-
tutions génératrices de la forme

—1 0 .
(0:, i) (7:1:2’3)

et, par suite, [€,(0)] admet aussi une intégrale & dérivée logarithmique
rationnelle. D’aprés le N° 8 les exposants d’une telle intégrale, Y,, sont
respectivement, en z =0,1,¢, 4, co:

8(1'{'2'81 —-nl), i(%‘"‘nz), :}:(%_.rna), %"{"8,, 1"”8”(%‘“—-’)@4)

ou e=-+41, ¢/ =41, ¢” =41; actuellement, les n; sont égaux a }
et, quand ¢ >3 et 41— 0, Y, doit tendre, pour =z fixe, vers
xt(x—1)"t(@x —43)t; on a done

W

) riems
d’ol1, aussitét, e = —1, g, = —1, ¢ = —1 et
Y,=at(z—1)yHa—1t)tx— 1)1,

ce qui s’accorde bien avec &’ = —1.

Or on sait ([4], p. 105) que si ’équation y” = P(x,t)y, de la classe
de Fuchs, & quatre points singuliers 0, 1, ¢, oo, & un point apparemment
singulier A(f), et & groupe de monodromie indépendant de ¢, admet une
intégrale & dérivée logarithmique rationnelle

y=2" (x — 1) (x — t)"*(x — A)" %,

A(t) satisfait & ’équation de Riccati (32) (dont toutes les intégrales,
d’aprés le N o 5, satisfont nécessairement & une équation VI); actuelle-
ment la transformation y = a#(x — 1)}(x — ¢)}Y, changera [, (0)]
en une équation y”= Py; on aura donc »,=$%, v,=14%, vs=1% et
I’équation de Riccatr (32) s’écrira

A2—24+41¢

.
A= 2t(t — 1)

(42)
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On verra (N©22) que lintégrale de cette équation qui passe par
(t =%, A= 0) aboutit, pour ¢ =0, a l’origine (0, 0) ; comme au N° 18,
on en déduira donc que le nombre des zéros t(u) de A(¢,u) tels que
0<t<1 reste invariable pour u > 0 assez petit. Tout revient donc &
calculer ce nombre de zéros pour u = 0.

22. Les courbes intégrales de I'équation de Riccati (42). Or ce dernier
nombre se calcule aisément. L’équation (42) se raméne par la transfor-
mation w

A=t 20l —t)—

a ’équation du type hypergéométrique??)

t(l-—t)w”——tw’—f——%—:—:() . (43)

Mais cette équation posséde une intégrale w, = {F (3,1, 2;¢t) holo-
morphe dans le voisinage de ¢ = 0; & cette intégrale correspond une
intégrale

holomorphe pour ¢ = 0, conformément d’ailleurs & la théorie générale
de I'équation VI?*); soit C, la courbe intégrale correspondante ) ;
C, passe par le point A (¢ =0, A= 2). Au voisinage de 4 toute inté-
grale de (43) autre que w,(¢) a la forme

wit) = K| 14 (8 +logt) + tpu|F(3, 4,250,

24) La transformation o = w + 2(1 — t)w’ (d’oix o = w ~—~;—€t—) change (43)
en ’équation o
t(l —t)o" + (1 — 28’ —— 0
dx

vérifiée par les périodes de 'intégrale — . On trouve ainsi
Va(z—1)(z—1)

w

A v wt2(t—Daw

35) Type exceptionnel de premiére espéce; [5], p. 281; on a h = 2.

26) On peut d’ailleurs établir I'existence de cette intégrale en posant A = 2 + u;
I'équation en § de Poincaré relative au point ¢ = 0 de I’équation en u s’écrit 82 = 4;
le point A est un col pour (42); les deux courbes intégrales réelles passant par 4 sont
la courbe C; et la droite ¢ = 0.
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K et K, étant des constantes arbitraires finies et ¢,(f) une fonction de ¢
holomorphe pour ¢=0; le terme principal de A(¢) sera — —;—log £27) :

pour ¢ tendant vers O les courbes intégrales de (42) tendant vers O et
autres que C, aboutissent & l’origine O (! = 0, 4 = 0) tangentiellement
& t =0, avec le coefficient angulaire -+ oco.

Etudions de méme le point £ = 1. L’équation (43) posséde l'intégrale
holomorphe en ¢ =1:w, =F (}, —%,1;1 —¢) & laquelle correspond

pour (42) l'intégrale holomorphe 28)

t— 1

ll(t)=1+~—2-—-+ =38y
qui définit une courbe intégrale (', passant par B (t =1, 1 =1). Au
voisinage de ¢ = 1 les intégrales de (43) autres que w = w, () peuvent

étre représentées par
w= K'[K] +log (1 — &) + p: )] F(}, =3, 1;1 — 1) ,

K’, K| étant deux constantes finies, et ¢,(¢) une fonction holomorphe
et nulle pour { = 1; on a ainsi??)

2

MO T g =1

+ -
en se limitant au terme principal de 4 — 1; ainsi les courbes intégrales
tendant vers B et autres que C, aboutissent en B tangentiellement a
t = 1, avec pour coefficient angulaire — co.

Ces préliminaires établis, tragons ’arc ¢(1 — £)>0 de la parabole

22— 214+t=0. (I)

Cet arc relie les points 4, B, O et sépare la bande 0<t<1 en trois
régions : I'une R,, intérieure & I'", ou A'>0; les autres, ou A'<0, sont
R, et R,, respectivement au-dessus de l'arc AB et au-dessous de l’arc
AB de I'' Remarquons immédiatement qu’'un arc de courbe intégrale
issu d’'un point M’ (ou M) de I'arc AB (ou OB) de I' y posséde une
tangente horizontale et passe nécessairement de R, dans R; (ou R,)
quand on fait croitre ¢ sur ’arc au voisinage de M .

*
27) Le développement est du type général de deuxiéme espéce (No 7), avec s = 0.
Le point O est un nceud.

*
28) Type exceptionnel de deuxiéme espéce (pour ¢ = 1); [5], p. 294; ona h =14.

2%) Le développement est du type général de premiére espéce (No 7), avec s = 0.
Le point B résulte de la fusion d’'un col et d’un nceud. Par B passent deux courbes
intégrales réguliéres: C; et ¢ = 1.

170



Soit alors € un arc de courbe intégrale de (42) issu d’'un point P,
d’abscisse ¢, (0<t,<<1) de 'axe 4 = 0, et suivi & partir de P pour ¢
décroissant ; il présentera d’abord une ordonnée croissante et coupera
done I'arc OB de I', en pénétrant ensuite dans R, d’aprés la remarque ;
puis son ordonnée décroitra, et ’arc, assujetti & rester dans R, d’apres
la méme remarque, tendra vers O quand ¢ tendra vers 0: sinon l’arc
couperait la droite ¢t = 0 en un point N distinct de O ou 4, c’est-a-dire
en un point régulier — ce qui est absurde, car ¢ = 0 est la seule courbe
intégrale de (42) qui passe par N.

Suivons maintenant € & partir de P pour ¢ crois-
sant ; A décroitra constamment, et I’on peut faire
deux hypothéses. Ou bien, pour {,<¢<<1 4 reste A
fini, et, quand ¢ tend vers 1, 1 tend vers une valeur
limite, finie ou non; € coupera donc la courbe
intégrale t = 1 de (42) en un point régulier3?), ,
ce qui est absurde. Ou bien — et c’est la seule :
hypothése & retenir — il existe une valeur ¢, ;
(t,<t,<1) telle que, ¢t tendant vers ¢, en croissant, A

\\\

‘
1
1
'
1
1
1
!
i
|
|
'
i
]

\z
\
\

1

i

L

!

A tende vers —oo; la droite ¢ = ¢, est une asymp- !
tote de €; quand ¢ aura dépassé ¢, par valeurs 0 AN

I

|

I

1

i

croissantes, A décroitra depuis + oo et 'arc de ©
appartiendra & R, (car les poles de A(f) sont
simples ; N © 18) et quand ¢ croitra et tendra vers
1, 'arc de €, qui ne peut pénétrer dans R, d’apres
la remarque préliminaire, atteindra { =1 en un
point qui ne peut étre que B ; il y arrivera avec une tangente verticale.

La courbe € ne peut donc couper A = 0 (hors de 0) qu'une seule fois,
au point P. En particulier, il en est ainsi de la courbe issue du point
t=%, A=0, ce qui montre que la solution symétrique de Schwarz
pour le probléme de Plateau relatif & un quadrilatére symétrique est
la seule solution de ce probléme, et, comme nous 1’avons vu, ceci établit
du méme coup le théoréme d’unicité de Schwarz pour un quadrilatére
quelconque.

80) En posant A = u~! on s’assure que le point & l'infini de ¢ = 1 est régulier
pour I'équation en u.
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