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Sur un théorème de Schwarz
Par René Garnier, Paris

Dans le supplément à son Mémoire couronné, Schwarz annonçait qu'il
n'existe qu'un segment de surface minima 8, sans singularité, admettant
les côtés d'un quadrilatère gauche Q pour frontière complète1) ([18],
p. 111). Il ne semble pas que Schwarz ait jamais publié la démonstration
de ce théorème. Beaucoup plus tard, Tibor Radô établissait sous une
forme remarquable des conditions suffisantes d'unicité pour la solution
du problème de Plateau relatif à une courbe de Jordan fermée, G : s'il
existe un point O, à distance finie ou non, tel que la projection centrale
ou cylindrique de G à partir de O soit une courbe convexe simplement
couverte, il ne peut passer par G qu'un segment de surface minima
([14], p. 8). Sa démonstration, très simple, s'appuie sur des propriétés
des équations aux dérivées partielles du type elliptique.

Nous nous limiterons ici au théorème de Schwarz, mais nous l'établirons

par une voie toute différente de celle de T. Radô. La méthode
actuelle fait intervenir les intégrales de l'équation VI de Painlevê ; et par
un retour imprévu, elle en révèle des propriétés nouvelles : elle étend aux
intégrales de VI la notion de fonction contiguè, introduite par Gauss pour
les fonctions hypergéométriques ; elle établit la formule qui relie deux
fonctions contiguës et fournit une infinité de cas dHntégrabilitê de Véquation

VI.
Par son origine la méthode se rattache aux travaux de Weierstrass ;

elle reste ainsi dans la ligne générale du Mémoire de Schwarz. C'est d'ailleurs

par la même voie que j'ai résolu [7] le problème de Plateau pour les

polygones (puis, pour des contours continus plus généraux2).

I. Préliminaires

1. Hypothèses fondamentales. Le segment 8 sera représenté par les
formules de Weierstrass :

*) Les numéros entre [ ] renvoient à la Bibliographie de la p. 172.

2) Les résultats exposés dans ce Mémoire ont été résumés dans deux Notes des
C. R. Ac. Se., t. 217, 1943, p. 60 et p. 320. Je suis heureux de rappeler qu'ils ont fait
l'objet d'une Conférence à l'Université de Genève, le 14 juin 1949. On me permettra de
rendre hommage ici à la mémoire d'un collègue éminent et d'un ami regretté, Rolin
Wavre/
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X $l$(G*~H2)dx, Y 9i$i(G* + H2)dx} Z=9{$2GHdx (1)

où X, Y, Z sont des coordonnées rectangulaires, G et H des fonctions de
la variable x, analytiques dans le demi-plan supérieur II[9{(ix) <0], et
telles que Q soit représenté biunivoquement sur l'axe réel. Nous ferons
les hypothèses suivantes :

I. G2, GH et Hz sont holomorphes dans II et sur Vaxe réel, sauf, peut-être,

aux affixes respectifs x1 0, x2 t, x% 1, #4 =oo des sommets Alt
A2,A3i AédeQ.

IL 8 admet un plan tangent bien définie en A5 (j 1,..., 4) et

variant par continuité au voisinage de Ar
Ces hypothèses tendent à introduire un segment S aussi «régulier»

que possible. La première partie de I dans II n'est d'ailleurs
que la traduction d'une hypothèse faite couramment dans l'énoncé du
problème de Plateau : on demande à la surface cherchée d'être représentable

conformément sur l'intérieur d'un cercle par des fonctions harmoniques

continues ([15], p. 32). La seconde partie de I sur l'axe
réel permet le prolongement par symétrie de 8 à travers chaque
côté de Q. H ^Rappelons que x -^- — (<x, fi, y cosinus directeurs de la

Or 1 — y
normale à 8) ; une rotation des axes de coordonnées (ou de 8) s'exprime

par une substitution S de Cayley, soit I ^ -jl, sur G et H (W, imaginaire

conjuguée de W) ; ainsi G et H satisfont à une équation linéaire du
second ordre

0 (E)

dont les coefficients p(x), q(x) sont indépendants de la position de S

par rapport aux axes de coordonnées et réels sur l'axe réel 91 (ix) 0

([7], p. 65).

2. Etude du voisinage d'un sommet. Dirigeons l'axe OZ parallèlement
à la normale 91 à 8 en un sommet quelconque A} (j' 1,..., 4), dont
l'affixe sera prise égale à 0 dans ce numéro ; r est donc nul avec x.
Faisons décrire à x un lacet L issu d'un point de 77 et entourant 0 ; sur S le
point M, d'affixe x, subit une rotation autour de 91; pour la substitution

S correspondante on a donc B 0. G et H se changent respectivement

en AG et AH ; ce sont, par conséquent, deux intégrales canoniques,
G (x) xOùg(x)i H(x) x&h(x), avec % + fi entier et g(x), h(x) uni-
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formes autour de 0. Montrons que 0 n'est pas un point essentiel de g (x) et

g(x) xv g(x)

avec y ^ 0 et m entier >0 ; d'après II <p(x), devant tendre vers 0 avec
x et étant uniforme, est holomorphe en x 0.

Mais
Z 9Î $2x«+li-mg2(x)<p(x)dx

et a + p — m est entier ; si g(x) admet x 0 comme point essentiel,
il en sera de même de l'intégrale précédente ; soit f(x) — Z + iZx cette
intégrale. La fonction ef{x) admettant encore x 0 comme point essentiel,

e^ et par suite Z ne pourraient rester bornés au voisinage de Ai (sur
S, ou sur un des segments déduits de S par rotation autour de 31). Ainsi,
quitte à augmenter a ou /S de nombres entiers (>0 ou <0), on peut
supposer g(x) et h(x) holomorphes et ^ 0 pour x 0, avec de plus,
fi>(x, car 31 coïncide avec OZ. Les affixes 0, 1, t, oo des sommets de Q

sont donc des points réguliers de (E) au sens de Fuchs.

3. Détermination des exposants caractéristiques. — Désignons par oc3,

fa les exposants caractéristiques des intégrales canoniques de (E) en

xi (j 1, 2, 3) ; pour les déterminer, il est loisible de supposer
momentanément l'axe des Z normal à S en Ar D'après la fin du N° 2 on a
/8i><%i, et d'après (1) : n(2aj + l) Vi9 en désignant par Vi la mesure
de l'angle plan formé par les vecteurs-unités joignant Aj aux points de
S infiniment voisins («contingent» de G. Bouligand). D'ailleurs, (xi + fa
est un entier mi (N° 2), avec m^ ^ 0 (car Z doit rester fini), et, puisque
&>«,, on a

oc — — _i_ i fi — 'J- _i_ m (9\

avec

m,>-i--l 0=1.2,3) (3),
71

(ce qui s'accorde bien avec m^O). L'étude de x =oo, affixe de ^4,
se fait à l'aide de la transformation x | x~x ; elle donne pour les exposants

caractéristiques

*=T+ïk> A=4-è+"" (2)*

F4 étant défini comme Vj9 et l'on a pour l'entier ra4 (^ 0) :

m4>A_i. (8)4
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En dehors des affixes xj des sommets de Q, (E) peut encore posséder
des points singuliers x'h où G2, GH, H2 restent holomorphes (N° 1). En
de tels points, les exposants caractéristiques sont égaux à des moitiés

d'entiers, —— et ——- + m'A avec m'h ^ 0, m\ entier et
2 2

mh - mi > 1 (ou > 2 sim^O)3) (3)J

points x'h sont en nombre fini, N : car, d'après la forme de G(x) et
H (x) autour d'un point xi (N° 2) et en vertu de résultats analogues qu'on
pourrait établir au voisinage d'un point quelconque £ intérieur à 77 (ou
réel), on voit aisément que ni x5, nif ne peuvent être points d'accumulation

de zéros de GW — HGf.
Soit alors, dans (E)

écrivant que la somme des résidus à distance finie et à l'infini est nulle,
et observant que p3 1 — m3, p'h 1 — ml, on trouvera (relation de

Riemann-Fuchs)

11soit 4 N
27 m, + 27(m;-i) o

i i
Or, on a vu que m3 > 0, m4 ^ 0, et d'après (3)^, mh ^ 1, donc

m9 0 (j 1,..., 4) et mh 1, m^ 0, ce gwi détermine les exposants

caractéristiques ai, j8; et entraîne diverses conséquences :

a) D'après (3),, on a 0<Fi<7i 1,..., 4) ; le segment S «s'attache

» au contour par «Vintérieur » des angles de Q (au sens de la Géométrie
élémentaire)4).

b) On ne peut avoir mfh > 0 ; G et H ne s'annulent donc pas simultanément

; en particulier, S ne contient pas de point de ramification (mrh 1,

mh 2).

c) II n'y a pas, non plus, de point méplat (m'h 0, mnh^2). En
définitive, (E) ne peut posséder de point apparemment singulier. Posant alors

3) Un point xh pour lequel mh 0, mh 1 est un point d'holomorphie de p(x)
et q(x), car O(œ) ne peut contenir de terme logarithmique (n° 1,1).

4) Dans [7] (p. 104—107), j'ai montré qu'il passe au moins une surface minima par
Q, mais sans préciser son mode d'attache au contour.
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il viendra
£ (4)

et d'après (2), (j 1,..., 4) (#) s'écrira

I /~ l\2 ' /^. /\2 ' ~/~. 1\ • x{x-\)(x-t)
avec

^ (è)Ki)(i)(i)
4. £es invariants du groupe de ((£). Pour achever la détermination de

((g) il faudrait pouvoir calculer t et oc. Mais nous n'avons pas encore
exprimé toutes les conditions du problème. L'axe OZ étant pris normal à

8 en Al9 on a (N° 2) : 6?(#) =-- ax0Lg{x)i H(x) bxPh(x), les fonctions
holomorphes g(x) et h(x) se réduisant à l'unité pour x 0, et il faut
encore calculer a et 6. Or, quand x, partant d'un point de 77, décrit des

lacets autour de x 0, x 1, # £, G(#) et /?(#) subissent des

substitutions de Cayley, Sx, S2, $3 ; ces substitutions correspondent à des

rotations d'amplitudes connues autour des normales à S en Al9 A2, A3;
elles sont donc connues dès que l'on a fixé la direction OX, normale à OZ.
Ainsi ((g) doit être telle que son groupe de monodromie (5 (construit à

partir de deux intégrales convenablement choisies) admette pour base

8lJ 82, Ss. Or, sauf dans le cas où ((£) admet une intégrale à dérivée

logarithmique rationnelle (cas qui ne saurait se présenter que si les
normales à S en Al9 A2, Az sont parallèles, c'est-à-dire si Q est un quadrilatère

plan), le groupe © peut être défini par les invariants A + A (N° 2)
des substitutions unimodulaires 8l9829 $3, 828X, 8382, 8S82SX Si1)5),

compte tenu du choix des axes. La forme ((£) qu'on vient de trouver
pour (E) exprime précisément que les invariants de 8l9 82, #3, $4 ont les
valeurs 2 cos Vj (j 1,..., 4) ; quant aux invariants de 82Sl3 et 8B82i
ils ont aussi des valeurs connues: la substitution S2Sl9 par exemple,
correspond à un produit de deux symétries autour des côtés A^AX et
A2AZ\ elle a donc pour invariant 2 cos F12, F12 mesurant l'angle des

vecteurs Ax — A± et Az — A2.
Admettons qu'on ait su déterminer t et oc (dans ((£) de manière que

les invariants de #2$! e^ $3 $2 aient des valeurs données. On montre alors

5) Ici, et un peu plus loin, dans ce N° 4, nous omettons la démonstration de
certaines propriétés simples.
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qu'on peut choisir univoquement 62 : a2 et a en exprimant que 82 est une
substitution de Cayley et que le côté AXA2 a une longueur donnée ; le

remplacement de b : a par —b : a change d'ailleurs le segment de
surface 8 en un segment symétrique.

Enfin, réciproquement, on montre que des fonctions G et H
satisfaisant aux conditions précédentes définissent, par l'intermédiaire de (1)

une surface minima passant par un quadrilatère égal à Q.
Ainsi, résoudre le problème de Plateau pour Q revient essentiellement

à déterminer t et oc de manière que les invariants de 82 8X et SB S2 aient
des valeurs données. Ces invariants sont des fonctions analytiques de t
et oc ([13], p. 310) ; mais, pratiquement, il paraît bien difficile de montrer
que les équations qu'on formerait ainsi ont une solution et une seule. Par
contre, une fois ces propriétés établies, on pourrait peut-être aborder par
cette voie le calcul effectif de la solution du problème de Plateau pour le

quadrilatère.

5. Introduction de Véquation VI. — Pour lever la difficulté, il convient
de rattacher le problème actuel au problème de Biemann6). Cherchons
donc d'abord à construire une équation linéaire du second ordre ((èx) de

la classe de Fuchs, admettant deux intégrales qui subissent autour de

quatre points arbitrairement choisis des substitutions linéaires données ;

moyennant une transformation homographique sur x, on pourra adopter
pour ces points les affixes 0, t, 1, oo comme plus haut, mais actuellement t

sera variable. Le nouveau problème n'est autre que le problème de Bie-
mann pour l'équation (&x). A l'encontre de ((£), l'équation (&x) devra
posséder un point apparemment singulier x kx, variable avec t ; elle

sera donc de la forme

h + ï fei + j Ci + Ï

2t-l
1

x(x— 1)
' {x — Xx)2

' x(x — l)(x — t)
' x{x—l)(x-

II faudra d'abord exprimer que le groupe de ((Êx) est indépendant de la
valeur attribuée à t. Or, pour qu'il en soit ainsi, il faut et il suffit, comme
l'a montré B. Fuchs ([2], p. 308) que X=zXx{t) soit une intégrale de

l'équation (découverte, à la même époque, et indépendamment de lui,
par B. Gambier [3] :

6) C'est d'ailleurs le procédé utilisé dans [7], p. 55, pour la résolution, du problème
de Plateau relatif à un polygone quelconque.
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A-l

c

« ai(<) et (i /?!(<) s'exprimant en fonction de A', A, < par les
formules

on a de plus ([5], p. 250)

•' + iêî+»«^^-! en

les équations (5), (7) forment un système équivalent à VI7).
En définitive, il faudra choisir une intégrale particulière de l'équation

du second ordre VI de manière que les invariants des substitutions
8281 et $3 $2 de ((£x) (qui sont déjà indépendants de t) aient des valeurs
données. Ce problème de Riemann une fois résolu, il faudra montrer
encore

1. qu'il existe une valeur t0 de t telle que A(£o) se confonde avec 0,
1, t0 ou oo et que l'équation ((è^ correspondante est de la forme ((£) ;

2. que l'équation (de) ainsi formée à partir de l'une quelconque des

quatre équations précédentes est unique.
La démonstration du théorème de Schwarz va donc s'appuyer,

nécessairement, sur les propriétés des intégrales de VI, et nous sommes ainsi
amenés à rappeler quelques résultats essentiels concernant ces fonctions.

6. Propriétés de X(t) pour t =£ 0, 1, oo. — P. Painlevé a établi [10],
une proposition fondamentale : toute intégrale A (t) de VI est holomorphe
ou méromorphe pour t tQ quelconque (^ 0, 1, oo). Il a montré de

plus qu'il existe une infinité d'intégrales qui pour t t0 (^ 0, 1, oo)

7) A une réserve près ([5], p. 251) sans importance actuellement.
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prennent Tune des valeurs singulières A<, 0, 1, tQ, oo ; en se limitant
aux parties principales, on a, par exemple :

(8)

W

(s ±1; e' ± 1), le second terme de chaque développement contenant

une constante arbitraire8).

Théorème. Soient A0, A'0 et <x° les valeurs initiales de X{t), X'(f) et
oc(t) pour t t0 (^ 0, 1, oo) ; A(£) et oc(t) [ou 1 : A et 1 : oc] sont des

fonctions holomorphes de A0 (^ 0, 1, t0, oo) e£ A'° (^oo) ; dans le cas
où A0 a une valeur singulière, X(t) et oc(t) [ou 1 : A et 1 : oc] sont des fonctions

en général9) holomorphes de A0 (^ £0) & °P (t^00)? <>w de A0 t0)

et (<x + fi)° oc° (7^00).

Ce théorème étend une proposition analogue énoncée sans démonstration

par Painlevé pour l'équation A;/ 6 A2 + £([9], p. 46). Pour l'établir,

nous procéderons comme l'a fait Painlevé pour démontrer un théorème

analogue concernant les équations du premier ordre ([8], p. 36).
Soient a (^ 0, 1, oo), l (=£ 0, 1, a, oo), V (7^00) trois quantités

quelconques ; la méthode des fonctions majorantes montre qu'il existe
trois nombres positifs Rl9 i?2î ^3 tels que pour

| t - a | < Rl9 | *0 - a | < Rx, | A0 - l \ < R2, | AA° - V \ < R3

et t fixe, l'intégrale de VI, soit A <p (t ; A0, A'0, t0), définie par les conditions

initiales t0, A0, A'°, est une fonction holomorphe de A0, A'°, t0 dans
le voisinage de l, V, a respectivement. Montrons que le théorème reste
vrai lorsque t varie sur un chemin quelconque fl, allant de a à un point
quelconque T (sans contenir 0, 1, 00). Supposons d'abord que sur fîA
ne prenne aucune valeur singulière, et soit u un paramètre qui serve à

8) On peut le voir, soit directement sur VI, soit en raisonnant sur (5), (7), ou pour
* -x- *

Ao t0, sur un système analogue vérifié par K Xt~x et a a + p {système (1),
[5] p. 292}.

9) Dans certains cas: A0 0 et 4at + 1 0, A0 1 et 46X + 1 0; A0 t0
et 4cx + 1 0; A0 oo et ax + bt + cx + dx + 1 0, les fonctions sont algé-
broïdes autour des valeurs singulières de A0 ; mais ces cas ne se présentent pas dans
le problème actuel (cf. N<> 18).

147



représenter fi biunivoquement, en croissant de 0 à 1 quand t va de a
jusqu'à T sur fi ; désignons par ur la borne inférieure des valeurs de u
pour lesquelles le théorème ne serait plus exact, et soit t{uf) r. Il
résulte du théorème fondamental de Painlevê, énoncé au début de ce

numéro, que si 0 tend vers r sur l'arc (a, t) de fi, (3 y (6 ; A0, A'0, t0)

et y <p'o (0 ; A0, A'0, t0) tendent vers des valeurs b et c, régulières par
hypothèse. Nous savons de plus qu'il existe trois nombres positifs B[,
Rf2, Bf3, analogues à B1, B2, E3, et tels que pour

IAi-z&K^. \K-y\<^- ¦ 00)

A cp (t ; Ax, A(, 6) et A' <pj (t; A1? A{, 0) sont holomorphes en A1?

A{, 0 ; mais on peut prendre 6 assez voisin de r sur fi pour que les quatre
premières inégalités (10) soient vérifiées sur tout l'arc (0, r) de fi ; ainsi, y
(r ; Ai, Aj, 0) et 9^ (r, A1? A(, 0) sont holomorphes quand Kx et A{ vérifient
les deux dernières inégalités (10). Mais on obtient <p (r ; A0, A/o, £0) en
remplaçant dans <p (r ; A1? A(, 0) les variables Ax et A^ respectivement par
cp (6, X°, A/o, t0) fi, et A{ par 99^ (6 ; A0, A/o, £0) y, et ces deux dernières
fonctions (} et y sont, par hypothèse, holomorphes en A0, A'0. Donc 99

(t ; A0, A'°, £0) est bien holomorphe en A0, A/o autour de l et V. L'existence
d'une borne inférieure ul<l étant inadmissible, le théorème est encore
exact en T.

Supposons maintenant que les valeurs b et c soient singulières ; par
exemple, soit 6 0. On remplacera VI par un système (5), (7) qui,
résolu en A; et <xf, sera à coefficients holomorphes pour t r, A 0,
oc oco (ou algébroïdes, si 4ax + 1 0, cas qui ne saurait se présenter
dans notre problème ; N° 18), et l'on répétera le raisonnement précédent
en faisant jouer à oc le rôle antérieur de A'. Il en sera de même pour 6=1
ou 00 ; dans ce dernier cas, on verrait que 1 : A (r ; A0, A'0, £0) est une
fonction holomorphe de A0, A/o. Pour b t, on substituerait à (5), (7)

-X-

un système en â et A, qui reste régulier pour A t (N° 7).
De même, si les valeurs initiales l et V sont singulières, on leur

substituerait les valeurs initiales de A et oc (ou de 1 : A et oc, ou, si l t0, de
A et oc°).

Un raisonnement identique à celui de tout à l'heure montrerait que,
pour t r, A est une fonction holomorphe (ou exceptionnellement
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méromorphe) des constantes al9 bl9 clt dx figurant dans VI, autour de
valeurs finies attribuées à ces constantes.

7. Propriétés de X{t) pour t voisin de 0, 1, oo. Moyennant des
transformations homographiques simples sur t, A, on peut échanger dans VI
les points singuliers 0, 1, oo 10) ; on peut donc se borner à étudier les

intégrales de VI au voisinage de t 0.
Or on peut construire le long de l'axe réel des branches d'intégrales,

dites «caractéristiques de première espèce et du type général» ([5],
p. 250) telles que, t tendant vers 0, oc tende vers une valeur arbitraire
(mais telle actuellement que l'expression

soit comprise entre 0 et 1), tandis qu'en t0, suffisamment près de 0, A

prenne la valeur Xq ; Ao peut être choisi arbitrairement pourvu que 110 : Ao |

soit inférieure à une quantité ne dépendant que de al9 bl9 cl9 dl9 s2 c'est-
à-dire, actuellement, à une quantité purement numérique. On obtient
ces caractéristiques après avoir fait le changement de variable

x

fdXJ X]
où A°

(5) se trouve ainsi transformée en

où | F | reste petite au cours des approximations successives que l'on
effectue sur (5;) et la transformée de (7). Et l'on montre ([5], p. 315) que,
pour s 7e 0

i(±)' (±)-. (.2)

A, B, C étant des fonctions de t restant bornées quand t tend vers 0 ;

lorsque t tend vers 0 sur l'axe réel, A tend vers 0 comme kts (pour s

10) [5J> P- 2^0. En particulier, la transformation £=1 — t', X — 1 — A', a 6',
b — a', a —a' se complète, dans ((£x) par x — 1 — x'. On notera, de plus, la
transformation %x A3 t% i t tçl bx c3, ct 63, at a3t^1 pt £3 % *

qui change ((£x) et VI en des équations analogues, et Xx — t en A3 1.
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réel >On) ; pour 8 0, le second membre de (12) devient un polynôme
du deuxième ou du premier degré en log t, à coefficients fonctions de t. Il
résulte de là, en particulier, que, pour s réel les zéros de X, ou X — 1, ou
X~~ 1 ne peuvent s'accumuler au voisinage de t 0. Pour s réel > 0 on a

encore

d'après (6).
Mais il existe encore une seconde espèce de caractéristiques du type

général ([5], p. 290) ; on pose Xt'1 X,oc + P &
>

avec

P 4(ax + cx + 1 - 4) ; (1*1)

on montre que pour !>0, on a 1=1 —s ([5], p. 324),et les approxima-
*

tions convergent uniformément pour | £oAo | | Xq \ assez petite ; on a

d'ailleurs

* * *
A, B,C restant bornées quand t tend vers 0. Si 1 0, le second membre
est remplacé par un polynôme du deuxième ou du premier degré en log t.

Pour t appartenant à (0, t0) et assez petit, soit pour t tOi quitte
à diminuer t0, <x (t) est une fonction holomorphe de <%0, de Xq et de

11 En posant a — Oo y, Xq — t, on peut remplacer (5), (7) par un système

tQ' q[1~s +f(Q,k,y,t)]
'/ Q<P(Q9X,t) f

/et <p — 2c -f a0 étant holomorphes et nulles pour Q À y t — 0. L'application

des théorèmes de Picard ([12], p. 18) à ce système montre qu'il existe des
intégrales A (t) de VI développables suivant les puissances entières croissantes de G t9

et C7"1 f1"8 et nulles avec t (<7, constante arbitraire); mais le domaine où on calcule
ainsi X (t), et qui appartient aux caractéristiques des deux espèces, est moins étendu que
celui des caractéristiques ; en particulier, il ne peut contenir les points où Ton a, soit
X oo, soit g oo (c'est-à-dire A 0), points qui appartiennent respectivement
aux domaines de convergence des caractéristiques de première ou de deuxième espèce.
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alfblfcly d1 (ou encore <x(t) est holomorphe en olo, Aq et ax, bx, cx,c^), avec

-^— par exemple, voisin de 1, de sorte que oco est holomorphe en oc (t0) et k$.
uOCq

Concurremment à ces caractéristiques, il en existe d'autres, dites du
type exceptionnel ([5], p. 280, 294), car elles n'existent que pour defc

valeurs exceptionnelles de ocQ ; elles sont telles que, t tendant vers 0,
A tende vers une certaine valeur A^O (ou A, vers A ^00). Dans le

problème actuel nous n'aurons pas à les étudier spécialement, car elles

rentrent dans les types (12) ou (12) avec C =0 ou C =0.
Enfin, on démontre cette propriété essentielle, qui joue pour t 0, 1,00

le même rôle que le théorème fondamental de Painlevé (début du N° 6) :

quand t tend vers 0 (par exemple), toute intégrale de VI se laisse représenter

par une caractéristique de Vun des types (et espèces) précédents ([5], p. 295
à 312).

II. Comparaison de (G,) et ((£*)

8. Les équations ((£[) et ((£2) en u et w. Reprenons maintenant notre
problème suivant la méthode indiquée à la fin du N° 5. On peut réaliser
une équation (©), soit à partir d'une équation (C^) où ^(t) tend vers 0,
soit à partir d'une équation analogue, que nous désignerons par ((£2),

où al9.. ,,dl9 Xx, oc1, fix seraient remplacés par a2,..., d2, A2, <x2» /^> e^

où X2 (t) tendra vers 00 ; d'ailleurs, en raison de l'équivalence [N° 7 et
note 10] des valeurs singulières de A, il n'y a pas lieu d'envisager d'autres
hypothèses. Nous allons montrer que, de toutes façons, on aboutit à la
même équation ((£).

Pour que (Sx) tende vers ((g), il faut prendre d'abord

61=w2(w2--l), c1=tt3(tt3--l), a± + b1 + c1 + d1+l (w4—|)2 (14)

Soit alors t0 une valeur telle que Ài(t0) 0 ; d'après (6) et (8) (ï tend vers

£(«l/4a1+ 1 + 1), et

«i + i ^i-f f fit
X2 "ï" s (a? — 1)

"*"
(a? — Ai)2 ~r x (x - 1) (x - Kx)

vers une fonction rationnelle dont la partie principale, en x 0, est

x
On doit donc avoir

-l) (^=±1) ; (15)
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d'après (4) e=+ 1, et si l'on pose Yx=x~ 1[(x— l)(x— t)(x~ A1)]~4w,

u vérifiera une équation ((£[) dont les exposants caractéristiques seront
(quel que soit t) donnés par le tableau :

t X oo

nz 0 — 2 -f- w4

1 — nz 2 — 1 — w4

Partons maintenant de (G2) et supposons que pour t — trQ (^ tQ ou
^o) ^2(0 =:00 î on procédera comme pour (G^), en remarquant d'après

(6) et (9) que — /?2 : X2 tend vers 1 — e' V'a2 -f 62 + c2 + d2 + 1 ; en

égalant à 1 + £2(w4 — |) (e2 =±1) fcf- (2)4] les exposants caractéristiques

pour x 00 de l'équation limite, il viendra

1

3

0

2 ~^nx

+ €l n 1

1

n2

n2

2e' Va2 + 62 + c2 + d2 + 1 1 + e2(2^4 - 1) (s2=±l) (16)

d'où encore e'=+ 1, et si l'on pose Y2 [x(x — l)(x — t)(x — A2)]~iw;,

w vérifiera une équation ((£2) dont les exposants caractéristiques seront
(quel que soit t) donnés par le tableau :

0 1 t X 00

nx n2 n3 0 ^—~ + n42

1 + e

z

9. Passage de ((Sj) à ((£2). On peut écrire ((£2) sous la forme

wr r Aitir __ I (l t /Y*\ I I 4/} OM/ "~~~ Â I Vj5 l *v I T -«v/ 1 v I W "n ê* A i v \ / >

W T* ___ \ \ tf /II1AJ "~~" ^*9 I *^ \ *^ ^ I V *^ 2/ I

avec

*» V / /v.2 "^ //v. 1 \2 ' //« *\2 "^ /v.//v. 1 \ "^
«(a? — 1)(« —*)

et comme # A2 est apparemment singulier, on a

Montrons alors qu'on peut former un système linéaire absolument
canonique

w! a(x)w -f b(x)z
z'

(18)
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avec

» + d(x)-

et qui est vérifié par l'intégrale générale w(x) de ((Êg) (conjointement avec
une fonction associée z(#)). A cet effet, nous prendrons

avec
A | + e2K-i) (21)

et

en différentiant (18)x et en utilisant (&2) on trouvera

-l] [) b{x)

le coefficient de z est bien de la forme prescrite, avec

^. + D,= 1 0=1,2,3) ; (23)

quant au coefficient de w, il ne contient pas de terme en (x — A2)~2

et s'écrit a priori

C4 et C5 étant indépendants de x. Mais on vérifiera que (17) entraîne
C4 0 et que (16) et (21) donnent C5 0.

Les exposants caractéristiques de z et w étant les mêmes, en général,
on prévoit qu'on peut trouver une constante k telle que pour x 0

un (et un seul) des exposants de

v kw + 2;

soit supérieur d'une unité à l'un des exposants de w. Or ceux-ci, n1 et
1 — %, sont égaux, si l'on veut, à £ ± MJ — %)> £i ayant la même

signification qu'au N° 8 ; si r désigne l'un quelconque d'entre eux, il
existe une solution de (18) telle que w xr(l + • • * e^
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donc, si Ton définit k par

kB1-A1+i + Mi - nt) 0 (24)

les exposants de v en x 0 seront égaux à ceux de u, en x 0 (emgr-

mentés peut-être, de s1 et e{2) ^ 0) e£ ceto, gwei que soit ex.
D'autre part, supposons que (18) possède une intégrale telle que pour

on trouvera pour cette même solution

±J (1 + ..-);
v appartiendra donc à l'exposant rr — 1 ou à r' + e (e ^ 0) selon que
A + f' ^ 0 ou =0. D'après la valeur (21) de h, et d'après les valeurs
de r1 données à la fin du N° 8, on a h + fr (1 + «2)^4 ou (1 — £2)

(1 — n4) et les exposants de v pour x =00 seront —- 2 -f- ^4 H ^—- e

et _i_n4 + ^±^£.
Enfin, les exposants de v pour a: 1 et x t sont de la forme

n% -f ef, 1 — n2 + e" et ^3 + e/;/j l — n3 + eIV, tous les e étant des

entiers ^0. On verra d'ailleurs, tout à l'heure (n° 10), que d'après (24)
v satisfait à une équation n'ayant qu'un point apparemment singulier, X,

d'exposants 0 et 2 ; en écrivant que la somme des exposants de l'équation
en v relatifs à 0, 1, t, 00, A est égale à 3 (relation de Biemann-Fuchs), on
trouvera

ainsi, e1, e<2), e, e',..., eIV sont nuls et les équations vérifiées par u et v ont,
non seulement le même groupe — celui de ((£) — mais encore les mêmes exposants

relatifs aux mêmes points singuliers. Il en résulte, comme nous allons
voir, que les équations vérifiées par u et v sont identiques (lemme d'unicité

12)).

Tout d'abord, soient (ul9uÈ) et (vl9v2) deux systèmes fondamentaux
respectifs des deux équations, ces systèmes étant choisis de manière à

12) C'est un cas particulier du théorème de l'unicité de l'équation réduite d'une
classe ([16], p. 388) ; un théorème analogue («Fundamentallemma») a été établi par
L. Schteringer pour les systèmes absolument canoniques ([17], p. 234). On pourra
comparer ces démonstrations à celle du texte.
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subir les mêmes substitutions sur les mêmes contours. Si Ton détermine
A et B par les équations vi A(x)nj + B(x)ufj (j= 1,2), on voit
immédiatement que A(x) et B(x) sont uniformes et sans points essentiels

: ce sont des fonctions rationnelles. Mais on a

Supposons B =jk 0. D'après la forme de (&[) ^Wg — u2u[ a en # 0

un zéro d'ordre 1 exactement ; uxv2 — u2vx a un zéro d'ordre ^2, donc
B(x) a un zéro d'ordre > 1 et il en est de même pour B(x) en x 1,
# £. En # Xl9 uxu'2 — u2u[ a un zéro d'ordre 1 exactement, tandis
que uvv2 — u2v± est holomorphe ; pour B =?k 0 on aura donc

P(x) ;

(vn>i, vn2, w3 entiers ^0; P(ic), polynôme de degré M ^ 0). Mais

%^2 ~ W2^i admet se =oo comme pôle d'ordre 2 et uxv2 — vxu2
comme pôle d'ordre 3 au plus, soit 3 — m4 (ra4 ^0). Il vient ainsi

2 -\- m1 -\~ m2 -\- mz -\- M \ — m4

équation qui n'admet aucune solution en entiers mjy M ^ 0. Ainsi,
jB0 0 et Vj — A(x)uj ; mais les exposants caractéristiques étant les
mêmes en x 0, 1, t, oo et les uir, v, étant holomorphes partout ailleurs,
-4 (a:) se réduit à une constante.

10. Relation entre Xx et A2. — Les équations vérifiées par v kw + z

et w se forment aisément à partir de (18) ; on trouve :

avec
A(x) k2b(x) + k[d{x) - a (a?)] - c(x)

et

w" - (a + d + ^\w' + lad -- bc - a' + ^-\ w 0 (26)

Ces équations doivent être identifiées à ((£[) et ((££). Or la comparaison
des termes en x~2, (x — 1)~2, (# — £)~2 dans les coefficients de u et v
pour ((£{) et (25), de w pour ((Eg) et (26) donne, compte tenu de (24),

AiDi - Bfit w,(l - W/) (; 1,2,3).
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On tire de là et de (23) :

Ai)C9=
(S =1,2, 3)

pour j 1, l'une des parenthèses du second membre est nulle, d'après
(24), et, cela, quel que soit ex. Ainsi

A--±-+ ®
A X~K 127)a- a;i +^ry-/l° {Xi)(xt) ' '

la dernière égalité résultant de la comparaison des termes en v' et en u'
de (25) et de ((£[). La comparaison des parties principales pour x=oo
des coefficients de », », w ne donne rien de nouveau. Mais on déduit
de (27) :

1 _ ^ %
93 k*B3+k(D3-A3)-C3
-Ai + n2)(kB2-Ai + 1 — nt)
-A3 + n3)(kB3-A3 + l-n3)

Or on peut tirer k de (24), et si l'on pose, pour abréger

on trouvera :

Xx — t Bz q?3 (n3) <pz (1 — nz)

D'après (18), (19), (20), Ax, A2, A3 sont linéaires en /?2, donc en A2, les

coefficients — ainsi que BX,B2,BZ, d'après (19), (22) — dépendant
rationnellement de X2 et t : ainsi, Kx est une fonction rationnelle de X2, X2, t, du
second degré en À213).

11. Unicité de la valeur de t0. — Faisons tendre t vers un pôle tQ de

À2(t). Pour | X21 très grande on a

(29)

or, on a vu (N° 8) que — /?2 : A2 tend vers J — £2(^4 ~ \) \ d'après (21)
la limite de (29) est donc — 1 — e2(2né — 1) hl9 quantité non nulle,
d'après (4). De même,

13) La comparaison des termes en 1 : x — Xx et en 1 : x — tx dans ((£,[) et (25)
donnerait de même des relations du premier et du deuxième degré en A^, A2 (à
coefficients dépendant de Xx, A2, t), Nous ne les développerons pas actuellement.

156



1 -^*3

expression qui tend vers hxt. D'ailleurs Blt B2, B3 tendent vers oo, de
sorte que

1 - h _ B2 *; + ••• _ h - 1

B3 h\P-\ (!+•¦•)

expression qui tend vers — 1 : t ; ainsi, la valeur t0 qui rend A2 infini
annule aussi Ax(t) (et, cela, quels que soient ex et e2).

12. Unicité de Véquation ((g). — Pour prouver que les équations ((£)
formées à partir de ((£i) et ((g2) sont identiques, il nous reste à établir que
oc^to) oc2(to). Comme %i(t0) ^ t0 =£ A2(t0), oc^t) et (x2{t) sont holo-
morphes en t0 [cf. (5), (7)]. D'après (25) et (26), il nous suffit donc de
montrer que, t tendant vers t0, le résidu de

abr
pour x t tend vers 0. Or le résidu de est

« _ _ Al _ -^ j /J I
le résidu en x t de —p (A 6 + <^) est

mais, d'après (23) et (24), on a

lcBx + D1 fi avec / i + «i(»i -1) (30)
donc

à l'aide de (19) et (22) on trouve alors :

&(M2-<») feA(A
< (f 1) A (« A)— 1) A2 (« — At)

•

t (t — 1) (t —

I

Al~1 fl 1 (/ n K~l
(*-^i)(*-l)L ' K(t~

I

t t-l ^ t-l Aa(<-1) '
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Or, d'après (8), (9), (15), (16), (21) et (30), on a, au voisinage de

en n'écrivant que les parties principales ; et, à l'aide de ces formules, on
constatera que E — S tend vers la même limite que

h-2 r (/-!)* ]
J (h— l)t(t—l) "*" t—l

Quand t tend vers t0, ((&[) et (©2) tendent donc vers la même équation

((£), et cela, quels que soient les choix de et et «2*

13. Relations entre intégrales d'équations VI contiguès. — Les résultats
que nous venons d'établir ont une signification qui déborde le problème
de Plateau et entraîne des conséquences importantes dans la théorie des

équations de Painlevê. En effet, soient deux équations VI, construites
respectivement avec des constantes a, b, c, d telles que, si l'on pose

a +1 (vx -If 6 +i (vt -\f c+i=(vs -|)2
a + b + c + d+l (vA-if

les v prennent les valeurs % ~- >n2,nz,né, pour la première équation

et nx, n2, nB, n4 + -~ pour la seconde ; nous venons d'établir que les

intégrales de ces équations sont liées par (28). Cette formule — et ses

analogues, qu'on obtiendrait par permutation des valeurs singulières de A

[N°7 et 10)] — généralisent les relations entre les fonctions hypergéo-
métriques contiguës. En effet, ([5], p. 340), pour

^1 + ^2 + ^ + ^4=1 (31)

(les notations v1} v2i vz, vé remplaçant respectivement les notations
?ï>> ?*i > ?t> roo de [5]), VI admet toutes les intégrales de l'équation de
Biccati

t(t-l)V 2^-1 2v2-l 2vz
K }

2v2-l 2vzr^\){X-t) ~~ X ~*~ A-l
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qui se laisse intégrer par la formule

^x^^-o^r <33>

où © satisfait à une équation hypergéométrique de constantes 14)

a, — 2(vx + v2 + vz — 1) p 1 — 2vs y 2 — 2vx — 2vz

Si l'on prend e1= — e2 la relation (31) est conservée dans le passage
d'une équation VI à l'autre, et l'on a pour les équations de Oaup
correspondantes :

ce sont bien des équations contiguës. D'ailleurs la relation de GauP
entre les intégrales des deux équations hypergéométriques associées aux
équations (32) se traduit actuellement par une relation homographique
entre Xx et A2 (à coefficients fonctions de t), qui se substitue à (28).

14. Cas d'intégrabilité de VI. Les relations entre les fonctions X(t)
contiguës entraînent une autre conséquence remarquable. Pour a, b,
c, d égaux à — J, c'est-à-dire pour vi \ {j 1,..., 4), VI se réduit
à une équation VI0 rencontrée autrefois par E. Picard ([10], p. 298), et
qui s'intègre par les formules

<p t î

/dx _ fdx __ fdx

et X <p [A1co1(tl) -f- ^42ce>2(^), ^] ; q>(u,t) désigne la fonction elliptique
de u définie par l'inversion de la première intégrale, et Al9 A2 sont des

constantes arbitraires. D'après le début du N° 13, Véquation VI sera
intégrable en termes finis pour toutes les valeurs des vi qui sont égales à des

moitiés d'entiers.

III. Le problème de Miemann pour ((£,)

15. Signification géométrique de s. — Nous pouvons donc maintenant
nous limiter à (G^), et il nous faut montrer d'abord (N° 5 ; ad fin.) qu'on
peut construire une intégrale de VI (et une seule) telle que le groupe de

14) On ne confondra pas les notations a, /?, prises actuellement dans le sens usuel
des notations des fonctions hypergéométriques, avec les fonctions a{t)9 f}(t)
introduites antérieurement.
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l'équation (Qy formée à l'aide de cette intégrale (A, oc) soit le groupe ©
défini par Q (problème de Riemann pour ((Êi)). Admettons, pour fixer les

idées, que, quand t tend vers 0, X tend vers 0 ; dans l'équation limite de

((Sx) le coefficient de x~2 en facteur de Yx est égal à

avec oc10 — ]im.oc1(t). D'après (11) et (13) cette expression est égale à

— — L'invariant I de la substitution 8281 (N° 4), étant indépendant

de t, est égal à sa valeur calculée sur l'équation-limite, soit e27nr + e~2mr

(r, exposant caractéristique de l'équation-limite en x 0), c'est-à-dire
à 2 cos 7i s 15). Rapprochons de la valeur 2 cos F12 donnée pour I au
N° 4, et observons que 0 < s< 1, 0< V12<tc ; il viendra alors (cf. [7],
p. 96) ns F12 On procédera de même pour calculer l'invariant de

Dès lors, pour que le groupe de monodromie © de ((Sy soit le groupe de

substitutions définies (N° 4) par les produits de deux symétries autour des

côtés deQ, il faut et il suffit que Vintégrale (X, oc) du système (5), (7) soit telle

que, t tendant respectivement vers 0 et 1, oc(t) tende vers deux limites connues,

que nous désignerons désormais par oc0 et ocx 16).

16. Résolution du problème de Riemann. — Or nous savons déjà
construire une infinité d'intégrales [A(t),oc(t)] de (5) —(7), telles que t
tendant vers 0, oc (t) tende vers oco ; chacune de ces intégrales est définie par
la valeur Xo prise par X (t) pour t > 0) assez petit ; il résulte d'ailleurs
d'un théorème essentiel (fin du N° 7) que, t tendant vers 1, la fonction
oc{t) poursuivie de 0 à 1, tend vers une valeur limite, soit ocx(Xq) ; il est
aisé de voir que a1(A0) est une fonction holomorphe de Xo: car on peut
toujours prendre tx assez près de 1 sur (0, 1), avec X[tx) ^ tx et oo, pour
que oc x soit fonction holomorphe de oc{tx) et X(tx)17) ; mais, en vertu du

15) Dans le cas exceptionnel (N° 7) où hm X(t) — h^t 0, on trouverait de même

que l'invariant I est égal à — 2 cos n s. t—>0

16 On ne confondra pas cette dernière notation avec la notation al9 désignant la
fonction ax(t) figurant dans ((S^). Actuellement at est une constante telle que 4&J + 4cx

+ 1 + 4ax s\f avec 7ts1 F23, F23 mesurant l'angle des vecteurs A2 — At et AA

— A3. L'expression qu'on vient de trouver pour sx se déduit de (11) moyennant la
transformation xx — 1 — x.

17) Cf. N° 7, p. 151, le théorème analogue pour le voisinage de t 0.

(La fin de cet article paraîtra dans le prochain numéro)
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théorème de Painlevé (N° 6), <x(^) et X(tx) sont fonctions holomorphes
de X(tQ) et oc(t0) 18) c'est-à-dire (N° 7) de Xo (et de ocQ, qui est fixe).

Faisons alors varier Xq par valeurs réelles à partir d'une valeur X^,
je dis qu'on peut toujours trouver une valeur Xqq et une seule telle que

En effet, soit, par exemple, oc1 (Xqq) <oc1 ; supposons que par variation
continue de Xo on puisse résoudre l'équation o£{Xq) u pour ^1(A00)

< u < M <ocx, mais non plus pour M<u<ocly et montrons que l'hypothèse

est absurde.
doc1

Soient Xq==13 les zéros réels de -^=— Ces zéros sont en nombre fini,
da1 °

car ~2Y~ est holomorphe sur l'axe réel et n'est pas identiquement nul19).

Entourons-les d'intervalles y}, d'étendue arbitrairement petite, e. Si Xo

est en dehors de ces intervalles, on aura m > 0 ; donc, si u0 est

la valeur de u correspondant à une telle valeur de Xq, la solution XQ{u)

de l'équation ^(^o) u sera holomorphe dans un cercle de centre u0

et de rayon > q >0 (où q ne dépend que de e).
Cela étant, faisons tendre u en croissant vers M ; ou bien la racine Xq

de l'équation ^(Aq) u que l'on suit par continuité finira par rester
dans un des intervalles y3, et cela, si petit que soit e : Xq tendra donc
vers l} ; ou bien il y aura des points u arbitrairement voisins de M et tels

que Xq soit extérieur aux y3. Mais alors il suffira de prendre M — u < q

pour être assuré de l'existence d'un intervalle (uf, ut!) contenant M à son

18) Ou admettent comme point critique algébrique Ao 0, si 4ax + 1 0,
20 oo, si ax -f- bx -f- c1 + dx -\- 1 0 (N° 6), cas qui ne sauraient ee présenter
actuellement. On peut vérifier l'énoncé du texte pour VI0 (N° 14) Ao q)[2A1 co1(f0)
-t- 2A2 œ2(t0), y 4a0 — 1 — A\, 4ax 1 + A\ cf [5], p 347

19) Sinon, il existerait une infinité d'intégrales Â{t), a{t) de (5), (7) admettant
les mêmes limites, aQ et at, pour a(t), quand t tend vers 0 et vers 1 On pourrait alors
construire deux équations ((£x), à groupes indépendants de t, admettant les mêmes
coefficients ax, bx, cx, rfj, donc les mêmes exposants aux mêmes points 0, 1, t0, oo
avec deux points apparemment singuliers Ao différents, ces équations auraient
nécessairement des groupes distincts (N° 9) Mais ces groupes, ayant les mêmes invariants
(puisque Oj, bt, clt dlt a0, ax seraient les mêmes pour les deux équations) ne pour
raient être définis par ces invariants, ce qui exige que les équations ((Ej) admettent,
chacune, une intégrale à dérivée logarithmique rationnelle (N° 4) Les fonctions k(t)
satisfont alors à des équations de Riccati ([5], p. 340). Réciproquement, on vérifie
dans ce cas ([5], p 341) que a0 et ax ont les mêmes valeurs, —2rort et 2rxrt (notations
de [5] cf. N° 13) pour toutes les intégrales de l'équation de Riccati. Si l'on choisit les

axes de manière que l'intégrale à dérivée logarithmique rationnelle soit G(x), les
normales à S en Alf. A^ seront parallèles à OZ, on voit ainsi que la circonstance
précédente ne saurait se présenter que pour un quadrilatère plan
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intérieur et où Àq(u) est holomorphe : le prolongement de Xq{u) au delà
de M est donc possible.

Reste à examiner l'hypothèse où Aq tend vers l3, point critique
algébrique de Àq(u) ; À0 — l} est alors développablesuivant les puissances de

j^
(M — u)p avec p entier. Si p est impair, il existera encore une solution
Iq{u) réelle (et une seule) quand u aura dépassé M ; il n'en serait plus de
même pour p pair. Mais alors il existerait, pour u voisin de M et inférieur
à Jlf, deux valeurs Aq, Aq voisines de li et telles que ot1^) — u ~ ^(Aq).
Il existerait donc deux équations ((£x) ayant mêmes coefficients al9 bly

cl9 d± (donc mêmes exposants caractéristiques en 0, 1, 4, 00), mêmes
valeurs limites pour oc en t 0 et t l, donc même groupe de mono-
dromie, et ayant, cependant deux points apparemment singuliers
différents A(, Aq ce qui est contraire au lemme d'unicité (N° 9).

L'équation ^(Aq) =oc1 a donc sûrement une racine Aq, et d'après une
nouvelle application du lemme d'unicité, cette racine est unique20).

IV. Les quadrilatères symétriques

17. Variation continue du quadrilatère Q.— L'intégrale Zt(t) une fois
construite, il s'agit de montrer que l'équation Xx(t) 0 admet une solution

et une seule dans (0,1) (N° 5). La méthode qu'on va suivre procède

par variation continue du quadrilatère Q. En maintenant fixes les plans
A1A2A3 et AtA^A3, ainsi que les sommets Al9 A3, on peut faire varier A2
et A4 le long, par exemple, de segments de droites, de manière qu'à la fin
de la variation A2 et A± coïncident avec les deux sommets de deux
triangles isoscèles rectangles, d'hypoténuse AXA3, et cela, sans que le

quadrilatère cesse d'être gauche. Le groupe © pourra donc toujours [cf.19)]
être défini par les invariants précédemment introduits, c'est-à-dire par
a, b, c, d, oco, ocl9 qui peuvent être considérés comme des fonctions holo-
morphes d'un paramètre v (servant à représenter les trajectoires de A2
et A^. Il s'agit de montrer que pendant cette variation le nombre des zéros

de Ai(£) situés dans (0, 1) reste constant21).

20) Dans ses grandes lignes, la méthode de continuité suivie au N° 16 reproduit
avec certaines simplifications une méthode développée ([6] p. 300) pour résoudre le
problème de Riemann relatif aux équations du deuxième ordre à n + 3 points
singuliers, et à exposants s (N° 15) et sx [cf.16)] complexes.

21 L'énoncé précédent suppose implicitement que le nombre de ces zéros est fini ;

mais la chose est immédiate, car dans l'intervalle ouvert (0, 1) K{t) est méromorphe, et,
d'autre part, les zéros réels de X{t) ne peuvent pas s'accumuler en t — 0, ni en t 1

(No 7).
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18. Invariabilité du nombre des zéros de ^(t). — Observons d'abord

que pour t fixe t), ^(t) est une fonction holomorphe de al9bl9 cl9 dx

(N° 6, ad fin.), ot(to) et A1(^o) Xq) ; or, si t0 est pris voisin de 0,
oc(to) est fonction holomorphe de oc0, Ao, al9 bl9 cl9 dx (N° 7); d'autre
part, sauf dans un cas qui ne peut se présenter pour un quadrilatère
gauche [cf. 19)], Ao est fonction holomorphe (ou algébroïde) de oc± (N° 16)

(et de al9 bl9 cl9 dx) ; donc Xx(t,v) est une fonction holomorphe (ou
algébroïde) de v et les zéros t de kx varient par continuité avec v.

Mais, comme 0<V1<n9 4ax + 1 1 — e l—- — 11 j [cf. (15)] ne

peut jamais s'annuler ; d'après (8) la fonction Àx(t) ne possède jamais que
des zéros simples, et ces zéros, par variation continue ne peuvent jamais
venir à coïncider. Il en est de même pour deux pôles, d'après (9) ; il ne
peut donc arriver qu'un zéro disparaisse par suite de la confluence de
deux pôles qui le comprendraient. Ainsi, la seule modification du nombre
des zéros au cours de la variation proviendrait de l'apparition ou de la
disparition de zéros aux extrémités de l'intervalle (0, 1) ; le phénomène
peut-il se présenter pour une valeur vQ de vï Or, supposons que pour v
voisin de v0, Xx(t) possède un zéro voisin de 0; nous savons (N° 15)

que Xx (t) peut être représenté, pour v voisin v0, et 0 < t < t0, assez petit,
indépendant de v (N° 7) par un développement (12) ; mais actuellement,
A, B, G sont des fonctions de v, holomorphes pour v v0, et tendant
pour t -> 0 vers des limites déterminées, car il est ainsi à chacune des

approximations qui convergent vers X (t) ; et leur convergence est
uniforme dans (0, t0) ([5], p. 271) ; mais il résulte aussitôt de (12) que A

ou À — 1 ne possède pas alors de zéro infiniment voisin de 0 ; donc
[cf. 10)] A ne possède pas, non plus de zéro infiniment voisin de 1.

En définitive, tout revient à établir le théorème de Schwarz pour un
quadrilatère symétrique par rapport a un plan ^}.

19. Application de la méthode de Schwarz-Darboux. — Or Schwarz a
montré qu'il existe un segment ^3 de surface minima, symétrique par
rapport à ^3, et passant par un tel quadrilatère: d'après le N° 18, ce

résultat établit déjà un théorème d'existence pour le problème de Plateau
relatif à un quadrilatère quelconque. La méthode de Schwarz [18] utilise
la représentation conforme d'un triangle sphérique sur le demi-plan supérieur

à l'aide du quotient de deux intégrales hypergéométriques. Nous
allons retrouver rapidement la solution de Schwarz sous une forme que
lui a donnée Darboux ([1], p. 530) et que nous adapterons au problème
actuel.
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Désignons par u l'angle aigu que font les demi-plans A1A2A3 et
A1A4AZ issus de AXAZ avec leur bissecteur externe; quand on fait
varier le quadrilatère symétrique Q (formé toujours de deux triangles
isoseèles rectangles d'hypoténuse fixe, AXAZ) de manière que u tende vers
0, le quadrilatère tend vers un carré. La représentation sphérique de l'une
des moitiés 8r (ou A1A2A4) du segment S qui sont séparées par le plan de

symétrie ^3 passant par A2 Aé est un triangle T;, de sommets A[,A2fAré,

d'angles A[^~ + u2{\-\ (cos A[=-mn2u), A'2 j Âi
d'aire u2 (1 + • • • infiniment petite avec u9 car la solution S que nous
cherchons à construire doit tendre vers l'intérieur d'un carré quand u
tend vers 0. Or ce triangle peut être représenté conformément sur le

demi-plan supérieur 77 [9î(i#)<0] par un quotient de fonctions hyper-
géométriques, suivant la formule

' T (34)

où22)

avec

i(0, w) =F(ot,p,y; 6) ;

îi) 6^-rF{(x + 1 -
&

/? ¦

--2Î

l-y,2-y;8)
1 w2

ï"~ 2tt +'"'
Àr Àf

y — j (35)

t étant l'affixe de la projection stéréographique d'un point du triangle
sur le plan équatorial, faite à partir de l'antipode de A[, et C une
constante par rapport à 6. En exprimant que le côté 0 < 6 < 1 du triangle
du plan (t) a pour longueur

cos u -\- Vl -\- sin2
(36)

^2(...) désignant, ici et plus loin des fonctions holomorphes de u2,
nuDes avec u2, et en observant que

J>,6,c;l)= /j;^^"^
22) On ne confondra pas les paramètres a, /5 des fonctions hypergéométriques qu'on

va introduire avec les fonctions a et ($ liées à K{t).
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on trouve23)

Mais Sr étant minima, sa représentation sur Tf est conforme, donc
aussi sur 77'. Or celle-ci peut s'obtenir directement, car les asymptotiques
de S' sont données par a± ± a2 Cte et les lignes de courbure, par
o-j Cte, a2 Ote, avec

f VK*l jjf Vij

Gx(6,u) et H1(6,u) étant les fonctions qu'il faut choisir pour
représenter 8' par (1) (l'axe OZ étant pris parallèle à OA[). 8f est donc
représentée conformément sur un triangle rectiligne isoscèle du plan o, triangle
qu'on peut représenter à son tour sur le demi-plan 77, et cette représentation

est unique, une fois fixés en 0, 1, oo les affixes de Alf A3, A^. En
identifiant la représentation précédente avec la représentation classique,
on trouve

VgJF—h^¥= K(u)

avec

yxy't-y%tA (l - y) Q-r (l -
d ou:

V\

H\ (e,u) yrj^2-^ Or-1 1 - 6)^~y~i y\ (69u). (38)
0(1 — y)

On obtient K2 en exprimant que les côtés du quadrilatère ont une
longueur donnée, l, d'où:

K 2-+fi-jï^-ui11+ *(...)¦] (39)

23) A l'aide de la relation JP a F(l — a) n coséc n a on pourra vérifier que la
formule (37), où 1 -f w2 représente le développement (36), est identique à la formule
(9) de Darboux ([1], p. 438), formule que son Auteur déduit ([1], p. 189—191), par
des calculs assez longs, des relations de passage obtenues par Ooursat, dans sa Thèse,
pour les intégrales de l'équation hypergéométrique de Gauss.
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En définitive, Gx(6,u) et le quotient de H1(6, u) par u sont holomorphes
en u2 pour u 0 (et 6 ^ 0, 1, oo).

Le segment 8" se laisse représenter de même sur le demi-plan
9î(i0)>O. Et, si l'on fait la transformation

0 4s(l —s), ou 1 - 6 (1 - 2a;)2 (40)

on représentera /S $' + S" sur le demi-plan supérieur (x) par des
fonctions

G(a;,tt) 2(1 -
H(x,u) 2(1 —

Pour u voisin de zéro ces fonctions peuvent encore s'écrire d'après (37),
(38), (39) et (40) :

G(x,u) 2* l* [^ Y z~* (1 -- x)~i(l-2x)~i<p(x,u*) (41)

H(x,u) è$ (rf^)' «*"*(! ~ »)"* (1 - 2x)~iV(x,u*)

/dx/dxxi(l — x)i(l —

dans ces formules q)(x,u2) et ^(a;,^2) désignent respectivement deux
séries de puissances en u2, se réduisant à 1 (quel que soit x) pour u 0,
et holomorphes en x pour x<0, 0<#<£, £<#< 1 ou x>l ; ces
séries en w2 convergent uniformément lorsque x appartient à tout intervalle

fermé intérieur à — oo, 0), (0, |), (^, 1) ou (1, +°°)«
On déduit de là une conséquence essentielle : les sommets du quadrilatère

symétrique Q ont pour ajfixes 0, \, 1, oo et les fonctions G(x,u) et

u^1H(x> u) sont holomorphes en x et u2 pour u 0 (et x régulier),

21. Etude du passage à la limite de Q au carré. — Ainsi, les coefficients
de l'équation linéaire, soit (£{u), vérifiée par G(x,u) et H{x,u) sont
holomorphes en x (# 0, J, 1, oo) et en u2 (voisin de 0). Cette équation
se déduit de l'équation vérifiée par yi(d,u) et y2{0>u) transformée

par (40) ; elle s'écrit
1 l \dYx-l^x-i dx
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avec
0 y* - y(* + /?) - y + 2*0 + 1

et les exposants caractéristiques relatifs à x 0, \, 1, oo sont
respectivement :

le coefficient de — Y dans l'équation limite (g(0) est

9

161 x2
[ (x- l)2

'

(x -±)2

et l'on peut vérifier que (g(0) admet l'intégrale ar i(l — x)~i(l — 2x)~ï,
comme on pouvait le prévoir d'après (41).

Cela étant, formons les équations [(gi(%)] et VI (u) associées à [(g(^)],
comme ((g^ et VI à ((g) (N°5). Le rapprochement de [(g(w)] et ((g)

(N ° 3) donne aussitôt al9 blf cl9 d1: ce sont des fonctions de u2, holo-

morphes pour u 0. On voit encore que le coefficient ocx de [©i(w)L
que nous désignerons par oc(t,u) est tel que (%{\,u) 0. D'après le
théorème de Painlevê et sa généralisation (N°6 et dernier alinéa de ce

N°) l'une au moins des fonctions X(t,u) [intégrale de VI (u)] et X~x(t,u)
est pour t t£ 0, 1, oo une fonction holomorphe de u2, de X(\9u) =0
et de (x{\, u) 0 ; ainsi, À(t9 u) ou À~x{t, u) est une fonction
holomorphe de t et de u2, au voisinage de t t (^ 0, 1, oo) et de u 0.
Dès lors, A(£, 0) lim A(£, %) est une fonction de t, holomorphe ou

méromorphe pour t t, et qui vérifie l'équation VI (0), limite pour
u -> 0 de VI (u) ; de même oc(t, 0) lim oc(t, u).

Or, quand u ->0, les expressions limites de al5 61? c1? d5x, À(t,u),
<x(t,u) définissent une équation linéaire [(gi(0)], limite de [(gi(^)],
possédant un point apparemment singulier x A(£,0), et dont le groupe
de monodromie © est indépendant de t ; le long d'un contour fermé fixe
enveloppant des points singuliers 0, 1, t, les intégrales de [®i(w)] (à
valeurs initiales fixes pour x x0 fixe) tendent uniformément vers des

intégrales de [(gi(0)]: les coefficients des substitutions du groupe ($>(u) de

[Ç£i(^)] tendent donc vers ceux de ©. D'autre part, ©(w) est aussi le

groupe de [(g(-&)], groupe qui, pour la même raison, tend vers le groupe de

[(g(0)] quand u -> 0 : ce dernier groupe est donc identique à ©. Mais on a
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vu que [(£(0)] admet une intégrale x~i(x — l)~i(x — J)~i à dérivée
logarithmique rationnelle; le groupe de [CMO)] admet donc des
substitutions génératrices de la forme

[o, i) (7 1,2,3)

et, par suite, [(^(O)] admet aussi une intégrale à dérivée logarithmique
rationnelle. D'après le N° 8 les exposants d'une telle intégrale, Tlt sont
respectivement, en x 0, 1, t, X, oo :

où e ± 1, fi' ± 1, e" ± 1 ; actuellement, les ^ sont égaux à J

et, quand t -> | et A -» 0 Yx doit tendre, pour x fixe, vers
^-i(x— l)~i(a; -— ^)~i ; on a donc

d'où, aussitôt, e •— 1, gj — 1, g; — l et

Yx xk{x - l)~ï(x - t)~i(x - l)~ï

ce qui s'accorde bien avec e" — 1.
Or on sait ([4], p. 105) que si l'équation y11 P(x,t)y, de la classe

de Fuéhs, à quatre points singuliers 0, 1, t, oo, à un point apparemment
singulier A(#), et à groupe de monodromie indépendant de t, admet une
intégrale à dérivée logarithmique rationnelle

y xv*(x - l)v*{x - t)"*(x - X)~t

A (2) satisfait à l'équation de Biccati (32) (dont toutes les intégrales,
d'après le N° 5, satisfont nécessairement à une équation VI) ; actuellement

la transformation y xi(x — l)£(x — Ê^Fi changera [(£i(0)]
en une équation y"=Py; on aura donc ^ 1, v% \, vz J et
l'équation de Biccati (32) s'écrira

-2A + <

2t(t-l) • (42)
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On verra (N ° 22) que l'intégrale de cette équation qui passe par
(t |, A 0) aboutit, pour t 0, à l'origine (0, 0) ; comme au N° 18,

on en déduira donc que le nombre des zéros t(u) de À(t,u) tels que
0 < t < 1 reste invariable pour u > 0 assez petit. Tout revient donc à
calculer ce nombre de zéros pour u 0.

22. Les courbes intégrales de Véquation de Riccati (42). Or ce dernier
nombre se calcule aisément. L'équation (42) se ramène par la transformation

X t + 2t(l —t) —w
à l'équation du type hypergéométrique24)

in
t(l - t) w'r - tw' + — 0 (43)

Mais cette équation possède une intégrale w0 tF($,$,2;t) holo-
morphe dans le voisinage de t 0 ; à cette intégrale correspond une
intégrale

2 -^- +

holomorphe pour t 0, conformément d'ailleurs à la théorie générale
de l'équation VI25) ; soit Co la courbe intégrale correspondante26) ;

Co passe par le point A (t 0, A 2). Au voisinage de A toute
intégrale de (43) autre que wo(t) a la forme

k\~ 1 + -L(K, + log t) +w(t) k\~ 1 + -L(K, + log t) + tn(t)^F(ï i < 2 ; t)

24) La transformation co w + 2(1 — t)w' I d'où co' wr ~\ change (43)
en l'équation ^ ^

t{\ — t)(o" + (1 — 2t)a)' — -j 0

—# On trouve ainsi
Vx(x-l)(x-t)

25) Type exceptionnel de première espèce ; [5], p. 281 ; on a h 2.
26 On peut d'ailleurs établir l'existence de cette intégrale en posant X — 2 -f- ft;

l'équation en S de Poincaré relative au point t 0 de l'équation en // s'écrit $2 4 ;

le point A est un col pour (42) ; les deux courbes intégrales réelles passant par A sont
la courbe Co et la droite t 0.
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K et Kx étant des constantes arbitraires finies et (p0 (t) une fonction de t

holomorphe pour t 0 ; le terme principal de X(t) sera log t21) :
Jt

pour t tendant vers 0 les courbes intégrales de (42) tendant vers O et
autres que Co aboutissent à l'origine O (t 0, A 0) tangentiellement
à t 0, avec le coefficient angulaire +oo.

Etudions de même le point t 1. L'équation (43) possède l'intégrale
holomorphe en t l: wx= F (\, —|, 1 ; 1 — £) à laquelle correspond
pour (42) l'intégrale holomorphe28)

qui définit une courbe intégrale Cx passant par B (t 1, A 1). Au
voisinage de t 1 les intégrales de (43) autres que w — w1(t) peuvent
être représentées par

w Kf[K[ + log (1 - t) + (pAt)]F(h —i, 1; 1 —0

Kf, K[ étant deux constantes finies, et (px(t) une fonction holomorphe
et nulle pour t 1 ; on a ainsi29)

en se limitant au terme principal de A — 1 ; ainsi les courbes intégrales
tendant vers B et autres que Cx aboutissent en B tangentiellement à

t 1, avec pour coefficient angulaire — oo.
Ces préliminaires établis, traçons l'arc t(l ~ t)>0 de la parabole

A2- 2X + t 0 (f)
Cet arc relie les points A, B, O et sépare la bande 0 < t < 1 en trois
régions: l'une i?2> intérieure à JT, où Xf>0; les autres, où A^O, sont
i?! et i?3, respectivement au-dessus de l'arc AB et au-dessous de l'arc
^45 de F. Remarquons immédiatement qu'un arc de courbe intégrale
issu d'un point M' (ou M) de l'arc AB (ou OB) de F y possède une
tangente horizontale et passe nécessairement de R2 dans i?x (ou i?3)

quand on fait croître t sur l'arc au voisinage de M.
_-

27) Le développement est du type général de deuxième espèce (No 7), avec s 0.
Le point O est un nœud.

28) Type exceptionnel de deuxième espèce (pour t — 1) ; [5], p. 294 ; on a h — £•.

29) Le développement est du type général de première espèce (No 7), avec s 0.
Le point 5 résulte de la fusion d'un col et d'un nœud. Par B passent deux courbes
intégrales régulières : C± et t 1.
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Soit alors (E un arc de courbe intégrale de (42) issu d'un point P,
d'abscisse t0 (0<£0<l) de l'axe A 0, et suivi à partir de P pour t
décroissant ; il présentera d'abord une ordonnée croissante et coupera
donc l'arc OB de F, en pénétrant ensuite dans B2 d'après la remarque ;

puis son ordonnée décroîtra, et l'arc, assujetti à rester dans R2 d'après
la même remarque, tendra vers 0 quand t tendra vers 0 : sinon l'arc
couperait la droite t 0 en un point N distinct de 0 ou A, c'est-à-dire
en un point régulier — ce qui est absurde, car t 0 est la seule courbe
intégrale de (42) qui passe par N.

Suivons maintenant (E à partir de P pour t croissant

; A décroîtra constamment, et l'on peut faire
deux hypothèses. Ou bien, pour to<t<l A reste
fini, et, quand t tend vers 1, A tend vers une valeur
limite, finie ou non ; (E coupera donc la courbe
intégrale t 1 de (42) en un point régulier30),
ce qui est absurde. Ou bien — et c'est la seule

hypothèse à retenir — il existe une valeur tx

(to<t1<l) telle que, t tendant vers tx en croissant,
A tende vers — oo ; la droite t tx est une asymptote

de (E ; quand t aura dépassé t± par valeurs
croissantes, A décroîtra depuis -f-oo et l'arc de (E

appartiendra à Rx (car les pôles de X{t) sont
simples ; N° 18) et quand t croîtra et tendra vers
1, l'arc de S, qui ne peut pénétrer dans R2 d'après
la remarque préliminaire, atteindra t 1 en un
point qui ne peut être que B ; il y arrivera avec une tangente verticale.

La courbe (E ne peut donc couper A 0 (hors de 0) qu'une seule fois,
au point P. En particulier, il en est ainsi de la courbe issue du point
t i, A 0, ce qui montre que la solution symétrique de Schwarz

pour le problème de Plateau relatif à un quadrilatère symétrique est
la seule solution de ce problème, et, comme nous l'avons vu, ceci établit
du même coup le théorème d'unicité de Schwarz pour un quadrilatère
quelconque.

A

A

0

R,

R.|

sS
B

1 t

30) En posant A

pour l'équation en ju.
on s'assure que le point à l'infini de t 1 est régulier
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