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Eine transfinite Folge

arithmetischer Operationen

Von PAur FINSLER, Ziirich

Herrn Rudolf Fueter zum 70. Geburtstag gewrdmet.

1. Einleitung

Es ist bekannt, dafl man im Bereich der natiirlichen Zahlen die Addi-
tion auf ein wiederholtes Fortschreiten um eins, d. h. auf die Grundopera-
tion des Zidhlens zuriickfithren kann, ebenso die Multiplikation auf eine
wiederholte Addition und das Potenzieren auf eine wiederholte Multi-
plikation. Hohere Operationen, die man durch wiederholtes Potenzieren
usw. erhalten wiirde, werden gewohnlich nicht eingefiihrt!), da die
anderen fiir die meisten Zwecke schon ausreichen. Die hoheren Opera-
tionen sind hier auch insofern entbehrlich, als sie wenigstens prinzipiell
durch die niederen ersetzt werden kénnen.

Im Bereich der transfiniten Zahlen, speziell in der Cantorschen zweiten
Zahlklasse, lassen sich aber die durch hoéhere Operationen gewonnenen
Zahlen im allgemeinen nicht in endlicher Form mit Hilfe von niederen
Operationen darstellen. Ist w die erste Zahl dieser Zahlklasse, also die
erste auf die endlichen Zahlen folgende Ordnungszahl, so ist fir die
endliche Darstellung von w + o die Addition, fir - die Multipli-
kation und fir w® das Potenzieren notwendig. Fiir groBlere Zahlen
braucht man noch hohere Operationen. Es fragt sich, wie diese zweck-
miBig einzufiihren sind und ob sich damit alle Zahlen der zweiten Zahl-
klasse darstellen lassen.

Schon bei der auf das Potenzieren néchstfolgenden Operation stoft
man auf eine Schwierigkeit; es fragt sich, ob man im Exponenten oder
in der Basis iterieren soll. Im ersten Fall erhilt man aus w® die Folge

(0®)® = 0*", (') = 0*" usw., allgemein w**, also lauter Zahlen,

1) Operationen hoherer Stufe sind in der Encyklopadie der Math. Wissenschaften IA1
S. 26 erwdahnt. 4. Haag, Arch. d. Math. 1 (1949) 8. 220 definiert solche mit Logarithmen.
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die sich schon durch das Potenzieren ausdriicken lassen. Man ist deshalb
geneigt, den andern Fall zu nehmen, der aus »® die Folge

ol®®) = o, w(w“’w) usw.

und nach o-facher Tteration als Limes die Zahl ¢ = 0®” liefert, die
sich nicht mehr in endlicher Form durch die friitheren Operationen aus-
driicken 148t. Die weitere Iteration liefert dann aber w® = ¢, w® = cusw.,
d. h. man kommt nicht mehr vom Fleck. Die Schwierigkeit 16st sich erst,
wenn man doch den ersten Fall als eine neue Operation annimmt, die
sich nur ,,zufilligerweise‘’, infolge der Potenzregeln, noch durch die alten
ausdriicken 148t. Aus dieser vierten Operation ergibt sich dann eine fiinfte,
welche, allerdings in anderer Weise als vorher, auch die Zahl ¢ darstellt.
Die Folge dieser Operationen 148t sich ins Transfinite fortsetzen, und es
wird sich zeigen, daB sich damit fiir jede Zahl der ersten und zweiten Zahl-
klasse eine eindeutige Darstellung ergibt.

Mit abzéhlbar vielen arithmetischen Operationen in endlicher Anwen-
dung erhdlt man allerdings, von o ausgehend, nur abziéhlbar viele
Zabhlen, also nicht die ganze zweite Zahlklasse. Es sind also mehr als
abzidhlbar viele Operationen notwendig, und zu ihrer Bezeichnung braucht
man mehr als abzdhlbar viele Zeichen, etwa eben die Zahlen der ersten
und zweiten Zahlklasse. Dies hat zur Folge, dafl schlieBlich doch nicht
alle Zahlen groBler als o vollstindig durch kleinere Zahlen bezeichnet
werden. Die erste dieser , kritischen Zahlen®, fiir welche dies nicht mehr
gilt, ist aber schon sehr grof.

Fiir die Limeszahlen der zweiten Zahlklasse ergibt sich dann, sofern
sie kleiner als diese kritischen Zahlen sind, eine eindeutige Darstellung
in der Form lim «,. Auch fiir viele kritische Zahlen 148t sich nach einer
von O. Veblen angegebenen Methode?) eine solche Darstellung finden
und damit die Reihe fortsetzen. Wenn dies fiir die ganze zweite Zahl-
klasse gelingen wiirde, so wiire damit ein wichtiges, aber auch sehr schwie-
riges’) Problem gelost. Es wire dann moglich, von einer eindeutigen

2) 0. Veblen: Continuous increasing functions of finite and transfinite
ordinals, Trans. Amer. Math. Soc. 9 (1908) S. 280. Eine Bearbeitung und Weiterfithrung
dieser Methode findet sich in der Arbeit von H. Bachmann: Die Normalfunktionen
und das Problem der ausgezeichneten Folgen von Ordnungszahlen,
Vierteljahrsschrift der Naturforschenden Gesellschaft in Ziirich, 95 (1950) S. 115.

3) ,,un des plus difficils‘* nach W. Sterpinski : Remarque sur les ensembles des
nombres ordinaux de classes I et II, Revista de Ciencias 41 (1939) S. 289.
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Teilmenge des Kontinuums zu zeigen, dafl sie die erste iiberabzihlbare
Michtigkeit besitzt, und man hitte damit auch eine iiberabzihlbare
wohlgeordnete Teilmenge des Kontinuums.

Es soll zunéchst dieser letzte Punkt noch néher betrachtet werden.

2. Wohlgeordnete Teilmengen des Kontinuums

Als Elemente des Kontinuums kann man an Stelle der Punkte eines
Intervalls die zahlentheoretischen Funktionen f(n) nehmen, bei denen
n die endlichen Zahlen 0, 1, 2,... durchliuft und die Funktionswerte
f(n) ebenfalls solche Zahlen sind.

Das Kontinuum eindeutig wohlzuordnen ist bisher nicht gelungen;
man kennt nur endliche oder abzéhlbar unendliche wohlgeordnete Teil-
mengen desselben. Eine iiberabzihlbare Wohlordnung im Kontinuum
wiirde bedeuten, daB3 allen Zahlen der ersten und zweiten Zahlklasse
umkehrbar eindeutig Elemente des Kontinuums zugeordnet wiren.

Die Zahlen der ersten Zahlklasse erhdlt man von 0 ausgehend durch
die Grundoperation des Fortschreitens um eins; fiir die Zahlen der
zweiten Zahlklasse ist noch eine zweite Operation notig, die Bildung
von lim «, aus einer aufsteigenden Folge von Ordnungszahlen
a,(n =0,1,2,...). Die Zahl lim «, ist als erste auf alle Zahlen o,
folgende Ordnungszahl eindeutig bestimmt; umgekehrt gehoren aber zu
einer solchen Limeszahl viele Folgen «,, denn es ist z. B. o = limn =
lim 2» = lim 2* usw. Diese Vieldeutigkeit erschwert die eineindeutige
Abbildung auf Elemente des Kontinuums.

Jeder Zahl « der zweiten Zahlklasse gehen abziéhlbar unendlich viele
Ordnungszahlen voraus, d. h. die Zahlen & < « lassen sich in eine ein-
fache Folge &,, &,, &;... bringen. Diese Abzéhlungen sind ebenfalls nicht
eindeutig bestimmt.

Es entstehen so die beiden Probleme:

Erstes Problem: Jeder Limeszahl o der zweiten Zahlklasse soll
etndeutig etne aufsteigende Folge von Ordnungszahlen, eine ,.Hauptfolge‘
< oy< o< --- zugeordnet werden, derart, daf lim o, = o wird.

Zwetrtes Problem: Jeder Zahl o der zweiten Zahlklasse soll eine
eindeutige Abzihlung aller Zahlen & < a zugeordnet werden.

Es soll nun mit bekannten Methoden?) gezeigt werden, daB jede Losung
des einen oder des andern Problems zu einer iiberabzdhlbaren Wohl-

4) Vgl. z. B. Enzyklopadie der Math. Wissenschaften, 2. Aufl. I 1,5 S. 45/46.
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ordnung im Kontinuum fiihrt, und weiter, daB die beiden Probleme équi-
valent sind, da8 also eine Losung des einen Problems zu einer solchen
des andern fiihrt und umgekehrt.

Ist zunédchst das erste Problem gelost, so ordne man der Zahl 0 die
Funktion fy(n) = 0 zu, ferner der Zahl g + 1 die Funktion fg,,(n) =
fg(n) + 1 und der Zahl « = lim «, die Funktion f,(n) = Max f,,, (n)
fiir m < n, wobei o, die zu « gehdrende Hauptfolge durchlaufen soll.
Durch diese Vorschrift sind nach dem Prinzip der transfiniten Induktion
allen Zahlen der ersten und zweiten Zahlklasse zahlentheoretische Funk-
tionen zugeordnet, und zwar lauter verschiedene, denn fir « > § wird
bei hinreichend groBem n f,(n) > fg(n). Dies gilt némlich fir « =g +1,
es gilt fiir « + 1, wenn es fiir a gilt, und fir « = lim «,, wenn es
von einer Stelle ab fiir alle «, gilt; es gilt also fiir alle « > g .

Ist das zweite Problem geldst, so kann man die Zuordnung in folgender
Weise vornehmen: Den endlichen Zahlen m = 0,1, 2,... sollen die
Funktionen f,,(n) = m entsprechen. Ist « eine Zahl der zweiten Zahl-
klasse und sind den Zahlen & < « die Funktionen f;(n) zugeordnet,
so soll, wenn &g, &,,&,... die eindeutige Abzéhlung dieser Zahlen ist,
der Zahl « die Funktion f,(n) = f¢, (n) 4 1 entsprechen. Damit sind
durch transfinite Induktion auch allen Zahlen der zweiten Zahlklasse
Funktionen zugeordnet, und zwar lauter verschiedene, denn wenn
fo(n) mit einem friitheren f,, (n) identisch wire, so hitte man den
Widerspruch f,(m) = f . (m) = fg (m) + 1.

Aus einer Losung des ersten Problems ergibt sich eine solche des zweiten
durch folgende Vorschrift: Der Zahl v werde die natiirliche Anordnung
0,1,2,... der endlichen Zahlen zugeordnet. Ist «=f 41 wund
N> M» Ne- - - die der Zahl g zugeordnete Abzéhlung der Zahlen 7 < g,
so soll der Zahl « die Anordnung f, 7, 1;, %js. .. der Zahlen kleiner
als o entsprechen. Ist o« =lim o, > o, wobei a, die zu « gehdrende
Folge durchlduft, und sind den Zahlen «,= w die Anordnungen
Eno> En1s> Ene. - - zZugeordnet, so bringe man die Zahlen &,,, in eine ein-
fache Folge, indem man §&,,, vor &, , setzt, wenn n + m <n' + m’
oder n +m=n'+m' und n <n' ist, und streiche in dieser Folge
jede Zahl, die schon an einer friitheren Stelle aufgetreten ist. Dadurch
erhilt man die zu o gehdrende Abzéhlung der Zahlen kleiner als o und
durch transfinite Induktion die gesuchte Losung.

Ist umgekehrt das zweite Problem gelost, so ist insbesondere jeder
Limeszahl « der zweiten Zahlklasse eine eindeutige Abzidhlung &,, &,, &,. . .
aller Zahlen & < o zugeordnet. Streicht man darin alle Zahlen &, ,
denen eine grofere Zahl £, vorangeht, so bleibt eine aufsteigende Folge
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bo=ap< oy < ag < --- mit lim a, = «; diese soll der Zahl « zuge-
ordnet sein. .

Wie schon bemerkt, kann man mit Hilfe der nun weiter zu betrach-
tenden arithmetischen Operationen das erste Problem (und damit auch
das zweite) nicht vollstéindig, aber doch fiir einen groflen Abschnitt der
zweiten Zahlklasse 1osen.

3. Die arithmetischen Operationen

Es sollen jetzt fiir die Zahlen der ersten und zweiten Zahlklasse die
Operationen hoherer Stufe erklirt werden, welche die Addition, die Multi-
plikation und das Potenzieren verallgemeinern. Man wird von diesen
Operationen verlangen, daB sie zwei in bestimmter Reihenfolge gegebenen
Zahlen & und 7 eine Zahl ¢ (&, ) zuordnen, man kann sie also als Funk-
tionen von zwei Variabeln darstellen. Die zu definierenden Operationen
seien dementsprechend durch die Funktionen ¢,(&, n) dargestellt, wobei
« die Zahlen der ersten und zweiten Zahlklasse durchliuft. Speziell soll
(&, 1) = @4(0, n) = n + 1 die Grundoperation des Fortschreitens um
eins bedeuten, die also eine Funktion einer Variabeln ergibt. Es folgen
die Funktionen®) ¢, (£, 7) = 7+ &, a6, 1) = 1- &, @;(§, m) = n* usf.
Fiir die Arithmetik der endlichen Zahlen kommen nur die Funktionen
@,.(£, 7) mit endlichem n in Betracht.

Um die Funktionen ¢,(&, n) fiir beliebige o« zu definieren, braucht
man die Operationen des Iterierens und der Limesbildung.

Der Ausdruck lim «, ist fiir aufsteigende Folgen «, schon erklért. Ist
nun y(«,) eine fiir aufsteigende Folgen o, definierte und von einer
Stelle ab nicht abnehmende Funktion, so soll lim ¢ («,) die kleinste Zahl
bedeuten, die von dieser Stelle ab von keiner der Zahlen y(«,) iiber-
troffen wird.

Ist lim o, = lim B, = « und y(£) eine fir &< a von einer Stelle
y < o ab nicht abnehmende Funktion von &, soist lim y(«,) = limy(B,).
Es gibt ndmlich zu jeder Zahl «, eine gréflere Zahl §,,, daher ist

lim y(a,) < lim 9 (B,) ;

ebenso folgt die umgekehrte Beziehung, also die Behauptung.

5) Fir das Produkt verwende ich hier die in der Mengenlehre fiir die Ordnungszahlen
zur Zeit iibliche Reihenfolge der Faktoren, nach der z. B. w + @ = w.2 gesetzt wird.
Ich setze aber der Deutlichkeit halber einen Punkt zwischen die Faktoren, denn man
schreibt z. B. fiir zwei Meter 2 m und nicht m 2, und fiir 100 + 100 sagt man zwei-
hundert und nicht hundertzwei.
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Die »-fache Iteration der Funktion ¢, (£, ) sei nun durch die Forde-
rungen erklért: .
valésn) =1,

ut (&, m) = @ (&, Ph(E,m))
P (€, m) = lim @in(&, n)

fiir aufsteigende Folgen »,. Dabei wird vorausgesetzt, dafl sich ¢ (£, 7)
von einem endlichen Wert von » ab als nicht abnehmende Funktion
von » ergibt.

Die Funktionen ¢,(¢,7n) konnen jetzt durch die folgenden Fest-
setzungen definiert werden:

Es sei  ¢4(¢, n) = @0, ) =n+1;
‘pl(é’ 77) =(P(§)(O,77) 277"*"5
p2(6,m) = ¢i(n,0) =n-& ;

ps(&,m) = @i(n,1) =n§§;
Pal&,m) = @5(n,n) =7";
ps(E,m) = @iln,n) usw. ;

allgemein ¢,,,(§,7) = q’fx (n,m) fir « 23 ;
@ im aq(€>7) = lim ¢, (£,7) fiir aufsteigende Folgen «,, .

Durch transfinite Induktion bestimmt sich hieraus ¢,(&, n) fir
beliebige Zahlen «, £, n der ersten und zweiten Zahlklasse, denn wie
spiter gezeigt wird, ergibt sich ¢} (¢, ) von endlichen Werten von «
bzw. » ab als nicht abnehmende Funktion von « und von » .

DaBl ¢,, ¢, und ¢, die bekannten Operationen ergeben, ist direkt zu
sehen®). Fiir n= 3 wird ¢,,,(&, 7) = ¢i(n, n); es folgt

@, (&, 1) = lim @, (&, 7) ust.

Als Verallgemeinerung der Rekursionsformeln

n+E¢E+1) =m0+ +1,
nE+1) =98+,
nt+t = g

$) Im Unterschied zur iiblichen Arithmetik ist hier der Ausdruck 0° wegen 0° = ¢4 (0, 0)
= @9(0,1) =1 sofort eindeutig bestimmt. DaB es zweckmaBig ist, 0° = 1 zu setzen,
ergibt sich auch daraus, daB 0% ein Produkt von n Faktoren darstellt, das nur dann ver-
schwindet, wenn wenigstens ein Faktor Null ist, also nur dann, wenn »n gré8er als Null ist.

Schreibt man anb fiir @y (a,bd), so ist 9,9 betriachtlich gréBer als 99° = 9,9.

(Der Schluf dieses Artikels folgt im niichsten Heft)
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ergibt sich

(pa+1(§ + 1, ’7) = %(’7, (poﬂ—l(fy "7))
und

(poH-l (hm En’ 77) = hm (pa+1 (E‘n’ 77) ’
denn fiir o= 3 ist

d%+1(§ +1,9) = @7 (m, 1) = oun, P51, M) = @a(, Pag1 (&, 7))
un

Pora(lim &,, n) = g™ in(y, y) = lim @;*(n, n) = lim @y, (&,, 1) .

Auch hier wird die Existenz des Limes noch bestéitigt werden; es wird
sich ndmlich zeigen, dal ¢ (&, n) fir a« = 5, also von einer festen end-
lichen Stelle ab in bezug auf alle Variabeln nicht abnehmend ist. Daraus
folgt weiter noch die Formel

@a(lim &, 1) = lim @,(&,, )

auch fiir den Fall, dal « eine Limeszahl ist. Es ist ndmlich mit
a =lim a,, = lim («,, + 1) :
(pa(ﬁm fn ’ 77) = hm (pam-f-l (hm 57& ’ 77) = I:II; ltn)l (pam-i-l (En ’ 77) =

B hn)l . Pam+1 (Enom) = lim @, (£,,9)
(n) (m)

wobei die Vertauschung der Limesbildungen aus dem eben angegebenen
Grunde erlaubt ist.

Fir « <3 erhidlt man die bekannten Rekursionen; o = 3 ergibt

7ttt = <n"§>" und "™ = lim 47" .

4. Monotoniesiitze

In diesem Abschnitt wird stets « > 0 vorausgesetzt. Es gelten dann
die Sitze:

Satz 1. Far £>1,n>1 st @ (&, 9)>17.
Satz 2. Fir £>1, n>1 und N>v ist oY (&, n) > ¢L(&, 7).

Satz 1 folgt aus Satz 2 fiir v =0, N = 1. KEs ist aber besser, die
beiden Sitze getrennt zu betrachten und gemeinsam zu beweisen.

Fir o« =1,2,3 sind die Sitze bekannt, denn sie besagen hier, dal3
fir £&>1, n>1 stets n+&>9, n-£€>n und %f>7, und fir
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E>1, n>1, N>v stets n+&- N>np+&-v, - >p5-& und
nt >t ist.

Es sei jetzt « =3, £>1, > 1. Wenn fiir einen bestimmten Wert
von o Satz 1 erfiillt, also ¢, (&, ) > 7 ist, so gilt fiir diesen Wert von
« auch Satz 2, denn es folgt ¢l(£, ) > ¢2(£, ), und wenn

(P;(S, n) 2 97?«(5’ n)=n>1

ist, so ist nach Satz 1 (wobei ¢} (&, ) an Stelle von % einzusetzen ist)
auch

Pat (5 1) = @o(&, g lE, M) > (€, m)

gam v (&, ) = Lim @™ (£, ) > @i (£, 1)

und

fiir aufsteigende Folgen »,, denn diese Formeln zeigen zugleich, da(
¢r (&, 1) mit » monoton zunimmt, daB also der Limes existiert.
Weiter ergibt sich nun

Pasr (€5 1) = @5 (0, 1) > @u(n, 1) > 17
und

Piim an (&> 1) = lim @, (&, 1) = @4, (&, 7) > 17,

sofern Satz 1 fiir « bzw. fir alle o, erfiillt ist und lim ¢, (£, n) existiert.
Damit ist aber Satz 1 und wie eben gezeigt auch Satz 2 fiir alle Werte
von a bewiesen, fiir welche ¢ (&, 7) definiert ist.

Satz3. Fir E>& und n>1 gilt ¢ (5, n) = @, (&, n) und, wenn «o
keine Limeszahl ist, @,(Z,n) > @ (&, n) .

Fir o« =1, 2,3 ist dies bekannt, denn es bedeutet n + &> n + &,
n-E>n-En¥>n fir E>¢& und 5> 1.
Ist « =3, soist fiir &> & und 7 >1 wegen Satz 2
Por1(E, 1) = 95 (M, 1) > @i (0, 1) = @aia (€, 1) ,
und wenn fiir alle «, %n(E » 1) = @y, (€, 1) ist, so ist auch
¢liman(57 77)2%1“,‘(5, 77) ’

sofern diese Werte definiert sind. Satz 3 gilt also fiir alle in Betracht
kommenden Zahlen.

Satz4., Fir A>a und n=&>1 st @, (&, n) > (&, 1), wenn
nicht zugleich A <3 und &= n=2 1ist.
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Es ist zwar 22 = 2.2 =2 +4 2, sonst aber fir n=¢(>1 stets
n>n-E>n+E&. | \

Fir «a=3 und = &> 1 ist nach Satz 2 und Satz 3

Pari (€5 1) = @a (0, 1) > @u(n, 1) = @4(£, 1)
und folglich

Plim an(éa 77) = lim Pon (5’ "7) > (pom(s’ ’7) .

Satz 4 gilt also allgemein, und es ergibt sich zugleich, daB die fir
n=&>1 und «> 3 als Funktion von o monoton wachsende Funktion
@, (&, n) fiir alle Werte von « definiert ist.

Satz 5 und Satz 6 werden wieder gemeinsam bewiesen:
Satz b, Fir é=1 und H>n=1 st ¢y (&, H)Y = r(E, n) .

Satz6. Fir E>&(=1 und n>1 ist @u(&,n)=¢h(é, 1), und
speziell @i (Z, n) > @u(&, 1), wenn o und v keine Limeszahlen sind und
auch v nicht Null ist.

Fir o« =1, 2, 3 sind die Sétze erfiillt, wie man direkt einsehen kann;
es werde o= 3 vorausgesetzt.

Es sei fiir einen bestimmten Wert von « Satz 5 erfiillt, dann gilt fiir
diesen Wert auch Satz 6. Wenn ndmlich Satz 6 fiir den Exponenten »
als giiltig betrachtet wird, so ergibt sichfiir > & =1 und > 1 wegen
PL(E, n) = ¢2(Z, 1) = > 1 nach Satz 3 und Satz 5

PRt E, ) = @u(Z, 9%(E, ) = @&, 95 (E,m)) = 9ulé, ph(é:m)) =
= (p:z+l(5,77) ’

und speziell @2+ (5, ) > @i*t' (£, ) , wenn o« keine Limeszahl ist.
Wenn ferner fiir alle v, @.*(EZ, n) = (&, n) ist, so ist auch

gimvn (8, y) = lim @X* (5, ) = lim @X*(€,7) = g™ n(£,9) .

Da nun Satz 6 fir » = 0 erfiillt ist, so gilt er fiir den angenommenen
Wert von « allgemein.

Wenn Satz 5 fiir « gilt, so gilt er auch fir « + 1. Nach dem eben
Bewiesenen folgt ndmlich

Porr (&, H) = @5 (H,H) = g5 (n, H) = 05 (57,1) = @ (£,7)
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und wenn ¢}, (¢, H) = ¢}, (&, n) fiir einen Wert v = 1 erfiillt ist, so
ergibt sich

Peti(é, H) = @uy (&, 0516, H)) = @un (89008, m)) = @hii(E,m),

und wenn fir alle v, g3, (5, H) = ¢3%, (&, ) gilt, so folgt

Part (€ H) Z g3 (& m)
es gilt also

Par1 (& H) = oh(6,7) fir alle » (fiir »= 0 ist es selbstverstandlich).

Schlieilich folgt gy o, (&, H) = @um o (&, ), wenn ¢, (&, H) 2 ¢,,,(£,7)
fiir alle o, gilt, und hieraus folgt wie oben, wenn nur lim «, an Stelle
von o+ 1 gesetzt wird, daB auch ¢, ., (&, H) = ¢lin e, (&> 7) gilt.
Damit ist aber Satz 5 und also auch Satz 6 allgemein bewiesen.

Satz 4 wurde unter der Voraussetzung » = & > 1 hergeleitet; es soll
jetzt noch der Fall &= 7> 1 betrachtet werden. Da der Satz fiir
& = > 1 bewiesen ist, kann die Induktion nach & angewendet werden;
da aber z. B. 29 =2.w = 2 4+ o ist, kann nicht mehr durchweg das
Groferzeichen gelten.

Man findet zunéchst:

nnZn+nm—2+2>n+1-0—-2)+2=n+n
fir #>1 und 2<n<w,

n-E=n1+88=n+nétz=2yn+¢& fir n>1 und {=Zw,
und

n-E+)=n-é+n=n+&+n>n+¢E+1) fir y>1 und £>1.
Es sei weiter o = 1; nach Abschnitt 3 gilt die Rekursionsformel

Por1E + 1, ) = @u(n, @asa(é, 1)) .

Macht man die Induktionsvoraussetzung ¢,..(&, 1) = @41(&, ), so er-
gibt sich, wenn der Reihe nach die Rekursionsformel, dann die Induk-
tionsvoraussetzung und Satz 5, dann Satz 1 und Satz 4 und schlieflich
wieder die Rekursionsformel angewendet wird:

¢a+2(§+ 1’ 77):
= @ai1( 1) Pas2(€5 M) = Caia(7> Pasa(€5 1) > 0ol 1, Pora (€, 7)) =
= @u1(& + 1, n) .
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Ist « =lim o, und die Induktionsvoraussetzung

<Poc+1 (Ev 77) g (poa (5’ 77) 2_ (pan-}-l (E: 17)
erfiillt, so folgt ebenso

Wm-}-l(‘f + 1, 77) = (Pa("?’ ¢a+1(§9 7])) =
= Qo1 Pal€s M) > Qo (1, 9a(E, M) 2 04, (1, Papaa (&, 1) =

= @u1(& +1,7),
also auch

(pa—l»l(f—*_ 17 77)£¢a(£+ 1’ "7) s

Ist & =1Lm¢, und @,,(£,, 1) = @4(é,, 1) fir alle n, so folgt

(Pon+1(lim Em 77) = lim (pa+1(§na 77) = lim ¢a(£n’ 77) = ‘pa(lim Em 77) ’

wobei die letzte Gleichung nach der am Schlufl von Abschnitt 3 gemachten
Bemerkung gilt, wenn noch die weitere Induktionsvoraussetzung hinzu-
gefiigt wird, dal ¢, (&, ) als Funktion von « und von & je von einer
festen endlichen Stelle ab bis zur betrachteten nicht abnehmend ist.
Durch Induktion nach & folgt jetzt ¢,.,(%, %)= @,(&, ), und da

Piim o (& ) = Hm @y, (&, 7) = @0, (€5 7)
ist, so folgt durch Induktion nach «, daf stets
P (&, ) = @ (&, ) ist fir A>a und £>1, p>1.
Es gilt also:

Satz 7. Fir A> o und £§>1, n>1 st stets ¢, (&, 1) = @, (&, 1),
und tnsbesondere @, (E+ 1, n)> @, (E+ 1, n), wenn o keine Limeszahl ist.

Es gilt weiter noch
Satz8. Fiur £¢>1,n>1, 4> o st ¢4 (&, n)=¢h(é, n).

Der Satz gilt fiir » = 0. Wenn er fiir die Zahl » bzw. fiir alle », einer
aufsteigenden Folge richtig ist, so folgt nach Satz 5 und Satz 7:

o EM=04(&E U, )= a (&, 00E, 1) = 9o, Phlé,n))=0b (Em)
und
@i (&, n) = lim @' (&,9) = lim @l*(&,7) = @i (&, n) ,

der Satz gilt also allgemein.
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Es sind jetzt noch die bisher meist ausgeschlossenen Fille £ <1 und
7 = 1 zu betrachten. Setzt man in die Definitionsgleichungen der Funk-
tionen ¢, (&, %), «=1,2,3..., fir  oder £ die Werte 0 und 1 ein,
so ergeben sich die folgenden Resultate:

Satz 9. Es st ¢,(0, 0) = 0, ausgenommen ¢,(0,0) =1.

Fiir £ > 0 st ¢, (€, 0) = 0, ausgenommen ¢, (&, 0) = & und ¢ (£,0) = 1.
Fir n > 018t ¢, (0, ) = 7, ausgenommen @,(0, ) = 0 und @,(0, ) = 1.
Far £E>018t @, (&, 1) = 1, ausgenommen ¢, (6, 1) = 1+-&und py(§,1) =& .
Far n>01st @i (1, ) = n+1, @2(1, 1) = 0, @s(1, 9) = 5, @u(1, ) = 7",
es(L, ) =", und fir =1 und A>a=2 allgemein @, (1,7)=
0u(1,7), und speziell @, ,(1,7n)> @, (1,%), wemn 7n>1,4A>a=3
und o keine Limeszahl ist.

Die letzten Beziehungen sind richtig, da fiir « =3 und %> 1 nach
Satz 6 @y (1, 1) = (0, 1) = ¢,(1, n) und speziell g, (1, 1) > @, (1,9)
gilt, wenn « keine Limeszahl ist, also auch ¢y, ,. (1, #) = lim ¢, (1, n) >
@, (1, m) ist; fiir « = 2 und fiir 5 = 1 ist die angegebene Beziehung
nach den vorangehenden Formeln von Satz 9 direkt ersichtlich.

In den ersten vier Fillen von Satz 9 ist also ¢,(¢, 7) wenigstens von
der Stelle o« = 5 ab als Funktion von o konstant, im letzten Fall fiir
a = 2 monoton zu- oder wenigstens nicht abnehmend. In allen Fillen
ist daher die Existenz von ¢, (&, ) fiir beliebige « gesichert, zusammen
mit dem fritheren auch fiir beliebige & und 7.

Aus den Formeln von Satz 9 ergeben sich entsprechende fiir die Itera-
tion ¢ (&, ), ndmlich

Satz 10. Es ist ¢4 (0,0) =0, ausgenommen ¢;(0,0) =1 fir »>0 .

Far £>0 st ¢y (&,0) = 0, ausgenommen @3 (§,0) = &-v und
QL(£,0) =1 fir »>0 .

Far >0 st ¢t (0,n) = 5, ausgenommen ¢, (0,7) = 0 und
@3 (0,9) =1, beides fir v>0 .
Far £>0 st ¢i(6,1) = 1, ausgenommen ¢} (§,1) =14 &-v und
P2 (§,1) =§& .

Far n>0 it @i (L,p)y=n+v, @;(1,n)=n, es(l,n)=1n und
allgemein
pa(l,p)>¢u(l,n) fir N>»,a>3,37>1,

pu(l,n) =291, n) fir A>az2 und 9n>0.
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Dabei ergeben sich die letzten Beziehungen wie folgt: Fir o >3 und
n > 1 ist nach Satz 9

‘Pa(laﬂ)%%(l, 77)= 77"> 1,

und wenn ¢ (1, n) > 1 ist, so ist wegen Satz 9

e (L, ) = @ (L, 9%(1,m)) = @u(1,04(1,n)) >¢h(l,n) >1,
also auch

lim vn

ga” " (1,7) > ¢i*(1,7) > 1 und somit @y (1,7%) > @5(L,7)

fir N>v, «>3 und 5>1.

Die letzte Formel von Satz 10 folgt wie bei Satz 8, wenn & = 1 gesetzt
und an Stelle von Satz 7 die entsprechende Formel von Satz 9 verwendet
wird.

Allgemein ergibt sich also, daB fiir « = 5 die Funktion ¢(&, %) in
bezug auf alle Variabeln «, v, &, # nicht abnehmend und folglich auch

in der ersten und zweiten Zahlklasse fiir beliebige Werte dieser Variabeln
definiert ist.

b. Die Hauptdarstellung der Zahlen

Es soll jetzt gezeigt werden, dafl man jeder Zahl { der ersten und zweiten
Zahlklasse eine eindeutige Darstellung in der Form { = ¢, (&, %), ihre
,Hauptdarstellung®, zuordnen kann, bei welcher £ < { und 7 < { ist,
ausgenommen die Zahlen { = 0 und w, welche die Hauptdarstellungen
0= ¢;(0,0) und w = ¢,(0, w) besitzen sollen. Es wird nicht verlangt,
daBl immer auch o < { sein miisse.

Wenn es fiir die Zahl { irgend eine Darstellung in der Form ¢, (&, 1)
mit § < ¢ und % < { gibt, so findet man ihre Hauptdarstellung in der
Weise, da man unter allen moglichen solchen Darstellungen von ¢{
zundchst diejenigen aussondert, bei denen die Zahl o den kleinstmoglichen
Wert besitzt; unter diesen werden sodann diejenigen ausgewihlt, bei
denen ¢ am kleinsten ist, und schlieSlich unter diesen, mit festem, mog-
lichst kleinem o und &, noch diejenige, fiir welche 7 am kleinsten ist.
Diese ist dann eindeutig bestimmt. Fiir die endlichen Zahlen 7 >0
ergibt sich so die Hauptdarstellung 7 = ¢,(0,» — 1).

Jede Zahl £, fiir die es eine Hauptdarstellung gibt, insbesondere also
jede, die sich in der Form ¢ = @, (£,7n) mit £§<{ und < dar-
stellen 148t, soll ,,darstellbar® heiBen.
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Man betrachte die Zahlen g, = ¢,(0,0)=1, o, =¢,(0, )= o,
0; = @s(w, w) = w? allgemein p, = ¢,(w, w) fir a = 2. Nach Satz
4 nehmen sie monoton zu und wegen gy, ,, = lim g, bilden sie eine
Normalfunktion’). Die Zahlen g, sind darstellbar, da fir «= 2 stets
o < @,(w, w) ist, und jede Zahl { der zweiten Zahlklasse wird von
gewissen Zahlen g, iibertroffen.

Es werde nun angenommen, es gebe Zahlen der zweiten Zahlklasse,
die nicht darstellbar sind, und ¢ sei die kleinste. Unter den Zahlen g,,
die groBer als { sind, kann die kleinste keine Limeszahl als Index haben,
denn wenn { << gy ,, = lim g,, ist, so kann { nicht alle Zahlen g,,
iibertreffen. Es gibt also eine Zahl o mit o, < { < g,,,. Dabei ist
a = 2, denn die Zahlen zwischen g, und g, sind in der Form ¢,(0, 7)
oder in der Form ¢, (w, ) darstellbar. Es gilt also

Yo, ) < { < @y (0, w) mit «=2.

Es sei nun allgemein

&N <I<@uf,n) mt oesf=n<e(,n) und p>2

fiir bestimmte Werte von &,  und y.

Esist @,,(&, 9) = qaf,(n, 7), und die Zahlen ¢} (7, n) sind fir v < ¢
darstellbar, da sie entweder kleiner als { oder groBer als @y (&, 1), also
groLer als 7 sind und in der Form ¢, (v, ) geschrieben werden konnen.
Nach Satz 2 nehmen sie mit » monoton zu. Die kleinste darunter, welche
¢ ibertrifft, kann wegen @)™ **(7, ) = lim ¢} (5, n) keine Limeszahl
im Exponenten haben; es gibt also eine bestimmte Zahl » mit

@y (n,n) << @pti(n, 7).

Nun ist )" (5, ) = @,(n, ¢} (1, n)) und die Zahlen gg(7, ¢} (7, 7))
nehmen nach Satz 4 mit 6 monoton zu. Sie sind sédmtlich darstellbar, da

schon ¢,(7, ¢} (1, 1)) > @y(n,n) = n ist, und die kleinste darunter,
welche { iibertrifft, kann keine Limeszahl als Index haben. Es gibt also
eine bestimmte Zahl é mit

os(n, @5 (1, 1) <& < @sa(n, @5 (1, 1)) -

Dabeiist 6 +1=<7y, also d<y, und w=n=¢}(n, 1) < @s(n, ¥} (7,7))-
Dies sind aber entsprechende Bedingungen wie zu Anfang, jedoch mit

?) F. Hausdorff: Grundziige der Mengenlehre, 1. Aufl. (1914), S. 114.
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kleinerem Index. Von ¢,(w, o)< { < @y,(w, ) ausgehend gelangt
man so nach endlich vielen Schritten zu einer Beziehung

P, <i<guEn) mt oséi=n<g(é,n) und y=2.

Ist nun y = 2, also @,(£,%) < ¢ < @4(&, n) = 1°, so sind die Zahlen
n’ =@, (v, n) fir v < & darstellbar, da sie kleiner als { oder groBer
als @, (£,7), also groBer als 7 sind. Es gibt also eine bestimmte Zahl »
mit ¥ <{<n't1=175".7n.Nun sind weiter die Zahlen #*.-u = @, (u,n")
fir 4 <n darstellbar, es gibt also eine Zahl y mit

nep<l<n-(p+1)=n"-p+9n".

Daraus folgt aber (=" -u+7v=¢@(r,n"-p) mit r<z*, d.h. {
selbst ist darstellbar.

Ist aber y =1, also ¢,(&, ) <l <g@,(&,n) = 5-&, so ergibt sich
wieder eine Zahl y mit n-p<l<n-(u+1) =%n-u+ n und daraus
E=mn-p+7=g(r,n p) mt r<n.

SchlieBlich folgt auch fiir y =0 aus ¢,(&, n) < {<e@,(&,n), d. h
aus + 1< {<n—+& mit £¢<, daB ¢ darstellbar ist. Damit ist
aber die urspriingliche Behauptung bewiesen.

Die soeben gegebene Herleitung zeigt auch, wie man fiir eine beliebige
Zahl { der zweiten Zahlklasse die zugehorige Hauptdarstellung ¢, (£, 7)
finden kann, und es folgt zugleich, daBl « < u wird, wenn g, < { < g, ist.

Fiir die Zahlen o, selbst hat man zunichst die Hauptdarstellungen
0 = P(0,0) =1, 0=91(0,0) =0, o= gs(0,w) =w-0, g3 =
p3(w, ) = w® ; fir g, = @4(w, w) erhdlt man aber eine reduzierte
Darstellung o, = ¢;(0®, ®) = w**; dann folgt o; = @;(w, w) = ¢ usf.
Ob sich auch spitere Darstellungen ¢, (w, ®) noch reduzieren lassen,
miillte erst untersucht werden.

6. Die Hauptfolgen

Es bleibt jetzt noch die Aufgabe, die Limeszahlen der zweiten Zahl-
klasse durch Hauptfolgen darzustellen, d. h. also jeder Limeszahl 1 ein-
deutig eine aufsteigende Folge A, <1, <4,< --: zuzuordnen mit
lim 4, = A. Diese Aufgabe wird hier nur fiir einen Abschnitt der Zahlen-
reihe gelost.

Zunidchst werde der Zahl w die Hauptfolge » = 0,1, 2,3... zuge-
ordnet mit lim n = w. Weiter sei 4> w, und allen Limeszahlen, die
kleiner als 4 sind, seien schon Hauptfolgen zugeordnet. Die Haupt-
darstellung der Limeszahl A sei 4 = ¢, (&, 7).
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Ist hier a <4 und o« =lima,, also A= lim g, (£, 7), wobei a,
die zu o« gehorende Hauptfolge durchlaufen soll, so sind die Zahlen
@o, (&, ) kleiner als 4, weil ¢, (£, ) eine Hauptdarstellung ist, es sind
also unendlich viele verschiedene, und wenn man gleiche nur einmal
zdhlt, so erhilt man eine eindeutig bestimmte aufsteigende Folge, welche
die Hauptfolge von 4 darstellt.

Ist o keine Limeszahl, so ist o« = 8 + 1 und & mufl eine Limeszahl
sein, denn wegen Satz 9ist & # 0 und ein Ausdruck der Form ¢g,, (§-+1,7)
kann keine Hauptdarstellung sein, da er nach der Rekursionsformel mit
kleinerem Index in der Form g¢g(7, ¢g,:1(£, 7)) geschrieben werden
kann, wobei nach Satz 3 ¢g,,(§,7) <@g (6 + 1,7) ist. Es ist also
A = @,(lim &, ) = lim ¢, (&,, ), wobei &, die zu & gehdrende Haupt-
folge durchlaufen soll. Dabei sind die Zahlen ¢, (&,, ) wiederum kleiner
als A und sie bestimmen, wenn man gleiche nur einmal zéhlt, die Haupt-
folge von 4.

Ist nun g, < 4 < @4y, 80 ist nach Abschnitt 5 «<pu, also «< 1,
sofern u < g, ist. Diese Beziehung gilt aber bis zur ersten kritischen
Zahl « = g, der Normalfunktion g,. Man findet « als Limes der Zahlen
Qo5 Coq> Qo » *** * Fiir alle Limeszahlen, die kleiner als « sind, ergeben

sich also durch Induktion die zugehoérigen Hauptfolgen.

Man kann das Verfahren noch fortsetzen, wenn man der Zahl « die
eben angegebene Folge als Hauptfolge zuordnet, sofern sich die Dar-
stellung ¢, = ¢, (w, ®) nicht reduzieren 1a8t. Auch weiteren kritischen
Zahlen kann man etwa nach dem Verfahren von Veblen®) bestimmte
Hauptfolgen zuordnen und die zwischenliegenden Limeszahlen wie oben
behandeln. Auch so kommt man aber nicht beliebig weit; man beherrscht

damit immer nur einen wenn auch umfangreichen Abschnitt der zweiten
Zahlklasse.

(Eingegangen den 30. Juni 1950.)

8) Vgl. FuBnote 2).
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