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Eine transfiiiîte Folge

aritlimetiscker Operatiouen
Von Paul Finsler, Zurich

Herrn Rudolf Fueter zum 70. Geburtstag gewidmet.

1. Einleitung

Es ist bekannt, da8 man im Bereich der natùrlichen Zahlen die Addition

auf ein wiederholtes Fortschreiten um eins, d. h. auf die Grundopera-
tion des Zâhlens zurûckfûhren kann, ebenso die Multiplikation auf eine
wiederholte Addition und das Potenzieren auf eine wiederholte
Multiplikation. Hôhere Operationen, die man durch wiederholtes Potenzieren
usw. erhalten wurde, werden gewôhnlich nicht eingefûhrt1), da die
anderen fur die meisten Zwecke schon ausreichen. Die hôheren Operationen

sind hier auch insofern entbehrlich, als sie wenigstens prinzipiell
durch die niederen ersetzt werden kônnen.

Im Bereich der transfiniten Zahlen, speziell in der Cantorschen zweiten
Zahlklasse, lassen sich aber die durch hôhere Operationen gewonnenen
Zahlen im allgemeinen nicht in endlicher Form mit Hilfe von niederen
Operationen darstellen. Ist co die erste Zahl dieser Zahlklasse, also die
erste auf die endlichen Zahlen folgende Ordnungszahl, so ist fur die
endliche Darstellung von co + co die Addition, fur co • co die Multiplikation

und fiir co™ das Potenzieren notwendig. Fiir grôGere Zahlen
braucht man noch hôhere Operationen. Es fragt sich, wie dièse zweck-

mâfiig einzufûhren sind und ob sich damit aile Zahlen der zweiten
Zahlklasse darstellen lassen.

Schon bei der auf das Potenzieren nâchstfolgenden Opération stôBt
man auf eine Schwierigkeit ; es fragt sich, ob man im Exponenten oder
in der Basis iterieren soll. Im ersten Fall erhâlt man aus coœ die Folge
(co™)*» coai\ (co0*1)*0 co™* usw., allgemein co0**, also lauter Zahlen,

*) Operationen hôherer Stufe sind in der Encyklopâdie der Math. Wissenschaften IA1
S. 26 erwâhnt. A. Haag, Arch. d. Math. 1 (1949) S. 220 definiert solche mit Logarithmen.
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die sich schon durch das Potenzieren ausdrucken lassen. Man ist deshalb
geneigt, den andern Fall zu nehmen, der aus a>w die Folge

usw.

und nach co-facher Itération als Limes die Zahl e co*0*0 liefert, die
sich nicht mehr in endlicher Form dureh die fruheren Operationen
ausdrucken lâBt. Die weitere Itération liefert dann aber coe e, cos s usw.,
d. h. man kommt nicht mehr vom Fleek. Die Schwierigkeit lôst sich erst,
wenn man doch den ersten Fall als eine neue Opération annimmt, die
sich nur ,,zufâlligerweise", infolge der Potenzregeln, noch durch die alten
ausdrucken lâBt. Aus dieser vierten Opération ergibt sich dann eine funfte,
welche, allerdings in anderer Weise als vorher, auch die Zahl e darstellt.
Die Folge dieser Operationen làBt sich ins Transfinite fortsetzen, und es
wird sich zeigen, daB sich damit fur jede Zahl der ersten und zweiten Zahl-
klasse eine eindeutige Darstellung ergibt.

Mit abzàhlbar vielen arithmetischen Operationen in endlicher Anwen-
dung erhalt man allerdings, von co ausgehend, nur abzàhlbar viele
Zahlen, also nicht die ganze zweite Zahlklasse. Es sind also mehr als
abzàhlbar viele Operationen notwendig, und zu ihrer Bezeichnung braucht
man mehr als abzàhlbar viele Zeichen, etwa eben die Zahlen der ersten
und zweiten Zahlklasse. Dies hat zur Folge, daB schlieBlich doch nicht
aile Zahlen grôBer als co vollstândig durch kleinere Zahlen bezeichnet
werden. Die erste dieser ,,kritischen Zahlen", fur welche dies nicht mehr
gilt, ist aber schon sehr groB.

Fur die Limeszahlen der zweiten Zahlklasse ergibt sich dann, sofern
sie kleiner als dièse kritischen Zahlen sind, eine eindeutige Darstellung
in der Form Km ocn. Auch fur viele kritische Zahlen lâBt sich nach einer
von O. Veblen angegebenen Méthode2) eine solche Darstellung finden
und damit die Reihe fortsetzen. Wenn dies fur die ganze zweite
Zahlklasse gelingen wurde, so wâre damit ein wichtiges, aber auch sehr schwie-
riges3) Problem gelôst. Es wâre dann môglich, von einer eindeutigen

2) O. Veblen: Continuous increasing functions of finite and transfinite
ordinale, Trans. Amer. Math. Soc. 9 (1908) S. 280. Eine Bearbeitung und Weiterfùhrung
dieser Méthode findet sich in der Arbeit von H. Bachmann: Die Normalfunktionen
und das Problem der ausgezeichneten Folgen von Ordnungszahlen,
Vierteljahrssehrift der Naturforschenden Gesellschaft in Zurich, 95(1950) S. 115.

s) ,,un des plus difficils" nach W. Sierpinshi : Remarque sur les ensembles des
nombres ordinaux de classes I et II, Revista de Ciencias 41 (1939) S. 289.
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Teilmenge des Kontinuums zu zeigen, daB sie die erste uberabzàhlbare
Mâchtigkeit besitzt, und man hâtte damit auch eine uberabzàhlbare
wohlgeordnete Teilmenge des Kontinuums.

Es soll zunâchst dieser letzte Punkt noch nàher betrachtet werden.

2. Wohlgeordnete Teilmengen des Kontinuums

Als Elemente des Kontinuums kann man an Stelle der Punkte eines

Intervalls die zahlentheoretisehen Funktionen f(n) nehmen, bei denen

n die endlichen Zahlen 0, 1, 2,... durchlâuft und die Funktionswerte
f(n) ebenfalls solche Zahlen sind.

Das Kontinuum eindeutig wohlzuordnen ist bisher nicht gelungen;
man kennt nur endliche oder abzâhlbar unendliche wohlgeordnete
Teilmengen desselben. Eine uberabzàhlbare Wohlordnung im Kontinuum
wlirde bedeuten, daB allen Zahlen der ersten und zweiten Zahlklasse
umkehrbar eindeutig Elemente des Kontinuums zugeordnet wàren.

Die Zahlen der ersten Zahlklasse erhâlt man von 0 ausgehend durch
die Grundoperation des Fortschreitens um eins; fur die Zahlen der
zweiten Zahlklasse ist noch eine zweite Opération nôtig, die Bildung
von lim ocn aus einer aufsteigenden Folge von Ordnungszahlen
ocn(n 0, 1, 2,...). Die Zahl lim ocn ist als erste auf aile Zahlen an

folgende Ordnungszahl eindeutig bestimmt; umgekehrt gehôren aber zu
einer solchen Limeszahl viele Folgen ocn, denn es ist z. B. co lim n
lim 2n lim 2W usw. Dièse Vieldeutigkeit erschwert die eineindeutige
Abbildung auf Elemente des Kontinuums.

Jeder Zahl a der zweiten Zahlklasse gehen abzâhlbar unendlich viele
Ordnungszahlen voraus, d. h. die Zahlen £ < <x lassen sich in eine ein-
fache Folge |0, fx, £2... bringen. Dièse Abzâhlungen sind ebenfalls nicht
eindeutig bestimmt.

Es entstehen so die beiden Problème:

Erste s Problem: Jeder Limeszahl <x der zweiten Zahlklasse soll
eindeutig eine aufsteigende Folge von Ordnungszahlen, eine ,,Hauptfolge"
oc0 < <xx < oc2 < - • • zugeordnet werden, derart, dafi lim ocn a uArd,

Zweite s Problem: Jeder Zahl a der zweiten Zahlklasse soll eine

eindeutige Abzdhlung aller Zahlen | < a zugeordnet werden.

Es soll nun mit bekannten Methoden4) gezeigt werden, daB jede Losung
des einen oder des andern Problems zu einer ûberabzàhlbaren Wohl-

4) Vgl. z. B. Enzyklopâdie der Math. Wissenschaften, 2. Aufl. I 1,5 S. 45/46.
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ordnung im Kontinuum fiihrt, und weiter, da8 die beiden Problème aqui-
valent sind, daB also eine Lôsung des einen Problems zu einer solchen
des andern fûhrt und umgekehrt.

Ist zunachst das erste Problem gelôst, so ordne man der Zahl 0 die
Funktion fo(n) 0 zu, ferner der Zahl p + 1 die Funktion fp+1(n)
fp(n) + 1 und der Zahl a lim an die Funktion fa(n) Max /^ (n)
fur m <g n, wobei an die zu oc gehôrende Hauptfolge durchlaufen soll.
Durch dièse Vorschrift sind nach dem Prinzip deï transfiniten Induktion
allen Zahlen der ersten und zweiten Zahlklasse zahlentheoretische Funk-
tionen zugeordnet, und zwar lauter verschiedene, denn fur a > /? wird
bei hinreichend groBem n fjn) > fp(n). Dies gilt nâmlich fur oc fi -f 1,
es gilt fur a + 1, wenn es fiir a gilt, und ftir oc lim ocn, wenn es

von einer Stelle ab fur aile <xn gilt ; es gilt also fur aile a > fi
Ist das zweite Problem gelôst, so kann man die Zuordnung in folgender

Weise vornehmen : Den endlichen Zahlen m 0, 1, 2,... sollen die
Funktionen fm(n) m entsprechen. Ist a eine Zahl der zweiten
Zahlklasse und sind den Zahlen |< a die Funktionen fç(n) zugeordnet,
so soll, wenn |0, |x, f2- • • die eindeutige Abzâhlung dieser Zahlen ist,
der Zahl a die Funktion fa(n) f$n(n) + 1 entsprechen. Damit sind
durch transfinite Induktion auch allen Zahlen der zweiten Zahlklasse
Funktionen zugeordnet, und zwar lauter verschiedene, denn wenn
fa(n) mit einem frtiheren fçm(n) identisch wàre, so hâtte man den
Widerspruch /a(m) fim(m) fim(m) + 1

Aus einer Lôsung des ersten Problems ergibt sich eine solche des zweiten
durch folgende Vorschrift: Der Zahl co werde die naturliche Anordnung
0, 1, 2,... der endlichen Zahlen zugeordnet. Ist a fi + 1 und
*?o> Vu Vz- • • die der Zahl j8 zugeordnete Abzâhlung der Zahlen rj < {},
so soll der Zahl a die Anordnung /8, rjQ, rjl9 rj2... der Zahlen kleiner
als a entsprechen. Ist a lim an > co wobei an die zu ex gehôrende
Folge durchlauft, und sind den Zahlen an ^ co die Anordnungen
|n0, £nl, |n2... zugeordnet, so bringe man die Zahlen |ww in eine ein-
fache Folge, indem man Çnm vor £n,m, setzt, wenn n + m <n' -\- m'
oder n -{- m n' -{- m' und n < %! ist, und streiche in dieser Folge
jede Zahl, die schon an einer fruheren Stelle aufgetreten ist. Dadurch
erhâlt man die zu a gehôrende Abzâhlung der Zahlen kleiner als a und
durch transfinite Induktion die gesuchte Lôsung.

Ist umgekehrt das zweite Problem gelôst, so ist insbesondere jeder
Limeszahl a der zweiten Zahlklasse eine eindeutige Abzâhlung £0 > £i > £2 • • •

aller Zahlen £< oc zugeordnet. Streicht man darin aile Zahlen |TO,

denen eine grôBere Zahl |n vorangeht, so bleibt eine aufsteigende Folge
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f0 oco < ai < otg < • • mit lim ocn oc ; dièse soll der Zahl a zuge-
ordnet sein.

Wie schon bemerkt, kann man mit Hilfe der nun weiter zu betrach-
tenden arithmetischen Operationen das erste Problem (und damit auch
das zweite) nicht vollstândig, aber doch ftir einen groBen Abschnitt der
zweiten Zahlklasse lôsen.

3. Die arithmetischen Operationen

Es sollen jetzt fur die Zahlen der ersten und zweiten Zahlklasse die
Operationen hôherer Stufe erklârt werden, welche die Addition, die Multi-
plikation und das Potenzieren verallgemeinern. Man wird von diesen

Operationen verlangen, da6 sie zwei in bestimmter Reihenfolge gegebenen
Zahlen f und rj eine Zahl <p(t-, rj) zuordnen, man kann sie also als Funk-
tionen von zwei Variabeln darstellen. Die zu definierenden Operationen
seien dementsprechend durch die Funktionen ç?a(f, rj) dargestellt, wobei
a die Zahlen der ersten und zweiten Zahlklasse durchlâuft. Speziell soll
ç>0(f 9 rj) <po(Q, rj) rj + 1 aie Grundoperation des Fortschreitens um
eins bedeuten, die also eine Funktion einer Variabeln ergibt. Es folgen
die Funktionen5) ^(f, rj) rj + f, <p2(|, rj) rç • f, %(f, rj) rf usf.
Fur die Arithmetik der endlichen Zahlen kommen nur die Funktionen
ç>n(f, rj) mit endliehem n in Betracht.

Um die Funktionen ç>a(£, rj) fur beliebige a zu definieren, braueht
man die Operationen des Iterierens und der Limesbildung.

Der Ausdruck lim aw ist fur aufsteigende Folgen aw schon erklàrt. Ist
nun y>(otn) eine fur aufsteigende Folgen ocn definierte und von einer
Stelle ab nicht abnehmende Funktion, so soll lim y) (aw) die kleinste Zahl
bedeuten, die von dieser Stelle ab von keiner der Zahlen y)(an) iiber-
troffen wird.

Ist lim an lim^n a und y(|) eine fur f < a von einer Stelle

y < oc ab nicht abnehmende Funktion von f, so ist lim y)(ocn) limy (/?n).

Es gibt nâmlich zu jeder Zahl ocn eine grôBere Zahl /3m, daher ist

ebenso folgt die umgekehrte Beziehung, also die Behauptung.

6) Fur da« Produkt verwende ich hier die in der Mengenlehre fur die Ordnungszahlen
zur Zeit ûbliche Reihenfolge der Faktoren, nach der z.B. œ + co m*2 gesetzt wird.
Ieh seize aber der Deutlichkeit halber einen Punkt zwisehen die Faktoren, denn "man
schreibt z. B. fur zwei Meter 2 m und nicht m 2, und fur 100 + 100 sagt man zwei-

hundert und nicht hundertzwei.
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Die v-fache Itération der Funktion 9>a(f, rç) sei nun durch die Forde-
rungen erklârt:

fur aufsteigende Folgen vn. Dabei wird vorausgesetzt, da6 sich ç£(£, rj)
von einem endlichen Wert von v ab als nicht abnehmende Funktion
von v ergibt.

Die Funktionen ç>a(f, rj) kônnen jetzt durch die folgenden Fest-
setzungen definiert werden :

Es sei ç>0(|, rj) <pQ(O,rj) rj + 1 ;

,»?)

» v) =z

allgemein ç»a+1({,ij) <pi(y,y) fur ^x ^ 3 ;

<P îtm «n (f ' fl) ^ Um ^aw(^ ' v) ftir aufsteigende Folgen an

Duxch transfinite Induktion bestimmt sich hieraus <pa(£, rj) fur
beliebige Zahlen oc,i,rj der ersten und zweiten Zahlklasse, denn wie
spâter gezeigt wird, ergibt sich ç£(£, rj) von endlichen Werten von a
bzw. v ab als nicht abnehmende Funktion von a und von v

DaB q>l9 q>2 und ç?3 die bekannten Operationen ergeben, ist direkt zu
sehen6). Fur n ^ 3 wird <pn+1(ë, rj) qfin(rj, rj) ; es folgt

î) usf.

Als Verallgemeinerung der Rekursionsformeln

n + (f + i) (i? +1) + 1,
17 • (£ + i) ^ • f + »?,

8) Im Unterschied zur ùblichen Arithmetik ist hier der Ausdruck 0° wegen 0° ç?3 (0, 0)
ç>§(0, 1) 1 sofort eindeutig bestimmt. DaB es zweckmâfiig ist, 0° 1 zu setzen,

ergibt sich auch daraus, dafi 0** ein Produkt von n Faktoren darstellt, das nur daim ver-
schwindet, wenn wenigstens ein Faktor Null ist, also nur dann, wenn n grôfîer als Null ist.

Schreibtman anb fur (pn(atb), so ist 999 betrâchtlich grôfier als 99* 949.

(Der Schlufi dièses ArtikeU folgt im nâchsten Heft)
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ergibt sich

und
9?a+1(lim Çn,Y}) lim

denn fur a ^ 3 ist

und
Ë £* (q, ij) lim ç,a+1 ({w, ri)

Auch hier wird die Existenz des Limes noch bestâtigt werden ; es wird
sich namlich zeigen, da8 ^(f,i}) fur a 2^5, also von einer festen end-
lichen Stelle ab in bezug auf aile Variabeln nicht abnehmend ist. Daraus
folgt weiter noch die Formel

9?a(hm fn, ri) lim ç>a(£n, rj)

auch fur den Fall, da8 a eine Limeszahl ist. Es ist namlich mit

a lim am lim (am + 1) :

(pa (lim in, rj) lim 9?^+! (lim fn, 17) lim lim 9?^^! (|w, 77)

(m) (n)

lim lim ç?am+1 (fn ,rç) lim ^a (|n, rj)
(n) (m)

wobei die Vertauschung der Limesbildungen aus dem eben angegebenen
Grunde erlaubt ist.

Fur a < 3 erhalt man die bekannten Rekursionen ; a 3 ergibt

und ^ /
4. Monotoniesâtze

In diesem Abschnitt wird stets ex > 0 vorausgesetzt. Es gelten dann
die Sâtze:

Satz 1. Fur | > 1, rj > 1 ist ç>a(f, rj)> rj.
Satz2. Fur f>l, rj>l und N>v ist <p*(f, rj) XpKS, n) •

Satz 1 folgt aus Satz 2 fur *> 0, iV 1. Es ist aber besser, die
beiden Satze getrennt zu betrachten und gemeinsam zu beweisen.

Fur a 1,2,3 sind die Satze bekannt, denn sie besagen hier, daû
fur | > 1, yj > 1 stets rj + f > rj, r\ • £ > rç und rj^ > rj, und fur

6 Commentani Mathematici Helvetici ox



!>1, rj>l, N>v stets rj + | • N> rj + i-v, r)-t;N>r}-ëv und

rji > rj£v ist.
Es sei jetzt a^3, |>1,^>1. Wenn fur einen bestimmten Wert

von a Satz 1 erfûllt, also 9?a(f, rj) > rj ist, so gilt fur diesen Wert von
a auch Satz 2, denn es folgt ç>*(£, rj) > ç£(f, rj), und wenn

ist, so ist nach Satz 1 (wobei ç£(f, *?) an Stelle von 17 einzusetzen ist)
auch

und
tâ (f, 1?) li

fur aufsteigende Folgen vn, denn dièse Formeln zeigen zugleich, daB

<Pa(£9 v) ^^ v naonoton zunimmt, da8 also der Limes existiert.
Weiter ergibt sich nun

9Wi(£> n) vi (v> v)
und

<Plim <xn

sofern Satz 1 fur a bzw. fur aile an erfûllt ist und lim ç>an(£, tj) existiert.
Damit ist aber Satz 1 und wie eben gezeigt auch Satz 2 fur aile Werte
von a bewiesen, fur welche 9?a(|, rj) definiert ist.

Satz 3. Fur 3> f und rj > 1 gilt <pa(S, rj) ^ ç?a(l, rj) und, wenn ot

keine Limeszahl ist, q>a(3, rj) > ç>a(f, rj)

Fur a 1, 2, 3 ist dies bekannt, denn es bedeutet rj + i? > rj + f,
rj- 3> rj- Ç, rj® > rf fur S> f und rç > 1

Ist a ^ 3, so ist fur S > f und t; > 1 wegen Satz 2

und wenn fur aile ocn 9>an(*5\ rj) ^ ^(1, ^) ist, so ist auch

sofern dièse Werte definiert sind. Satz 3 gilt also fur aile in Betracht
kommenden Zahlen.

Satz 4. Fur A> a und rj^Ç>l ist <pA(i-, rj) >ç>a(!, rj), wenn
nicht zugleich A ^3 und £ 17 2 i#£.
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Es ist zwar 22 2 • 2 2 + 2, sonst aber fur rj :> £ > 1 stets

>i?-f>iy + f.
Fur a ^ 3 und ^ ^ f > 1 ist nach Satz 2 und Satz 3

und folglich

Satz 4 gilt also allgemein, und es ergibt sich zugleich, daB die fur
rj â f > 1 und a > 3 als Funktion von a monoton wachsende Funktion
^a(^> fl) ft*r aile Werte von a definiert ist.

Satz 5 und Satz 6 werden wieder gemeinsam bewiesen:

Satz 5. Fur |^1 und H>rj^l ist y«(l, Jî) ^ ^(f, ij)

Satz 6. Fur S > f ^ 1 tmd ^ > 1 ^ ^(5*, rç) ^ ^(f, r?) und
speziell (p^(S, rj) > ç£(|, rj), wenn a wnd v keine Limeszahlen sind und
auch v nicht Null ist.

Fur a 1, 2, 3 sind die Sàtze erfûllt, wie man direkt einsehen kann ;

es werde a ^ 3 vorausgesetzt.
Es sei fur einen bestimmten Wert von oc Satz 5 erfiillt, daim gilt ftir

diesen Wert auch Satz 6. Wenn nâmlich Satz 6 fur den Expotienten v

als gultig betrachtet wird, so ergibt sich fur S > | ^ 1 und r\ > 1 wegen
(pl(£, rj) ^<pOoc(S,rj) rj> l nach Satz 3 und Satz 5

und speziell <p^+1 (S, rj) > <p^+1 (f, rj) wenn a keine Limeszahl ist.
Wenn ferner fur aile vn <pln(S, rj) ^ q^^, rj) ist, so ist auch

<plmv«(3,rj) - lim <»(£,*?) 2^ lim ç£«(!,*?) <plmvn(Ç,rj)

Da nun Satz 6 fur v 0 erfûllt ist, so gilt er fur den angenommenen
Wert von a allgemein.

Wenn Satz 5 fur a gilt, so gilt er auch fur a + 1. Nach dem eben
Bewiesenen folgt nâmlich

83



und wenn ç>£+1 (|, H) ^ ç£+1 (f, fur einen Wert v^tl erfiillt ist, so

ergibt sich

und wenn fur aile vn <pl+x(L H) ^ K+i(£> *)) ë^> so

es gilt also

9>a+1(f ,jET) ES ?>a+l(£,»?) fur aile i> (fur v= 0 ist es selbstverstândlich).
SchlieBlich folgt yUm an (S,H)> yUm an(f, »?), wenn ^(f,#) ^ ^(f,»/)

fur aile ocn gilt, und hieraus folgt wie oben, wenn nur lim ocn an Stelle
von a+1 gesetzt wird, da8 auch ç>riman(l, H) à çfiman(f, *?) gilt.
Damit ist aber Satz 5 und also auch Satz 6 allgemein bewiesen.

Satz 4 wurde unter der Voraussetzung rj ^ f > 1 hergeleitet ; es soll
jetzt noch der Fall | ^ rj > 1 betrachtet werden. Da der Satz fur
| rj > 1 bewiesen ist, kann dielnduktion nach f angewendet werden;
da aber z. B. 2a) 2-a) 2-\-co ist, kann nicht mehr durehweg das
GrôBerzeiehen gelten.

Man findet zunâchst:

rj-n^ri + ri-(n — 2) + 2>Ti+l-(n — 2) + 2 r) + n
fur y] > 1 und 2 < n < oo

ij'f rç«(l + f) *? + rç'£«ârç + f fur r7>l und f ^ co

und

^ (| + l) n • S + rj ^ rj + £ + rç > rj + (|+1) fur rj > 1 und { > 1

Es sei weiter a ^ 1 ; nach Abschnitt 3 gilt die Rekursionsformel

Macht man die Induktionsvoraussetzung ç>a+2(l, »?) ^ ^a+il^? *?)> so

ergibt sich, wenn der Reihe nach die Rekursionsformel, dann die
Induktionsvoraussetzung und Satz 5, dann Satz 1 und Satz 4 und schlieBlich
wieder die Rekursionsformel angewendet wird :

>v*(v> <p*+i (f » ^))

84



Ist a lim ocn und die Induktionsvoraussetzung

ÇWlfê > y) ^ Voté,*!) ^ 9Wl(£> *?)

erfullt, so folgt ebenso

n +1,1?)
also auch

Ist | lim fn und 9?a+1(lnJ y) ^ ^a(fnJ iy) fur aile n, so folgt

lim îw, 17) lim ç?a+1(ln, ^) ^ Km ç>a(fn, iy) ç?a(lim |n, ij)

wobei die letzte Gleichung nach der am SchluB von Abschnitt 3 gemachten
Bemerkung gilt, wenn noch die weitere Induktionsvoraussetzung hinzu-
gefiigt wird, daB 9?a(l, rj) als Funktion von oc und von £ je von einer
festen endlichen Stelle ab bis zur betrachteten nicht abnehmend ist.

Durch Induktion nach | folgt jetzt <Pa,+i(£, y) ^ <pa(£, y), und da

ist, so folgt durch Induktion nach ex, daB stets

Va(Ç> y) ^ <P*tè> y) ist fur A>oc und |>1, 17 > 1

Es gilt also:

Satz 7. Fur A> ot und | > 1, ij > 1 ist stets yA (Ç, r})^ ya(f, *?)

wnd insbesondere <pA (|+ 1, ^) > ç?a(£ + 1, ^), wenn oc keineLimeszahl ist.

Es gilt weiter noch

Satz 8. Fur f > 1, tj > 1, A > oc ist <pvA (f, rç) ^ ^(|, ij).
Der Satz gilt fur v 0 Wenn er fur die Zahl v bzw. fur aile vn einer

aufsteigenden Folge richtig ist, so folgt nach Satz 5 und Satz 7 :

und
" A» (f, ij) ^ lim

der Satz gilt also allgemein.
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Es sind jetzt noch die bisher meist ausgeschlossenen Falle 1^1 und
yj <£ 1 zu betraehten. Setzt man in die Definitionsgleichungen der Funk-
tionen ç>a(f, rj), a 1,2,3..., fur rj oder £ die Werte 0 und 1 ein,
so ergeben sich die folgenden Resultate:

Satz 9. Es ist ç>a(0, 0) 0, ausgenommen ç>3(0, 0) 1

Fur £ > 0 ist <pa(£, 0) 0, ausgenommen q>t(£, 0) £ und ç>4(£, 0) 1

Filr rj > 0 ist (pa(0, rj) rj, ausgenommen q>2(0, rj) 0 «mrf ç?3(0, 1

Fur £>0 is£ ç>a(f, 1) 1, ausgenommen ^(f, 1) 1+1
Fur rj>0 ist (p^l, <rj) ij+1, ç>2(l,

n und filr rj ^ 1 imd ^1 > a ^ 2 allgemein <pA (1, ty) ^
speziell cpA (1, 7y)

« Jkeîne Ldmeszahl ist.

Die letzten Beziehungen sind richtig, da fur a ^ 3 und > 1 nach
Satz 6 ç>a+1(l, ri) ç»a(ty, ij) ^ ç>a(l, ij) und speziell ç?a+1(l, ij) > ya(l,iy)
gilt, wenn a keine Limeszahl ist, also auch ç>lim an (1, rj) lim 9^(1, rj) >
9?an(l, rj) ist; fiir a 2 und fur 77 1 ist die angegebene Beziehung
nach den vorangehenden Formeln von Satz 9 direkt ersichtlich.

In den ersten vier Fâllen von Satz 9 ist also <pa(£, rj) wenigstens von
der Stelle a 5 ab als Funktion von a konstant, im letzten Fall fur
oc 2^ 2 monoton zu- oder wenigstens nicht abnehmend. In allen Fàllen
ist daher die Existenz von ç>a(!, rj) fiir beliebige a gesichert, zusammen
mit dem fruheren auch fiir beliebige £ und rj.

Aus den Formeln von Satz 9 ergeben sich entsprechende fur die Itération

(fa(£,rj), namlich

Satz 10. Es ist ç£(0, 0) 0 ausgenommen ç>J(0,0) 1 fur v>0
Filr £>0 ist q>l(|,0) 0 ausgenommen <p\(|,0) £-v und

(pl(£,0) 1 fur v>0
Filr tj>0 ist ç£(0, rj) rj ausgenommen q>\ (0, rj) 0 und

<pZ (0, rj) 1 beides fur v > 0

Filr £ > 0 ist ç>£(£, 1) 1 ausgenommen (p\ (£, 1) 1 + £ • v und

Fur r)>0 ist <pl(l,rj) r] + v, ç?£(l,??) j? ^3(1,»?) ^ und

allgemein

9^(l,i7)^^(l,q) fur A>a^2 und ï]>0
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Dabei ergeben sich die letzten Beziehungen wie folgt : Fur a > 3 und
r\ > 1 ist nach Satz 9

und wenn <p^(l9 rj)> l ist, so ist wegen Satz 9

also auch

^ïmvw(l^)>^n(l^)>l undsomit v5(l,ti)><pl(l,ri)
fur N > v oc > 3 und rj > 1

Die letzte Formel von Satz 10 folgt wie bei Satz 8, wenn f 1 gesetzt
und an Stelle von Satz 7 die entsprechende Formel von Satz 9 verwendet
wird.

Allgemein ergibt sich also, da8 fur a^ 5 die Funktion ç&(f, rj) in
bezug auf aile Variabeln <x,v,£,r] nicht abnehmend und folglieh auch
in der ersten und zweiten Zahlklasse fur beliebige Werte dieser Variabeln
definiert ist.

5. Die Hauptdarstellung der Zahlen

Es soll jetzt gezeigt werden, daB man jederZahl £ der ersten und zweiten
Zahlklasse eine eindeutige Darstellung in derForm £ (pa(Ç, rj), ihre
«Hauptdarstellung", zuordnen kann, bei welcher f < £ und rj < £ ist,
ausgenommen die Zahlen £ 0 und co, welche die Hauptdarstellungen
0 ^(0, 0) und co ç?x(0, co) besitzen sollen. Es wird nicht verlangt,
daB immer auch a < £ sein musse.

Wenn es fur die Zahl £ irgend eine Darstellung in der Form c/?a(|, rj)
mit | < £ und r\ < £ gibt, so findet man ihre Hauptdarstellung in der
Weise, daB man unter allen môglichen solchen Darstellungen von £

zunâchst diejenigen aussondert, beidenen die Zahl a den kleinstmôglichen
Wert besitzt; unter diesen werden sodann diejenigen ausgewàhlt, bei
denen f am kleinsten ist, und schlieBlich unter diesen, mit festem, môg-
lichst kleinem a und f, noch diejenige, fiir welche rj am kleinsten ist.
Dièse ist dann eindeutig bestimmt. Fur die endlichen Zahlen n > 0

ergibt sich so die Hauptdarstellung n c/?0(0, n — 1)

Jede Zahl £, fur die es eine Hauptdarstellung gibt, insbesondere also

jede, die sich in der Form £ c/?a(f, rj) mit | < £ und rj < £ dar-
stellen lâBt, soll ,,darstellbar" heiBen.
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Man betrachte die Zahlen q0 <po(O, 0) 1, gt ^(O, a>) o>,
£2 ft(w,(o) co2, allgemein ga 9?a(co, o>) fur oc ^ 2 Nach Satz
4 nehmen sie monoton zu und wegen p^ aw lim q^ bilden sie eine
Normalfunktion7). Die Zahlen ga sind darstellbar, da fur a ^ 2 stets
co < <pa{co, co) ist, und jede Zahl f der zweiten Zahlklasse wird von
gewissen Zahlen Qa ubertroffen.

Es werde nun angenommen, es gebe Zahlen der zweiten Zahlklasse,
die nicht darstellbar sind, und £ sei die kleinste. Unter den Zahlen ga,
die grôBer als £ sind, kann die kleinste keine Limeszahl als Index haben,
denn wenn f < glim an lim @an ist, so kann f nicht aile Zahlen £an
ûbertreffen. Es gibt also eine Zahl a mit Qa< C < Qa+i • Dabei ist
a ^ 2, denn die Zahlen zwischen q1 und ^2 sind in der Form <pQ(0, rj)
oder in der Form q>x (co, rj) darstellbar. Es gilt also

<pa{a),a>)< Ç<(pa+I(a>,co) mit a ^ 2

Es sei nun allgemein

y) niit œ^$^ri<(pY{t;,ri) und y>2
fur bestimmte Werte von £, rj und y.

Es ist ç>y+i(f, rj) (Py(rj, y), und die Zahlen (py(r],rj) sind fiir r^f
darstellbar, da sie entweder kleiner als £ oder grôBer als ç?y(f, ^), also

grôBer als ^ sind und in der Form <pY+1(v, rj) geschrieben werden kônnen.
Nach Satz 2 nehmen sie mit v monoton zu. Die kleinste darunter, welche

f ûbertrifft, kann wegen q>ym Vn(rj, r\) lim <Pyn(rj, rj) keine Limeszahl
im Exponenten haben; es gibt also eine bestimmte Zahl v mit

Nun ist <Py+1(rj, rj) <pY(rj, <p$(rj, rj)) und die Zahlen <pB(r), <p$(tj, rj))
nehmen nach Satz 4 mit ô monoton zu. Sie sind sâmtlich darstellbar, da
schon (Po(rj,<Py(rj, rj)) > <Py(rj, rj) ^ rj ist, und die kleinste darunter,
welche f ûbertrifft, kann keine Limeszahl als Index haben. Es gibt also
eine bestimmte Zahl ô mit

n(v> <pvy(n> n)) <£<n+i(y> Vy(y> n)) •

Dabeiist ô+l<*y, also ô<y, und co^rj^(py(rj, rj) < (p§(rj,<pVy{rj,rj)).
Dies sind aber entsprechende Bedingungen wie zu Anfang, jedoch mit

7) F.Hausdorff: Grundzuge der Mengenlehre, 1. Aufl. (1914), S. 114.
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kleinerem Index. Von (p^co, a>) < f < ç>a+i(eo, co) ausgehend gelangt
man so nach endlich vielen Schritten zu einer Beziehung

<Py(£, n)< £<<Py+i(Ç> n) mit <*>^Ç^y<<Py(Ç,r]) und y^2.
Ist nun y 2, also <p2(f, ^) < £ < ç>3(f, ^) rj-, so sind die Zahlen,

rf ç?3 (v, fur v ^ | darstellbar, da sie kleiner als £ oder grôBer
als ç>2 (|, 77 also grôBer als 17 sind. Es gibt also eine bestimmte Zahl v

mit y\v < £ < rjv+1 rf • rj .Nun sind weiter die Zahlen r\v • ^
fur pt -^rj darstellbar, es gibt also eine Zahl ju mit

Daraus folgt aber £ ?f > ju -f t (fi{r r]v - jn) mit T<if d. h. f
selbst ist darstellbar.

Ist aber y 1, also ç>x(f, r]) < C<9?2(|, ^) rj*£ so ergibt sich
wieder eine Zahl /u mit ^^<C<^(^+ 1) • // + rj und daraus
C ri-fi + x (p^T, rj'ju) mit r<rj

SchlieBlich folgt auch fur y 0 aus 9?0(l, *?) < C < 9^i(Ij *?)> d. h.
aus ^+1<C<^ + I niit | < f, da8 £ darstellbar ist. Damit ist
aber die urspriingliche Behauptung bewiesen.

Die soeben gegebene Herleitung zeigt auch, wie man fur eine beliebige
Zahl f der zweiten Zahlklasse die zugehôrige Hauptdarstellung ç?a(l, rj)
finden kann, und es folgt zugleich, daB oc^/u wird, wenn gfl^C< Q^+i ist.

Fur die Zahlen £a selbst hat man zunâchst die Hauptdarstellungen
£o <Po(°> 0) 1 Qi Ç>i(0, a)) œ q2 <p2(w, a>) co • co ^3
9?3(co, œ) a)0* ; fur o4 <p^(co, a>) erhàlt man aber eine reduzierte
Darstellung g4 ç?3(ft>w, co) coa)ù}; dann folgt ^5 (pb(a), co) e usf.
Ob sich auch spàtere Darstellungen 9^a(co, oj) noch reduzieren lassen,
muBte erst untersucht werden.

6. Die Hauptîolgen

Es bleibt jetzt noch die Aufgabe, die Limeszahlen der zweiten
Zahlklasse durch Hauptfolgen darzustellen, d. h. also jeder Limeszahl X ein-

deutig eine aufsteigende Folge Ao < Xx < A2 < • • • zuzuordnen mit
lim Xn 2.. Dièse Aufgabe wird hier nur fur einen Abschnitt der Zahlen-
reihe gelôst.

Zunâchst werde der Zahl co die Hauptfolge 71 0,1,2,3... zuge-
ordnet mit lim n co. Weiter sei A > co, und allen Limeszahlen, die
kleiner als A sind, seien schon Hauptfolgen zugeordnet. Die
Hauptdarstellung der Limeszahl A sei A ç?a(l, rj)
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Ist hier a < X und a Km an, also X lim 9^(1, rj), wobei an
die zu oc gehôrende Hauptfolge durchlaufen soll, so sind die Zahlen
ç?an(|, rj) kleiner als X, weil ç>a(f, rj) eine Hauptdarstellung ist, es sind
also unendlich viele verschiedene, und wenn man gleiche nur einmal
zâhlt, so erhâlt man eine eindeutig bestimmte aufsteigende Folge, welche
die Hauptfolge von X darstellt.

Ist a keine Limeszahl, so ist a /? + 1 und f muÛ eine Limeszahl
sein, denn wegen Satz 9 ist f ^ 0 und ein Ausdruck der Form <pp+1 (|-f1, rj)
kann keine Hauptdarstellung sein, da er nach der Rekursionsformel mit
kleinerem Index in der Form q>p(rj, <pp+i(£, rj)) geschrieben werden
kann, wobei nach Satz 3 ç?^+1(l, rj) < <pp+i(Ç + 1, rj) ist. Es ist also
X <pa(]im £n, rj) lim <pa(ën, rj), wobei |n die zu f gehôrende Hauptfolge

durchlaufen soll. Dabei sind die Zahlen 9>a(fn, rj) wiederum kleiner
als X und sie bestimmen, wenn man gleiche nur einmal zâhlt, die Hauptfolge

von X

Ist nun Qp ^ X < ^M+1, so ist nach Abschnitt 5 a ^ ju, also ot < X,

sofern ju < q^ ist. Dièse Beziehung gilt aber bis zur ersten kritischen
Zahl k qk der Normalfunktion q^. Man findet k als Limes der Zahlen
Qo> Qq > Qq • • • • Fur aile Limeszahlen, die kleiner als k sind, ergeben

sich also durch Induktion die zugehôrigen Hauptfolgen.
Man kann das Verfahren noch fortsetzen, wenn man der Zahl k die

eben angegebene Folge als Hauptfolge zuordnet, sofern sich die Dar-
stellung qk <pK(co, co) nicht reduzieren lâfit. Auch weiteren kritischen
Zahlen kann man etwa nach dem Verfahren von Veblen8) bestimmte
Hauptfolgen zuordnen und die zwischenliegenden Limeszahlen wie oben
behandeln. Auch so kommt man aber nicht beliebig weit ; man beherrscht
damit immer nur einen wenn auch umfangreichen Abschnitt der zweiten
Zahlklasse.

(Eingegangen den 30. Juni 1950.)

8) Vgl. Fufînote 2).
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