**Zeitschrift:** Commentarii Mathematici Helvetici

Herausgeber: Schweizerische Mathematische Gesellschaft

**Band:** 25 (1951)

Artikel: Über eine diophantische Identität.

Autor: Moppert, Karl-Felix

**DOI:** https://doi.org/10.5169/seals-20696

## Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

## **Conditions d'utilisation**

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

## Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

**Download PDF:** 14.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

## Über eine diophantische Identität

Von Karl-Felix Moppert, Basel

Die Identität

$$P_1^{k_1} + P_2^{k_2} + P_3^{k_3} \equiv 0 , \qquad (1)$$

wo  $k_1$ ,  $k_2$  und  $k_3$  natürliche Zahlen > 1 und  $P_1$ ,  $P_2$  und  $P_3$  teilerfremde, nicht konstante Polynome mit beliebigen komplexen Koeffizienten in der Variabeln z sind, ist schon mehrfach untersucht worden. Durch Differentieren<sup>1</sup>) wurde festgestellt, für welche Wertsysteme  $k_1$ ,  $k_2$ ,  $k_3$  diese Identität überhaupt möglich ist; es konnte aber auf diesem Wege nicht nachgewiesen werden, ob es für jedes dieser Systeme eine Identität der Form (1) tatsächlich gibt.

Im Anschluß an seine Arbeiten über normale Funktionenfamilien hat *Montel* ein ähnliches Problem behandelt<sup>2</sup>). Er untersucht die Möglichkeit einer Identität der Form (1), wobei er aber für die Funktionen P nicht nur Polynome, sondern überhaupt ganze Funktionen zuläßt. Er kommt zu unserer Relation (4), mit dem Unterschied, daß bei ihm dort auch das Gleichheitszeichen erlaubt ist. Er weist — offenbar erstmalig — auf die Lösung der Identität (1) durch *Schwarz*'sche Dreiecksfunktionen hin.

Wir behandeln das Problem so, daß wir die Riemann-Hurwitz'sche Relation v=2n-2 auf die Riemann'sche Fläche der rationalen Funktion  $w=Q(z)=\frac{(P_1(z))^{k_1}}{(P_3(z))^{k_3}}$  anwenden. So folgt sogleich, daß die Zahlen k der Relation  $\frac{1}{k_1}+\frac{1}{k_2}+\frac{1}{k_3}>1$  genügen müssen. Weiter lehrt eine einfache Überlegung, daß die Schwarz'schen Dreiecksfunktionen zum Dreieck mit den Winkeln  $\frac{\pi}{k_1}$ ,  $\frac{\pi}{k_2}$  und  $\frac{\pi}{k_3}$  zu jedem Fall eine Lösung liefern. Die obige Ungleichung für die Zahlen k ist also für die Möglichkeit einer Identität (1) notwendig und hinreichend. Zuletzt geben wir für die ersten drei der vier sich ergebenden Fälle eine explizite

<sup>1)</sup> Velmine, Math. Sbornik 24, 1903; Korselt, Archiv für Mathematik und Physik (3), Bd. 25, 1917, p. 89. Vgl. auch Liouville, Comptes Rendues t. 89.

<sup>2)</sup> Montel: "Sur les familles de fonctions analytiques", Annales scientifiques de l'école normale sup., t. 33, 1916.

Lösung. Dies liefert jedesmal unendlich viele Lösungen der Diophantischen Gleichungen  $X^k = pY^2 - qZ^2$ , (k gerade);  $X^k = Y^2 - pqZ^2$  (k ungerade);  $pX^3 + qY^3 = Z^2$  und  $X^2 - Y^3 = 432Z^4$ .

Sei n der Grad der höchsten in (1) auftretenden Potenz von z und seien  $n_1$ ,  $n_2$  und  $n_3$  beziehentlich die Grade der Polynome  $P_1$ ,  $P_2$  und  $P_3$ . Dann können wir dieselben von vornherein so numerieren, daß

$$n = n_1 k_1 = n_2 k_2 = n_3 k_3 + c , \quad c \ge 0$$
 (2)

gilt.

Wir setzen 
$$w=Q(z)=rac{P_1^{\,k_1}}{P_2^{\,k_3}}$$
 . Es folgt  $w+1=-rac{P_2^{\,k_2}}{P_2^{\,k_3}}$  . Die

Funktion w=Q(z) bildet also die schlichte z-Ebene ein-eindeutig auf eine n-blättrige, rationale Riemann'sche Fläche ab, die gewiß über den Grundpunkten w=0, w=-1 und  $w=\infty$  verzweigt ist. Bedeuten  $p_1$ ,  $p_2$  und  $p_3$  die Anzahlen der verschiedenen Nullstellen der Polynome  $P_1$ ,  $P_2$  und  $P_3$  und  $v_0$ ,  $v_{-1}$  und  $v_\infty$  die Verzweigungszahlen der Fläche über den Grundpunkten w=0, w=-1 und  $w=\infty$ , so gilt  $v_0=n_1k_1-p_1=n-p_1$ ;  $v_{-1}=n_2k_2-p_2=n-p_2$ . Für c=0 ist  $v_\infty=n_3k_3-p_3=n-p_3$ , für c>0 ist  $v_\infty=n_3k_3-p_3+c-1=n-p_3-1$ .

Zwischen der gesamten Verzweigungszahl v der Fläche und ihrer Blätterzahl n besteht die Riemann-Hurwitz'sche Relation in der Form v=2n-23). Wegen  $v\geq v_0+v_{-1}+v_{\infty}$  folgt somit  $2n-2\geq n-p_1+n-p_2+n-p_3-1$ . Hierin ist aber für  $i=1,\,2,\,3:p\leq n_i\leq \frac{n}{k_i}$ . So folgt, daß die Ungleichung bestehen muß

$$n\left(\frac{1}{k_1} + \frac{1}{k_2} + \frac{1}{k_3}\right) \ge n + 1 > n . \tag{3}$$

Die Zahlen  $k_1$ ,  $k_2$  und  $k_3$  müssen also der Ungleichung

$$\frac{1}{k_1} + \frac{1}{k_2} + \frac{1}{k_3} > 1 \tag{4}$$

genügen. Diese Ungleichung wird durch die folgenden Zahlentripel  $(k_1, k_2, k_3)$  gelöst:

- A) (2, 2, k)  $(k \text{ beliebig } \geq 2)$ ; B) (2, 3, 3);
- C) (2, 3, 4); D) (2, 3, 5).

<sup>3)</sup> Nevanlinna, Eindeutige analytische Funktionen, Grundlehren, Bd. XLVI, p. 315.

Setzen wir voraus, daß die Fläche über keinem von 0, -1 und  $\infty$  verschiedenen Grundpunkt verzweigt sei, daß c = 0 und  $p_i = n_i$  gelte (i = 1, 2, 3), so hat die Fläche genau 3 Verzweigungsgrundpunkte und ihre Verzweigtheit ist regulär. Sie ist dann die Fläche einer Schwarz'schen Dreiecksfunktion zu einem Dreieck mit den Winkeln  $\frac{\pi}{k_1}$ ,  $\frac{\pi}{k_2}$  und  $\frac{\pi}{k_3}$  (vgl. 3), p. 282).

Ist also ein Wertetripel  $k_1, k_2, k_3$  gegeben, das die Ungleichung (4) befriedigt, so finden wir auf die folgende Weise eine Lösung der zugehörigen Identität (1): wir bilden ein Kreisbogendreieck mit den Winkeln  $\frac{\pi}{k_1}$ ,  $\frac{\pi}{k_2}$  und  $\frac{\pi}{k_2}$  konform auf eine Halbebene ab, derart, daß seine Eckpunkte der Reihe nach in die Punkte w=0, w=-1 und  $w=\infty$ übergehen. Die Abbildungsfunktion, die das liefert, ist die rationale Funktion  $Q(z) = \frac{(P_1(z))^{k_1}}{(P_3(z))^{k_3}}$ . Wir können auch das Ausgangsdreieck an seinen Seiten so oft spiegeln, bis die z-Ebene lückenlos überdeckt ist. Die Eckpunkte, die die Winkel  $\frac{\pi}{k_1}$  tragen, sind die Nullstellen des Polynoms  $P_1$ , diejenigen mit den Winkeln  $\frac{\pi}{k_2}$  sind die Nullstellen von  $P_2$  und diejenigen mit den Winkeln  $\frac{\pi}{k_2}$  sind die Nullstellen von  $P_3$ . Die Konstanten, mit denen die Polynome noch multipliziert werden müssen, finden wir durch Vergleich der Koeffizienten einer Potenz von z. (Es ist hier natürlich nicht nötig, darauf zu achten, wie die Eckpunkte des Ausgangsdreiecks den Werten w=0, w=-1 und  $w=\infty$  zugeordnet werden. Denn das, was oben über die Vielfachheit des Punktes ∞ ausgesagt wurde, kann ohne weiteres auf die Vielfachheit des Punktes 0 oder des Punktes — 1 übertragen werden.)

Fall A. Wir wählen das Ausgangsdreieck so, daß ein Eckpunkt in den Nullpunkt der z-Ebene zu liegen kommt, und zwei seiner Seiten durch ein Stück der reellen und der imaginären Achse gebildet werden. Schreiben wir noch vor, daß der Eckpunkt, der den Winkel  $\frac{\pi}{k}$  trägt, in z=1 liegen soll, so ist dadurch das Dreieck und sind die Funktionen  $P_1$ ,  $P_2$  und  $P_3$  vollständig bestimmt. Ersetzen wir in der so entstehenden Identität noch z durch  $\frac{\sqrt{p}\,x}{\sqrt{q}\,y}$ , so folgt für gerade k

A 1) 
$$(p x^2 - q y^2)^k = p \left[ x \prod_{\nu=1}^{\nu = \frac{k-1}{2}} \left( p x^2 + q y^2 \operatorname{tg}^2 \frac{\nu \pi}{k} \right) \right]^2$$

$$- q \left[ y \prod_{\nu=1}^{\nu = \frac{k-1}{2}} \left( p x^2 \operatorname{etg}^2 \frac{(2\nu - 1)\pi}{2k} + q y^2 \right) \right]^2$$

und für ungerade k

A 2) 
$$(p x^{2} - q y^{2})^{k} = \left[ \prod_{\nu=1}^{\nu = \frac{k}{2}} \left( p x^{2} + q y^{2} \operatorname{tg}^{2} \frac{(2\nu - 1) \pi}{2k} \right) \right]^{2}$$

$$- p q \left[ c x y \prod_{\nu=1}^{\nu = \frac{k}{2} - 1} \left( p x^{2} + q y^{2} \operatorname{tg}^{2} \frac{\nu \pi}{k} \right) \right]^{2} . \quad 4)$$

Fall B. Wir legen das Ausgangsdreieck in der z-Ebene so, daß ein Eckpunkt mit dem Winkel  $\frac{\pi}{3}$  in den Nullpunkt zu liegen kommt. Die beiden Seiten, die an diesem Eckpunkt zusammenstoßen, seien gerade. Schreiben wir noch vor, daß ein weiterer Eckpunkt mit dem Winkel  $\frac{\pi}{3}$  in z=-4 liegen soll, so ist damit alles bestimmt. Ersetzen wir in der entstehenden Identität der Form (1) noch z durch  $\frac{\sqrt[3]{p}}{\sqrt[3]{a}}$ , so folgt

B) 
$$p(px^4 - 64qxy^3)^3 + q(8px^3y + 512qy^4)^3 =$$
  
=  $(p^2x^6 + 160pqx^3y^3 - 512q^2y^6)^2$ .

Fall C. Den Eckpunkt mit dem Winkel  $\frac{\pi}{4}$  des Ausgangsdreiecks bringen wir nach z=0, dort mögen zwei gerade Seiten aneinander stoßen. Einen Eckpunkt mit den Winkel  $\frac{\pi}{3}$  bringen wir nach  $z=\sqrt[4]{28-16\ \sqrt{3}}$ . So folgt

C) 
$$(x^{12} + 132 \ x^8 \ y^4 - 528 \ x^4 \ y^8 - 64 \ y^{12})^2 - (x^8 - 56 \ x^4 \ y^4 + 16 \ y^8)^3 = 432 \ (x^5 \ y + 4 \ xy^5)^4$$
.

Fall D. Wie man sich leicht überzeugt, können die Eckpunkte des Ausgangsdreiecks so gewählt werden, daß die Polynome P reelle, nicht aber so, daß sie ganzzahlige Koeffizienten erhalten. Wir verzichten darauf, eine solche Identität (vom 60. Grad) hier anzuschreiben.

(Eingegangen am 30. Dezember 1949.)

<sup>4)</sup> Vgl. hiezu *Euler*, Algebra, 2. Teil, 2. Abschnitt, Cap. 12; *Pépin*, journal de Math. (3), t. 1, p. 317; *M. Ward*, Transactions Am. Math. Soc. 38, 1935, p. 447.