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Abwîckelbare Schîebflâchen in Rn

Von M. Pinl, Dacca (Pakistan)

E. Bessel-Hagen zum Gedàchtnis

Wenngleich die Schiebflàchen eines w-dimensionalen affineuklidischen
Raumes Rn eine affininvariant charakterisierbare Flâchenklasse dar-
stellen, so sind fiir dièse Flâchen doch auch mehrfach schon zusàtzliche
metrische Bedingungen formuliert worden. Fordert man z. B. identisches
Verschwinden des (metrisch definierten) mittleren Krûmmungsvektors,
so ergibt sich die Liesche Auffassung der Minimalflâchen als Schiebflàchen

isotroper Kurven (auch fiir ?&>3)1). Fordert man dagegen das
identische Verschwinden der GauBschen Kriimmung, so ergeben sich im
dreidimensionalen euklidischen Raum, wie wiederum S. Lie zuerst ge-
zeigt hat2), Zylinderflâchen (einschlieBlich Ebenen). Gleichwie aber nun
das identische Verschwinden der GauBschen Krûmmung einer Flache in
mehr als dreidiniensionalen Râumen nicht mehr fiir Torsen charakte-
ristisch ist, sind bereits fiir n 4 die Zylinder und Ebenen nicht mehr
die einzigen Typen abwickelbarer Schiebflàchen des Rn.

§ 1. Die Gaufische Krûmmung der Schiebflàchen

Wir bezeichnen mit xx, x2,..., xn kartesische Punktkoordinaten
eines w-dimensionalen euklidischen Raumes Rn und mit kleinen gotischen
Buchstaben x, X), 3?... Vektoren in Rn. Sind u, v GauBsche Parameter
einer Flache x (u, v) dièses Rn, so kann eine Schiebflâche in der be-
kannten vektoriellen Form

geschrieben werden. Bezeichnen wir Ableitungen nach u mit Strichen
und Ableitungen nach v mit Punkten, so ergeben sich fiir die Kompo-

x) Vgl. z. B. E. Bompiani, Surfaces de translation, C. r. 169 (1919) 840—843 (fur
Riemannsehe Einbettungsrâume).

2) Vgl. S. Lie, Gesammelte Abhandlungen, Bd. II, zweiter Teil, S. 554, Leipzig
1937.
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nenten gap(u,v) des metrischen Fundamentaltensors der Flâche (1)
die Werte

3)

(2)
Zur Berechnung der GauBschen Krûmmung K verwenden wir den von
R. Baltzer-W. Blaschke4) angegebenen Ausdruck, der sich, da glt und
g22 jeweils nur Funktionen eines Argumentes sind, auf

D*3, 9" 9' 9" 3

9' 3 D'2 9' 3

33 > 3 9' > 32

(3)

reduziert.
Nunmehr bezeichnen wir den Pliickerschen Tensor zur Vektorbasis

a, b, c mit [a, b, c]. Dann làBt sich die rechte Seite von (3) als Ûber-
schiebung zweier solcher Pluckerscher Tensoren dritter Stufe schreiben
und die Bedingung K — 0 lautet :

[9', 3> y"] [9', 3, 3]=0. (4)

Das Ergebnis kann man so formulieren :

(/) Eine Schiebflâche des Rn ist dann und nur dann abwickelbar5), wenn
die Oberschiebung der beiden Pliickerschen Tensoren dritter Stufe, deren
Basen durch die Schmiegebenen der Schiebkurven und je einen der Tan-
gentenvektoren X); und 3 aufgespannt werden, verschwindet.

Im Falle n 3 sind dièse Pliickerschen Tensoren offenbar die Deter-
minanten (r)f, X)/f, 3) und (t)', 3,3) und die Bedingung (4) bedeutet dann
notwendig das Verschwinden mindestens eines der beiden Faktoren der
rechten Seite, z. B.

[x)', 3 t)/;] (r)', 3 r)f/) 0 oder ocx)f + pT)" + yî 0 (5)

3) Die Bedingung gr ^z£ 0 ist notwendige Voraussetzung fur die Existenz der Gaufisehen
Kriimmung K.

4) Vgl. W. Blaschke, Differentialgeometrie, Bd. I, 3. Aufl., S. 93, Berlin 1930.

5) Der Begriff ,,abwickelbarct wird hier immer im Sinne von ,,abwickelbar auf eine
Ebene" gebraucht; zu einer allgemeineren Formulierung im Falle einer Flâche mit einem
einzigen Netz konjugierter Kurven gelangt E. Bompiani im Jahresberieht der Deutschen
Mathematiker Vereinigung Bd. 51 (1941), Heft 1, S. 82—100.
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Fur y/0 kann
3 Ag' + ^D" (6)

gesehrieben werden. Differentiation nach u ergibt :

0= X'tf + ix + ^tf + px)»

Somit ist entweder A/ /j //=A O und dann 5 0 oder
(î)', vj\ X)m) 0. Im zweiten Falle liegt 3 nach (6) in der Ebene der
Kurve t) (u) und aile weiteren Ableitungen 33,... bleiben darin. Der
erste Fall widerspricht der Voraussetzung g ^ 0, der zweite fiihrt auf
eine Ebene. Ist jedoch y 0, so ergeben sich aus (5) keinerlei Be-

schrânkungen fur %(v), wohl aber eine solche fiir X)(u): die Kurven
X)(u) sind dann notwendig Gerade und die Flâchen x daher Zylinder-
flàchen. Damit ist der bekannte Liesche Satz wiedergefunden.

Im Falle n 4 sind die Pliickerschen Tensoren [t)7, 3, t)^] und
[*)'> è/é] Plûckersche Vektoren, nâmlich die Stellungsvektoren der von
den Basisvektoren r)f, §,T)" und t)A, 3> 3 > jeweils aufgespannten drei-
dimensionalen Râume. Dann bedeutet die Bedingung (4) :

(//) Die Schiebflachen des i24 sind dann und nur dann abwickelbare

Flachen, wenn in jedem Punkte der Flache die beiden von der (gemeinsarnen)
Flachentangentialebene und den Schmiegebenen der Schiebkurven in diesem

Punkte aufgespannten dreidimensionalen Râume orthogonal sind.

Fur [x)f, 9",3] 0 bzw. [3,3, X)f] 0 enthâlt die Schmiegebene
jeweils der einen Schiebkurve einen Vektor der Schmiegebene der andern
Schiebkurve und die beiden Schmiegebenen liegen in einem dreidimensionalen

Raum. Im allgemeinen Falle [t)7, t)", 3] =£ 0 und [3, 3, ï)f] ^ 0

liegen dièse Schmiegebenen in einem vierdimensionalen Raum. Da sie

stets den Flâchenpunkt x gemeinsam haben, sind sie niemals windschief.
Daher gilt allgemein :

(///) Die abwickelbaren Schiebflachen des Bn zerfallen in drei Klassen je
nachdem, ob die Schmiegebenen der beiden Schiebkurven in jedem Flâchenpunkt

zusammenfallen oder einen dreidimensionalen oder einen vierdimensionalen

Raum aufspannen.

Im ersten Falle ergeben sich Ebenen, im zweiten Zylinder, im dritten
allgemeine abwickelbare Schiebflachen, dièse frûhestens im i?4.

66



§ 2. Die Killingsche Flâche in «4
Die Flâche in 2?4

2x {cos u + cos ^» sin w — sin v, sin w + sin v, — cos u + cos v} (7)

die, in etwas modifizierter Gestalt, bereits von W. Killing angegeben
worden ist6), ist offensichtlieh eine Schiebflâche. Die Vektoren X) und 3

ibrer Schiebkurven sind

tj {cos u, sin u, sin u, — cos u}, 3 {cos v, — sin v, sin v, cos v} (8)

Fur die Déterminante (x)',T)rr, 3,3) ergibt sich

)" > 3 > 3)

Fur ^ v 0 erhâlt sie den Wert — 4 =£ 0. Somit verschwindet
(î)', g';, 3,3) nicht identisch und die Schmiegebenen der Schiebkurven
spannen den i24 auf. Ferner gilt nach (8) und (2)

— Bin u
cos %

cos u
sin w

— cos

— sin

— sin

cos

u

u

u

— sin
— cos

cos

— sin

v

v

v

— cos

sin

— sin

—- cos

V

V

V

V

32 -~z/k 0 z2

.(9)

Die Schiebkurven sind also ebene hypersphârische Kurven, d. h. Kreise ;

jeder Vektor der Schmiegebene (Ebene) der Kreise t) steht orthogonal zu
jedem Vektor der Schmiegebene (Ebene) der Kreise 3. Die Ebenen der
beiden Kreisscharen sind totalorthogonal und scbneiden einander in dem
einzigen Punkt y1=y2= yz= y^= zx z2 z3 zA 0. Die Schiebkurven

bilden auf der Flâche ein orthogonales Netz.
SchlieBlich berechnen wir noch die Déterminante (3) unter Benutzung

von (9) und erhalten
0

0

— 0 a —

Somit existiert K und verschwindet identisch. (7) ist also abwickelbar
und ein Beispiel einer allgemeinen Schiebflâche im Sinne von (III).

(Eingegangen den 18. Mai 1949.)

6) Vgl. W. Killing, Die nichteuklidischen Raumformen in analytischer Behandlung,
S. 241, Leipzig 1885,
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