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Uber endliche p-Gruppen’,
deren Elemente der Gleichung x”=1""geniigen

Von HEiNriCH MEIER-WUNDERLI, Rorbas (Ziirich)

Von Burnside stammt die Vermutung : Geniigen alle Elemente einer
Gruppe & mit endlichem Erzeugendensystem der Gleichung x*¥ =1, so
18t die Gruppe endlich?).

Nun ist ® als Faktorgruppe &,/MN einer freien Gruppe &, mit » freien
Erzeugenden nach dem Normalteiler §t darstellbar. 9N enthilt alle k-ten
Potenzen der Elemente aus §,. Bedeutet &, , den Normalteiler aus §,,
der durch die k-ten Potenzen erzeugt wird, so ist ® offenbar Faktorgruppe
von B, ; = &u/Cn,x- Ba,r ist in diesem Sinne die allgemeinste Gruppe
aus n Erzeugenden, deren Elemente der Gleichung x* = 1 geniigen.

Die Vermutung von Burnside wiirde also besagen, dal B, , fiir jedes
natiirliche » und £ eine endliche Gruppe darstellt. Das berithmte Problem
von Burnside besteht gerade in der Bestimmung der Ordnung und der
Struktur der Gruppen B, ,2).

Burnside selbst hat die Endlichkeit von B, ,, B, ; und B, , bewiesen ;
ebenfalls von Burnside stammt der Satz, wonach es endliche Faktor-
gruppen von B, , gibt, deren Ordnung > p?#-3 3).

In letzter Zeit hat P. Hall die schéne Entdeckung gemacht, daf} die
groBte Faktorgruppe von B, ; der Klasse ¢ =7 existiert, und die Ord-
nung 5 besitzt 4).

Wir befassen uns in dieser Arbeit mit endlichen Faktorgruppen von
B, ,. Im ersten Teil entwickeln wir eine Methode, die es erlaubt, jede
endliche Faktorgruppe von B, , zu konstruieren. Der zweite Teil bringt
Anwendungen auf das Problem der Konstruktion von endlichen Faktor-
gruppen von B, ,.

*) p = Primzahl.

**) 1 ist Gruppeneinheit.

1) Vgl. [2]. Zahlen in eckiger Klammer beziehen sich auf das Literaturverzeichnis am
SchluBl der Arbeit.

%) Vgl [1] und das ausfiihrliche Literaturverzeichnis auf p. 158—160.

3) Vgl. [2] SchluB.

4) Miindliche Mitteilung.
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Insbesondere werden wir durch direkte Konstruktion einen Beweis fiir
das folgende Theorem erbringen :

Zu jeder Primzahl p # 2, 3 existiert evne Faktorgruppe von B, , von der
Ordnung p(g) . Ste ist 3-stufig metabelsch und von der Klasse p.

Die bekannte Identitit von Zassenhaus®) werden wir wiederfinden und
in rein gruppentheoretischem Gewande beweisen.

Zum Abschluf3 konstruieren wir die maximale endliche Faktorgruppe
von B, 5 der Klasse 6. Sie besitzt die Ordnung 5. Das vollstindige Re-
lationensystem ist durch (72) gegeben.

I. TEIL

Ein Verfahren zur Konstruktion aller endlichen
Faktorgruppen von %,,,

§ 1. Der Begriff der “uniqueness Basis’’ einer endlichen Gruppe G

P. Hall®) hat den Begriff der Basis einer Abelschen Gruppe verall-
gemeinert, indem er definiert hat: Ein geordnetes System von Elementen
P,,..., P, (P, # 1) aus einer endlichen Gruppe ® mit den Ordnungen
resp. m,,...,n, heillt eine U-Basis von ®, wenn jedes Element P von
® auf eine und nur eine Weise dargestellt werden kann in der Form

P=PhP}:. ..Pr O<Lo,<m;i=1,...,7). (1)

Offenbar ist die Ordnung der ganzen Gruppe ® gleich dem Produkt
der Ordnungen der Basiselemente.

Wie Hall gezeigt hat, besitzen die reguldren p-Gruppen stets eine
U-Basis (1). Die reguldren p-Gruppen sind dadurch definiert, daB in
thnen fiir irgend zwei Elemente a, b eine Beziehung besteht der Form

(@b)?® = a?* bP* 2™ ... c?*, (2)

wobei p* beliebige Primzahlpotenz und c¢; Elemente der Ableitung der
von a und b erzeugten Untergruppe {a, b} darstellen.

Eine endliche Faktorgruppe von 8B, , geniigt (2) ; sie besitzt somit als
reguldre p-Gruppe eine U-Basis (1).

8) Vgl [11].
%) Vgl. [5]. Diese Arbeit von P. Hall bildet die Grundlage unserer Untersuchungen.
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Eine besonders einfache U-Basis dieser speziellen p-Gruppen erhilt
man folgendermafBlen?): Ist P,,..., P, (n <r) eine Minimalbasis
unserer Gruppe, so wihle man als Basiselemente der elementaren Abel-
schen Faktorgruppen $;,_,/9, der absteigenden Zentralreihe Kommuta-
toren erster Stufe und vom Gewicht & — 1 in den Komponenten P,
(¢=1,...,n). Durch Hintereinanderschreiben dieser Basiselemente
nach steigendem k erhélt man eine U-Basis unserer Gruppe mit den be-
merkenswerten Eigenschaften 8):

“714%1 “7:*%2 o i k . . _
PP,=P PP Ply ...P"" (0<oj;<p; I<i<ji<k<r)

Pr=1. 6=1,2,...,7) (3)

Der Beweis ergibt sich sofort durch vollstindige Induktion nach der
Léinge der absteigenden Zentralreihe.

Nun haben wir eben betont, daBl man sich die P,(n<k <r) als ge-
wisse Kommutatoren erster Stufe in den Komponenten P, (: = 1,..., n)
zu denken hat. Diese Bedeutung der P, mufl aber im Relationensystem
(3) zutage treten, d. h. im System (3) besitzt jedes P, (n <k < r) min-
destens eine Darstellung der Form

P;P,=P,P; P, (I<i<n; i<j<k<r; n<k). (4

Wir fassen diese Resultate zusammen in den

1. Satz : Jede endliche p-Gruppe der Ordnung p", deren Elemente der
Gleichung x? = 1 geniigen, besitzt eine U-Basis (1) mit den Relationen (3)
und (4).

§ 2. Die Konstanten (xj’.‘, ;

Wir betrachten jetzt die Gruppe mit den Erzeugenden P,, P,,..., P,
und dem System der definierenden Relationen (3).

Offenbar ist die Ordnung dieser Gruppe < p", denn wegen (3) kann
jedes Element in der Gestalt (1) geschrieben werden. Hieraus geht her-
vor, daf eine endliche Faktorgruppe von B, , der Ordnung p” durch (3)
bis auf Isomorphie eindeutig bestimmt ist ?).

Wir fragen daher nach den Bedingungen, denen die Konstanten in (3)
zu geniigen haben, damit die durch sie definierte abstrakte Gruppe als
Faktorgruppe von B, , erscheint.

Die notwendige und hinreichende Bedingung dafiir, daB in unserer
Gruppe die Relation 2P = 1 identisch erfiillt ist, besteht nach Satz 1 im

?) Vgl. [56]. Theorem 2.8.2. 8) Vgl. [6]. %) Vgl [6].
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folgenden : Berechnet man durch Benutzung von (3) die Funktionen
&2 (x) in den Unbestimmten z; gemifl der Definition

F 2 (z) F (2

Fi® pi@ | plr@ (5)

(Pfl P P:r); P

so erweisen sich ihre Koeffizienten als Funktionen der (x;f’i und wir haben

zu fordern
Fl(x) =0 mod p (6)

bei beliebiger Wahl der x,. Wir bezeichnen die sich aus (6) ergebenden
Bedingungen fiir die o} ; in der Folge stets als Bedingungen P (Potenz-
Bedingung).

Gehoren die &} ; in (3) zu einer Gruppe der Ordnung p7, so stellen die
P, eine U-Basis dleser Gruppe dar ; allgemeiner kann man aber sagen,
daB auch P,, P,.,,..., P, (1 <lI<r) eine U-Basis fiir den Normal-
teiler N, = {P,,..., P,} darstellen. Die aufeinanderfolgenden Faktor-
gruppen N,/N,., sind alle zyklisch von der Ordnung p.

Unsere Gruppe muf} sich also durch eine Reihe von zyklischen Erweite-
rungen der Ordnung p gewinnen lassen 19).

Nach der Erweiterungstheorie existiert aber die Erwelterung N, von
N,.1 mit {P,} dann und nur dann, wean die Abbildung

P.—»T.=P*BP (<k<r) (7)

in MN,,, einen Automorphismus bewirkt mit der Eigenschaft
P;"P, P} =B, . (8)

Dabei haben wir von der Tatsache Gebrauch gemacht, dall P,,,,..., P,
eine U-Basis fiir R,,, darstellen.

Es handelt sich nun darum, die Bedingungen (7) und (8) in unserer
Gruppe geeignet zu formulieren. '

Aus (3) folgt zunéchst
k+1 ok +2

Tl =P, P,5l PR P (9)
Fiir die Giiltigkeit von (7) ergeben sich daher die notwendigen Be&in-
gungen S it

ol .
T!T! = T. Tt T;Jj{ T;j; R/ U (10)

TV =1 . (11)

19) vgl. [10]. III, § 7.
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Driickt man in (10) die 7'} gemiB (9) wieder durch die P, aus, und
bringt man beide Seiten vermittelst des Durchziehprozesses (3) auf die
Form (1), so ergibt sich wegen der Eindeutigkeit der Basisdarstellung
durch Vergleich entsprechender Exponenten ein System von Kongruen-
zen mod. p, denen die «f ; notwendig zu geniigen haben. Wir bezeichnen
diese Bedingungen, die Assoziativititsrelationen gleichkommen, im folgen-
den stets als Bedingungen U .

Die Bedingung (11) ist in ‘B enthalten. Aber auch die Bedingung (8)
kann als Bedingung P gedeutet werden, denn man kann (8) in der Form

schreiben P?(P, P, Py — 1,

woraus hervorgeht, da sie eine spezielle Potenzbedingung darstellt.

Es sei jetzt ein System von Erzeugenden P, und ein System (3) von
definierenden Relationen gegeben, derart aber, daB die zugehorigen of ;
den Bedingungen ¥ und P geniigen. Dann behaupten wir, daBl die da-
durch festgelegte abstrakte Gruppe die Ordnung p" besitzt und der identi-
schen Relation z? = 1 geniigt.

Ist Ny, = {P,, P;,..., P,} Faktorgruppe von B, , der Ordnung
P, so hat man in den P; (¢ = 2,...,r) eine U-Basis von N,. Dann
bilden auch die 7} (1<k < r) eine U-Basis von R,, denn da A offen-
bar dquivalent mit (10) ist, kann jede Relation zwischen den 7'; in der
Form T2 T%¥3, . T%" — 1 geschrieben werden mit (x,,..., x,) = (0)
mod. p. Ist z, der erste von 0 verschiedene Exponent, so gilt wegen der
Bedeutung der T in (9): (Py...)**... = 1. Da P, sonst nicht mehr
auftritt, schlieBt man wegen (3): P%k... = 1. Dies ist aber ein
Widerspruch gegen die Eindeutigkeit der Basisdarstellung in ,. Die
Abbildung (7) stellt somit einen Automorphismus von N, dar. Wegen P
gilt auch (8) und es ist ¢? = 1 eine identische Relation. Aus (7) und (8)
ergibt sich die Existenz der Erweiterung R, von R, mit {P,}. Da man
die Konstruktion mit dem Zentrum der durch (3) definierten Gruppe be-
ginnen kann, so ergibt sich durch Induktion die Richtigkeit der angekiin-
digten Behauptung.

Damit ist der fundamentale Satz bewiesen :

2.8atz : Man erhilt alle p-Gruppen der Ordnung p", deren Elemente der
Gleichung x? = 1 geniigen, wenn man in (3) fir die (xlf,i nacheinander eine
Losung der Assoziativititsrelationen W und der Potenzrelationen P einsetzt.

§ 3. Ein Konstruktionsprinzip

Die Sétze 1 und 2 erlauben es, die maximalen Faktorgruppen B, , .
von B, , der Klasse ¢ schrittweise zu konstruieren.
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Ist ndmlich B, , , bereits gegeben, so sei P,,...,P,,...,P, eine
U-Basis mit der Eigenschaft (4) und es liege in (3) ein System von defi-
nierenden Relationen von B, , . vor.

Es sollen die Existenzbedingungen fiir B, , .., festgestellt werden.
Nach Satz 1 wird man zu diesem Zweck ein System (3) von Relationen
ansetzen, mit den «f ; (k <) als Bekannten und den «}7;' als Unbe-
kannten. Dieser Ansatz ist offenbar gleichwertig mit dem Versuch, eine
zentrale Erweiterung von {P, ;} mit B, , . herbeizufithren. Bestimmt
man dann gemif} (3) die Kongruenzen U und P, so ist die Frage nach
der Existenz von B,, , ,,; nach Satz 2 zuriickgefiihrt auf die Frage nach
der Existenz von geeigneten Losungen dieser Kongruenzen. Jede Lisung.,
wn der nicht alle Konstanten, die zu (c+1)-fachen Kommutatoren gehoren,
= 0 mod. p sind, fithrt nach Satz 2 und (4) zu einer Faktorgruppe von B, ,
der Klasse ¢ + 1. Da P, , im Zentrum und Reprisentant der U-Basis-
elemente vom Gewicht ¢ + 1 ist, erhdlt man durch Trennung in un-
abhiéngige Basiselemente das vollstindige Relationensystem der maxi-
malen endlichen Faktorgruppe von B, , der Klasse ¢ 41 .

Die Anzahl der unabhéingigen Basiselemente vom Gewicht ¢ + 1 ist
offenbar gleich der Anzahl der linear unabhingigen Konstanten in

unsern Kongruenzen, die zu ¢ 4+ 1-fachen Kommutatoren gehoren,

II. TEIL

Uber die endlichen Faktorgruppen von %,

§ 1. Der 2-stufig metabelsche Fall
Der Inhalt dieses Abschnittes ist der Beweis des Satzes :
3. Satz :  Die grofte 2-stufig metabelsche Faktorgruppe von B, , (p # 2)

besitzt die Ordnung p(g)"“"'m und kann in den U-Basiselementen Py 4,

Poo Pays Pass Peys Paws Pees Peyse o Ppee,y wie folgt
definzert werden :

P(l,m P(o,n = P(o,l) Pu,m Pu,n
P(a,b) P(o, n = P(o,l) P(a,b) P(a,b+1) a,b>1
Pa,» Pa,00 = Pa,o FPla,v) Plarr,» a,b>1 (12)
Pa,o Pie,or = P,ay Pa,vy a,b,c,d>1
P,y=Pho=Poy=1. a,b>1
a+b<p#2.

P, 4 kommt vor P, 4 zu stehen, wenn entweder ¢ 4 d <a 4 b oder wenn
c<a falls ¢ +d=a -+ b.
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Wie man erkennt, handelt es sich in (12) um die Definition einer
Gruppe durch ein System (3) von definierenden Relationen in den
U-Basiselementen Py, P4, P, mit @, >1. Die « nehmen
dabei nur die Werte 0 und 1 an und die Bedingung (4) ist erfiillt. Auller-
dem erkennt man in P ;, P o) ein System von minimalen Erzeugenden
der Gruppe (12). Man findet leicht die Darstellungen :

beliebige Anordnung
P(a,b) = (P(1,0) ’ P(o,n > 'P(O,l) y ee ey P(O,l) s P(I,O) 3 e ey P(I,O)) . (13)

b - mal (@ — 1) — mal

Zum Beweis von Satz 3 haben wir nach Satz 2 lediglich das Erfiilltsein
der Bedingungen 9 und P nachzuweisen. Nun lauten die mit A dqui-
valenten Bedingungen (10) in unserm Fall

P(a,b) P(a,b+1) 'P(l,o) P(l,l) = 'P(I,O) P(l,l) 'P(a,b) P(a,b+1) 'P(a+1,b) P(a+1,b+1)
'P(a,,b) P(a,b+1) ‘P(c,d) P(c,d+1) = P(c,d) P(c,d+1) 'P(a,b) P(a,b+1)
P(a,b) P(a+1,b) 'P(c,cz) P(c+1,d) = P(c,d) P(c+1,d) 'P(a,b) P(a+1,b) .
Dies sind aber Folgerelationen von (12), wie man leicht nachrechnet.
Wir zeigen jetzt, dall auch die Bedingungen 9 durch (12) erfiillt

werden. Zu diesem Zweck berechnen wir die Kompositionsfunktionen
f(a,5), die wir definieren durch

Z(0,1) Pp%(1,0) Z(1,1) Z(a, b) Y(0,1) ¥(1,0) ¥(1,1) Y@, b) __
P(O,l) P(l,o) ‘P(l,l) ... P - P P(l,O) P ...P =

* (aa b) (0:1) (1 11) (a, b)
__ ple,) pfa, 0 pla,y) (a, b)
= Py Pa,ey Payy - Pgp - (14)

Man gelangt besonders einfach zu diesen Funktionen, wenn man die
niitzlichen Formeln notiert :

a+b<p (92(‘11,0)) (y(g,l))

Z(1, 0) ¥(0,1) Y(0,1) Z(1, o)
Paley - Pasy = Poyy - Paley I Py, (15)
a,b=>1
a+b+i<p Y(0,1)
%(a,b) Y(0,1) __ p¥(o,1) %(a,b) (a,b) - (Y(5:1)
Paw - Poty = Pgeyy - Pa,s lz P biqy (16)
‘[:
atb+e<p ¥(1,0)
T(@,b) pY1,0 __ pY(1,0) (a, b) @b ("G")
Pasy * Paoy = Pagy * P, 1{ P ate,n . (17)
Q::

Wir beweisen diese Formeln, indem wir den Durchziehprozef (12) auf
die linken Seiten anwenden. Um etwa (15) zu beweisen, schreiben wir
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den Ausdruck links des Gleichheitszeichens einer schonen Idee von
P. Hall ) folgend in der Form

(1) @) (3) (Z(1.0)) (1) (2) (3) (¥(0,1))
P(l,O) : P(1,0) : P(1,0) P(I,O) : P(o,l) 'P(o,l) ’ P(o,l) .. P

0,1)
@)
P(I,O) —

~
=
[
S
g

i=1,2,...,x(1’0) .
PP =P i —1,2
©0,1) = 40,1 1=1,2,.-3Y0,) -

Ubt man (12) auf diesen Ausdruck aus, indem man zuerst PQ,, ganz

nach links schiebt, dann der Reihe nach PQ, ..., P§4" und zuletzt
noch die P}, gleichermafien nach links schafit, beginnend bei PQ,,
bis sie alle hinter die P{);, zu stehen kommen, so hat man zufolge (12)

lediglich Kommutatoren einzufithren der Form
(i1) (71) (72) (7p) (2) (i3) (ia)
Pa,w = (P(I,O)’ Poyys Poys -+ Ponys Paos Pags oo P(LO))
1<y << - <y < X, 0
I<H << << Yo,

P, , tritt also genau so oft auf!?), als es Losungen gibt in ganzen
Zahlen, die den obigen Bedingungen geniigen. Solcher gibt es in der Tat

/x(1’0)> Yo,
a b /-

Nach der Erklidrung der f, , hat man zu ihrer Bestimmung das Pro-
dukt auf der linken Seite von (14) auf Basisdarstellung zu bringen, unter
Beriicksichtigung von (12). Zu diesem Zweck schieben wir wie vorhin
alle P, , ihrer Anordnung gemifl sukzessive nach links; wenn man
nur diejenigen Glieder notiert, die zu f, , einen Beitrag liefern, so
findet man in den einzelnen Schritten des Durchziehprozesses :

1, Beim Durchgang von P, ;, entstehen zufolge (15) und (16) Beitrige

der Form , 1
La, Yo, < Yoo,
< (1@0))( (bl)) L ?;0 __ ( (; 1))

d. h. nach dem Durchgang hat unser Produkt die Gestalt angenommen

b-1

Z(1,0) Y(o0,1) Y(0,1)
at+bdb<p + 2 2(a,b-
Pz(o,1)+1l(o,1) Pa:(l,o) H ( a )( b ) pual (a ‘t)( . )

¥(1,0) Y(a, b)
©.1) 1,0

Y(1,1)
(a.b) * <+ (1,0) P(l,l) s % (a,bd)

~
a,o =

11) Vgl. [5]. Insbesondere § 3: A formula for (PQ)*. Existenzbeding. 3.4.4, 5, 6.
12) vgl. [5], § 3.
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2. Beim Durchgang von P, , erhalten wir wegen (12) und (17) Bei-
trige der Form

b—1 '
Ta,0\({Yo,v Yo, 0\l [{¥Ya,0
() (75) + B el "37) (")

3. Da bei spitern Durchgingen von andern Elementen nur noch
P, , Beitrige liefern kann, so hat man die schone Formel gefunden und
bewiesen

a—1

)

e=0

f(o,n = Zu,1 T+ Y,
fao,0 = Ta o+ Ya.0

a—1 i
— Za,0\(Ya,0 ?/(0,1)) 18
fa, 0= Y, b)+§)(a_9)( o )( b + (18)

a—1 b—1
+ 3 ¥ 2., s (?/(1,0)) (Z/(o,n) (@—p,b—7>1).

=0 =0 Q T

Jetzt ist es nicht mehr schwierig, die Funktionen §, ,, die wir in (5)
definiert haben, zu bestimmen. Es gilt ndmlich die Entwicklung :

C11;3).1) = MN-To,1)
B0 =" Zu,0 (19)

Eo,0)= (aib)(a+g - 1) Th o Tyt (Terme in (:})mlt 1< w<a+b)

Man hat sich dabei die Funktion {, ,, nach der Unbestimmten » ent-
wickelt zu denken in die eindeutig bestimmte Gestalt

a(P)+a(s)++al(f)- (20)

Zum Beweis kann man induktiv vorgehen, da die Formeln (19) fiir die
beiden ersten Funktionen ;) und & o) sicher richtig sind. Es sei die
Formel als richtig erkannt fiir alle §;, ;, mit 1<a + b<k. Dann be-
weisen wir ihre Giiltigkeit fiir alle J{, , mit a + b = k.

Nach der Definition in (5) hat man

80,0 %a, ) 80,1 ¥, )
a Z(0,1) Z(a,b) ; a,
P(o 1) LI P(a b) M P(o,l) . P(a b) = P(o,l) . P(a b) . (21)
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Durch Anwendung von (18) auf (21) folgt

a—1 /
n o ((n—1)zg 0)) (‘”(1 o)) (x(o 1))
— + , , ) 4
8(a,b) (a.b) e}:O ( a—p 0 b

T

a—1 b—1
—1 X x
+ 3 B E e (700) (o) @
=0 1=0 e

Hieraus ergibt sich

n qn—l = ((n—“ DHzg 0)) (xu 0)) 'x(o 1))
‘LTf(a,b) — g(a’b) +Q§0 a—op 5 0 ( b U

n—1

n—1
+ Tu1,00%0,0 + S, 01T + - (23)

Aus (23) folgt aber

i—1 (a—1 ; /
~n EX o i £ €
Sta,p) = 2 {2 ( (1,0))( (1,0))( (%1)) + &a_l’b) -~ -1 3(@,0-4) @01 4. (24)

e=1lg=0\T — 0 0

Unter Beachtung der einfach zu beweisenden Entwicklung

(nax):<3)xa+(af1)(a~1)w“‘2(§)+--- (25)

und nach Induktionsvoraussetzung erkennt man, daB bei der Uberfiih-
rung von (24) in die Form (20) nur die folgenden Terme hochster Dimen-

sion in (;?) entstehen :

n—1

1. Fall @,b #1 . i}'("a,b) = % g‘fa-l,b) Z,0 1 igfa,b—l) Z(0,1) z (26)

€=1

n—1
2, Fall a=1 . gztz,b) == 2 %fa,b_l) x(O,l) 2 (27)

E=1

n—1
3. Fall b=1. Fip=

E=1

(Sx“'“)) (x(ob’”) + ?ffa-—x.b) Za,0 i . (28)

a

Durch Einsetzen der Werte aus (19) in (26), (27) und (28) ergibt sich
nach (25) sofort das behauptete Resultat.
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Damit sind die Bedingungen W und P als erfiillt nachgewiesen. Die
durch (12) definierte Gruppe ist also in der Tat Faktorgruppe von B, ,.
Sie ist Faktorgruppe der Klasse ¢ = p — 1.

Dafl es sich um die maximale 2-stufig metabelsche Faktorgruppe
von B, , handeln muBl, werden wir im néchsten Abschnitt einsehen.

Nimmt man dieses Resultat mit hinzu, so ist der Satz 3 in allen Teilen
bewiesen.

Zu den Formeln (18) haben wir noch eine Bemerkung zu machen.
Ihrer Bedeutung wegen kann man sie ndmlich auffassen als Multiplika-
tions-Gesetz der Punkte ¢ eines n-dimensionalen Euklidischen Raumes.
Verstehen wir unter dem Punkt @, den Punkt mit den Koordinaten
(%0.1)> Ta,0> Ta,15- - +» Ta,w)> SO definieren wir:

Q(m) Q(y) = Q(f) .

Diese Multiplikation geniigt sémtlichen Gruppenaxiomen. Nicht trivial
ist die Giiltigkeit des assoziativen Gesetzes. Es ist aber in unserer Gruppe
(12) das assoziative Gesetz in der folgenden Form richtig:

fa, b)(f(a n (T35 Y); z)——f(a b)(x fan (¥ z)modp

Nun bleibt diese Eigenschaft richtig, auch wenn die zunéchst fest ge-
dachte Primzahl p 5= 2 bestédndig groflere Primzahlen durchlduft. Hier-
aus schlieBt man aber, dal die obige Kongruenz sogar eine Identitit sein
muB. Das assoziative Gesetz ist damit als erfiillt nachgewiesen.

Damit ist der Satz bewiesen :

4. Satz : Die Funktionen

fo,n = Zo,1 T Yo,
fa,0 = Za,00 T Ya,o0

a—1
f(a,b) = y(a ») + 2 ((17(1 0)) <y(1 0)) (y((l)) 1)) +

&—g e

a—1 b-—1
+ 2 Y Ta—o,0—1) (?/(1 0)) (y(o 1’) (@—o0,b—72>1)

0=0 1=0 Q

sind bei festem a,b > 1 das Multiplikationsgesetz einer n-parametrigen
@

Lieschen Gruppe im vollen R,. Es ist n = (2 ) - (;)) +b(a—1) 4 3.
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Die Dimension n ist nichts anderes als die Nummer, die den B, ,, mit
a@,b>1 in der friher beschriebenen Anordnung zukommt.

Durch Verallgemeinerung des Systemes (12) kann man auch im Fall
von mehr als zwei minimalen Erzeugenden eine analoge 2-stufig metabel-
sche Gruppe aufstellen. Wir behalten uns vor, in einer andern Arbeit auf
diese Verallgemeinerung zuriickzukommen.

§ 2. Eine 3-stufig metabelsche Faktorgruppe der Klasse p
und die Identitit von Zassenhaus
Das in I, § 3 umrissene Konstruktionsprinzip besagt: Wenn es eine
groflere endliche Faktorgruppe von B, , gibt, als die in II, § 1 kon-
struierte, dann existiert eine zentrale Erweiterung einer zyklischen
Gruppe {P} der Ordnung p mit der in § 1 konstruierten Faktorgruppe

der Klasse p — 1, die wie folgt durch Erzeugende und Relationen
definiert werden kann : :

P(I,O) Pfo,l) - 30,1) 31,0) P(l,l)

%((a,b), (0,1))
Fa, b0, = Foy Ba, bl p41) P (@a+b<p—1)
P(a,b)Ro,l) - P(o,l) P(a

a((a,b), (1,0))
o wFi0 = Fi0Be,y Basr,0 P (@+b<p-—1)

*((a,b), (0,1))

%((a,b) . (1,0) (29)
B, whio= B0 Lanl ‘ ) (@+b=p-—1)
PEI,O) - P(LO) P
PP , =P P pledcd b d
@, 0, a) = L, o)L (a,b) (@+b+c+d<p)
R, whe.ay= Be.ayFa, (@+b+4c+d>p)

PP(a,b): Z?a,b)P

4 D D D
Poy = Pay = Papn="=1.

Das zu adjungierende Element hat man sich nach (4) als p-fachen
Kommutator in den P, 4, und P, o zu denken. Der wesentliche Schritt
besteht jetzt in der Ableitung und der Diskussion der Kongruenzen U
und PB.

Aus (29) ergibt sich ohne weiteres die antikommutative Relation
*a,b (o)) T Xe,d),(apy = 0 mod p (30)

29



und nach leichter Rechnung findet man als Relationen U die merk-
wiirdigen Kongruenzen mod. p:

%@, b+1) . ,0) T %@y, @) T @, 5+1, @,0) T F@s1,0), @) T

+ *((a+1,0) , (a,b+1)) + X((a+1.04+1), (1L,1) = %((@+1,0), (0,1)) * (31)

X((a,b4+1) , (c,d) T X((a.b), (c.d+1)) T ¥((a,b+1), (c,a+1y = 0 - (32)

C(at1,8), () T X(a,b, c+1,a) T ¥(@t1,b), @e+ra) = 0 - (33)

Beschrinkt man sich auf den 2-stufig metabelschen Fall, so erhdlt
man hieraus die einzige Relation

%((a,b+1), (1,00) = %((a+1,b), (0,1)) (@+b+2<p . (34

Zur Erfillung der Bedingung (4) haben wir zu verlangen: Eine von den
beiden Konstanten in (34) mul = 0 sein mod.p, sobald a -+ b 4+ 2<p.
Aus demselben Grunde hat man zu setzen

(@, 541, L) = Xa+Lp, 0 =1 (@ + b+ 2=1p) (35)

Damit erhalten wir aber ein Relationensystem (12). Wegen (19) ergibt
sich als Folgerung : Die in (12) definierte Gruppe ist die gropte 2-stufig
metabelsche Faktorgruppe von B, ,. Der Beweis von Satz 3 ist damit
vervollstindigt.

Um die Relationen B ableiten zu konnen, gehen wir aus von einer
Identitit fiir das Produkt Q¥ P®. Nach 7. E. Easterfield gilt ?) : Ordnet
man die Gesamtheit der Kommutatoren in den Komponenten P und ¢
in eine Reihe R, nach steigenden Gewichten w, = p, + q,, so gilt eine
Identitit der Form

f3(z) - g3(y) pfsa(x) - 94(¥) f,() - g.(»)
Qv P> = P QY R; R, o RO

z x x
“‘(1)“*‘“2(2)"'"'“”(%) (36)

9:(y) = bi(?{) + 62(g> + o +qu‘<g.)

1

/i ()

I

d. h. f;(z) und ¢,(y), sind ganzwertige Polynome, deren Grad durch das
Gewicht von R, in P resp. @ limitiert ist.

13) Vgl. [3]. Theorem C.
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Hieraus schlieBen wir in Verbindung mit (19), daB ein Kommutator
vom Gewicht @ in P, 5 und vom Gewicht b in B, ;) zu §"(x) hochstens
Beitrige liefert von der Form

a b - . :
(a—’,}?’— b) Cla, ) Ta,0) %01y + (Gheder in (;f) mit 1 <il<a+ b) . (37)

C (e, 18t eine natiirliche Zahl, die noch vom betrachteten Kommutator
abhéngt.
Insbesondere folgt, daB bei der Uberfiihrung von ¥ (z) in die Form (20)

nur solche Kommutatoren Beitrige mit (n) liefern, deren Gesamtgewicht
in P, o und P, ;, mindestens p ist.
D. h. wir haben eine Entwicklung der Form

p—1
" (x) = (;’) (2 L Y x(gl,o) xﬁ,:‘;) + {Glieder in (n) mit 1 <l<p}.
e=1

A
(38)
Die Kongruenzen 9P lauten daher

G:(Q,p_g)"_—EO mOdp(Q:172>"-:p—“1)- (39)

Zur Berechnung der €, ,_,, miissen wir von den Kongruenzen A aus-
gehen. Aus (31), (32) und (33) folgt

X((e—1,5—0), (1,0) T Fe—1.p—e—1), @,1) = X((e.p—e—1), 0,1) (40)

X((e—t,p—e—6), (1,€)) T F((e—t,p—e—(e+ 1)), (r,e+1)) = O (41)

K ((e—r,0—0—8), (1,8)) T X((e—s41), p—e—8), (r+1,8) = O - (42)
Die allgemeine Losung von (41) und (42) ist gegeben durch

X((e—1,p—0—E), (1,8)) — (” 1)z+a k(Q,p—Q) . (43)

kle:r-@ jst, zundchst eine willkiirliche ganzzahlige Konstante, iiber
die wir spéter verfiigen werden.

Damit sind wir nun beféhigt, die Bestimmung von F*(x) durchzu-
fithren. Der Vorgang ist derselbe, wie bei der Ableitung der Formeln (19),
d. h. wir bestimmen zunichst diejenigen Terme aus f(x;y), die zu

§"(x) Beitrage mit (Z;) liefern. Bedenkt man, daBl fir f(x;y) eine

Darstellung gelten muB der Form

f(x;y) = x4+ y 4+ (Terme in z und y) (44)
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und betrachtet man z, , und y , als Terme (a + b)-ter Dimension
in x resp. y, so folgt aus (18), (19), (21), (25) mit (37), (38) und (44) : Nur

diejenigen Terme aus f(x; y) ergeben zu F"(x) Beitrige in (;7;), drve in
x von der Dimension p — 1 und in y von der Dimension 1 sind.

Wir haben somit die Aufgabe zu 16sen, alle Terme aus f(z; y) aufzu-
zdhlen, die in x von der Dimension p — 1 und in ¥ von der Dimension 1
sind. Zu diesem Zweck ist die Kenntnis der zu (15), (16) und (17) analo-
gen Formeln von groBem Nutzen, denn wir miissen ja (14) vermittelst
(29) in die Form (1) iiberfithren. Das Mittel zu ihrer Berechnung wird
geliefert durch eine elegante Methode von P. Hall 1), die man dargestellt
findet in seinen Arbeiten im Zusammenhang mit den1 Beweis einer wich-
tigen Identitit (Hallsche Identitit). Fir die Einzelheiten seiner Methode
miissen wir auf diese uniibertreffliche Darstellung verweisen.

Die Hallsche Methode besagt kurz folgendes: Soll das Produkt
Py, o PL.q auf Basisdarstellung gebracht werden, so gehe man aus von
der gleichwertigen Darstellung

(1) (2) (z) (1) (2) (y)
P(a,b) P(a,b)‘ ® P(a,b) ’ Ec,d) P(c,d) 5 P(c,d) :

Die Indizes () sollen lediglich die Stellung der Faktoren ein fiir allemal
festhalten. Die einzelnen Schritte bis zur Uberfiihrung in die Normal-
form bestehen nun darin, daB man bei £{"), beginnend alle Basiselemente
ihrer Reihenfolge gemdfl sukzessive nach links schiebt, so dal bei unter
sich gleichen Basiselementen immer das am weitesten links stehende zu-
erst vom Durchziehprozel3 erfat wird. Dieses Verfahren bricht nach
endlich vielen Schritten ab und es kommt nun alles darauf an, die Ex-
ponenten, die den einzelnen Basiselementen in der Darstellung (1) zu-
kommen, zu ermitteln. Diese Exponenten sind offenbar gleichwertig mit
der Anzahl der Basiselemente einer bestimmten Sorte, die im Zuge des
Durchziehprozesses entstehen. Nun wird aber durch die Indizes (7)
jedem Kommutator eindeutig ein Symbol zugeordnet, das man dadurch
erhilt, indem man an Stelle der Komponenten £, und F, in der
symbolischen Schreibweise der Kommutatoren einfach die entsprechenden
Indizes setzt. So wird z. B. dem Kommutator (F},,, F,)) das Symbol
(¢, j) zugeordnet. Die Frage ist also, welche Relationen zwischen den
Zahlen eines solchen Symboles bestehen miissen, damit es zu einem
Kommutator gehoért, der im Durchziehprozel wirklich auftritt. Der
gesuchte Exponent ist dann gleich der Anzahl der Loésungen in natiir-

) vgl. [5], § 3.
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lichen Zahlen, die den Bedingungen geniigen. Die Relationen, denen
die Symbole zu unterliegen haben, kénnen nach Hall rekursiv bestimmt
werden — man findet sie in der genannten Abhandlung von Hall auf-
gezdhlt — so da} wir sie jeweilen ohne Begriindung einfach iibernehmen
konnen.

In der Ableitung der Formel (15) hatten wir friither bereits alle Kom-
mutatoren der Form (13) beriicksichtigt.

Wegen der Anwesenheit von 2-ten Kommutatoren bleibt noch der Bei-
trag eines Kommutators von zwei Kommutatoren der Gestalt (13) ab-
zuschédtzen. Aus (37) ergibt sich sofort, daB die Dimension in = dieser
Beitrige hochstens p — 2 sein kann, so dafl wir diese Beitrége gar nicht
zu bestimmen brauchen.

Wir gehen weiter zum Analogon der Formel (16). Man hat hier noch
den Einfluf der Kommutatoren zu beriicksichtigen der Form

P

(a,b+1) 'P(a,b-*-w)) =

% b 3 E 3
(i1) G0 G 11) () () (7,) )
= ((P(;fb) » Boayr ++» Bon ) (P(a,lm s Boys oo Boy ) - (49)

Als Existenzbedingungen ergeben sich nach Hall
<ip ;5 1<O< @5 1< <%
1<ji<fp<---<ju<y(0,1); I<if<ir<---<jn<y0,1).
Man findet als Zahl der Losungen
(x(a,b)) (?/(0.1)) (y(o,l))
2 T, Ty

und mit Beriicksichtigung von (29) die Zahl

z
%((a,b411), (a,b+12)) < (zé, b)) <?/(o, 1)) (%o,l)) (46)

7 T2

Entsprechend liefert die Entwicklung (17) noch Beitrige der Form

Za,0)\[Ya,0 '?/(1,0)
“((a+el,b>,(a+ez,b>)( 9 )( 0. )( o ) - (47)
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Die Bedingungen mit ¢, = 4;' konnen wir in beiden Fillen unberiick-
sichtigt lassen, denn ihre Dimension in z ist nur a 4+ b<2(a + b).
Fiir das Produkt ergibt sich noch die einfach zu bestétigende Formel :

Z(a, b) Ye.d) _ pYlc,d) Z(a,b) p¥((a.b), e¢.d))%(a,b) Yc.d
Bap) * Bedy = Fey * Baypy £ (@0 oM T@DTED 0 (48)

Bringt man nun die linke Seite von (14) auf die Form (1), so ergibt sich
aus f, , mit a+b<p in (18), daB beim Durchgang von F§4:» und
F{%* nur die nachfolgend aufgezéhlten Terme erster Dimension in ¥
entstehen :

L %, -1 Yo, (@, b0—12>1)

2. x(a—-l,b) y(l,O) (a’ — 1 ’ b > 1) (49)
x

5. ("40) v ®=1

Fir a + b = p ergeben sich hieraus wegen (29) die Terme

L &e.p—e—1), 01)) Tep—e—1) Yoy (@=1,2,...,p— 2)

2. X—1,p—0), 1.0) Te—1.p—0) Yo, (€=2,3,....,p =1 (50

L1,0
3. X(@—21.@0) (p(———)l) Yo,1)

Es bleibt iibrig, den Durchgang des Elementes F7%® zu verfolgen,
denn alle andern wiirden die Dimension 1 in y erhéhen. Mit Beriicksichti-
gung von (48) folgt aus (49):

Lo %@, ) TUa,o—1) Y0,1) Te,a) (@,b—12>1)

2. X0, @) Ta—1,0 Ya,0 Te,a (@—1,b=>1) (51)
x \

3. %((a,b), (c,d))( (;0)) Yo,1) T, (b — l)

Aus (46) und (47) ergeben sich noch die Terme

Z(a,b
4. X((a,b+1), (a,b»( ‘g' ’) Y,1)
(52)

x
5. X((a+1,b), (a,b))( (g’b)) Ya,0n

34



Beachtet man die unter Satz 3 festgelegte Anordnung der P, ., so

findet man zufolge (51) und (52) fiir die natiirlichen Zahlen «, b,

leicht die Bedingungen

c,d

1. a+b= Z)-; c+d:?——%-—1-;c>a;a+c::g;b+d:p—g.
(Q:2> . :p°"2)
2. a+b::;£j_—1 ; c+d="~~;¢c>a—1; at+c=p; b+d=p—p.
e=2,...,p—2)
(53)
3. a4+ct+d=p—1; cH+d<a+1l; at+c=p; d+1=p—p.
(0=2,...,p—-2)
p—1
4. a+b="_"1; 2a=9; 2b+1=p—p. (0=2,...,p—2)
- p—1
5 a-4 b= 5 2a+1=¢; 2b=p—0. (0=2, ., P—2)
In (50), (51), (52) und (53) haben wir alle Glieder aus f(x;y) vor
uns, die in z von der Dimension p — 1 und in ¥ von der Dimension 1
sind. D.h. es gilt eine Entwicklung der Form :
X(p—2), 0.1) Ta,p—2) Yo,1) } L
T %(e.p—e-1), 0,1) Tie.p—e—1) Y0,1 T Xe—1,0—0), 1.0) T(e—1,0—0) Y1,0)
e—1 p—e
(. emy) ((6F))
e—1
T2 (54)
=~ oyre+1 —e
D (G ) I
TP, ~——+<z—1)) (e 40,258 ) Yo
—3
2
+ ¥ agre+1 — e—1 . p—e
= (G ). (e )
. x< p—0+ ) ( p—-e r) Ya,o0
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+ %e.0—e—1), (0,1)) L(o.p—e—1) Y0.1)

T %(e—1,p—0), 1,0) Fe—1,p—0) Y1,0)

-+ oc((e ’p—e-i—l) (e p—e—l))( _9..1) ) Yo,1

g2
2
+ t§=:1 “(('ez”“’g#—w), (%4_,,1"';'—1__1))
.w('§+r,r—2e—1__,) x(%—z,?—:f—ﬂh) Yo,1)
e—4
2
T2 ((E- 2 ), (L 4s. 2782 00)

+ %((e,p—e—1), (0,1)) ¥(e,p—e—1) Y(0,1)

+ %((e—1,0—0), 1,0)) Te—1,p—0) Y1,0)

S GO NCE T R K

p—0—2
2
T E ) (e )
w(e-; +”?:§-'Q'_‘) x(g‘g—]:—(f—-l) p;e +1—-1) Yo,1
»—e—2
2.
-+ t%l a((g:;_}“ p-2—0+) g_—:"‘-__l_+ pze_t))
G N e
.
D () B = N,
Z(1,0)
x(eu—’-’-;'———-r p-—~e~1) (pgl )y(o 1))
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+ X% (e.p—e—1), 0,1)) (e, p—e—1) Y(0,1)

T Ke—1,0—0), 1,0)) T(e—1,0—0) Y1,0)

-+ “((%’p——zeﬂ), (e p-e 1))( % ’p_—e—_l)> Y0,1)
p—e=3

T A K@) (f R )
11—20——3

T (e ) (S 2 )
o 21

A KR re) (- = en))

2
Z@,0)
) m(Q——g—;—r,p*—Q—-l) (P — 1 + 1_) Moot
2

+ %w—2,1), 1,0) Tw—2,1) Y1,0

Z(1,0)
T %(p—21), @,0) (p 1) Yo,1

VI

(54)

Hierbei haben wir die Ausdriicke gemif} (38) zusammengefa3t und der

Giltigkeitsbereich der Beitrige II.—V. ist gegeben durch

II. p-g>£—§i ; p—o st gerade
III. p—o > ?_—;i ; p—o 15t ungerade
p—1 .
IV. p—po < —5— P—e st gerade

V. p—9<?:——£; p—p st ungerade

Unter Verwendung dieser Entwicklungen bestimmen wir " (x)

(55)

induk-
tiv wie bei der Ableitung von (19). Nach (19), (21), (25) und (43) folgt :
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P — 2 p—1
*(@,p—2), (O.,1) (p _ 2) Te,00 Leo,1)
»—2
p—2 p—2
B frrcn oy Ty )+ anll
95:‘2 (e.p—e=1. O \p 5] ((e—1p—e), Wl o
() = ;

) 4 jler-o p+1 (p—2 22 g2
2 p — Q (1:0) (031)

+ X(p—2,1), on( j ""(1 o> Z(0,1)

(56)

Die Richtigkeit des ersten und letzten Ausdruckes in (56) ergibt sich
sofort aus (19), denn hier féllt der Einflufl der 2-ten Kommutatoren weg.
Die Giiltigkeit der andern Fille beweisen wir, indem wir §"(x);; und
F"(x);y in die Form (20) iiberfithren. Die Fille F*(x);;; und F"(x)y

ergeben sich dann analog.

Wendet man f(x ;y);; auf (21) an, so hat man wegen (19) und (43)

& (@) = @)y

n — 1 P — o p—o—1

n— 1\ (p e—1 p—e
+“((e-—l,p—-e),(1,0)){( ><p )(10) To,1) T ;“’(10)

pP—
1 p—3 e—1 p——e
o — p—1) \ p—e (1,0) (o, 1)
+ (—1) * KOO\ \ (1,0
2
9-‘1 2 —3 —3
n—1 p—>o P—o
(ep Q) - 2 2 p—e
+ 2 (—1) 0 Za,0 Zo.1)
p-—1 P—eo_. p—e+(r_ 1)
2 2 2
e—3 2 [ p—3 p—3
2 p—1 n—1 T 5
— ,(e,p—0Q) 2 2 e p—¢Q
+ X (=1 k (1,0 T0,1) T
7 =1 p—1 P—¢_.J\P—¢. .,
B 2 2

Nun gilt die Formel

()3 =2
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Hieraus folgt e 1.2 nx p—1
> (p—1)=< )(p—1)+"‘ (59)
e=1\ "2 P/ \"o~

Beachtet man noch, daf3 stets

(p—k' 1) =(—1)* modp, (60)

so erhialt man aus (56) bei Summation iiber »

_[n p—2 e p—e
5" (2)1 = (p) X((e, p—e—1), “””’(p —o— 1) (1,0 Z(0,1)
n p—2\ e p—e
+( )OC —1,p—e), (1,0 ( )931,0550,1
p ) Mt ami, ] FaoTen
p—3\ 2
n p+1 2 e p—e
+ (p) 2 | p—p ] Two Ton
2 (61
e pa | 2 ’
n 2 2
4 ( )k(e,p——e) c(p+1- xel o x?P—C
N B — s 0!1
P, §=1 29_25)__1 p29+(r—1) (1,0) 7 (0,1)
e2/, p—3 p—3
n 2 2 T2
+( ),Ic(e.p—e) . (p + 1) . 2 xel . x”“’f

Nach dem Additionstheorem der Binomialkoeffizienten konnen die
letzten drei Ausdriicke zusammengefaflt werden zu

L o [ R O | B (O L o
fte,p—e) 221~ — k(e,p—e)
(p) 2 p—e+(p—e——1 P 2 \p—o

womit (56) II vollstdndig bewiesen ist.
Zum Beweis von (56) IV brauchen wir nur die Umformung fiir den

letzten Summanden anzugeben, denn die andern konnen wie vorhin
behandelt werden.

Nach (19) und (43) hat man fiir den letzten Ausdruck in " (x);y

_p+1 4
n (7 3 2:_11( )(8—1)(8_1><p2 _r>9 e
> —1) 2 KOO 51 —1 Ty oy X2 (62
£=1 Eo (=1 7’_2___.[ p2 +7) \p-p—1 1,0 % (0,1 ((62)
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Nach (58) gilt aber

n e—1 e—1 n p—1

Dies liefert zusammen mit (60)

—P p—3 p—3 p—3
(62) = (p+1) X ( 2 )=(p+1)( 2 )+(p+1)( 2 ) (63)
=0 Ap-e-1 p-e-1 p—e

Nach den vorigen Bemerkungen ergibt sich hieraus nach leichter
Rechnung auch die Richtigkeit von (56) fiir " (z)ry -

Die entscheidende Relation (56) ist damit in allen Teilen bewiesen. Die
Relationen B lauten jetzt gemaBl (39) und (56):

X(1,p—2), (0,1)) = 0 X(@-2,1),1,0) = 0 (64)

p—2 p—2
“((e ,p—-—Q-—l) H (0’1)) (p g Q — l) + 0‘((9'—1,29—9) ] (130)) (p —— Q)

phero BELETH =0 (g—2,3,..0-2). (@)

Die ersten beiden Kongruenzen in (64) besagen nach (4) und (13):

b.Satz : In endlichen Gruppen, deren Elemente der Gleichung a? = 1

geniigen, gilt mod H, , die tdentische Relation (x,y,y,...,y) =1.
p—1

Dies ist die bekannte Identitidt von Zassenhaus'®), die bisher nur auf
dem Umweg iiber die Theorie der Dimensionsgruppen von Zassenhaus
und Griin %) bewiesen wurde.

Als Korollar zu Satz 5 notieren wir noch : Es gibt eine groBte endliche
Faktorgruppe von B, ;. Sie ist von der Klasse ¢ = 2 und besitzt die
Ordnung 32 7).

Aus der Form (56) liest man nun ohne weiteres ab, daf3 die Erweite-
rung (29) im Maximum auf p — 3 verschiedene Weisen durchgefiihrt
werden kann, entsprechend den p — 3 Kommutatoren erster Stufe vom
Gewicht p, die sich in den Gewichten der P, o, und P, ,, unterscheiden.

15) Vgl. [11]. 1) Vgl. [4], p. 169. 17) Vgl. [2] und [7].
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Wir fiihren deshalb p — 3 neue Basiselemente ein durch die Fest-
setzung
“((Q—l,p-—e),(l.ﬂ)) E 1 (922,3, ...,p"“z) . (66)

Nach (4) bedeutet es keine Einschrinkung der Allgemeinheit, wenn
wir noch die Bedingungen hinzufiigen

K, pin, o =0, (a+b+2<p) (67)

denn dadurch erreichen wir offenbar, daf3 die zugrunde gelegte U-Basis
die Eigenschaft (4) besitzt.

Wir beweisen, dafl unter diesen Umsténden die Kongruenzen (40) und
(65) genau eine Losung zulassen.

Nach (43) und (66) erhdlt (40) die einfachere Gestalt

1+ K@= = *((e, p—e-1), (0,1)) ° (68)

Fiir die beiden Unbekannten erhdlt man aus (65), (66) und (68) die
schonen Kongruenzen

9o 1L 1) =p—2 modp (0=2,3,...,p—2) )
(69
0‘((9,1,_9_1),(0,1))(9—](— l) = Q—']. mOdp (922,3)0.',p—'2)

aus denen hervorgeht, dafl die einzige existierende Losung == 0 mod.p.
Die Kongruenzen 9§ konnen daher nach (66) und (69) befriedigt werden.

Wir beweisen, dafl mit den Anfangswerten (43) die Kongruenzen U
eindeutige Losungen zulassen. Offenbar brauchen wir den Beweis nur
fiir (32) und (33) durchzufiihren, denn die Kongruenzen (31) sind dann
immer losbar.

Falls ¢« +b6+c¢c+d -+ 1= p, soist die Losung von (32) und (33)
durch (43) gegeben. Wir wollen nun annehmen, es sei gelungen, diese
Kongruenzen mit den Anfangswerten (43) zu losen in allen Féllen, wo
a+b+c+d+1>7 mit 1<r<p.

Dann betrachte man die Gesamtheit der Kongruenzen (32) und (33),
sodaB ¢a+b+c+d+1>1—1, und fasse alle Kongruenzen zu
einer Klasse zusammen, die aus (32) und (33) durch eine Transformation
der Form

T: a->a+4+9¢; b>b+71; ¢c>c—p; d—>d—1v (70)
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mit ¢, 7 =0, 41, 4+2,... hervorgehen. Aus dem Bau der Kongruen-
zen geht hervor, daB auch die o} ; dadurch eine Klasseneinteilung er-
fahren haben, so dal} eine Konstante nur einer Klasse angehort. Wir
brauchen daher nur die Losbarkeit der Kongruenzen einer solchen Klasse
nachzupriifen, d. h. wir haben lediglich den Eindeutigkeitsbeweis zu
fithren, denn durch eine Grofle einer Klasse sind alle andern gewi(
bestimmt. Sei etwa «(; 5 (¢, ) Wit a+b+c+d=7—1 bekannt.
Dann sind es gemifB (32) und (33) auch die GroBen (11,4, c—1.4))
und o4 511y, (¢,a—1))> denn man hat offenbar

“((a’b)’(c’d)) + (x((a—}-l,b),(c-—-l,d)) + “((a-{-l,b),(c)d)) E 0 (71)

*((a, ), (c,2)) + X((a,b+1), (¢,d—1)) + X((a,b+1), (c,d)) = 0

und die letzte Grofle in beiden Kongruenzen ist nach Induktionsannahme
bereits im. gewiinschten Sinne bestimmt. Wie man aus (70) erkennt, ge-
niigt es, wenn wir zeigen, dal dann auch & ;.1 511y, (c—1,4—1y) €indeutig
bestimmt ist. Es gelten die Beziehungen

|
=

X((@+1,8), c—1,d)) T %((a+1,b+1), (e—1,d—1)) T K((a+1,0+1), (c—1,d)) =

|
o

X((@,b+1), (¢,d—1)) T ¥((a+1,041), (c—1,d—1)) T F((a+1,b+1), (c,d—1)) =

Dies fithrt mit (71) auf die Relation

X((a+1,8), (c,d) T F((a+1,041) (e,d—1)) = ¥((a+1,b41), (ce=1,d)) T *((a,b+1),(c,d))

Nach Induktionsvoraussetzung ist dies eine richtige Kongruenz, wo-
mit die Losbarkeit der Kongruenzen Y bewiesen ist.

Zusammenfassend flieBt aus den vorgetragenen Uberlegungen nach
Satz 2 das allgemeine Resultat :

6.Satz : Zu jeder Primzahl p +# 2,3 existiert eine 3-stufig metabelsche
Faktorgruppe von B, , der Ordnung p(g) und von der Klasse p.

§ 3. Die maximale Faktorgruppe von B, ; der Klasse 6

7.8atz : Die Gruppe B, ; ¢ ewistiert und besitzt die Ordnung 5. Sie
kann folgendermafen durch Erzeugende und Relationen defimiert werden :
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Qe
Qs
Q,
Qs
Qs
Q
Qs
Qs
Qo

Qs
Qs
Qs
Qs
Qs
Qs
@s
QIO

Q4
@s
Qs
Q-
Qs

Qs

Q1=Q1 Qz Qa

Q1 - Q1 Q3 Qs
Q= () Q@ Qs
Q1 = Ql Qs Q7
Ql = Q1 Qs Qla
Q1 = Ql Q7 Qg

Ql — Ql Qs Qio
Q1 = Ql Qs Q;a

Q1 = Ql Qlﬂ 11
Q, = Q. Qa Qs
Qz = Qz Q4 Q?
Qz = Qz Q5 Qs
Qz = Qz Qs Qs
Qz = Qz Q': Qm
Qz = Qz Qs :;2
Qz = Qz Qg Qn
Qz = Qz Qm le
Qa = Qa Q4 Qs
Q3 = Qa Qs ng
Qs = Qs Qe Q13
Qs = Qa Q7 Qm

Qa = Qa Qs Qiz
Q4 = Q4 Qs Q‘h

Qr = 1 1<k

<14) -

Q9 Q?.O le Qi2 Ql3 :;.4

‘il Q]2.3 Q14
2
Qll Q:;2 Q14

Q1

(72)
Q;l Q13
Q:Z Ql 4

Q14

Alle andern Basiselemente sind miteinander vertauschbar.

Beweis. Setzt man @, = @, = @3 = @y = 1, so ist die aus (72)
hervorgehende Faktorgruppe gerade die in 11, § 2 konstruierte Gruppe.
Denkt man sich niamlich die U-Basiselemente durchnumeriert, so lauten
die Relationen A und P (vgl. (31) und (69)):

9 s __ 9
X2 T ¥a,3 =%s,1)

9 s
Xg,2) T %,3) = %a,1)

9

Bed =1 .

10 10 10

Ka,0) T Xs,3 = %1
10 10 __ 10
K(7,9) T X5,3) = Kg,1)

k. — 9 |
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Hieraus berechnet man mit (67) die in (72) angegebenen Konstanten.
Die maximale 2-stufig metabelsche Faktorgruppe von B, , fillt fiir
p =>5 zusammen mit B, ; ,. Nach dem in I, § 3 skizzierten Verfahren
bestimmen wir jetzt B, ; ,.

Wir finden als Relationen U :

a) x5+ Kae T Xee T+ X = &,0)
b) %6, T X(z,3 T %43 = &1
c) 2010,9) + %(9,2) T *s,3 + ®@,3 T %53 = X1
d) (6,3 = X(9,1)
_ (73)
e) X (2,3) + 20(9,2) = &10.1)
f) X(g,3 T 3K, = 0
g) X, T %a,p = 20a0,1)
h) X(7,3) = &5,0) T X9 2)
Als Relationen P finden wir:
a) X0,1) T 2%(7,3 + 205,49 =0
b) 3oy + 4o T 4K T30 + 2003 + 4554 =0
c) *@, T 3x@n +3x0 t4xqo,n T+ %, + 3%;e =0
d) %g,3 1 3% 0,2 = 0 (74)
e) g + xen =0
f) Bo(o,) + 4xg 2 =0
g gy + %@ =0

Die Kongruenzen ‘B entspringen der folgenden Entwicklung von
&"(2):
5@ = (3 ) () a-aal+ () b-afal + (ol +
+ (714)d- 252+ (T4)e- 252 +
+ (64)f - abw, + (T4)g- wyal) +- - - (75)
Wie man leicht nachpriift, sind die Kongruenzen (73) und (74) losbar.
Vier Konstanten, die vier unabhingigen Basiselementen entsprechen,

bleiben frei wihlbar. B, ;¢ existiert somit und besitzt die angegebene
Ordnung 5%, womit alles bewiesen ist.

18) Man hat sich hier die linken Seiten der Kongruenzen 74 a, b, ¢, d bzw. ein-
gesetzt zu denken.
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