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Hyperbolische Système

von partiellen Differentialgleichimgen
mit konstanten Koeffizîenten

Von Erwin Bareiss, Zurich

Einleitung
Herr Rudolf Fueter und seine Schûler haben in den letzten fùnfzehn

Jahren die Théorie der hyperkomplexen Funktionen aufgebaut und sind
in verschiedener Hinsicht zu weitreichenden Resultaten gelangt. Unter
anderem eignen sich die hyperkomplexen Funktionen zur Lôsung von
gewissen Systemen partieller Differentialgleichungen, indem nun nicht
wie bisher zu einer gegebenen Algebra die zugehôrigen Bedingungsglei-
chungen gesucht werden, sondern umgekehrt aus dem Difïerentialglei-
chungssystem als Bedingung die zugehôrige Algebra konstruiert wird.
Die vorliegende Arbeit soll in dieser Riehtung einen Beitrag zum weitern
Ausbau der Funktionentheorie und ihrer Anwendungen liefern.

Im nachfolgenden ist untersucht worden, welche Système mit der
heute vorhandenen Algebra gelôst werden kônnen. Dabei kommt man
u. a. zum Résultat, daB sich die inhomogenen Système fast ebenso ein-
fach lôsen lassen wie die homogenen. Wesentlich ist, daB die relativisti-
sche, d. h. die invariante Schreibweise umgangen werden kann, ohne
daB darunter der klare Aufbau leidet. Die bisherigen, entsprechenden
Losungsmethoden muBten aber zwangslàufig zur erwàhnten Schreibweise

iibergehen, wie im Verlauf der Arbeit gezeigt wird. Wer schon
einmal praktisch mit solchen Tensoren gerechnet hat, weiB wie âuBerst

mûhselig die Durchfiihrung auch der einfachsten numerischen Rechnun-
gen ist. Die Zulassung inhomogener Système fûhrte auch auf den erwei-
terten (Cauchysehen) ersten Integralsatz. Will man nun den zweiten
Integralsatz finden und stellt eine weitere Forderung an die integrierende
Funktion, welche eine élégante Lôsung garantiert, so ist dièse Funktion
eindeutig bestimmt. Betrachtet man schlieBlich die Hadamardsche
Théorie von einem etwas anderen Gesichtspunkt aus, fiihrt neben dem
beschrânkten Anteil auch einen logarithmischen Anteil ein und verwendet
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môgliehst gûnstige Approximationsflâchen, so erhâlt man ein Lôsungs-
verfahren, das an Klarheit nichts zu wiinschen ûbrig lâfit.

Die vorliegende Arbeit wird zweckmâBig in die folgenden Paragraphen
eingeteilt :

1. Einteilung der Système partieller Differentialgleichungen.
2. Définition und Existenz des Multiplikators ersten Grades.

3. Transformation der Système mit einem Multiplikator ersten Grades auf
die Normalform und deren Eigenschaften.

4. Algebren.

5. Operatoren. Klassifizierung der e- und e-Funktionen.

6. Der verallgemeinerte erste Integralsatz.
7. Der verallgemeinerte zweite Integralsatz fur elliptische Système (Rand-

wertproblem elliptischer Système).
8. Die Grundlagen fur den zweiten Integralsatz oder das Anfangswert-

problem inhomogener einfach hyperbolischer Système.

9. EinederHadamardschenéquivalenteLôsungsmethode.Derbeschrânkte
und der logarithmische Anteil.

10. Der zweite Integralsatz fur inhomogene einfach hyperbolische Système.

1. Einteilung der Système partieller Differentialgleichungen

Allgemein kann man ein System von partiellen Differentialgleichungen
mit konstanten Koeffizienten in der Form

m—1 n—1 fis» n—1

2 2 «**-5-i + ^ 2 *.*«* /. (» o, î, n -1)

darstellen, ^wo die a\k und btk die konstanten Koeffizienten, die

uk uk(x0,..., xm_1) die n gesuchten Funktionen, X einen skalaren
Parameter und ft ft(xOi..., xm_1) eine der n verschiedenen Stôr-
funktionen bedeuten. Dièses System kônnen wir auch in Matrizenform
schreiben, falls

und /=

als Vektormatrizen aufgefaBt und unter den
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n-10~dxh n~xldxh

(h 0, 1, m — 1)

m Matrixoperatoren verstanden werden. Perner sei

dxh

eine Koeffizientenmatrix. In diesem Fall lautet das System von Diffe-
rentialgleichungen

Um nun fur das Polgende eine zweckmâBige Einteilung vornehmen zu
konnen, ordnen wir jedem System L u die sogenannte charakteristische

Déterminante F zu, indem wir formai -=— durch xh ersetzenx)
ôxh

m—1 m—1 m—l

a0 n—1

n-10 xh an-ll xh

m—l
A-h xh

Das heiBt also praktisch, daB wir die i-te Differentialgleichung nach den

gesuchten Funktionen uk ordnen und zusammenfassen, und dann die

~° durch xh ersetzen. So ergibt sich das Glied in der Zeile i und in der
oxh
Kolonne k. Dièse Déterminante hat nun die wesentliche Eigenschaft,
daB sie mit dem gegebenen System L derart verbunden ist, daB bei einer
beliebigen Transformation

xh — xh(x0, xm_1)

x) Rudolf Fueter: Funktionentheone îm Hyperkomplexen, ausgearbeitete Vorlesung
(Wintersemester 1948/49), S. 42 fï.

Courant-Hilbert : Mathematische Methoden der Physik, Sprmger, Berlin 1937, Band II,
Kapitel III, § 4.
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der urspriinglichen Variablen die neue eharakteristische Déterminante F
wieder in derselben oben beschriebenen Art dem neuen System L zu-
geordnet ist, falls in der alten charakteristischen Déterminante F gleich-
zeitig die lineare Transformation

vorgenommen wird. Ebenso ist F auch gegen die elementaren Umfor-
mungen sowie die Einfuhrung neuer linearer Kombinationen der Diffe-
rentialgleichungen und der gesuchten Funktionen bis hôchstens auf einen
konstanten Faktor invariant. Somit ist die folgende Unterscheidung
naheliegend.

a) Es ist durch eine geeignete lineare Transformation

^, /
h —" ^ ¦ h h h

(*)

môglich, die eharakteristische Form F 0 auf weniger als m Variable
zu reduzieren. Ein solches System heiBt parabolisch ausgeartet und ist
unter b, c und d ausgeschlossen.

b) Besitzt die eharakteristische Gleichung m-ten Grades F 0 fur
kein xh eine réelle Lôsung auBer x0 — • • • xm^x 0, so ist das System
total elliptisch. Besitzt das zugehôrige System L einen Multiplikator ersten
Grades (dessen Définition sich in Paragraph 2 findet), so heiBt das System
einfach elliptisch. Dièse Système sind fur / 0 von Herrn Kriszten in
einer soeben erschienenen Arbeit untersucht worden, und die vorliegende
Définition ist mit derjenigen von Herrn Kriszten âquivalent2).

c) Ist es aber môglich, durch eine geeignete lineare Transformation
die Variable x0 so auszuzeichnen, daB sie fur beliebige réelle Werte der

ubrigen Variablen xx,..., xm_x in F 0 m réelle (auch mehrfache)
Wurzeln hat, so sprechen wir von einem total hyperbolischen System.
Geometrisch bedeutet dies, daB der eharakteristische Kegel F 0

durch jede Ebene x{ const. in m reellen (m — 2)-dimensionalen
Mannigfaltigkeiten geschnitten wird.

Wir betrachten nun speziell eine reduzierbare eharakteristische
Déterminante F, die sich in der Form

r^r^r^^Fnt

2) Adolf Kriszten: Elliptische Système von partiellen Difïerentialgleichungen mit
konstanten Koeffizienten, Comm. Math. Helv. vol. 23, 243.
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darstellen lâBt, in welcher die Fk irreduzible quadratische Formen 3) dar-
stellen. Existiert nun auch hier ein Multiplikator ersten Grades, so heiBen
die totalhyperbolischen Système einfach hyperbolisch.

d) Die verbleibenden môglichen Système heiûen (total) ultrahyper-
bolisch. Dièse Système sind ihrer Natur nach viel komplizierter und vor
allem deshalb weniger von Interesse, als in der mathematischen Physik
keine ultrahyperbolischen Système bekannt sind.

Unsere Systematik ist selbstverstândlich auch gultig, falls die Koeffi-
zienten Funktionen des Ortes sind, jedoch gilt dann die Einteilung nur
gerade an der betreffenden Stelle. — SchlieBlich sei darauf hingewiesen,
daB wir stets réelle Koeffizienten vorausgesetzt haben. Dies ist insofern
keine Einschrânkung, als sich komplexe und hyperkomplexe Système
stets auf ein réelles System reduzieren und so klassifizieren lassen. Ebenso
kônnen komplexe Lôsungen in réelle Differentialgleiehungen aufgespalten
werden, so daB auch aile Komponenten uk als reell zu betrachten sind.
Man beachte ferner, daB sich stets Gleichungen hôherer Ordnung auf
Gleichungen erster Ordnung reduzieren lassen.

2. Définition und Existenz des Multiplikators ersten Grades

Im folgenden soll ein Gedanke von Harry Malmheden 4) verallgemeinert
werden, um daraus einen wichtigen SchluB liber die Auflôsbarkeit von
Systemen partieller Differentialgleiehungen mittels hyperkomplexer
Funktionen zu ziehen.

Wir gehen aus von einem System partieller Differentialgleiehungen
mit konstanten Koeffizienten und von beliebigem Typus

(m-i
g \

n=0 v%h l
und betrachten vorlâufig nur die linke Seite des Systems. Zu jeder
Operatorenmatrix L mit konstanten Koeffizienten kônnen wir eine ad-

jungierte Matrix L* bilden, deren Elemente die (n — l)-reihigen Unter-

3) DerFall, wo sich F in lineare Faktoren zerlegen làBt, ist nicht intéressant, da sich
fur #0 t zum Beispiel eine unendliche Fortpflanzungsgeschwindigkeit des Lichtes in
gewissen Richtungen ergeben wùrde, mit Ausnahme des Falles m 2, wo der Kegel
natùrlieh immer in ein Geradenpaar zerfàllt und die Ausbreitungsrichtung von selbst
vorgegeben ist.

4) Harry Malmheden : A Class of Hyperbolic Systems of Linear Differential Equations.
Meddelanden frân Lunds Universitets Matematiska Seminarium, Band 8, 1947.
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determinanten von L sind. t)ben wir den Operator L* von links her auf
L u aus, so ergeben sich (nach Paragraph 1) nur erlaubte Operationen.
Also wird

L*L=\L\E 9

wenn wir unter | L \ die Déterminante des Systems L und unter E die
Einheitsmatrix verstehen. Somit geniigen die Komponenten der Vektor-
matrix u den folgenden Differentialgleichungen, wenn wir wieder die
Matrizenschreibweise anwenden :

wo /* L*/ wiederum eine bekannte Funktion darstellt. Hierdurch
sind die unbekannten Funktionen uk (k — 0, 1,. n — 1) separiert
und kônnen einzeln aus der Difïerentialgleichung n-ter Ordnung be-

stimmt werden. Hieraus entsteht die

Définition: Jeder Operator, der das System L auf die Diagonalform bringt,
heifit ein Multiplikator. L* ist ein Multiplikator (n — l)-ten Grades.

a) Hinreichende Bedingungen fur einen Multiplikator ersten Grades.

Mit unsern Matrix-Operatoren kônnen wir rechnen, als ob es algebra-
ische Gebilde wâren. Wir versuchen nun, einen Multiplikator von môg-
lichst niedrigem Grad zu konstruieren, das heiBt also, aus der Déterminante

| L | môglichst viele Faktoren herauszuziehen. Hat nun | L \ ein
Teiler T, so muB L* nicht unbedingt denselben Teiler auch haben. Ist
aber ein Faktor T in allen Unterdeterminanten enthalten, so kann dieser

aus | L | und aus L* herausgezogen werden, so daB sich wieder ein

Diagonaloperator ergibt :

der aber einen niedrigeren Grad in^— •=— • • • besitzt. Wir interessieren
oxh oxk

uns vor allem fur einen Teiler T vom Grade n — 2 und fur den Multiplikator

M vom ersten Grade, den wir wie folgt definieren kônnen :

JL*

-^p M (Définition)

wobei sich nun M wieder in die allgemeine Form
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zerlegen lâBt, indem man aile Elemente mit denselben ^— als symbolisch-
oxk

skalaren Faktor zu einer Matrix zusammenfaBt. Da nach der Définition

L* T-M
ist, mu8

sein, wo Fo einen allgemeinen m-dimensionalen Kegelsehnitt symboliseh
darstellt

d \ m~x a2 "^ d

Fo soll entsprechend unserer Bemerkung in Paragraph 1 irreduzibel an-
genommen werden. Aus

und

wird

und somit
pn—l

\M\= -~°—

Nun haben wir Fo vom zweiten Grade und irreduzibel vorausgesetzt ;

| M | ist vom Grade n in ^— und T vom Grade n — 2. î7 mu8 somit

Potenz von Fo sein bis auf einen konstanten Faktor c

71 _ px

Der Vergleich der Exponenten auf beiden Seiten liefert

als notwendige Bedingung fur T, und weiter

Damit erkennt man auch die hinreichenden Bedingungen fur einen
Teiler T und wir haben folgendes bewiesen :
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Soll das lineare Differentialgleiehungssystem Lu f einen Multipli-
kator ersten Grades haben, so ist Mnreichend

n21 o

II. Aile Unterdeterminanten von | L | sind teilbar durch JT02

b) Die Notwendigkeit der Bedingungen I und II,
Wir gehen davon aus, da8 das System

Lu=f
den Multiplikator ersten Grades M besitzt. Daher ist

MLu Fou

wobei Fo als irreduzibel und m > 2 vorausgesetzt wird. Aus der Matrizen-
darstellung

ML ro-E

wird die Determinantendarstellung

wenn man •=— durch xk ersetzt. Da links zwei Polynôme vom Grade n

stehen, ist also notwendig

\\ fI. n (c const.)

\M\ r}--
Daraus aber folgt ferner die wichtige Eigenschaft, daB L und M bis auf
einen konstanten Faktor dieselbe charakteristische Mannigfaltigkeit
haben, so daB auch wiederum (ML) genau denselben charakteristischen
Kegel besitzt.

Die Bedingung II verlangt die Teilbarkeit der Unterdeterminanten
»-i

durch Fq Dièse ist ebenfails erfûllt ; denn aus

2-i
folgt durch Multiplikation mit F£ c (c const.)
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Ferner ist

V L | L | • E if • JE • c

n

V

wobei wieder dieselbe Konstante c wie unter I verwendet wird. Die Diffe-
renz der beiden Zeilen gibt

o

Da naeh Voraussetzung L nicht die Nullmatrix ist, ergibt sich

n

womit II als notwendig erwiesen ist.

Satz : Fur die Existenz eines Multiplikators ersten Grades ist daher
notwendig und hinreichend bei irreduziblem Fo

n

II : Fq teilt aile Unterdeterminanten von L

Dieser Satz wird von fundamentaler Bedeutung werden fur die Beant-

wortung der Frage, ob fur ein System von partiellen Dififerentialgleichun-
gen die Môglichkeit besteht, mittels hyperkomplexer Funktionen das

Rand- bzw. Anfangswertproblem zu lôsen.

3. Transformation der Système mit einem Multiplikator ersten Grades

auf die Normalform und deren Eigenschaîten

Wir nehmen an, da8 das System

\A-0
den MultipKkator

m-i

besitzt. Dann ergibt sich sofort
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MLu rou
oder

!m—1
32 m-i

oxhdxk A=o

Fiir den mittleren Teil dieser Gleichung ist bekannt, daB sich der zu-
gehôrige algebraische Ausdruck von Fo durch eine richtig gewahlte
affine Transformation

m—1

»» -2 thkxk

in die kanonische Gestalt liberfuhren lâBt. Dasselbe gilt auch fiir die
Differentialgleichung, und man erhâlt, falls man die neuen unabhângigen
Variablen le wieder mit x bezeichnet, den Ausdruck

c\ u

Hier sind die b% und c konstante Werte, wâhrend

+ 1 fur i 1, 2,. (i
— 1 fiir i [x -\- l,.. .,m — 1.

Da wir in unsern Betrachtungen den parabolischen Fall ausschlieBen,
kônnen wir auch die Ableitungen erster Ordnung wegsehaffen, indem
wir statt der gesuchten Funktion u eine neue Funktion w durch die
Relation m_1

ut w% e

einfuhren. Nach kurzer Rechnung wird der neue Differentialausdruck
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Wir kiirzen mit exp — J] — x% und setzen

m—X }fi\
— VI2é^ —J >

m-l 6f>II) •

So ergibt sich der

Satz : Bei Betrachtung nicht parabolisch ausgearteter Système von par-
tiellen Differentialgleichungen, die entweder

a) einen Multiplikator erten Grades besitzen oder

b) den Bedingungen I und II genûgen,
kann man sich auf Système beschrânken, die sich durch den Multiplikator
ersten Grades auf die Form

bringen lassen, wobei g* noch zu bestimmen ist.

Unsere Definitionen aus Paragraph 1 lauten nun so :

Ein System von partiellen Differentialgleichungen ist einfach elliptisch,
wenn es âquivalent zu

(A + Km CO*) W==g*

ist, und einfach hyperbolisch, wenn es âquivalent zu

ist.
Dieselben Transformationen, die wir auf das mittlere Glied ausgeûbt

haben, kônnen wir auch auf die andern Glieder ûbertragen. Auf der linken
Seite ergibt die lineare Transformation

iw== \èoBh~te~h+kB)u==7
mit

h > tfri Ai ES 13

und

M (w—1
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mit B* %\ A ¦ H* R***k ^ 2j hiAi »
MS MS

Ersetzen wir links
m—1

m w • e

so wird

tt?

Dies bedeutet, daB das System keine konstanten Koeffizienten mehr hat,
hingegen besitzt bl

V w e ' f= g

solehe. Das neue System errechnet sich also zu

Âhnlich bestimmt man den zu L' gehôrenden linearen Multiplikator

und erhâlt schliefilich als Résultat

M'L'w e Xl".WJ=e '*"' (m' + ^B*\ J= g*

Ohne Verwendung des Hyperkomplexen drângt sich von hier an die
invariante Schreibweise auf, um den bisherigen Formalismus wahren zu
kônnen. Da wir aber zur Herleitung der Cliffordschen Algebra nur die

linke Seite benôtigen und fur die Behandlung des Randwertprobleme
von der Opération M' gar keinen Gebrauch machen, so liegt hier der
tiefere Grund, warum wir auch inhomogene Problème mit Hilfe hyper-
komplexer Funktionen ohne invariante Schreibweise erfolgreich in An-
griff nehmen kônnen. Hierdurch wird also die Ûberlegenheit der
hyperkomplexen Methoden motiviert und die viel einfachere und iibersicht-
licher gestaltete Durchfûhrung der Rechnung erklârt.
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Fur das Folgende ist es bequem, wenn wir unser System noch zweek-
mâôig normieren. Wir setzen daher

Mo M' Bo

Mit dieser Normierung erhalten wir
m-l 3

^ 2 C

ro1__ ^
^"o 2 cfc â h co Cm

wobei

Also wird

oder ausgeschrieben

(w—1
^

jfc=o ^
—l

Cm + Cm Ck) J-+a>*Cm Cm\ w
OX I

Hieraus kônnen wir nun eine Reihe Eigenschaften und Beziehungen der
Matrizen C ablesen.

C0 E

_
?T0 Co x0 E a, 1

c* co + Vock — o
+ 1 fin h= 1,2 fi

n, t »-l fcf
«m sign (c - 2 —
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a) Hyperkomplexe
Die Matrizen

j

Zahlen

/ coo

4.

und

Algebren

Funhtionen im

ch

cïi

e-Raum.

°0 n—1

cl n—1

vn—l 0 Si—1 1 • • • °n—1 w—1,

deuten wir als Einheiten einer Cliffordschen Algebra5) und sehen, daB

aus ihnen die Multiplikationstafel bestimmt ist. Identifizieren wir Ch

mit eh, so haben wir folgende Tabelle :

Haupteinheit : e0 1

Grundeinheiten : et, e2,..., em_l, ern

Cliffordsche Einheiten : ex e2, ex e3,. et e2 e3,. ex e2.. ew

Anzahl der Basiselemente : 2m

Es gelten folgende Relationen :

e\ — 1 fur h 1, 2, p
e\ + 1 fur A // + 1, m - 1

< - ^m ^m sign I c - 2 — I

oder allgemein
2 2

e^ c0 eh (h 0,1 m)

^^m^ — emefc (i= 1,2, .,m — 1)

Die konjugierten Einheiten werden durch Ûberstreichen gekennzeichnet.

eo eo= l ~êh — eh (h 1, 2,.. m)

Fur unsere Betrachtungen genûgen die hyperkomplexen Zahlen aus dem

Linearsystem Qe. m

Qe: z X xh eh
ft-0

5) Ûber eine ausfuhrliche Théorie der Cliffordschen Algebra vergleiche B. Fueter, Vor-
lesung 1948/49, S. lfE. und ûber die Funktionentheorie der Cliffordschen Algebren 1. c. S. 264ff.
Die hier verwendeten Begrijffe stimmen, soweit als môglich, mit jenen der Vorlesung
ûberein.
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Die konjugierte Zahl z ist definiert durch

m

z= Z xhëh

Unter der Norm einer Zahl verstehen wir6)
m

n(z) zH ~zz 2, xhx\
A 0

Man beachte, daB fur xm 0 die Norm von z gerade mit dem charakte-
ristischen Kegel Fo des transformierten Gleichungssystems iiberein-
stimmt.

Wir gebrauchen spâter noch folgende Tatsachen.

1. Ist fur zwei hyperkomplexe GrôBen

m
z J£ ehxh und v £ ehvh

das Produkt zv 0, so ist aueh vz 0. Denn es ist
m m

zv= eoxovQ-Z xhxhvh + Z ehek(xhvk- xkvh) + £ek(xovk + xkv0) =0
A=l 0<h<k *=-l

m

vz= Z

Nach Voraussetzung mussen die Komponenten von jedem Basiselement
fur sich verschwinden. Weil dies fur zv zutrifft, ist folglich auch vz 0,
wie der Vergleich der Komponenten zeigt.

2. Da die Cliffordsche Algebra einer Matrixalgebra isomorph ist, gilt
das assoziative Gesetz

(«<cjcfc== ei{ehek)
Die e-Funktionen.
Durch die m + 1 Grundeinheiten kônnen wir uns einen euklidischen

(m -f- l)-dimensionalen Raum aufgespannt denken, der auf sich selbst

abgebildet werden kann. Es seien also m + 1 réelle Funktionen vh der

w + 1 reellen Verânderlichen x0,..., xm gegeben

welche wir mit Hilfe des Linearsystems £,, zu einer sogenannten e-Funk-
tion der hyperkomplexen Variablen

6) R. Fueter: Vorlesung 1948/49, S. 267 f.

20 Commeotaril Mathematici Helvetici



m

z=z __• %h eh

zusammenfassen : m

v(z) - .V vheh

Die Differentiation nach den einzelnen Komponenten der Variablen z

(oder £ usw.) wird in der Théorie der hyperkomplexen Funktionen zweck-
mâBig wie folgt bezeichnet

dv m dvt. m
Y1 M) v <*>

Fur v(fc) wird ,9v — k — Strich" gelesen.

b) Der e-Raum und seine Eigenschaften.

Wir kônnen uns neben dem e-Raum auch noch einen weiteren Funk-
tionalraum denken, in welchem wir ganz neue Einheiten und eine von
der Cliffordschen vôllig verschiedene Algebra einfiihren mit den n
Einheiten

e0 > 81 > • * * 5 en-l '

Die Abbildung des 6-Raumes (oder eines Teikaumes davon) auf den
e-Raum erfolgt mittels der sogenannten e-Funktion

n—1

w(z) ^ ekwk(z)

wobei die wk wiederum réelle Funktionen der Variablen x0,..., xm sind,
also

wk wk(x0,...,xm)

Man merke sich wohl, daB die Variablen der e- und der £-Funktionen
aus dem e-Raum stammen und die Abbildung also nur in einer Richtung
definiert ist. Die wesentlichen Funktionen werden daher die e-Funktionen
sein. Im e-Raum definieren wir die neuen Einheiten wie folgt :

00... 0\ /00...0'
10... 0 1 I 00...0
00 0/ \ 1 0 0

so daB also fur eh in der ersten Kolonne und in der (h + l)-ten Zeile eine
1 steht, sonst aber hat die Matrix lauter Nullen. Daher ergeben sich

folgende Rechenvorschriften
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e0 — e0

eh eO — eh

«o «* 0

eh eh 0

-: 1,2, fc - 1)

Wir haben also keine Cliffordschen Zahlen mehr. 0 bedeutet die Null-
matrix. AuBer en e0 eh ist das Produkt zweier Einheiten immer Null.

Nun legen wir uns eine Multiplikationstafel fur e e an. Die Produkte
bereehnen wir, indem wir auch fur die e in die Matrizendarstellung zuruck-
kehren. So wird

coo COk

< Cn—1 0 • ^n-1 k '

Hiermit ist die Multiplikationstafel gegeben.

0

n—1

t-0
n—1

«0

0
tO

n—1

w—1

Aus dieser Tafel ersehen wir, da8 wir im e-Raum bleiben, wenn wir eine
e-Funktion von links mit einer e-Funktion multiplizieren. Mit anderen
Worten, der e-Raum ist invariant gegenuber e-Multiplikationen von
links. Dièse Eigenschaft wird funktionentheoretisch von Bedeutung sein.

6. Operationen. Klassifizierung der e- und e-Funktionen

Zur Abkûrzung fiihren wir die folgenden Operatoren ein.

(s m oder m + 1)
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Die Operatoren 0 und 0 sind den Linearsystemen Lo und Mo naeh-
gebildet. O heiBt der zu 0 konjugierte Operator. In dieser Schreibweise
wird auch

m m—1 â2

A=0 0Xh

Denken wir uns die Komponenten wh von w (siehe S. 300) und die Kom-
ponenten gh von g0 zu e-Funktionen zusammengefaBt

n—1

n—1

so ist vermôge der Konstruktion der Einheiten im e-Raum die folgende
Gleichung erfûllt

m

Ow(z) g(z)

Die reellen Bedingungsgleichungen stellen gerade das Differentialglei-
chungssystem dar

£o w go •

Hieraus gewinnen wir eine wiehtige Erkenntnis. Die Komponenten der
e-Funktion w(z) sind nâmlich Lôsungen des Systems von partiellen
Differentialgleichungen Low g0, und somit sind auch die Lôsungen
von

Lu=f
bekannt. Ist das Rand- bzw. Anfangswertproblem fur die hyperkom-
plexen Funktionen gelôst, das heiBt ist der zweite Integralsatz bekannt,
so ist aueh das vorgelegte System von Differentialgleichungen gelôst.
Daher ergibt sich der wiehtige

Satz : Die Existenz eines Multiplikators ersten Grades ist notwendig, da-

mit ein System von partiellen Differentialgleichungen mittels (der heute

bekannten) hyperkomplexen Funktionen gelôst werden kann. Ein linearer
Multiplikator aber existiert, falls die Bedingungen I und II (Seite 299)

erfiillt sind.

Unsere Erkenntnisse und die folgenden Entwicklungen geben AnlaB

zur Aufstellung einiger
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Definitionen: I. Eine e-Funktion w(z) heiBt in einem Punkte z

linksanalytisch, falls
m

Ow(z) 0

und durch g gestôrt linksanalytisch, falls

m / w-1 \
Ow(z) =g lg= X 8hgh)

ist. Dieselbe Définition gilt «auch fur ein Gebiet respektive fur einen Be-
reich, falls w(z) dort iiberall regulâr ist.

II. Eine der obigen àquivalente Définition heifit : Eine £-Funktion
w(z) heiBt in einem Punkt z durch g gestôrt linksanalytisch, falls

Ow(z) g(z)
unter den Nebenbedingungen

dw
__ dg __

dxm — dxm ~

Dièse Définition kann auch auf ein Gebiet ausgedehnt werden.

III. Fiir die e-Funktionen bilden wir in Anlehnung an die Théorie

der Differentialgleichungen den zu 0 adjungierten Operator

m+l m fi

ft O h

Entsprechend heiBt

O* 2 eh— (oem

m

konjugiert-adjungierter Operator. Man beachte, daB im Gegensatz zu n(O)
die Norm jetzt

m 8 d
2 2+fiaTo da?h dxn

lautet.

IV. Die e-Funktion m

^ /^\ __ V^ o y

z y, ehxh
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heiBt in einem Gebiete adjungiert analytisch, wenn in jedem Punkt des
Gebietes gilt TO+1

0* v 0

Corollar: Nach Seite 305 folgt aus zv 0 auch vz 0, deshalb
(symbolisch) gilt :

m+l m+l m
0* v= (vO*) J£ v<*> efc — <ovem 0

Man beachte, daB unsere bisherigen Ausfiihrungen gùltig sind fur Système
vom elliptischen, hyperbolischen und ultrahyperbolischen Typus. Eine
verschiedene Behandlung ist erst bei der Aufstellung des zweitenlntegral-
satzes notwendig. Da es ein Ziel dieser Arbeit ist, spezielle hyperbolische
Système zu integrieren, ziehen wir es vor, jetzt schon den Wert der xt
festzulegen. Es gelte von nun an immer, falls nichts anderes bemerkt
wird

*0= 1 xh= - 1 (A- 1,2 m)

Es liegt in der Natur der verwendeten Lôsungsmethode, dafi aile xh
— 1 sein mussen aufier x0.

V. Das skalare Potential der e-Funktionen.

Satz: Jede in einem einfaeh zusammenhângenden Gebiet des e-Rau-
mes adjungiert-analytische e-Funktion lâBt sich darstellen in der Form

m+l
v(z) O* 0(z)

wo 0 eine skalare Lôsungsfunktion (das „skalare Potential") der skalaren
Gleichung

n (O*1) 0 - 2 *k tV 0 - 2xm co^~ 0 + xm co* 0 0

darstellt. Ist umgekehrt 0 eine Lôsung dieser Differentialgleichung,
m+l

so stellt v O* 0 eine adjungiert-analytisehe c-Funktion dar.

Die Umkehrung ist wegen der Gultigkeit des assoziativen Gesetzes

selbstverstândlich, denn es ist

«i+l m+l w+1 m+l
(0* O* 0 0* 0* 0) 0
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Dieser Satz wird bei der Konstruktion der integrierenden e-Funktion
eine entscheidende Rolle spielen.

Fur den Beweis des ersten Teils des Satzes schreiben wir die Regulari-
TO+l

tâtsbedingungen fur 0* v 0 im Reellen an. Es ist

m 4-1 m fo m

0*v= E ehek-~^ -coemek E vk 0
h,k=O VXh Jfc-0

+ S 0
l 0Xh

• (*-.•.¦•¦•—)

dx0 dxm

dvk dv,

Aœ 0

3

Nach Voraussetzung sind aber die Komponenten fur ein vorgegebenes

v(z)

(k 1, 2,. ..m — 1)

Dièse Werte erfullen gerade die obenstehenden Existenzbedingungen. Die
m+l

erste Gleichung liefert n{ 0* 0 0

6. Der verallgemeinerte erste Integralsatz

Zur Herleitung des verallgemeinerten ersten Integralsatzes benùtzen

wir gleichzeitig eine adjungiert-analytische e-Funktion

ni

V(z) v vheh

welchealso wfl m+1
0* v (vO*) 0 (symbolisch!)

genûgt, und eine linksanalytisch gestôrte e-Funktion
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n—1

w J£ ekwk

welche die Bedingung
m+1 / n—1

Ow g l
erfûllt.

Sind beide Funktionen in einem (m + l)-dimensionalen Bereich JS+

und auf dessen Rand H+ stetig und stetig differenzierbar, so gilt der
Gauflmhe Integralsatz7)

r+= - f-.:fv(ekvkdh+)w

wobei vk — cos (v, ek) die k-te Komponente der nach innen gerichteten
Einheitsnormalen auf H+ darstellt. dr+ und dh+ bedeuten die reellen
Argumente im euklidischen R™*1 respektive auf der reellen Hyperflâche
H+. Wir setzen m

dZ+ X ek *k dh+
und erhalten i==0

f- • • f fî: (vekwy» dr+ - T. fvdZ^w

Wir formen nun den Integranden der linken Seite wie folgt um.

fct(; + vekwik))

jfc-0 / \k~0

X vih)ek — v(oe \ w + v l JS
/ \t=o

m+l
w; + v(Ow) v - g

(symbolisch!)

Setzen wir den Integranden wieder ein, so erhalten wir den

Verallgemeinerten ersten Integralsatz :

Ist die e-Funktion v im Bereiche B+ (und auf dessen Rand H+) adjun-
giert-analytisch, und ist die e-Funktion w durch g links-analytisch gestôrt,
so gilt

7) R. Fueter: Vorlesung 1948/49, S. 305.

312



f • • ÇvdZ+w +("••• Ç Çvdr+g 0

Anmerkung : Hâtten wir uns, natûrlich unter entsprechender Abânde-
m f»

rung der Voraussetzungen, der Operatoren O respektive O* bedient, so

wâre der genau gleiche Satz fur die Dimension m entstanden. So kann
er fur die Lôsung des Randwertproblems der elliptischen Système ver-
wendet werden (vgl. § 7). Wegen unserer Forderungen an die integrie-
rende Funktion v (§ 8) werden wir aber im Verlauf der Ableitungen ge-

zwungen, in die Dimension m -f 1 aufzusteigen.

7. Der verailgememerte zweite Integralsatz îûr elliptische Système

(Bandwertproblem elliptischer Système)

Das Randwertproblem fur inhomogene elliptische Système ist leicht
zu lôsen. Man erhâlt als Résultat den zweiten Integralsatz fur inhomogene
elliptische Système :

Ist die e-Funktion w(z) im Innern einer geschlossenen, orientierbaren und

genûgend regularen Hyperflache H und auf H selbst durch g linksanalytisch
gestôrt, dann gilt fur jeden Punkt z im Innern von H8)

+ j---fjO*0(\Ç-z\)drg
R

wobei 0 die Orundlosung der Oleichung

(A +xm(o*)& 0

i8t

8) Der Index (£) fordert Differentiation nach den Variablen £k.
9) Man vergleiche die Ausfûhrungen von Adolf Kriszten : Elliptische Système

S. 256 fi\, wo auch die Berechnung von 0 fiir xm + 1 durchgefûhrt ist.
Fur die allgemeine Méthode sei auf die zitierte Vorlesung von Herm Professor Fueter

hingewiesen (Kap. IV, S. 254 ff.)-
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8. Die Grundlagen fiir den zweiten Integralsatz
oder das Ânfangswertproblem der inhomogenen hyperbolischen Système

a) Forderungen an die integrierende Funktion v im elliptischen Fall.

Bei der Lôsung der elliptischen Système geht man davon aus, die
integrierende Funktion v derart zu konstruieren, daû sie die naehfolgen-
den Forderungen erfûllt :

1. v ist eine adjungiert-analytische Funktion.
2. v ist innerhalb des ganzen Bereiches R mit Ausnahme des Auf-

punktes z regulâr.
3. v soll im Aufpunkt z singulâr werden wie r1""1, wobei r den Radius

einer den Aufpunkt z als Zentrum besitzenden infinitesimalen Kugel
bedeutet.

Die Méthode der elliptischen Système lâBt sich deshalb nicht ohne
weiteres auf den hyperbolischen Fall iibertragen, als die Funktion

U
v —r

nicht mehr adjungiert-analytisch im neuen System sein kann und da-
durch die Anwendung des verallgemeinerten ersten Integralsatzes un-
môglich wûrde.

b) Der Satz von Delassus fur hyperkomplexe Funlctionen.

Deshalb stellen wir uns die Frage : Wie mu8 die integrierende Funktion

v besehaffen sein, damit sie die Gestalt

— u

erhâlt, wo g (entsprechend r) eine rein skalare Funktion sein soll10).
Da v adjungiert-analytisch vorausgesetzt ist, haben wir die Bedingungs-
gleichung

m+l

du

10) Fui den Moment hat mQ nichts mit der Dimensionszahl m des Variablenraumes
zu tun.
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Nâhert sich nun q -> 0, so werden die beiden Terme von verschiedener
Ordnung unendlich, wom.it eine gegenseitige Kompensation ausge-
schlossen ist. Daher miissen die beiden Koeffizienten von £-<m<>+i) und
Q~~m° einzeln verschwinden. Wir erhalten somit als Bedingung fiir die
skalare Funktion q :

\ 0 falls q 0

Da sowohl der Term in der Klammer, sowie u fiir sich allein hyper-
komplexe GrôBen aus dem e-Raum darstellen, kann auch die Norm ge-
bildet werden. Nach elementaren Regeln der hyperkomplexen Algebra

Wenn wir u im ganzen endlichen Raum ungleich null annehmen, ist also
fur die skalare Funktion q eine Difïerentialgleiehung erster Ordnung
zweiten Grades gegeben. Die einfaehste, nichttriviale Lôsung, welche fiir
q o die Gleiehung erfullt, ist

Q n(Ç — z)

das heiBt die Norm der Variablen aus der zugehôrigen Cliffordschen
Algebra. Dièse Difïerentialgleichung kann als Analogon zum Satz von
Delassus gedeutet werden. Im elliptischen Fall liefert q gerade r2.

Ûber die Funktion u lâBt sich nur aussagen, daB sie sicher nicht ad-

jungiert-analytisch sein kann, falls wir n(Ç — z) als q verwenden. Die
allgemeine Form der integrierenden Funktion wird daher zweckmaBig,
auf jeden Fall hinreichend lauten

e-Funktion
v

Es handelt sich also darum, m0 und die e-Funktion zu bestimmen.

m+l
c) Die OrundWsung der Oleichung n(O*)& 0 (Solution élémentaire)

und die integrierende Funktion.

Wir haben in Paragraph 5 bewiesen, daB jede adjungiert-analytische
Funktion sich in der Form m+ï

v O*0

darstellen làBt. Daher kann man auch zur Konstruktion der integrierenden

Funktion v fiir den (m + l)-dimensionalen Raum die $-Potentiale
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benutzen, deren allgemeinste Form offenbar von folgender Gestalt sein
mu8 :

regulare skalare Funktion _, t0 — \- reg. Funkt. • log n

wobei n die Norm n(Ç — z) bedeutet. Wir haben ebenfalls bewiesen,
m+ï m+1

daB 0* 0 wieder adjungiert-analytisch ist. Da es sich in 0* um einen

Differentialoperator erster Ordnung handelt, wird die Dimension des

Ausdrucks naeh seiner Anwendung um eins kleiner sein und somit dann
den Anforderungen der integrierenden Funktion v entsprechen mussen.

Man ist versucht, die Lôsung des zweiten Integralsatzes gerade im
m-dimensionalen Variablenraum zu suchen, falls das gegebene System
von partiellen Differentialgleichungen m willkûrliche Verànderliche auf-
weist. Dieser Weg ergibt folgendes Résultat : Es existiert ein ganz ana-
loger erster Integralsatz wie in § 6, und die Grundlôsungen ergeben die
folgende allgemeine Gestalt, welche sich durch eine einfache Rekursions-
formel gewinnen lassen. Fur ungerades m 2p+ 1 wird

e|

^Z2— { 1 + Vn • a + yV b +
n 2

und fiir gerades m 2 p

^3 ^ g + hôhere

n 2 m
n 2 Potenzen,

wo J0(x) die Besselsche Funktion 0-ter Ordnung bedeutet, und am, bm

mittels allgemeiner Formeln bestimmbare Konstanten sind. Die zugehô-
rigen integrierenden Funktionen v haben ein âhnliches, aber weit kompli-
zierteres Verhalten. Wenn man auch mit diesen Funktionen in einem
dem Naehfolgenden ganz analogen Verfahren zum Ziele gelangt, so

mussen doch auch die Ableitungen der gegebenen und der sich auf dem
charakteristischen Kegel befindenden Randwerte in Betracht gezogen
werden, und zwar in einer ziemlich verwickelten Art. Daher zeigt die
Rechnung, daB es nicht anstrengender ist, die Lôsung sowohl fur gerades
wie ungerades m eine Dimension hôher zu suchen, ja, es ergibt sich sogar
eine élégante Lôsung.

Durch die Forderung nâmlich, daB sich die integrierende Funktion v

in der Form
__

u
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darstellen lasse und im Punkt z wie rm~l unendlich werde, wobei r den
infinitesimalen Abstand von z bedeute, sind wir gezwungen, eine ent-
sprechende Differentialgleichung fur 0 zu suchen, die wir nur durch Auf-
steigen in eine hôhere Dimension finden kônnen, indem wir einen Dàmp-
fungsfaktor zufugen. Der Grund des Aufsteigens liegt im Satz von
Delassus und in der Herleitung des ersten Integralsatzes begrundet.

m+1 m
Damit ist auch der Gebrauch des Operators 0* an Stelle von 0* moti-
viert. Wir sehen also rûckblickend, daB durch den Satz von Delassus fur
das Hyperkomplexe und unsere Forderung an die Gestalt der Grund-
lôsung der Gang unserer bisherigen Entwicklungen festgelegt ist. Die
einfachste Gleichung fur 0 lautet im hyperbolischen Fall

oder, wenn wir der Konstanten co ihren bisherigen Wert (§ 3) zulegen
und fur x von nun an f als Variable schreiben :

m+1

Hier ist es leicht, eine Lôsung mit der geforderten Singularitât zu finden,
da nach dem Satz von Delassus eine Potenz der Norm im Nenner stehen
muB. Durch einen gewôhnlichen Ansatz der Funktionen, wie er bei

Gleichungen zweiter Ordnung mit konstanten Koeffizienten ublieh ist,
findet man sofort als Grundlôsung

0 —

1 - m [(f0 - xo)> -S(Sp- «r)1]1 (m - 1) • n

Hieraus berechnet sich nun die integrierende Funktion v :

Nach einer Zwischenrechnung ergibt sich

wobei z als fest, f als variabel zu betrachten ist.
Wir haben also fur eine gerade und eine ungerade Anzahl unabhàngiger

Variablen dieselbe integrierende Funktion,
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9. Eine der Hadamardsehen aquivalente Losimgsmethode.
Der beschrânkte und der logarithmische Ânteil

Nachdem wir nun die integrierende Funktion v gefunden haben, kônnen
wir dennoch nicht iiber eine geschlossene Hyperflâche integrieren, da die
Funktion v auf dem Kegel n(Ç — z) singulâr wird. Wir mlissen deshalb
dièse singulâren Stellen umgehen. Es wird sich auch hier zeigen, in Analogie

zu der Théorie der hyperbolischen Differentialgleichungen zweiter
Ordnung, daB durch das gesamte Innere des charakteristischen Kegels,
des sogenannten Abhângigkeitsgebietes, die linksanalytisehe £-Funktion
w(z) eindeutig bestimmbar ist.

Wâhrend nun Hadamard11) im gesamten Abhàngigkeitsgebiet die Kon-
vergenz der Intégrale dureh Hinzufugen von sogenannten konvergenz-
erzeugenden Funktionen erzwang, geht die nachfolgende Méthode in
Anlehnung an die Vorstellung der ïteihenentwicklungen vom Begriff des

,,Koeffizientenvergleiehs" aus. Wie gesagt, sind beide Methoden im Prin-
zip dieselben, aber die Vorstellung des Koeffizientenvergleichs gibt der

ganzen nachfolgenden Rechnung eine groBe Klarheit.
Wir geben nun zuerst eine allgemeine Beschreibung der Méthode und

anschlieBend folgt in § 10 die explizite Durchfuhrung der Rechnung.
Zum vornherein nehmen wir an, daB die gesuchte c-Funktion ûberall,
wo sie auftritt, gestôrt linksanalytisch und regulâr ist. Fur aile unter
einem Integralzeichen auftretenden Funktionen verlangen wir die Exi-

stenz der I —-— J ersten Ableitungen nach allen Variablen. Von der

Notwendigkeit dieser Forderung wird man bald ûberzeugt sein.

Nun denken wir uns den charakteristischen Kegel durch den Aufpunkt
z gelegt. Eine raumartige Hyperflâche H (d. i. eine solche, die nirgends
charakteristisch wird) und auf der die regulâren Anfangswerte der
linksanalytisch gestôrten £~Funktion vorgegeben sind, schneidet aus dem

Kegel eine Grundflâche G heraus. Somit ist ein abgeschlossener Bereich B
çlefiniert. Durch eine Hyperebene senkrecht zur 0-Achse schneiden wir
die Spitze des charakteristischen Kegels im Abstand g von z ab, so daB

ein Bereich RQ entsteht, welcher durch die Deckflâche DQ begrenzt wird.
Den Mantel M des Kegels verândern wir nach innen stetig als Funktion
eines Parameters t] derart, daB mit r\ -> 0 die neue Mantelflâche Mn
in M iibergeht. Die Mantelflâche Mn schneidet aus der Deckflâche das

Stûck DQV und aus der Grundflâche den Bereich On heraus, wâhrend

11 J. Hadamard: Le problème de Cauchy et les équations aux dérivées partielles
linéaires hyperboliques, Hermann, Paris 1932. Man vergleiche ferner Courant-Hilbert :
Methoden der mathematischen Physik, Band II, Springer, Berlin 1937.
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durch die Deckflâche DQV} die Mantelflâche MQn entsteht (vgl.die Figur).
Dièse drei Hyperflâchen begrenzen nun den Bereich RQ weleher seiner-
seits R beliebig genau approximiert. Auf diesen Bereich RQi] dûrfen wir
den verallgemeinerten ersten Integralsatz anwenden :

vdZw+Ç.-CÇvdrg=O

Dièse Intégrale werden nun nach den erlaubten Gesetzen der Difïerential-
und Integralrechnung sowie der hyperkomplexen Algebren ausgewertet.
Man ersieht sofort, daB unsere Beschreibung sehr stark verallgemeine-
rungsfâhig ist. Die integrierende Funktion v ist nun so konstruiert wor-
den, daB im Falle einer ungeraden Dimensionszahl des Variablenraumes
(m 2p + 1) jedes ausgewertete Intégral die folgende Form annimmt

-t + fl- /m-4 + '-• + *! 2 /l + /o + O -Ti

wobei O'tj eine Funktion bedeutet, die mindestens wie Vrj gegen Null
geht ftir r\ -> O, und die Funktionen fk von rj unabhângig sind. Da in
unserm Falle die Summe der vier Intégrale identisch verschwindet

und das t} bei festem q beliebig variiert werden darf, so folgt also auch

notwendig fur jeden einzelnen Koeffizienten derselben ^-Potenz

Jede solche Koeffizientensumme wird also eine Bedingungsgleichung fur
w(Ç) sein und zu seiner Bestimmung genugen, indem man den Grenz-

tibergang rj ~> 0 maeht. Wir wàhlen nun speziell f0 und schreiben

/0 heiBe der beschrânkte Anteil und stimmt also mit der ,,partie finie" von
Hadamard uberein. Wir wâhlen deshalb /0 zur Berechnung von w(z),
weil der beschrânkte Anteil invariant ist gegenuber allen Transforma-

tionen von r\ in rj*, welche so beschaflfen sind, daB rf wie rj gegen Null
geht. Man erkennt dies sofort, wenn man beachtet, daB durch den

Faktor rj 2 keine Glieder aus der geschweiften Klammer entstehen

kônnen, die endlich bleiben, aber doch von Null verschieden sind.
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Wesentlich anders sieht es in* Raum von m 2 2? unabhàngigen
Variablen aus. Ordnen wir hier nach steigenden Potenzen, so lautet ein

ausgewertetes Intégral

m-» + 1? • /m-4 + ' ' ' +^/o) + h '^g fj + Oyj
J

Hier bleibt der Koeffizient /0 nicht mehr gegeniiber jeder der oben be-
schriebenen Transformationen invariant ; hingegen besitzt der von rj
unabhângige Koeffizient fL dièse Eigenschaft, was man schon an der
besonderen Singularitàt von log yj fur yj -> 0 erkennt. Substituieren wir
also yj rj* <p, wo 9? eine regulàre Funktion von yj* bedeutet, so wird

lim fL log yj lim fL (log rf -+- log q>) lim fL log yj + endlicher TTert.

Deshalb schreiben wir im Gegensatz zum beschrânkten Anteil

und nennen fL den logarithmischen Anteil des Intégrais. Im iibrigen
bleibt ailes wie oben.

10. Der zweite Integralsatz
lûr inhomogene oinîach hyperbolische Système

a) Dos Rand- bzw. Anfangsweriproblem filr ein System, das ursprilnglich
eine gerade Anzahl uYiabhângige Variablen besitzt.

Wie wir gesehen haben, ist die zugehôrige integrierende Funktion v

von m -f- 1 Variablen abhângig. Hat also unser Gleichungssystem eine

gerade Anzahl von freien Variablen, so miissen wir die Lôsung in einem

ungeradedimensionierten Variablenraum suchen. Wir befinden uns somit
im Fall m + 1 2p + 1. Nun wollen wir im Aufpunkt

m—1
2 X ehxh

den Wert der durch g linksanalytisch gestôrten e-Funktion w(z) bestim-

men, wenn deren Anfangswerte auf der ûberall raumartigen Hyperflâche
H vorgegeben sind (vgl. die Figur). Dazu konstruieren wir uns folgendes
Integrationsgebiet.
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Wir gehen von der raumartigen Hyperflâche H, also einer (m — 1)-
dimensionalen Flâche im Rm aus. In diesem Rm liegt naturlich auch der
Aufpunkt z. Senkrecht zu allen Achsen 0, 1,..., m — 1 errichten wir
noch die Koordinatenachse m. Nun ziehen wir in jedem Punkt von H

Ut w»l

eine Parallèle zur m-Achse, wodurch H zu einer m-dimensionalen Hyperflâche

H+ erweitert wird und naturlich wieder regulàr und raumartig ist.
Auf jeder solchen Geraden seien die Werte w von xm unabhângig, so dafi

also -^— 0 erfiillt ist. Aus dem bisherigen charakteristischen Kegel FQ

mit der Spitze in z entsteht auf âhnliche Art ein Kegel /J+ n(f — z)+
mit derselben Spitze z+ z, und entsprechend werden aus 0 die er-
weiterte Grundflàche G+, aus M der m-dimensionale Mantel M+, aus D
wird D+ usw. Der charakteristische Hyperkegel besitzt nun die Glei-
chung12)

n{t-z) (fo~*o)2 "V(lv ~ ^)2 - ïl °

da fur den Aufpunkt z die Komponente xm 0 ist.

12) Wo eine Verwechslung der Dimensionen ausgeschlossen ist, lassen wir das Zeichen +

weg.
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Als Nâherungsgebiet B^v wâhlen wir, wie in § 9 geschildert wurde,
folgenden Kegelstumpf :

Sv - xv)* - fl > 0

fo xo ~ Q

0 ^rj ^ 1

Die Deckflâehe ist die Kugel

da der Ôffnungswinkel des charakteristischen Kegels — betràgt. Die
Formel fur den Mantel lautet :

[ T))2 ($ X )2 V (f X )2 Ë2 0

Die Funktion w sei im ganzen Bereich iî+ (inklusive Rand als regulâr
vorausgesetzt, was offenbar immer zutrifft, falls die Bedingung schon fur
R erfûllt ist.

Nach den in § 9 ausgefûhrten Ûberlegungen ist also

'fvdZw+\S'"SvdZw+\i'

da es sich um eine ungerade Dimensionenzahl handelt. Zur bequemen
Rechnung fuhren wir die dem vorliegenden Problem angepaBten Kegel-
koordinaten ein

' U - *o - Q

ïv — xv q(1 — rj) Oy (y 1, 2,..., m)
wo

Hierin bedeuten :

^ : Abstand der Schnittkugel DQ vom Aufpunkt z

a,,: Richtungskosinusse in der (m — l)-dimensionalen Hyperflàche
q eonst.

1 — tj : Proportionalitàtsfaktor.
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Ist r) 0, so liegen aile Punkte auf dem Mantel M n(Ç — z) 0.
In den Kegelkoordinaten wird

I. Um das Intégral uber R+ auszureehnen, mtissen wir dr+ kennen.
Nach elementaren Umformungen wird die Funktionaldeterminante

d (x0, xx, x%, xm)

mit

Daher ist

dxQdxx. dxn

1 <>...«,

0 0

«m i/i -

oder
d^ drj

wo co die Oberflàche der m-dimensionalen Einheitskugel bedeutet.
Setzen wir fur v den errechneten Wert ein, indem wir ebenfalls die

Koordinaten q rj, a,, einfuhren, so wird

(f - s)

Damit erhalten wir nun, wenn wir im Integranden entsprechend kiirzen
und ordnen :

R+

2, ocvevgdtjdgdco — Ix + 1%
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Nun entwickeln wir jeden einzelnen Faktor des Integranden nach r\

«=0

=!(-!)• (mW

m + 2

Das Symbol gr(O) bedeutet die Randwerte von g(rj, q, Oy) fur ^ 0.
Hier und im folgenden sind die R{ stets bestimmbare Restmitglieder13).

Der Integrand von Ix ist nun selbstverstândlich bis auf den Faktor

m 4-1
1 ,..«,v-. ^ (— 1)H 8 + t(copotw,)t { 2 \/m-1

cm + 1

18) Man wàhlt fur eine beliebige Funktion F(rj) zweckmàfiig ak Restglied

Natûrlich darf man bei abbrechenden, semikonvergenten und konvergenten Beihen die
Entwicklung entspreehend weiter ausdehnen, wie wir es zum Beispiel fur ^Pa gemacht
haben.
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Fassen wir die Terme, welche dieselbe Potenz von rj besitzen, zusammen,
so ergibt sich

m
ro-f-1 y m + 2

n 2 ?i • % • ^3 • $4 2 cqr,* + V~-Bê9
wobei der Koeffizient

m-h 1

n
2 2

")(•¦

zu setzen und von rj unabhângig ist. In R5 sind selbstverstàndlich die vor-
hergehenden Restglieder aile mitenthalten. Jetzt sind wir in der Lage,
das Intégral Ix auszuwerten. Es ist

1
~2

n (q) (w) n (q) i

m m—1 i

2 (Q) (O>) (Q)

Nun lassen wir rj gegen Null streben. Bilden wir dann den beschrânkten
Anteil, so miissen aile Glieder, die gegen Unendlich streben, weggelassen
werden14). Da nun das Intégral mit dem Restglied ein eigentliches ist,
so haben wir

9
(Q) (CU) t?=0 (Q) (€0)

Cq und Rt sind wegen unserer Voraussetzungen regulâre Funktionen ;

und es gibt daher keine andern Singularitâten mehr.
Nun haben wir den beschrânkten Anteil von /2 zu berechnen. Prinzi-

m

piell àndert nichts. An Stelle von ^}2 tritt ^ und g wird durch J£ av ev g (rj)
1

ersetzt. Daher lautet der Integrand von /2

n

wobei der Koeffizient
14) Fur das praktische Vorgehen beachte man folgendes: Aile gebrochenen Potenzen

von r\ werden entweder null oder unendlich und konnen gesamthaft weggelassen werden.
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TO+1
m

zu setzen ist, und gr(O) wiederum die Randwerte auf dem charakteristi-
schen Kegel bedeuten. Analog wie vorher ist der beschrânkte Anteil des

Intégrais von I2

(Q) (">) h =0 (Q) (w)

Somit ergibt sich

//,*.*.

-i2g_2m+1 / f(Dg-C,)dgda>+f J JJ.(Rt-R6
(ç) <cu) i,*=0 (ç) (to)

II. Naeh demselben Muster (oder analog den nachfolgenden Berech-

nungen) wird der beschrânkte Anteil uber die Grundflâche bestimmt,
nâmlich

• • I v dZ w

Mit unsern Voraussetzungen wird dies immer môglich sein. Ist O+ (bzw.
H+) insbesondere q const., das heifit eine Ebene senkreeht zur
O-Achse, so kônnen die Resultate von IV. weiter verwendet werden.

III. Nun berechnen wir den beschrânkten Anteil der Mantelflàche.
Es ist

/ • •• / v dZ w / • • • / ——^ - reg. Funktion dr

"U

Da nur gebrochene Potenzen von rj auftreten kônnen, und r\ wâhrend der

Intégration uber den Mantel konstant ist, so folgt fur den Limes r\ -> 0

f • • • f v dZ w 0
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IV. Damit kommen wir zum letzten Intégral. Es ist uber die Deck-
flâche D+Qn erstreckt. Zuerst rechnen wir uns das Integrationselement aus.
Da D+ senkrecht zur O-Achse steht, erhàlt man

dZ= %ehvhdh= -eQdh - eoQ™(l - t,)^i dûCl' ' -doc™~idrl
y

was sich direkt aus dem Volumelement (Seite 323) herleiten lâBt. Weil
jetzt auch q sehr klein wird, kônnen wir die e-Funktion w um den Auf-
punkt z nach q entwickeln

w(q) w(z) + q ~ +••• •
LdQ h=o

Desgleichen wird

co>e<i-^= l + Q.co(l-ri)<xm+
Setzen wir ein, so ergibt sich

f. • • ÇvdZw
J 2>+ J

Wir haben also einen Term, der von q unabhângig und zugleich Koeffi-
zient von w(z) ist

(i—rir~
« (VV-V)) 2 (-)

Jedes oc,, ist eine ungerade Funktion, so daB das Intégral uber die Ein-
heitskugel verschwindet. Daher bleibt nur das erste Intégral ûbrig,
welches ebenfalls sofort uber die Einheitskugel integriert werden kann
und folgenden Wert besitzt :

(1 -ri)™-1
^TJdV

Zur Auswertung substituieren wir rj durch l — e und erhalten

Ç% / - Wp
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Dies ist ein Eulersches Intégral zweiter Art, sobald rj 0 ist ; und das
Résultat ist die J3-Funktion. Bleibt dièse endlieh, so haben wir gerade
den beschrânkten Anteil. Zur Berechnung gehen wir von einer Standard-
Funktion aus16)

0

Es ergibt sich

m _ m+1 _
1

x- 2 i, y— 2 una a;i-t/i-i-— —

Somit lautet der Koeffizient von w(z)

Da m gerade ist, bleibt der Ausdruck endlich. Damit ist w(z) bestimmt.

+ /

m

| J 2

R6 — J?6) drjdqdoy + w S

Die Funktionen DqiCq, J?5, iî6 bestimmt man nach Seite 325 f. Wunscht
man das Résultat nicht in Kegelkoordinaten, so hat man nur die folgen-
den Substitutionen vorzunehmen :

Q ^o - fo

^v -— ± •

Die Funktionaldeterminanten sind reziprok zu den von uns berechneten.

15) Erwin Madelung : Die mathematischen Hilfsmittel des Physikers, 3. Aufl. 1936,

Springer, Berlin, S. 13.
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Es ist klar, dafi w(z) von den |m unabhàngig ist. Theoretisch ist es môg-
lich, jetzt schon nach den |m zu integrieren. Wir verzichten hier jedoch
darauf, da man ganz analog verfahren kann, wie es Herr Kriszten16) in
seiner Dissertation gemacht hat. Selbstverstândlich wird die Darstellung
dann viel komplizierter, insbesondere der Ausdruck, der sich auf das
Innere des charakteristischen Kegels bezieht. Anderseits aber ist die
Entwicklung nach der Variablen r\ der Kegelkoordinaten derart einfach,
daB man damit wohl rasch zum Ziele gelangt.

b) Das Rand- bzw. Anfangswertproblem fur ein System, das ursprûnglich
eine ungerade Anzahl unabhàngige Variablen besitzt.

Wir denken uns jetzt m -{- l 2p Raumdimensionen vorhanden.
Ailes, was wir zu Beginn des vorigen Abschnittes gesagt haben, kann
wôrtlich libernommen werden mit dem einzigen Unterschied, daB die
Zahl m im folgenden immer als ungerade in Erinnerung behalten werden
muB, und als Ausgangspunkt der Berechnung von w(z) die Relation gilt :

¦//• i • • • I vdZ w » (•••(«; dZ w \\ \ •- - \ v dZ w 0

Ml

Die vier Intégrale berechnen wir wieder einzeln.

I. Zur Berechnung des logarithmischen Anteils des Intégrais iiber R+
kônnen die Resultate von Seite 223 ff. ûbernommen werden, indem, wir
aber jetzt die Terme mit rj'1 betrachten, die nach der Intégration den

logarithmischen Anteil liefern. Wir werden jetzt summieren von 0 bis
m~~ und das Restglied hat ordnungsmâBig allgemein kein rj mehr

vorgeklammert. So ergibt sich also fur den Integranden von Ix :

ro —1

m + 1 2

mit den Koeffizienten
m+1

\ r
m-1\ &_

s )drj*>

16) Adolf Kriszten : Funktionentheorie und Randwertproblem der Diracschen Difîeren-

tialgleichungen, Comm. Math. Helv. vol. 20, S. 333.
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welche von rj unabhângig sind. Es ist nun klar, da8 nur der Koeffizient
von rf1 der logarithmisehe Anteil sein kann. Somit ist

(è) («*) 2

Ganz entsprechend muB natiirlich

«?)

mit

~ f fDm-i

2 2

sein. Somit ist

(Q)

das analoge Résultat zu Seite 326.

II. Ebenso wird man das Intégral iiber die Grundflâche behandeln,
oder, falls dièse die Gleichung q const. hat, die Ergebnisse von
Nummer IV weiterverwenden.

III. Bei der Behandlung des Mantels ûberlegen wir uns, da8 auch
hier eine Entwicklung nach den rj môglich ist. Da aber nicht nach r]

integriert wird, kann kein logarithmischer Anteil entstehen. Es ist folglich

\ Ç • Ç vdZ w 0

Beim Mantelintegral tritt der Vorteil der entwickelten Méthode klar zu
Tage. Wâren wir nicht aufgestiegen, so hâtten wir schon in der integrie-
renden Funktion17) einen Logarithmus vorgefunden, der auch auf dem
Mantel einen logarithmischen Anteil geliefert hâtte. Da die Randwerte
auf dem, Mantel natiirlich nicht bekannt sind, mûBte man mit Hilfe der
Greenschen Formeln den logarithmischen Anteil in ein Intégral ûber die
Grundflâche und das Kegelinnere umzuwandeln suchen ; was fur eine

praktische Berechnung sehr mûhsam wàre und die Reinheit der bisher
verwendeten Methoden verletzen wiirde.

17) Es ist natiirlich klar, daû dièse Bemerkungen sachgemàû unter a) behandelt werden
sollten, da ja dort der ursprungliche Variablenraum in der Tat gerade ist. Allerdings be-
stand dort kein Anlaû, darauf einzugehen.
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IV. Damit kommen wir zum letzten Intégral. Wir kônnen die Aus-
fiihrungen aus a) ubernehmen, mussen aber nach rj entwickeln. So ergibt
sich

fJ

+ Restglied.

Fur den logarithmisehen Anteil kommt nur der Koeffizient von rf1 in
Frage. Wir bezeichnen ihn mit A und erhalten

m+ 1

Somit ist ti?(z) bestimmt. 18)

Die Funktionen Cm_i und Dm—i entnimmt man Seite 329 f.
2 2

Man kann naturlich auch die Eindeutigkeit beweisen und zeigen, daB

fur die Komponenten von w(Ç) auf 0 beliebige, dem Gleichungssystem
nicht widersprechende Werte vorgegeben werden kônnen. Den Beweis
kann man genau demjenigen der Gleichungen zweiter Ordnung nach-
bilden, und er sei hier nur erwàhnt.

(Eingegangen den 6. Mârz 1950.)

18 Man vergleiche auch die Arbeiten von :

Marcel Riesz: L'intégrale de Riemann-Liouville et le problème de Cauehy, Acta
mathematica Bd. 81 S. lff. (1949).

jtf. M. E. Eichler: On the Differential Equation uxx + uytf + N{x)u =0
Transactions of the American Math. Society Vol. 65, S. 259 S. (1949).

Àf. M. E. Eichler : Analytic Functions in Three-dimensional Riemannian Spaces.
Duke Math. Journal Vol. 16, S. 339 ff. (1949),

wo verwandte Problème mittels anderer Methoden behandelt werden.
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