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Hyperbolische Systeme
von partiellen Differentialgleichungen
mit konstanten Koeffizienten

Von ErwiNn BAREIss, Ziirich

Einleitung

Herr Rudolf Fueter und seine Schiiler haben in den letzten fiinfzehn
Jahren die Theorie der hyperkomplexen Funktionen aufgebaut und sind
in verschiedener Hinsicht zu weitreichenden Resultaten gelangt. Unter
anderem eignen sich die hyperkomplexen Funktionen zur Losung von
gewissen Systemen partieller Differentialgleichungen, indem nun nicht
wie bisher zu einer gegebenen Algebra die zugehorigen Bedingungsglei-
chungen gesucht werden, sondern umgekehrt aus dem Differentialglei-
chungssystem als Bedingung die zugehorige Algebra konstruiert wird.
Die vorliegende Arbeit soll in dieser Richtung einen Beitrag zum weitern
Ausbau der Funktionentheorie und ihrer Anwendungen liefern.

Im nachfolgenden ist untersucht worden, welche Systeme mit der
heute vorhandenen Algebra gelést werden konnen. Dabei kommt man
u. a. zum Resultat, dafl sich die inhomogenen Systeme fast ebenso ein-
fach losen lassen wie die homogenen. Wesentlich ist, dafl die relativisti-
sche, d. h. die invariante Schreibweise umgangen werden kann, ohne
dafl darunter der klare Aufbau leidet. Die bisherigen, entsprechenden
Losungsmethoden mufBiten aber zwangsliufig zur erwdhnten Schreib-
weise iibergehen, wie im Verlauf der Arbeit gezeigt wird. Wer schon
einmal praktisch mit solchen Tensoren gerechnet hat, weill wie duflerst
miihselig die Durchfithrung auch der einfachsten numerischen Rechnun-
gen ist. Die Zulassung inhomogener Systeme fithrte auch auf den erwei-
terten (Cauchyschen) ersten Integralsatz. Will man nun den zweiten
Integralsatz finden und stellt eine weitere Forderung an die integrierende
Funktion, welche eine elegante Losung garantiert, so ist diese Funktion
eindeutig bestimmt. Betrachtet man schliellich die Hadamardsche
Theorie von einem etwas anderen Gesichtspunkt aus, fithrt neben dem
beschrinkten Anteil auch einen logarithmischen Anteil ein und verwendet
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moglichst giinstige Approximationsflichen, so erhélt man ein Losungs-
verfahren, das an Klarheit nichts zu wiinschen iibrig 148t.

Die vorliegende Arbeit wird zweckméBig in die folgenden Paragraphen
eingeteilt :

1. Einteilung der Systeme partieller Differentialgleichungen.
2. Definition und Existenz des Multiplikators ersten Grades.

e

Transformation der Systeme mit einem Multiplikator ersten Grades auf
die Normalform und deren Eigenschaften.

Algebren.

Operatoren. Klassifizierung der ¢- und e-Funktionen.

Der verallgemeinerte erste Integralsatz.

M P

Der verallgemeinerte zweite Integralsatz fiir elliptische Systeme (Rand-
wertproblem elliptischer Systeme).

8. Die Grundlagen fiir den zweiten Integralsatz oder das Anfangswert-
problem inhomogener einfach hyperbolischer Systeme.

9. Eineder Hadamardschen dquivalente Losungsmethode. Der beschrinkte
und der logarithmische Anteil.
10. Der zweite Integralsatz fiir inhomogene einfach hyperbolische Systeme.

1. Einteilung der Systeme partieller Differentialgleichungen

Allgemein kann man ein System von partiellen Differentialgleichungen
mit konstanten Koeffizienten in der Form

m—1 n—1 " auk n—1 .
= = h =

darstellen, \wo die aj; und b, die konstanten Koeffizienten, die
U = Uy (Zg,- .., Ty_y) die n gesuchten Funktionen, A einen skalaren
Parameter und f, = f,(=,,..., ,,_,) eine der m verschiedenen Stor-
funktionen bedeuten. Dieses System konnen wir auch in Matrizenform
schreiben, falls
Uy fo
u = und f= :

Up—1 frn—1

als Vektormatrizen aufgefalt und unter den
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Qoo Y ) Ao, axh : a’(’)z n—1 55};
d d 0
J d at. — gl —— ... gl
A — (ah . 10 11 1n—1
"ax,, (@5k) oz, ox;, ox, 0%,
0 d d
afz—lo 5 2—11%7 : ag-l "1
(h=0,1,...,m — 1)

m Matrixoperatoren verstanden werden. Ferner sei
B = (b;:)

eine Koeffizientenmatrix. In diesem Fall lautet das System von Diffe-
rentialgleichungen

m—1
L = (ZAh——a~—+}.B) w—f .
h=0 axh

Um nun fiir das Folgende eine zweckmifBige Einteilung vornehmen zu
konnen, ordnen wir jedem System L u die sogenannte charakteristische

. . : 0
Determinante I' zu, indem wir formal —— durch z, ersetzen?):

ox;,
m—1 m—1 m—1 5
h R
S ag T, PN 7 D Y/ A Y
r=0 r=0 h=0
m—1
I'= =| ¥ A4, x,
h=0
m—1 m—1 % m—1 .
S
DUy 0%y X Wy 1%+ o - X Qu_ gy 1 Ty

Das heif3t also praktisch, daB wir die ¢-te Differentialgleichung nach den
gesuchten Funktionen u, ordnen und zusammenfassen, und dann die
0 S .

%’9 durch z, ersetzen. So ergibt sich das Glied in der Zeile ¢ und in der

h

Kolonne k. Diese Determinante hat nun die wesentliche Eigenschaft,
daf sie mit dem gegebenen System L derart verbunden ist, dal bei einer
beliebigen Transformation

2y = Tp (Tgy- - s Tyy)

1) Rudolf Fueter : Funktionentheorie im Hyperkomplexen, ausgearbeitete Vorlesung
(Wintersemester 1948/49), S. 42 ff.

Courant-Hilbert : Mathematische Methoden der Physik, Springer, Berlin 1937, Band IT,
Kapitel ITI, § 4.
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der urspriinglichen Variablen die neue charakteristische Determinante I"
wieder in derselben oben beschriebenen Art dem neuen System L zu-
geordnet ist, falls in der alten charakteristischen Determinante I" gleich-
zeitig die lineare Transformation

vorgenommen wird. Ebenso ist I' auch gegen die elementaren Umfor-
mungen sowie die Einfithrung neuer linearer Kombinationen der Diffe-
rentialgleichungen und der gesuchten Funktionen bis héchstens auf einen
konstanten Faktor invariant. Somit ist die folgende Unterscheidung
naheliegend.

a) Es ist durch eine geeignete lineare Transformation

T = X by
(k)
moglich, die charakteristische Form I'= 0 auf weniger als m Variable
zu reduzieren. Ein solches System heillt parabolisch ausgeartet und ist
unter b, ¢ und d ausgeschlossen.

b) Besitzt die charakteristische Gleichung m-ten Grades I'= 0 fiir
kein z, eine reelle Losung auller 2y, =---= z,,_; = 0, so ist das System
total elliptisch. Besitzt das zugehorige System L einen Multiplikator ersten
Grades (dessen Definition sich in Paragraph 2 findet), so heifit das System
einfach elliptisch. Diese Systeme sind fiir f= 0 von Herrn Kriszten in
einer soeben erschienenen Arbeit untersucht worden, und die vorliegende
Definition ist mit derjenigen von Herrn Kriszten dquivalent 2).

c) Ist es aber moglich, durch eine geeignete lineare Transformation
die Variable z, so auszuzeichnen, daB sie fiir beliebige reelle Werte der
iibrigen Variablen =z,,...,z,_; in I'=0 m reelle (auch mehrfache)
Wurzeln hat, so sprechen wir von einem fotal hyperbolischen System.
Geometrisch bedeutet dies, daBl der charakteristische Kegel I'=0
durch jede Ebene ;= const. in m reellen (m — 2)-dimensionalen
Mannigfaltigkeiten geschnitten wird.

Wir betrachten nun speziell eine reduzierbare charakteristische Deter-
minante I', die sich in der Form

I‘=I’0~I’1- * FL’!

2) Adolf Kriszten: Elliptische Systeme von partiellen Differentialgleichungen mit
konstanten Koeffizienten, Comm. Math. Helv. vol. 23, 243.
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darstellen 148t, in welcher die I', irreduzible quadratische Formen 3) dar-
stellen. Existiert nun auch hier ein Multiplikator ersten Grades, so heien
die totalhyperbolischen Systeme einfach hyperbolisch.

d) Die verbleibenden moglichen Systeme heilen (total) ultrahyper-
bolisch. Diese Systeme sind ihrer Natur nach viel komplizierter und vor
allem deshalb weniger von Interesse, als in der mathematischen Physik
keine ultrahyperbolischen Systeme bekannt sind.

Unsere Systematik ist selbstverstéindlich auch giiltig, falls die Koeffi-
zienten Funktionen des Ortes sind, jedoch gilt dann die Einteilung nur
gerade an der betreffenden Stelle. — SchlieSlich sei darauf hingewiesen,
daB wir stets reelle Koeffizienten vorausgesetzt haben. Dies ist insofern
keine Einschrinkung, als sich komplexe und hyperkomplexe Systeme
stets auf ein reelles System reduzieren und so klassifizieren lassen. Ebenso
konnen komplexe Losungen in reelle Differentialgleichungen aufgespalten
werden, so dafl auch alle Komponenten u, als reell zu betrachten sind.
Man beachte ferner, dal sich stets Gleichungen hoherer Ordnung auf
Gleichungen erster Ordnung reduzieren lassen.

2. Definition und Existenz des Multiplikators ersten Grades

Im folgenden soll ein Gedanke von Harry Malmheden %) verallgemeinert
werden, um daraus einen wichtigen Schlufl iiber die Auflosbarkeit von
Systemen partieller Differentialgleichungen mittels hyperkomplexer
Funktionen zu ziehen.

Wir gehen aus von einem System partieller Differentialgleichungen
mit konstanten Koeffizienten und von beliebigem Typus

m—1 a

Lu — (2 4,2 4 ).B) w=F,
n=0 axh

und betrachten vorliufig nur die linke Seite des Systems. Zu jeder

Operatorenmatrix L mit konstanten Koeffizienten kénnen wir eine ad-

jungierte Matrix L* bilden, deren Elemente die (n — 1)-reihigen Unter-

%) Der Fall, wo sich I in lineare Faktoren zerlegen 1aB8t, ist nicht interessant, da sich
fir 4y =1t zum Beispiel eine unendliche Fortpflanzungsgeschwindigkeit des Lichtes in
gewissen Richtungen ergeben wiirde, mit Ausnahme des Falles m = 2, wo der Kegel
natiirlich immer in ein Geradenpaar zerfallt und die Ausbreitungsrichtung von selbst
vorgegeben ist,

1) Harry Malmheden : A Class of Hyperbolic Systems of Linear Differential Equations.
Meddelanden fran Lunds Universitets Matematiska Seminarium, Band 8, 1947.
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determinanten von L sind. Uben wir den Operator L* von links her auf

L u aus, so ergeben sich (nach Paragraph 1) nur erlaubte Operationen.

Also wird
L*L=|L|E,

wenn wir unter | L | die Determinante des Systems L und unter E die
Einheitsmatrix verstehen. Somit geniigen die Komponenten der Vektor-
matrix u den folgenden Differentialgleichungen, wenn wir wieder die
Matrizenschreibweise anwenden :

| Lluw=f",

wo f* = L*f wiederum eine bekannte Funktion darstellt. Hierdurch
sind die unbekannten Funktionen w, (k= 0,1....,n — 1) separiert
und konnen einzeln aus der Differentialgleichung n-ter Ordnung be-
stimmt werden. Hieraus entsteht die

Definition: Jeder Operator, der das System L auf die Diagonalform bringt,
heift ein Multiplikator. L* ist ein Multiplikator (n — 1)-ten Grades.

a) Hinreichende Bedingungen fiir einen Multiplikator ersten Grades.

Mit unsern Matrix-Operatoren konnen wir rechnen, als ob es algebra-
ische Gebilde wiren. Wir versuchen nun, einen Multiplikator von mog-
lichst niedrigem Grad zu konstruieren, das heil3t also, aus der Determi-
nante | L | moglichst viele Faktoren herauszuziehen. Hat nun | L | ein
Teiler 7', so muB L* nicht unbedingt denselben Teiler auch haben. Ist
aber ein Faktor 7' in allen Unterdeterminanten enthalten, so kann dieser
aus | L| und aus L* herausgezogen werden, so daB sich wieder ein

Diagonaloperator ergibt :
L | L

. s .0 0 . . ,
der aber einen niedrigeren Grad Lt R besitzt. Wir interessieren
h k

uns vor allem fiir einen Teiler 7' vom Grade n — 2 und fiir den Multipli-
kator M vom ersten GQrade, den wir wie folgt definieren koénnen :

L*
T

=M , (Defination)
wobei sich nun M wieder in die allgemeine Form
m—1 0
M= Y 4, — + iB*
k=0 0%y
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zerlegen 14f3t, indem man alle Elemente mit denselben aiw als symbolisch-
k

skalaren Faktor zu einer Matrix zusammenfat. Da nach der Definition

L*=T-M
ist, mul3
‘L[ = T-TI,

sein, wo I’y einen allgemeinen m-dimensionalen Kegelschnitt symbolisch
darstellt

o m—1 92 m—1 Y
Fn(———)=29hk +229k"‘”+gm-

0w, hE=0 0, 0% o 0%y

I'y soll entsprechend unserer Bemerkung in Paragraph 1 irreduzibel an-
genommen werden. Aus

|L* | =| L[
und

| L | =T-I
wird

|[L*|=T"|M|=Tr2I§"
und somit
r;—
M| ="

Nun haben wir I'y, vom zweiten Grade und irreduzibel vorausgesetzt ;
| M| ist vom Grade % in —;:—v— und 7' vom Grade n — 2. T muf} somit
Potenz von I’y sein bis auf einen konstanten Faktor ¢

T =17 .

Der Vergleich der Exponenten auf beiden Seiten liefert

i |M| =TI~

L
T =1r~,?
als notwendige Bedingung fiir 7', und weiter
|L|=1T¢.

Damit erkennt man auch die hinreichenden Bedingungen fiir einen
Teiler 7' und wir haben folgendes bewiesen :
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Soll das lineare Differentialgleichungssystem L u = f einen Multipli-
kator ersten Grades haben, so ist hinreichend

I |L|=1Tg2 .

n
L |

ITI. Alle Unterdeterminanten von | L | sind teilbar durch I}

b) Die Notwendigkeit der Bedingungen I und I1.

Wir gehen davon aus, dafl das System
Lu=f
den Multiplikator ersten Grades M besitzt. Daher ist
MLu=1T,u,

wobei I'y als irreduzibel und m > 2 vorausgesetzt wird. Aus der Matrizen-
darstellung
ML=T,-E

wird die Determinantendarstellung
|MJ||L|=1I7,

wenn man -a—Z-— durch z, ersetzt. Da links zwei Polynome vom Grade n
k

stehen, ist also notwendig

|L| =17 ¢
o (¢ = const.)
| M| = Poz'_c"

Daraus aber folgt ferner die wichtige Eigenschaft, da L und M bis auf
einen konstanten Faktor dieselbe charakteristische Mannigfaltigkeit
haben, so dal auch wiederum (M L) genau denselben charakteristischen
Kegel besitzt.

Die Bedingung II verlangt die Teilbarkeit der Unterdeterminanten

n
durch I} ", Diese ist ebenfalls erfiillt ; denn aus
ML =T,E

folgt durch Multiplikation mit I'}  -¢ (¢ = const.)
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®_1 n
c-I'y -ML=T¢-E-c.
Ferner ist

L'L=|L|-E=T2E-c,

wobei wieder dieselbe Konstante ¢ wie unter I verwendet wird. Die Diffe-
renz der beiden Zeilen gibt

(c-ri'M—1)L=0.

Da nach Voraussetzung L nicht die Nullmatrix ist, ergibt sich

n

—1
c- I -M=L",
womit II als notwendig erwiesen ist.

Satz : Fir die Existenz eines Multiplikators ersten Grades ist daher not-
wendig und hinreichend bei vrreduziblem I',

n

I: |L|=T¢
P
IL: I'?  teilt alle Unterdeterminanten von L .

Dieser Satz wird von fundamentaler Bedeutung werden fiir die Beant-
wortung der Frage, ob fiir ein System von partiellen Differentialgleichun-
gen die Moglichkeit besteht, mittels hyperkomplexer Funktionen das
Rand- bzw. Anfangswertproblem zu l6sen.

3. Transformation der Systeme mit einem Multiplikator ersten Grades
auf die Normalform und deren Eigenschaften

Wir nehmen an, dal das System

m—1 0

Lu = (}EOA,, +w) w=f

oz,

den Multiplikator
m—1 0
M= Y A4, — + AB"
k=0 0

Ty

besitzt. Dann ergibt sich sofort
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MLu =T u

oder
e * * aZ B * a
Y 344, + 4,4, +AY (4;B+ B*4,) — + 22B*Blu
h k=0 0x, dox, Pyt o,
m—1, 2 m—1 0
= 2 R — i u — ¥
{ h,‘§=o ghkaxh 0x; T ;Z;ogh oz, T4 f
ff=Mf.

Fir den mittleren Teil dieser Gleichung ist bekannt, daB sich der zu-
gehorige algebraische Ausdruck von I'y durch eine richtig gewéihlte

affine Transformation
m—1

Ty = X lpp oy
k=0

in die kanonische Gestalt iiberfithren 148t. Dasselbe gilt auch fir die
Differentialgleichung, und man erhilt, falls man die neuen unabhéngigen
Variablen z wieder mit x bezeichnet, den Ausdruck

) ol .

Hier sind die b, und ¢ konstante Werte, wihrend

m—1 02 0
,—— 1 2h,
{ 2 (%z ox; T i

i=0 ox

Da wir in unsern Betrachtungen den parabolischen Fall ausschliefen,
konnen wir auch die Ableitungen erster Ordnung wegschaffen, indem
wir statt der gesuchten Funktion u eine neue Funktion w durch die
Relation

einfithren. Nach kurzer Rechnung wird der neue Differentialausdruck

“Zjbf'xl m—1 2 m—1
e l {Ex,-a +(c——29—l—)}w.
i=0

ax,;" 1=0 X}
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Wir kiirzen mit exp — Y] % x, und setzen
l

So ergibt sich der

Satz : Bei Betrachtung nicht parabolisch ausgearteter Systeme von par-
tiellen Differentialgleichungen, die entweder

a) etnen Multiplikator erten Grades besitzen oder

b) den Bedingungen I und II geniigen,
kann man sich auf Systeme beschrinken, die sich durch den Multiplikator
ersten Grades auf die Form

62

bringen lassen, wobei g* noch zu bestimmmen ist.
Unsere Definitionen aus Paragraph 1 lauten nun so :

Ein System von partiellen Differentialgleichungen ist einfach elliptisch,
wenn es dquivalent zu

(4 + », 0?)w = g*

1st, und einfach hyperbolisch, wenn es dquivalent zu

(a A+y,,,w)w=g*

0 xo
ist.

Dieselben Transformationen, die wir auf das mittlere Glied ausgeiibt
haben, kénnen wir auch auf die andern Glieder iibertragen. Auf der linken
Seite ergibt die lineare Transformation

Eu:(}:lB ;——-I—AB) =7

h=0 €
mit

m—1

1=0
und

M — (2 B,,—?-+ 1B*)

ox;,,
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mit m—1

Ersetzen wir links

so wird

Dies bedeutet, dafl das System keine konstanten Koeffizienten mehr hat,
hingegen besitzt

L'w=c¢e L F= g
solche. Das neue System errechnet sich also zu

- b
L'=L-Y-"B,

%

Ahnlich bestimmt man den zu L’ gehérenden linearen Multiplikator
by
=M- Y 2B,
i
und erhélt schlieBlich als Resultat

P XL AP
“ M f=e xl (M’ ——-—Bk) f=g"
%

k

ML w=e

Ohne Verwendung des Hyperkomplexen dréngt sich von hier an die in-
variante Schreibweise auf, um den bisherigen Formalismus wahren zu
konnen. Da wir aber zur Herleitung der Cliffordschen Algebra nur die
linke Seite benétigen und fiir die Behandlung des Randwertproblems
von der Operation M’ gar keinen Gebrauch machen, so liegt hier der
tiefere Grund, warum wir auch inhomogene Probleme mit Hilfe hyper-
komplexer Funktionen ohne invariante Schreibweise erfolgreich in An-
griff nehmen konnen. Hierdurch wird also die Uberlegenheit der hyper-
komplexen Methoden motiviert und die viel einfachere und iibersicht-
licher gestaltete Durchfithrung der Rechnung erklart.

302



Fiir das Folgende ist es bequem, wenn wir unser System noch zweck-
mifig normieren. Wir setzen daher

L,= B;'L’
M, = M' B,
g = B;'g

Mit dieser Normierung erhalten wir

?
L,=3% C,— C
0 h§0 haxh+w m
m—1_ 9
M,=YC, +oC, ,
k=0 0y,
wobei
C,=B;'B,, ©C,=B;! (lB——E%Bh)
h
C,= BB, , w'Cm:(AB*MZ%BZ)BO
k
Also wird

MLyw = M'B,B;'L'w = M' L' w
oder ausgeschrieben

'm_.]_-_ a nm—1
o C,— C
(E'OC" By T “’a'") (E " om, T )

“ 7

m—1 02
{hk2==o% (€. Cr+ T, C)axhaxlc
m—1
+“’}. c.c,+¢C, C)—a———+w2?jmcm}w
{Ex Er s+ wz}

Hieraus konnen wir nun eine Reihe Eigenschaften und Beziehungen der
Matrizen C ablesen.

C,C,=»E #y = 1

-3 1 fir h= 1,2 ,...,
C,C,=nx, xh::{il fiir h,:lu-{—l,...,::z——l
c.c,+C,Cc,=0 h +k
6kC:m"*—ﬁ‘mC'Ic:::() k#m m—1 ph?2
Em szxm ”m:”—Sign (0“2—1)
=0 %;
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4. Algebren

a) Hyperkomplexe Zahlen und Funktionen im e- Raum.
Die Matrizen

h h h
Coo Co1 “ e Co n—1
h h h
1o €11 AR €1 n—1
Ch ==
h h )
Cp—1 0 Cpr1 - - Cpn—1 n—1

deuten wir als Einheiten einer Cliffordschen Algebra®) und sehen, dall
aus ihnen die Multiplikationstafel bestimmt ist. Identifizieren wir C,
mit e,, so haben wir folgende Tabelle :

Haupternheit : eg = 1
Grundeinheiten : €15 Case vy Cip_1s Cm
Cliffordsche Einheiten : €1 €2, €1 €5se .y 1€,€5,...,€,6...6,

Anzahl der Basiselemente: 2m

Es gelten folgende Relationen :

2= 1
2= —1 fir Ah=1,2,....u
es=+1 fir h=p+1,...,m—1
er = — X, xm=sign(c—2~g—’-)
oder allgemein l
es = xy , ey = — x,
€0€s = €5 € = €, (h=0,1,...,m)
ener = — €36, (b, k>0, h#k)
€1 Cm = — € €5 (k=1,2,...,m—1).

Die konjugierten Einheiten werden durch Uberstreichen gekennzeichnet.
eo==¢ =1, e, = — €, (h=1,2,...,m)

Fiir unsere Betrachtungen geniigen die hyperkomplexen Zahlen aus dem

Linearsystem £, . m

L,: 2= X xz,e, .

h=0

8) Uber eine ausfiihrliche Theorie der Oliffordschen Algebra vergleiche R. Fueter, Vor-
lesung 1948/49, 8. 1f. und iiber die Funktionentheorie der Cliffordschen Algebren 1. c. S. 26411,
Die hier verwendeten Begriffe stimmen, soweit als méglich, mit jenen der Vorlesung
iiberein.
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Die konjugierte Zahl z ist definiert durch

Man beachte, daB fiir z,, = 0 die Norm von z gerade mit dem charakte-
ristischen Kegel I'y des transformierten Gleichungssystems iiberein-
stimmt.

Wir gebrauchen spéter noch folgende Tatsachen.

1. Ist fiir zwei hyperkomplexe GroBen

m m
z= Yex, und v= Y e,v,
h=0 h=0

das Produkt zv = 0, so ist auch vz = 0. Denn es ist

m m

2V =€y ToVp — X 4,00 + X €, (2, 0 — TpVp) + T g (To¥y + T0p) =0
h=1 o<h<k k=1
m m

V2= 0Ty — X %,V %} + X €, (V3% — 0, %,) + T €, (v%s + Vy0p) = ¢
h=1 o<h<k k=1

Nach Voraussetzung miissen die Komponenten von jedem Basiselement
fiir sich verschwinden. Weil dies fiir zv zutrifft, ist folglich auch vz = 0,
wie der Vergleich der Komponenten zeigt.

2. Da die Cliffordsche Algebra einer Matrixalgebra isomorph ist, gilt

das assoziative Gesetz
(e; 1) x = €;(e; €x) -

Dre e-Funktionen.

Durch die m + 1 Grundeinheiten konnen wir uns einen euklidischen
(m 4 1)-dimensionalen Raum aufgespannt denken, der auf sich selbst
abgebildet werden kann. Es seien also m + 1 reelle Funktionen v, der
m + 1 reellen Verinderlichen z,,..., z,, gegeben

By == Cpkyss s « 1 Eog) (h=0,1,...,m),

welche wir mit Hilfe des Linearsystems €, zu einer sogenannten e-Funk-
tion der hyperkomplexen Variablen

8) R. Fueter : Vorlesung 1948/49, S. 267 f.
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m

2= X,¢€,
h=0

zusammenfassen : n

v(z) = X v,e, .
h=0

Die Differentiation nach den einzelnen Komponenten der Variablen z
(oder ¢ usw.) wird in der Theorie der hyperkomplexen Funktionen zweck-
miBig wie folgt bezeichnet

m m
_31: _?_v_’.‘_e = @ = ) P
h — kR *h -
0%,  n=0 0%y A=0

Fir »% wird ,,v — k& — Strich* gelesen.

b) Der ¢- Raum und seine Eigenschaften.

Wir konnen uns neben dem e-Raum auch noch einen weiteren Funk-
tionalraum denken, in welchem wir ganz neue Einheiten und eine von
der Cliffordschen vollig verschiedene Algebra einfithren mit den » Ein-

heiten
€gs E1se v vy Epyq -

Die Abbildung des e-Raumes (oder eines Teilraumes davon) auf den
e-Raum erfolgt mittels der sogenannten &-Funktion

n—1
w(z) = X & w(2) ,
k=0

wobei die w, wiederum reelle Funktionen der Variablen z,,..., ,, sind,

also
Wy, = W (Tgs..., X,) -

Man merke sich wohl, dal die Variablen der e- und der e-Funktionen
aus dem e-Raum stammen und die Abbildung also nur in einer Richtung
definiert ist. Die wesentlichen Funktionen werden daher die e-Funktionen
sein. Im ¢-Raum definieren wir die neuen Einheiten wie folgt :

10...0 00...0 00...0

00...0 1\ 10...0 00...0
80: -------- ’812 -------- > s ’en‘.l: -------- ’

00 0 00...0 10 0

so daB also fiir ¢, in der ersten Kolonne und in der (%2 + 1)-ten Zeile eine
1" steht, sonst aber hat die Matrix lauter Nullen. Daher ergeben sich
folgende Rechenvorschriften
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™
(=

Il

M
[

e =0
&) &g = &
R (hk=1,2,...,n—1) .
& &, =10
er&r =20

Wir haben also keine Cliffordschen Zahlen mehr. 0 bedeutet die Null-
matrix. Aufler ¢, ¢, = ¢, ist das Produkt zweier Einheiten immer Null.

Nun legen wir uns eine Multiplikationstafel fiir ¢ ¢ an. Die Produkte
berechnen wir, indem wir auch fiir die e in die Matrizendarstellung zuriick-
kehren. So wird

3 h h k
Coo Cok Co p—1 0 0 Cor O 0
€rEr =1 - - - 1 0= cfk 0 0
. " Y A UEREEN B W RS
cn__lo o s e Cn_l k « s . C”__l ”__1 O s o o O cn__lk O . o . 0
n—1 %
= X Cip &
=0

Hiermit ist die Multiplikationstafel gegeben.

€o &g
0 n—1
€ > Cio&; - PN P
h
e > € & >Cii €
t=0 t=0

Aus dieser Tafel ersehen wir, daB wir im e-Raum bleiben, wenn wir eine
e-Funktion von links mit einer e-Funktion multiplizieren. Mit anderen
Worten, der e-Raum ist invariant gegeniiber e-Multiplikationen von
links. Diese Eigenschaft wird funktionentheoretisch von Bedeutung sein.

5. Operationen. Klassifizierung der ¢- und e-Funktionen

Zur Abkiirzung fiihren wir die folgenden Operatoren ein.

8 s8—1
0 6h~————+ we
ox,,
- i (8§ =m oder m 4 1) .
O= Ne,—+ we,
hgo ’ 0%,
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m m
Die Operatoren O und O sind den Linearsystemen L, und M, nach-
gebildet. O heillt der zu O konjugierte Operator. In dieser Schreibweise

wird auch
m—1 o2

m
n(0)= Y % -5+ #m0® .
h=0 0},
Denken wir uns die Komponenten w, von w (siehe S. 300) und die Kom-
ponenten g, von g, zu ¢-Funktionen zusammengefaBt

n—1

w (2) ==h2 &y Wy ,
s 1}

n—1

g(z) = 2 Eh gh y
h=0

so ist vermoge der Konstruktion der Einheiten im ¢-Raum die folgende

Gleichung erfiillt m
Ow(z) =g() .

Die reellen Bedingungsgleichungen stellen gerade das Differentialglei-

chungssystem dar
Lyw=g, .

Hieraus gewinnen wir eine wichtige Erkenntnis. Die Komponenten der
e-Funktion w(2) sind ndmlich Losungen des Systems von partiellen
Differentialgleichungen L,w = g,, und somit sind auch die Ltsungen

von
Lu=f

bekannt. Ist das Rand- bzw. Anfangswertproblem fiir die hyperkom-
plexen Funktionen geldst, das heillt ist der zweite Integralsatz bekannt,
so ist auch das vorgelegte System von Differentialgleichungen gelost.
Daher ergibt sich der wichtige

Satz : Die Existenz eines Multiplikators ersten Grades ist notwendig, da-
mit ein System von partiellen Differentialgleichungen mittels (der heute
bekannten) hyperkomplexen Funktionen gelost werden kann. Ein linearer
Multiplikator aber existiert, falls die Bedingungen I und II (Seite 299)
erfiillt sind.

Unsere Erkenntnisse und die folgenden Entwicklungen geben Anlafl
zur Aufstellung einiger
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Definitionen: I. Eine e-Funktion w(z) heilt in einem Punkte z links-
analytisch, falls m
Ow(z)=0,

und durch g gestort linksanalytisch, falls
m n—1
Ow(z) =g (g =& gh)
=0

ist. Dieselbe Definition gilt /auch fiir ein Gebiet respektive fiir einen Be-
reich, falls w(z) dort iiberall regulér ist.

II. Eine der obigen dquivalente Definition heift : Eine e-Funktion
w(z) heillt in einem Punkt z durch g gestort linksanalytisch, falls

m+1
Ow(z) = g(2)
unter den Nebenbedingungen
ow __ dg __
T = e =0

Diese Definition kann auch auf ein Gebiet ausgedehnt werden.

III. Fiir die e-Funktionen bilden wir in Anlehnung an die Theorie
m+1
der Differentialgleichungen den zu O adjungierten Operator

m+1

Zeh

— we,, .
oz,

Entsprechend heiflt
0

= 2 eh’a—;:;—wem

m
konjugiert-adjungierter Operator. Man beachte, dafl im Gegensatz zu 7 (0)
die Norm jetzt

"g*l) Ex o — 2x w—a—~+x w?
- e ",
lautet.
IV. Die e-Funktion m
v(z) = X 7,
h=0
mit m
2= €%
h=0
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heiflt in einem Gebiete adjungiert analytisch, wenn in jedem Punkt des
Gebietes gilt

m+1

Oxv =0 .

Corollar : Nach Seite 305 folgt aus zv = 0 auch vz = 0, deshalb
(symbolisch) gilt :
m+1 m+1 m
0*v= (w0*)= X vWe, —wve, =0 .
R=0
Man beachte, dafl unsere bisherigen Ausfiihrungen giiltig sind fiir Systeme
vom elliptischen, hyperbolischen und ultrahyperbolischen Typus. Eine
verschiedene Behandlung ist erst bei der Aufstellung des zweiten Integral-
satzes notwendig. Da es ein Ziel dieser Arbeit ist, spezielle hyperbolische
Systeme zu integrieren, ziehen wir es vor, jetzt schon den Wert der »;
festzulegen. Es gelte von nun an immer, falls nichts anderes bemerkt
wird
#o=1, sy=—1 (h=1,2.....m).

Es liegt in der Natur der verwendeten Losungsmethode, dal alle »x, =
— 1 sein miissen aufler »x,.

Y. Das skalare Potential der e-Funktionen.

Satz: Jede in einem einfach zusammenhdngenden Gebiet des e-Rau-
mes adjungiert-analytische e-Funktion 148t sich darstellen in der Form

m+1

v(2) = 0" D(z) ,

wo @ eine skalare Losungsfunktion (das ,,skalare Potential“) der skalaren
Gleichung

m+*1 ] 02 0 )
’n(O )¢:h%0xh‘_a—x—i—¢—ﬁ2xmw—5;:;¢+xmw d =0

darstellt. Ist umgekehrt @ eine Losung dieser Differentialgleichung,
m+1
so stellt v = O* @ eine adjungiert-analytische e-Funktion dar.
Die Umkehrung ist wegen der Giiltigkeit des assoziativen Gesetzes
selbstverstiandlich, denn es ist

m+1l m+1 m+1 m+1

(0* 0*)® =0"(0"0) =0 .
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Dieser Satz wird bei der Konstruktion der integrierenden e-Funktion
eine entscheidende Rolle spielen.

Fiir den Beweis des ersten Teils des Satzes schreiben wir die Regulari-
m+1

titsbedingungen fiir O* v = 0 im Reellen an. Es ist

m+1 m a’l)k m
O'v= X e,¢, —we,e, X v, =0
h,k=0 Ly k=0
a a
9% 2?i’i—;o k=1,2,....m—1)
ox, ' ox,
ov,, dv,
Tm Wy — 0
oz, T oz, U
v, ov,,
— o .= 0
ox,  om, Ok
avk_“av,,_” (h,k=1,2,....m—1: h#k).
ox, ox;,

Nach Voraussetzung sind aber die Komponenten fiir ein vorgegebenes

v(2)
0 0 d
vo_axo¢ 'Uk-"—‘-—*-—a-?v":“@ vm———--‘*—a-"a‘:;(p-{"(l)¢.

k=1,2,....m — 1)

Diese Werte erfiillen gerade die obenstehenden Existenzbedingungen. Die
m+1

erste Gleichung liefert n(0* )® = 0 .

6. Der verallgemeinerte erste Integralsatz

Zur Herleitung des verallgemeinerten ersten Integralsatzes beniitzen
wir gleichzeitig eine adjungiert-analytische e-Funktion
m
v(z) = X v ey -
K=0
welche also i "

O*v= (w0*)=0 (symbolisch!)
geniigt, und eine linksanalytisch gestorte e-Funktion
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n—1
W= X g w,
h=0

welche die Bedingung

m+1 n—1
Ow=yg (g=28k9k)
erfiillt. h=0

Sind beide Funktionen in einem (m -+ 1)-dimensionalen Bereich R+
und auf dessen Rand H+ stetig und stetig differenzierbar, so gilt der
Gaufsche Integralsatz?)

f. ) 'ff(vekw)(k) At = f ';fv(ekvkd’f)w ,
R HT

wobei », = cos(v, ¢;) die k-te Komponente der nach innen gerichteten
Einheitsnormalen auf H+ darstellt. dr+ und dht+ bedeuten die reellen
Argumente im euklidischen R™+! respektive auf der reellen Hyperfldche
H+. Wir setzen -

dZ+ = X e, v, dht
und erhalten k=0

ff kéo(vekw)""dr*: —f---fvdTw :
Rt H*

Wir formen nun den Integranden der linken Seite wie folgt um.

m m
Swew) =3 (v® e, w + ve,wh) =

k=0 k=0
m m
— (Ev(k)ek) w_*_zv(zekw(k))
k=0 k=0
m m
== (}: v e, — vwem) w+ v ( 3 e, w'k) wemw)
m+4-1 m+1
= (v0*) - w4+ v(Ow)=v.g
(symbolisch 1)

Setzen wir den Integranden wieder ein, so erhalten wir den

Verallgemeinerten ersten Integralsatz :

Ist die e-Funktion v ym Bereiche R+ (und auf dessen Rand H*) adjun-
giert-analytisch, und ist die e-Funktion w durch g links-analytisch gestort,
80 qilt

7) R. Fueter : Vorlesung 1948/49, S. 305.
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f-;+-fvdZ+w —{—f-R-Jr-ffver'g:: 0

Anmerkung : Hitten wir uns, natiirlich unter entsprechender Abdnde-

rung der Voraussetzungen, der Operatoren 6 respektive (,)Q" bedient, so
wire der genau gleiche Satz fiir die Dimension m entstanden. So kann
er fir die Losung des Randwertproblems der elliptischen Systeme ver-
wendet werden (vgl. § 7). Wegen unserer Forderungen an die integrie-
rende Funktion v (§ 8) werden wir aber im Verlauf der Ableitungen ge-
zwungen, in die Dimension m + 1 aufzusteigen.

7. Der verallgemeinerte zweite Integralsatz fiir elliptische Systeme
(Randwertproblem elliptischer Systeme)

Das Randwertproblem fiir inhomogene elliptische Systeme ist leicht
zu 16sen. Man erhilt als Resultat den zweiten Integralsatz fiir inhomogene
elliptische Systeme :

Ist die e-Funktion w(z) tm Innern einer geschlossenen, orientierbaren und
genilgend reguldren Hyperfliche H und auf H selbst durch g linksanalytisch
gestort, dann gilt fir jeden Punkt z tm Innern von H ®)

1(5)

wle) = 2Vn™

[ [0t —21)aBwE) +
H

+ f : -ff0*¢(lﬁ~zl)drg} :
R
wobet @ die Qrundlosung der Gleichung

(A4 + =, w2) @ =0
8t 9).

8) Der Index (&) fordert Differentiation nach den Variablen &,.

®) Man vergleiche die Ausfilhrungen von Adolf Kriszten: Elliptische Systeme ...,
8. 256 ff., wo auch die Berechnung von @ fiir %, = -+ 1 durchgefiihrt ist.

Fiir die allgemeine Methode sei auf die zitierte Vorlesung von Herrn Professor Fueter
hingewiesen (Kap. IV, 8. 254 ff.).
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8. Die Grundlagen fiir den zweiten Integralsatz
oder das Anfangswertproblem der inhomogenen hyperbolischen Systeme

a) Forderungen an die integrierende Funktion v im elliptischen Fall.

Bei der Losung der elliptischen Systeme geht man davon aus, die
integrierende Funktion v derart zu konstruieren, dafl sie die nachfolgen-
den Forderungen erfiillt :

1. v ist eine adjungiert-analytische Funktion.
v ist innerhalb des ganzen Bereiches R mit Ausnahme des Auf-
punktes z regulér.

3. v soll im Aufpunkt z singulir werden wie 71-™, wobei r den Radius
einer den Aufpunkt z als Zentrum besitzenden infinitesimalen Kugel
bedeutet.

Die Methode der elliptischen Systeme ldBt sich deshalb nicht ohne
weiteres auf den hyperbolischen Fall iibertragen, als die Funktion

U

v =—

r

nicht mehr adjungiert-analytisch im neuen System sein kann und da-
durch die Anwendung des verallgemeinerten ersten Integralsatzes un-
moglich wiirde.

b) Der Satz von Delassus fir hyperkomplexe Funktionen.

Deshalb stellen wir uns die Frage: Wie muf} die integrierende Funk-
tion v beschaffen sein, damit sie die Gestalt

u
o™e

YV =

erhilt, wo ¢ (entsprechend r) eine rein skalare Funktion sein soll19).
Da v adjungiert-analytisch vorausgesetzt ist, haben wir die Bedingungs-
gleichung '

m+1 3%
0" v= (Eeh——————we )
™o

0 x;;
1 m ou
=T T gmet (2 "ax,.)“*"’é'%(éoe’”é;;“m “)‘"0'

10) Fir den Moment hat m, nichts mit der Dimensionszahl m des Variablenraumes
zu tun.

314



Néhert sich nun ¢ — 0, so werden die beiden Terme von verschiedener
Ordnung unendlich, womit eine gegenseitige Kompensation ausge-
schlossen ist. Daher miissen die beiden Koeffizienten von o~ ™+ und
o~ ™ einzeln verschwinden. Wir erhalten somit als Bedingung fiir die
skalare Funktion p :

( 3 e, 0 ) 0, fall 0
e, —)u=0, alls =g
h=0 " ox, ¢

Da sowohl der Term in der Klammer, sowie u fiir sich allein hyper-
komplexe Groflen aus dem e-Raum darstellen, kann auch die Norm ge-
bildet werden. Nach elementaren Regeln der hyperkomplexen Algebra
wird I

1(2‘ o 8xh) } (h}:ox"(axh)z)n(u) =0

Wenn wir # im ganzen endlichen Raum ungleich null annehmen, ist also
fir die skalare Funktion g eine Differentialgleichung erster Ordnung
zweiten Grades gegeben. Die einfachste, nichttriviale Losung, welche fiir
o = 0 die Gleichung erfiillt, ist

das heiBt die Norm der Variablen aus der zugehorigen Cliffordschen
Algebra. Diese Differentialgleichung kann als Analogon zum Satz von
Delassus gedeutet werden. Im elliptischen Fall liefert p gerade #2.

Uber die Funktion  liBt sich nur aussagen, daB sie sicher nicht ad-
jungiert-analytisch sein kann, falls wir n({ — 2) als ¢ verwenden. Die
allgemeine Form der integrierenden Funktion wird daher zweckmiBig,
auf jeden Fall hinreichend lauten

e-Funktion
nmo )

Es handelt sich also darum, m, und die e-Funktion zu bestimmen.

m+1

c) Die Grundlosung der Gleichung n(0*) @ = 0 (Solution élémentaire)
und die integrierende Funktion.

Wir haben in Paragraph 5 bewiesen, dal jede adjungiert-analytische

Funktion sich in der Form m+1
v=0"D

darstellen 1iBt. Daher kann man auch zur Konstruktion der integrieren-
den Funktion v fiir den (m + 1)-dimensionalen Raum die ®@-Potentiale
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beniitzen, deren allgemeinste Form offenbar von folgender Gestalt sein
muB :
regulidre skalare Funktion

D =
nMo

+ reg. Funkt. - log» ,

wobei » die Norm n({ — z) bedeutet. Wir haben ebenfalls bewiesen,
m+1 m+1
daf3 Ot‘ @ wieder adjungiert-analytisch ist. Da es sich in O* um einen
Differentialoperator erster Ordnung handelt, wird die Dimension des
Ausdrucks nach seiner Anwendung um eins kleiner sein und somit dann
den Anforderungen der integrierenden Funktion v entsprechen miissen.
Man ist versucht, die Losung des zweiten Integralsatzes gerade im
m-dimensionalen Variablenraum zu suchen, falls das gegebene System
von partiellen Differentialgleichungen m willkiirliche Verdnderliche auf-
weist. Dieser Weg ergibt folgendes Resultat : Es existiert ein ganz ana-
loger erster Integralsatz wie in § 6, und die Grundldsungen ergeben die
folgende allgemeine Gestalt, welche sich durch eine einfache Rekursions-
formel gewinnen lassen. Fiir ungerades m = 2 p + 1 wird

/= %mwtn B
q):f_TI{l +V"—'f_'“+‘/n2b+'--+l/n"‘“2}

n 2

und fiir gerades m = 2 p

O 2
D= ml_z'Jo(V%mwzn)-i——z—;—"—- ?Z__a-J{,-logn—i—hOhere

n 2 n 2 Potenzen,

wo Jy(x) die Besselsche Funktion 0-ter Ordnung bedeutet, und a,,, b,,
mittels allgemeiner Formeln bestimmbare Konstanten sind. Die zugeho-
rigen integrierenden Funktionen v haben ein dhnliches, aber weit kompli-
zierteres Verhalten. Wenn man auch mit diesen Funktionen in einem
dem Nachfolgenden ganz analogen .Verfahren zum Ziele gelangt, so
miissen doch auch die Ableitungen der gegebenen und der sich auf dem
charakteristischen Kegel befindenden Randwerte in Betracht gezogen
werden, und zwar in einer ziemlich verwickelten Art. Daher zeigt die
Rechnung, daf} es nicht anstrengender ist, die Losung sowohl fiir gerades
wie ungerades m eine Dimension hdher zu suchen, ja, es ergibt sich sogar
eine elegante Ldsung.

Durch die Forderung ndamlich, dafl sich die integrierende Funktion v

in der Form w

nMo
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darstellen lasse und im Punkt z wie -1 unendlich werde, wobei r den
infinitesimalen Abstand von z bedeute, sind wir gezwungen, eine ent-
sprechende Differentialgleichung fiir @ zu suchen, die wir nur durch Auf-
steigen in eine hohere Dimension finden kénnen, indem wir einen Démp-
fungsfaktor zufiigen. Der Grund des Aufsteigens liegt im Satz von

Delassus und in der Herleitung des ersten Integralsatzes begrﬁndet
m+1
Damit ist auch der Gebrauch des Operators O* an Stelle von 0* moti-

viert. Wir sehen also riickblickend, dafl durch den Satz von Delassus fiir
das Hyperkomplexe und unsere Forderung an die Gestalt der Grund-
losung der Gang unserer bisherigen Entwicklungen festgelegt ist. Die
einfachste Gleichung fiir @ lautet im hyperbolischen Fall
02 m o 92 0 .
—— ® =0
{ ox3 ,,2' g 20 ozx,, @ }
oder, wenn wir der Konstanten w ihren bisherigen Wert (§ 3) zulegen
und fiir £ von nun an £ als Variable schreiben :
m+1

n(O*(g))@= 0 .

Hier ist es leicht, eine Losung mit der geforderten Singularitit zu finden,
da nach dem Satz von Delassus eine Potenz der Norm im Nenner stehen
muB. Durch einen gewohnlichen Ansatz der Funktionen, wie er bei
Gleichungen zweiter Ordnung mit konstanten Koeffizienten iiblich ist,
findet man sofort als Grundlosung

1 e (im—2zm) e@(Em—2m)
¢ _ . ™ t} = - 1"—-_-—1 &
1 —m U%“%N~E¥&—%ﬂ2 (m—1).n 2
V=

Hieraus berechnet sich nun die integrierende Funktion v :

0 & (ﬁ 4 )@
v = == e. = — e, "
=, b 08,

Nach einer Zwischenrechnung ergibt sich

e®? (Em—Tm)
m+1

n 2

Y == ¢ —2"

wobei z als fest, ¢ als variabel zu betrachten ist.
Wir haben also fiir eine gerade und eine ungerade Anzahl unabhéngiger
Variablen dieselbe integrierende Funktion.
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9. Eine der Hadamardschen dquivalente Losungsmethode.
Der beschrinkte und der logarithmische Anteil

Nachdem wir nun die integrierende Funktion v gefunden haben, kénnen
wir dennoch nicht iiber eine geschlossene Hyperfliche integrieren, da die
Funktion v auf dem Kegel n({ — 2) singulir wird. Wir miissen deshalb
diese singuldren Stellen umgehen. Es wird sich auch hier zeigen, in Ana-
logie zu der Theorie der hyperbolischen Differentialgleichungen zweiter
Ordnung, daB durch das gesamte Innere des charakteristischen Kegels,
des sogenannten Abhingigkeitsgebietes, die linksanalytische e-Funktion
w(z) eindeutig bestimmbar ist.

Wihrend nun Hadamard!!) im gesamten Abhéngigkeitsgebiet die Kon-
vergenz der Integrale durch Hinzufiigen von sogenannten konvergenz-
erzeugenden Funktionen erzwang, geht die nachfolgende Methode in
Anlehnung an die Vorstellung der Reihenentwicklungen vom Begriff des
,,Koeffizientenvergleichs“ aus. Wie gesagt, sind beide Methoden im Prin-
zip dieselben, aber die Vorstellung des Koeffizientenvergleichs gibt der
ganzen nachfolgenden Rechnung eine groie Klarheit.

Wir geben nun zuerst eine allgemeine Beschreibung der Methode und
anschlieend folgt in § 10 die explizite Durchfiihrung der Rechnung.
Zum vornherein nehmen wir an, dafl die gesuchte e-Funktion iiberall,
wo sie auftritt, gestort linksanalytisch und regulir ist. Fiir alle unter
einem Integralzeichen auftretenden Funktionen verlangen wir die Exi-
m -+ 2

2
Notwendigkeit dieser Forderung wird man bald iiberzeugt sein.

Nun denken wir uns den charakteristischen Kegel durch den Aufpunkt
z gelegt. Eine raumartige Hyperfliche H (d.i. eine solche, die nirgends
charakteristisch wird) und auf der die reguliren Anfangswerte der links-
analytisch gestorten e-Funktion vorgegeben sind, schneidet aus dem
Kegel eine Grundfliche G heraus. Somit ist ein abgeschlossener Bereich E
definiert. Durch eine Hyperebene senkrecht zur 0-Achse schneiden wir
die Spitze des charakteristischen Kegels im Abstand ¢ von z ab, so dafl
ein Bereich R, entsteht, welcher durch die Deckfliche D, begrenzt wird.
Den Mantel M des Kegels verindern wir nach innen stetig als Funktion
eines Parameters 7 derart, da mit # — 0 die neue Mantelfliche M,
in M iibergeht. Die Mantelfliche M, schneidet aus der Deckfliche das
Stiick Dtm und aus der Grundfliche den Bereich G,7 heraus, wiahrend

ersten Ableitungen nach allen Variablen. Von der

stenz der

1) J. Hadamard: Le probléme de Cauchy et les équations aux dérivées partielles
linéaires hyperboliques, Hermann, Paris 1932. Man vergleiche ferner Courant-Hilbert:
Methoden der mathematischen Physik, Band II, Springer, Berlin 1937.
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durch die Deckfliche D,, die Mantelfliche M,, entsteht (vgl.die Figur).
Diese drei Hyperflichen begrenzen nun den Bereich R,, , welcher seiner-
seits R beliebig genau approximiert. Auf diesen Bereich R, , diirfen wir
den verallgemeinerten ersten Integralsatz anwenden :

f" vdZw—}—f---ffvdrg:O :

(Gy + Moy + Dgy) (Roy)

Diese Integrale werden nun nach den erlaubten Gesetzen der Differential-
und Integralrechnung sowie der hyperkomplexen Algebren ausgewertet.
Man ersieht sofort, daBl unsere Beschreibung sehr stark verallgemeine-
rungsfahig ist. Die integrierende Funktion v ist nun so konstruiert wor-
den, dal im Falle einer ungeraden Dimensionszahl des Variablenraumes
(m = 2p 4+ 1) jedes ausgewertete Integral die folgende Form annimmt
m-—3

_2'lfnt—2+77'fm-4+' . '+UTf1}+fo+0' n
nT
wobei O-7 eine Funktion bedeutet, die mindestens wie V7 gegen Null
geht fiir # — 0, und die Funktionen f, von # unabhéingig sind. Da in

unserm Falle die Summe der vier Integrale identisch verschwindet

PR

Mgy Doy Roy

J=

und das % bei festem o beliebig variiert werden darf, so folgt also auch
notwendig fiir jeden einzelnen Koeffizienten derselben #-Potenz

=0 .

Jede solche Koeffizientensumme wird also eine Bedihgungsgleichung fiir
w(¢) sein und zu seiner Bestimmung geniigen, indem man den Grenz-
iibergang % — 0 macht. Wir wihlen nun speziell f, und schreiben

fozl_']_~

fo heiBe der beschrinkte Anteil und stimmt also mit der ,,partie finie” von
Hadamard iiberein. Wir wihlen deshalb f, zur Berechnung von w(z),
weil der beschrinkte Anteil invariant ist gegeniiber allen Transforma-
tionen von 7 in #*, welche so beschaffen sind, daBl #* wie 1 gegen Null

geht. Man erkennt dies sofort, wenn man beachtet, da durch den
m-—2
Faktor 5 % keine Glieder aus der geschweiften Klammer entstehen

konnen, die endlich bleiben, aber doch von Null verschieden sind.
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Wesentlich anders sieht es im Raum von m = 2p unabhingigen
Variablen aus. Ordnen wir hier nach steigenden Potenzen, so lautet ein
ausgewertetes Integral

1

m=2
J= m-z{fm-z+n-fm-4+---+n =)y tog 0 .
2

Ui
Hier bleibt der Koeffizient f, nicht mehr gegeniiber jeder der oben be-
schriebenen Transformationen invariant; hingegen besitzt der von 7
unabhingige Koeffizient f, diese Eigenschaft, was man schon an der
besonderen Singularitét von log % fiir # — 0 erkennt. Substituieren wir
also 7 = n*¢, wo ¢ eine regulire Funktion von 7* bedeutet, so wird

lim f,log n = lim f; (log #* + log ¢) = lim f; log  + endlicher Wert.

n—>0 H—>0 7—>0

Deshalb schreiben wir im Gegensatz zum beschréinkten Anteil

fL:l_‘L_‘

und nennen f; den logarithmischen Anteil des Integrals. Im iibrigen
bleibt alles wie oben.

10. Der zweite Integralsatz
fiir inhomogene einfach hyperbolische Systeme

a) Das Rand- bzw. Anfangswertproblem fir ein System, das urspringlich
etne gerade Anzahl unabhingige Variablen besitzt.

Wie wir gesehen haben, ist die zugehorige integrierende Funktion v
von m + 1 Variablen abhingig. Hat also unser Gleichungssystem, eine
gerade Anzahl von freien Variablen, so miissen wir die Losung in einem
ungeradedimensionierten Variablenraum suchen. Wir befinden uns somit
im Fall m + 1= 2p + 1. Nun wollen wir im Aufpunkt

m-—1

2= X e,x,
h=0

den Wert der durch g linksanalytisch gestérten e-Funktion w(z) bestim-
men, wenn deren Anfangswerte auf der iiberall raumartigen Hyperfliche
H vorgegeben sind (vgl. die Figur). Dazu konstruieren wir uns folgendes
Integrationsgebiet.
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Wir gehen von der raumartigen Hyperfliche H, also einer (m — 1)-
dimensionalen Fliche im R™ aus. In diesem R™ liegt natiirlich auch der
Aufpunkt z. Senkrecht zu allen Achsen 0,1,.. .,m — 1 errichten wir
noch die Koordinatenachse m. Nun ziehen wir in jedem Punkt von H

H+

eine Parallele zur m-Achse, wodurch H zu einer m-dimensionalen Hyper-
fliche H+ erweitert wird und natiirlich wieder regulir und raumartig ist.
Auf jeder solchen Geraden seien die Werte w von z,, unabhiingig, so da
also —gg— = 0 erfiillt ist. Aus dem bisherigen charakteristischen Kegel I
mit der Spitze in z entsteht auf dhnliche Art ein Kegel I} = n({ — z)*
mit derselben Spitze z*+ = z, und entsprechend werden aus G die er-
weiterte Grundfliche G+, aus M der m-dimensionale Mantel M+, aus D
wird D+ usw. Der charakteristische Hyperkegel besitzt nun die Glei-
chung 12)

m—1

n(cmz) = (50_x0)2 - 2 (‘fv "— ""cv)2 - Efnz 0 ’

v=1

da fiir den Aufpunkt z die Komponente x, = 0 ist.

12) Wo eine Verwechslung der Dimensionen ausgeschlossen ist, lassen wir das Zeichen +
weg.
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Als Niaherungsgebiet .R+ wihlen wir, wie in § 9 geschildert wurde,
folgenden Kegelstumpf :

m—1
L—=n)2 —z) — X (6, — ) — &, >0 .

v=1
fo=1=Ty— @
060=9n=s1
Die Deckfliche ist die Kugel
m—1
'Dgn: 2(§v“xv)2+5,27.=(1”7))292 s
v=1

da der Offnungswinkel des charakteristischen Kegels — betragt Die
Formel fiir den Mantel lautet :

—1

1 — »n)? _— 2 __m _ 2 __ g2
M” . ( 77) (Eo xo) v2=:1(§v xv) Sm

o =%y — @

Die Funktion w sei im ganzen Bereich R+ (inklusive Rand!) als reguliir
vorausgesetzt, was offenbar immer zutrifft, falls die Bedingung schon fiir
R erfiillt ist.

Nach den in § 9 ausgefiihrten Uberlegungen ist also

lf...”,,d,g.,.' [ [vazw+ f...fvdzw_[_U'. - fvazw=o,
7, o ", e

da es sich um eine ungerade Dimensionenzahl handelt. Zur bequemen
Rechnung fiithren wir die dem vorliegenden Problem angepalBiten Kegel-
koordinaten ein

{fo“xo:“Q
§, —x,=0o(l—n)a, (»=1,2,...,m),
WO
>0, 0=9n=1, x, =0
—1<a=+1, Tat=1

Hierin bedeuten :
o: Abstand der Schnittkugel D, vom Aufpunkt z
«,: Richtungskosinusse in der (m — 1)-dimensionalen Hyperfliche
o = const.
1 — n: Proportionalitdtsfaktor.
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Ist n = 0, so liegen alle Punkte auf dem Mantel M = n({ — z) = 0.
In den Kegelkoordinaten wird

C“"‘z:"“e eo"“(l_n)gfx'vev
n(l —2) = n(2 — n) @

I. Um das Integral iiber R+ auszurechnen, miissen wir dr+ kennen.
Nach elementaren Umformungen wird die Funktionaldeterminante

0y Kg oo O

m
0(Tg, &1, Ty, - - -, Tp) - 1 0...«
a(g,n,cxl,...,(xm_l)zgm(l n)ml(xm ........ .
00 . K1
mit
ocm———l/l — >l
Daher ist
L dxdey ... da,_ dody
dz,dz,. . . dz,, = g™ (1 — n)™ ! .
oder

dr" = o™ (1 — p)™dw do dy

wo o die Oberfliche der m-dimensionalen Einheitskugel bedeutet.
Setzen wir fiir » den errechneten Wert ein, indem wir ebenfalls die
Koordinaten g, %, o, einfithren, so wird

e?e(&m—2zm) ePel—mamg (1 —9) Ta,e,)p
v = m+1 (C - z) = - m+ 1 ’
n ? (n2—mn-e) ?
Damit erhalten wir nun, wenn wir im Integranden entsprechend kiirzen
und ordnen: »
P v d'r g oot
UK
we(l——h)am e — (1 — ®,
= _fff ( ”:7+12 €)e o™ (1 — n)m g dndode
7 (@ @) (’7(2 ne’) *
we(l—n)am 1 ___ 77)m——
= —fff wil gdndodw
7 () (@) —n)

1
we(l—nam (] — p)m m
+_[ffe ( m'*’"l?) S «,e,gdndodew = —I,+1,

Yy (@) (w) (77 (2 —n) )T v=1
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Nun entwickeln wir jeden einzelnen Faktor des Integranden nach 7

i m+ 1
1 1 ——— r Bid
m+1 mF1 {2 ( ,’.2 ) (“‘72—7) +n 2 R1}:: B,
(n2—m)* (@g*
m—1 m — 1
(1=t =5 (— 1 ) ~ P,
§=0 8
1—pm =3 (- 1)3(”‘)178 — P
8=0 8
we(l—1)a pwen < “w@“m) t ’_'L;:_%
e 1 am = m ;0 SR/ ol R:x = SB:&
3 mt2
9(8)=9(n,0,x,)= g(n) = E —_— g( -’45 * R, = P,

p' anp

Das Symbol g(0) bedeutet die Randwerte von g¢(%, ¢, o) fir 5 = 0.
Hier und im folgenden sind die R, stets bestimmbare Restmitglieder 13).

Der Integrand von I, ist nun selbstverstindlich bis auf den Faktor

Wid
B o: m+1
n: PP Py- Py =
___m-{-l
e N B [ 2
e 2r.plt! onP
2 0<r,s, t, p<Y p r 8 ]
m+2
0<rts+ttp< 4t R,

(O) . nr+s+t+p +

13) Man wahlt fiir eine beliebige Funktion F (n) zweckmiBig als Restglied

m+1 , o, B1)
7 2 Rp= fyz-F‘ 2 (g—y)dy .

(2)'5

Natiirlich darf man bei abbrechenden, semikonvergenten und konvergenten Reihen die
Entwicklung entsprechend weiter ausdehnen, wie wir es zum Beispiel fiir B, gemacht

haben.
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Fassen wir die Terme, welche dieselbe Potenz von 7 besitzen, zusammen,

so ergibt sich m

m+1 m+2

2B, P Py B = qu’?q"f"'? - Ry,

wobei der Koeffizient

_m+1
O — 1 o @ om ¥ (= 1) *e+ (won,)? ( 2 ) (m~—1)_?_1_’_g(0)
q 2m:1 r+s+t+p=g rplt! ¢ s Jon?

zu setzen und von 7 unabhéngig ist. In R; sind selbstverstindlich die vor-
hergehenden Restglieder alle mitenthalten. Jetzt sind wir in der Lage,
das Integral I, auszuwerten. Es ist

1

L:‘ m+1
L=Y [y dnffO dgdw—{—fff n) dn do dew =
q

=0
n (e) (w) 7 (Q) (w)
mn

2
-3y m_lfdeedw +fff i Ry dn dp do
=0 ¢ — ——

(e) (w) N n (@) (w)

Nun lassen wir # gegen Null streben. Bilden wir dann den beschrinkten
Anteil, so miissen alle Glieder, die gegen Unendlich streben, weggelassen
werden ). Da nun das Integral mit dem Restglied ein eigentliches ist,
S0 haben wir

r— Eﬂ m+1ff0dgdw+fff2R5(ngwdndgdw
q=04q—

(e) (w) n=0 () (w)
C, und R, sind wegen unserer Voraussetzungen reguldre Funktionen ;

und es gibt daher keine andern Singularitéten mehr.
Nun haben wir den beschrinkten Anteil von I, zu berechnen. Prinzi-

m
piell éndert nichts. An Stelle von P, tritt P; und g wird durch ¥ o, e, g (%)

v=1
ersetzt. Daher lautet der Integrand von I,

m
_mily

n E Dn?+ 72 - R,
wobei der Koeffizient

14) Fiir das praktische Vorgehen beachte man folgendes: Alle gebrochenen Potenzen
von 7 werden entweder null oder unendlich und kénnen gesamthaft weggelassen werden.
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m + 1

D=5 ¥ (= 1)"“*‘(«)9%)‘(“—2“)("7,) o»

o,e,- ~—g(0
’ 2m:1f+8+t+p g v=1 v 2rplt! r a’?p )

zu setzen ist, und ¢(0) wiederum die Randwerte auf dem charakteristi-
schen Kegel bedeuten. Analog wie vorher ist der beschrinkte Anteil des
Integrals von 1,

h=1

[Tz q§)2q_m+lffl)dgdw+fff %Re(n o,0,)dndodw .

(e) (w) =0 () (w)

Somit ergibt sich

[T 177
=1

2 5q m+1ff(D Cq)dedw-l—f ff% - (Re-R;)dndodow .

(@) (w) =0 () (w)

QMNI§

II. Nach demselben Muster (oder analog den nachfolgenden Berech-
nungen) wird der beschrinkte Anteil iiber die Grundfliche bestimmt,
nidmlich

f.a;.‘,'v iz w .

Mit unsern Voraussetzungen wird dies immer moglich sein. Ist G+ (bzw.
H+) insbesondere ¢ = const., das heilt eine Ebene senkrecht zur
0-Achse, so kéonnen die Resultate von IV. weiter verwendet werden.

III. Nun berechnen wir den beschrinkten Anteil der Mantelfliche.

Es ist
f f'v 4z w »-f f s +rog- Funktion dr

Da nur gebrochene Potenzen von 7 auftreten konnen, und # wihrend der
Integration iiber den Mantel konstant ist, so folgt fiir den Limes # — 0

U fvdzw——o .
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IV. Damit kommen wir zum letzten Integral. Es ist iiber die Deck-
fliche D+ erstreckt. Zuerst rechnen wir uns das Integrationselement aus.
Da D+ senkrecht zur 0-Achse steht, erhilt man

dZ'-: 2 eh 'Vh dh == - eodh —_— eon(l ”n)m_l dfxl- . .dOC,m._l d?]

Xm

]

was sich direkt aus dem Volumelement (Seite 323) herleiten 1i8t. Weil

jetzt auch p sehr klein wird, kénnen wir die e-Funktion w um den Auf-
punkt 2 nach ¢ entwickeln

Jw
wi) = wee) + o[ Jo| +
Desgleichen wird
er(l—Tj‘)C!m = 1 + Q . w(]_ _n)ocm_l._ v e
Setzen wir ein, so ergibt sich
[~ (vazw=
[ % D+ L %
— (1 — e, m— 1
{ f [ ( n)m+1(x )(1—-77) 1“ docl...damdn}w(z)+09.
p* —n)) 2 "

Wir haben also einen Term, der von p unabhéngig und zugleich Koeffi-
zient von w(z) ist

1

1 — m-— | p—
_..f f ( 7] m+1d17dw—|— ( 77 m+12 *, do .
(n(2— w (n(2—mn)) @)

Jedes o, ist eine ungerade Funktion, so daBl das Integral iiber die Ein-
heitskugel verschwindet. Daher bleibt nur das erste Integral iibrig,
welches ebenfalls sofort iiber die Einheitskugel integriert werden kann
und folgenden Wert besitzt :

1

B 2Va™ (1-77)":1 : .
F(*?“M(nw—n))‘}dn

Zur Auswertung substituieren wir 7 durch 1 — ¢ und erhalten

Va™ s gm1
— . 2f —y e .
m - -
F(”g‘) o (1—e) ®
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Dies ist ein Eulersches Integral zweiter Art, sobald n = 0 ist; und das
Resultat ist die B-Funktion. Bleibt diese endlich, so haben wir gerade
den beschrinkten Anteil. Zur Berechnung gehen wir von einer Standard-

Funktion aus 15)
1

I (x) IT
2 f82$+1(1 — 2)Vde = H(x(a—:}zy(-l%)l) = B(x,y) .

0

Es ergibt sich

x_—z—’-r—&———l, y=—m+1, und :v+y-|—1=—-—1—-.

2 2 2
Somit lautet der Koeffizient von w(z)
A ot I e m(-"5)
= V™.

3 Al '

Da m gerade ist, bleibt der Ausdruck endlich. Damit ist w(z) bestimmt.

2
2q—-('m——1)(

w() = ; : ){2

¢=0

[ {(Dq_'oq)dgdw +
Q) (@)

[ foize )]

Die Funktionen D, C,, Ry, Rs bestimmt man nach Seite 325 f. Wiinscht
man das Resultat nicht in Kegelkoordinaten, so hat man nur die folgen-
den Substitutionen vorzunehmen :

+ [ [ b (Re = Ry ddedo +
R

0= % — &
x — &
=1 —
7 2(xo"‘fo)
“l’=i mxv_év
2 (xv_fv)z
v=1

Die Funktionaldeterminanten sind reziprok zu den von uns berechneten.

15) Erwin Madelung : Die mathematischen Hilfsmittel des Physikers, 3. Aufl. 1936,
Springer, Berlin, S. 13.
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Es ist klar, daBl w(z) von den &,, unabhéingig ist. Theoretisch ist es mog-
lich, jetzt schon nach den &, zu integrieren. Wir verzichten hier jedoch
darauf, da man ganz analog verfahren kann, wie es Herr Kriszten %) in
seiner Dissertation gemacht hat. Selbstverstéindlich wird die Darstellung
dann viel komplizierter, insbesondere der Ausdruck, der sich auf das
Innere des charakteristischen Kegels bezieht. Anderseits aber ist die
Entwicklung nach der Variablen # der Kegelkoordinaten derart einfach,
da3 man damit wohl rasch zum Ziele gelangt.

b) Das Rand- bzw. Anfangswertproblem fiir ein System, das urspriinglich
evne ungerade Anzahl unabhingige Variablen besitzt.

Wir denken uns jetzt m + 1 = 2p Raumdimensionen vorhanden.
Alles, was wir zu Beginn des vorigen Abschnittes gesagt haben, kann
wortlich iibernommen werden mit dem einzigen Unterschied, daf3 die
Zahl m im folgenden immer als ungerade in Erinnerung behalten werden
muf}, und als Ausgangspunkt der Berechnung von w(z) die Relation gilt :

f.lt;or;?ffmzrg,F [ [vazw f‘;-.f'vdZw_*_ f-;-fvdZw:O :

.+.
% Moy Doy

Die vier Integrale berechnen wir wieder einzeln.

I. Zur Berechnung des logarithmischen Anteils des Integrals iiber R+
konnen die Resultate von Seite 223 ff. iibernommen werden, indem wir
aber jetzt die Terme mit 5! betrachten, die nach der Integration den
logarithmischen Anteil liefern. Wir werden jetzt summieren von 0 bis
m—1

2
vorgeklammert. So ergibt sich also fiir den Integranden von I, :

, und das Restglied hat ordnungsméfig allgemein kein # mehr

m—1

__m+1 2

n 2 2 Ca"?q + R5
g=0

mit den Koeffizienten
m-+1

1 we ’—'lr+8+t( m)‘ T2 \(m-1)\ 0P
Com —gggeven 3 SUET el (3 Bogto),

P2
R rre D=1 2rpli! 8 |on

16) Adolf Kriszten : Funktionentheorie und Randwertproblem der Diracschen Differen-
tialgleichungen, Comm. Math. Helv. vol. 20, S. 333.

329



Dm—l —

2

welche von % unabhingig sind. Es ist nun klar, daB nur der Koeffizient
von 7! der logarithmische Anteil sein kann. Somit ist

L= — [ [ Cusrdedo .

@) (@) 2

Ganz entsprechend mufBl natiirlich

LIE.: — “ "D —1dg do
. (@) (@) 2
mit
m r +1
e“"?"‘"' 2 E ev 0(1: (_ 1) +'+‘(wg(xm)‘{_ m2 )(m) ap

m+1 rmi ¢! onP
9 2 r+s+t+p=m__'2"1"=1 2rp ! \ r 8/

sein. Somit ist
Jooiffoira= -

das analoge Resultat zu Seite 326.

f f (D'_":l — C’l‘;;:l) dp dw

(@) (w) o

II. Ebenso wird man das Integral iiber die Grundfliche behandeln,
oder, falls diese die Gleichung ¢ = const. hat, die Ergebnisse von
Nummer IV weiterverwenden.

III. Bei der Behandlung des Mantels iiberlegen wir uns, dafl auch
hier eine Entwicklung nach den # moglich ist. Da aber nicht nach 7%
integriert wird, kann kein logarithmischer Anteil entstehen. Es ist folglich

VJ’~];¥fvdZw=0 .

Beim Mantelintegral tritt der Vorteil der entwickelten Methode klar zu
Tage. Wiren wir nicht aufgestiegen, so hétten wir schon in der integrie-
renden Funktion !”) einen Logarithmus vorgefunden, der auch auf dem
Mantel einen logarithmischen Anteil geliefert hitte. Da die Randwerte
auf dem Mantel natiirlich nicht bekannt sind, miite man mit Hilfe der
Greenschen Formeln den logarithmischen Anteil in ein Integral iiber die
Grundfliche und das Kegelinnere umzuwandeln suchen; was fiir eine
praktische Berechnung sehr miihsam wire und die Reinheit der bisher
verwendeten Methoden verletzen wiirde.

17) Es ist natiirlich klar, da8 diese Bemerkungen sachgem#8 unter a) behandelt werden
sollten, da ja dort der urspriingliche Variablenraum in der Tat gerade ist. Allerdings be-
stand dort kein Anla8, darauf einzugehen.
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IV. Damit kommen wir zum letzten Integral. Wir konnen die Aus-
filhrungen aus a) iibernehmen, miissen aber nach 7 entwickeln. So ergibt
sich 1

_ 2V?z"‘f A—nm

m il
1’(5),, (nE2—n) ®
m—1 .
2 Va™ 1 2 1 (m—1)\ -2 gprmHL
_— . Y \r+s 2 .
e T ey
2
+ Restglied.

Fiir den logarithmischen Anteil kommt nur der Koeffizient von 7! in

Frage. Wir bezeichnen ihn mit 4 und erhalten
m+1

TR e [

/
T+ 8=
+ 2

Somit ist w(z) bestimmt. 18)

w(z)=m= f J (Cm_l—Dm;l)dgdw +|f-G-+-fvdZw }

Die Funktionen C,_1 und D,,_, entnimmt man Seite 329 f.
T2 T2
Man kann natiirlich auch die Eindeutigkeit beweisen und zeigen, daf3

fiir die Komponenten von w({) auf G beliebige, dem Gleichungssystem
nicht widersprechende Werte vorgegeben werden konnen. Den Beweis
kann man genau demjenigen der Gleichungen zweiter Ordnung nach-
bilden, und er sei hier nur erwihnt.

(Eingegangen den 6. Mérz 1950.)

18) Man vergleiche auch die Arbeiten von :

Marcel Riesz: L’intégrale de Riemann-Liouville et le probléme de Cauchy, Acta
mathematica Bd. 81 S. 1ff. (1949).

M. M. E. Eichler : On the Differential Equation uz; + uyy + N(x)u =0 .
Transactions of the American Math. Society Vol. 65, 8. 259 ff. (1949).

M. M. E. Eichler : Analytic Functions in Three-dimensional Riemannian Spaces.
Duke Math. Journal Vol. 16, S. 339 ff. (1949),

wo verwandte Probleme mittels anderer Methoden behandelt werden.
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