Zeitschrift: Commentarii Mathematici Helvetici
Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 24 (1950)

Artikel: Projektive Methoden in der Gewebegeometrie.
Autor: Jeger, M.

DOl: https://doi.org/10.5169/seals-20312

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 05.02.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-20312
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Topologische Fragen der Differentialgeometrie

Projektive Methoden in der Gewebegeometrie

Von M. JEGER, Olten/Ziirich

Einleitung

Zur Abklirung differentialgeometrischer Fragen der Gewebegeometrie
ist bis jetzt zur Hauptsache der Kalkiil der Differentiatoren bzw. der
schiefen Differentialformen verwendet worden. Im zusammenfassenden
Werk ,,Geometrie der Gewebe von Blaschke und Bol') ist zwar im § 29
ein Ansatz in anderer Richtung vorhanden. Blaschke ermittelt dort ge-
wisse Invarianten von ebenen Kurven-4-Geweben unter Verwendung
der Geoddtischen geeigneter projektiver Zusammenhdinge. Weiter scheint
aber dieser Ansatz nicht mehr ausgewertet worden zu sein.

Gewebe sind geometrische Gebilde mit projektivem Charakter. Es ist
daher naheliegend, zur Diskussion gewebegeometrischer Fragen die Me-
thoden der projektiven Differentialgeometrie beizuziehen. Es soll im, fol-
genden gezeigt werden,daB sich der oben erwéhnte Blaschkesche Ansatz
auf beliebige Dimensionen erweitern 148t und dadurch die Einordnung
der Differentialgeometrie der Gewebe in die projektive Differentialgeo-
metrie moglich wird. Dieses Vorgehen gestattet einerseits, sdmtliche
differentialgeometrischen Aussagen iiber Gewebe auf hohere Dimen-
sionen zu iibertragen. Andererseits treten die Vorteile des weit um-
fassenderen Absoluten Differentialkalkils klar hervor. ‘

Der Rechenapparat ist dem Ricci-Kalkil entnommen. Entsprechend
den Prinzipien der Kern-Index-Methode werden fiir die allgemeinen
Koordinatensysteme griechische Indizes %, 4, u, »,.. ., fir die speziellen
Koordinatensysteme lateinische Indizes %, ¢, §, k,... verwendet. Dies
hat den Vorteil, daB zur Unterscheidung invarianter und nichtinvarian-
ter Gleichungen kein besonderes Zeichen notwendig wird. Eine Gleichung
zwischen GroBen mit lateinischen Indizes bezieht sich somit immer auf
ein spezielles Koordinatensystem ; durch die lateinischen Indizes ist aber
gleichzeitig zum Ausdruck gebracht, daf die Gleichung nicht invariant
ist, das heit nur in einem entsprechend speziellen Koordinatensystem

1) Grundlehren der Mathematischen Wissenschaften, Bd. 49.
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richtig ist. Von der Vorschrift des Ricci-Kalkiils, daf iiber Indizes,
welche in derselben Beziehung ko- und kontravariant auftreten, stets zu
summieren ist, wird insofern etwas abgewichen, als sie nur fiir griechische
Indizes zur Anwendung kommen soll. Diese Konvention erlaubt, ver-
schiedene, in speziellen Koordinatensystemen ofters auftretende Aus-
driicke in einfachere Gestalt zu bringen. Eine Summation iiber lateini-
sche Indizes wird durch Voranstellung des gewohnlichen Summen-
zeichens 2 angedeutet.

Kurven bzw. Hyperflichen der in dieser Arbeit untersuchten Gewebe
sind stets geniigend oft stetig differenzierbar vorausgesetzt. Damit diese
Eigenschaft der Gewebe erhalten bleibt, soll dasselbe auch fiir die zu-
gelassenen topologischen Abbildungen gelten.

I. Projektive Zusammenhinge

1. Affine Zusammenhdinge und thre Geoddtischen 2). In einem n-dimen-
sionalen Raum mit den affinen Koordinaten xv sei durch die in den
untern Indizes symmetrischen GroBen I’fw eine affine Ubertragung A,
gegeben.

Bei Parallelverschiebung eines Vektors ¢* lings einer Kurve ()
dndert sich dieser gemd@3

dvr = — I}, vt da? . (1)

Verschiebt man speziell ein Linienelement da* im Sinne der zugrunde
gelegten Ubertragung stets in seiner eigenen Richtung, so wird

dx?

v =4 T 2)

Seine Bahn heillt eine geoditische Linie der A,. Aus (1) und (2) folgt fiir
die Differentialgleichungen der Geodétischen

dz x , dar dx? da*
g T T A Y Ta ®)
Darin ist a(2?,..., 2?) eine Funktion, die von der speziellen Wahl des

Kurvenparameters ¢ abhiingt. Durch eine geeignete Parametertransfor-
mation kann « stets zum Verschwinden gebracht werden. Die Integral-
kurven von (3) besitzen zwei charakteristische Eigenschaften der Geo-
détischen eines Riemannschen Raumes ; sowohl durch zwei benachbarte

%) Vgl. [1] § 29, [2] Abschnitt IV, sowie des Literaturverzeichnisses.
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Punkte als auch durch einen Punkt und eine Richtung ist genau eine
Systemkurve bestimmt.
Eine Transformation der Ubertragung von der Gestalt

ry,=1I,, + 4, (4)

heillt bahntreu, wenn die Lage der Geoditischen invariant bleibt. Fiir
eine derartige Transformation hat das additive Glied notwendigerweise
die Form '

A:\w = 6;;;. y 2 + 63 py. = 26(u Py) 3) (5)

p, ist ein willkiirliches Kovektorfeld.

Eine Klasse affiner Ubertragungen, welche sich nur durch bahntreue
Transformationen unterscheiden, heilt eine Klasse isogeoditischer Uber-
tragungen und die invariant damit verkniipften Integralkurven (3) be-
zeichnet man als das zu dieser Klasse gehorige quasigeoddtische Kurven-
system ). Sie bilden eine 2(n — 1)-parametrige Kurvenschar. Geht man
von einem. quasigeodétischen System aus, so sind dadurch die Christoffel-
schen Symbole F’Z‘v nur bis auf bahntreue Transformationen bestimmt.
Man spricht in diesem Falle von einem projektiven Zusammenhang. Im
Gegensatz zur Geometrie der affinen Zusammenhénge gibt es in der Geo-
metrie der projektiven Zusammenhinge nur die Verschiebung eines
Linienelementes in seiner eigenen Richtung.

2. Der Projektivkriommungstensor. Mit einer affinen Ubertragung 4,
sind verschiedene tensorielle GroBlen oder Beziehungen bestimmt. Fir
die nachfolgenden Untersuchungen sind diejenigen von Bedeutung,
welche gegeniiber bahntreuen Transformationen invariant sind, das heif3t
durch einen projektiven Zusammenhang allein schon bestimmt sind.
Eine derartige GroBe ist der Projektivkriimmungstensor.

Wir legen iiber dem betrachteten projektiven Zusammenhang eine
spezielle A, mit den Dreiindizes-Symbolen I}, zugrunde.

Rlva= © va))t—'“ alrv?t'*'ro?p val_ :;\I}o;» (6)

ist deren Kriimmungstensor. Dieser bildet keine projektive Invariante.
Durch Verjiingung folgt daraus

R

— A
py Rlpv .

3) Bachsche Symbolik zur Abkiirzung symmetrischer und alternierender Summen.
4) In der englischen Literatur ,,system of paths‘¢ genannt.
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Mit der daraus abgeleiteten Grofle

1
F,, = — 7 (P By, + B, )
stellt
R\pvw = Rlp.:) ‘" 2P{7\y.] 6;0 + 26‘& Pp.}v (7)

schlieflich einen mit dem projektiven Zusammenhang invariant ver-

kniipften Tensor dar. In der Tat ist P,,,” invariant gegeniiber bahn-
treuen Transformationen der 4,,.

P,,,’ heilt der Projektivkrimmungstensor des Zusammenhangs. Er
verschwindet identisch fir n = 2.

Unter den quasigeoditischen Systemen sind diejenigen ausgezeichnet,
welche sich durch eine topologische Abbildung in die Geraden des
projektiven Raumes P, iiberfiihren lassen. Die 4, , welche zu einem der-
artigen System gehoren, heillen projektiv-euklidisch.

Fiir die topologische Aquivalenz der Geoditischen einer 4, mit den
Geraden des P, ist der Tensor

2v[)\Pp,]v = VRP;J.V - Vp. PAv 5)
mafgebend. Wie man leicht zeigen kann, ist
Voby, =0

eine gegeniiber bahntreuen Transformationen invariante Beziehung und
es gilt der

Satz : Eine affine Ubertragung ist dann und nur dann projektiv-eukli-
disch, wenn

Vaby,=0 9 (8)
Da die Beziehungen (8) fiir n>2 #quivalent mit

B2 =0 9)
sind ?), 1463t sich der Satz auch in folgender Form aussprechen :

Eine A, st fir n>2 dann und nur dann projektiv-euklidisch, wenn der
Projektivkriommungstensor verschwindet, und fir n = 2 dann und nur
dann, wenn fir den Tensor P, die Gleichungen (8) bestehen.

§) v ist das Symbol fiir den kovarianten Differentialquotienten.

8) Vgl. [2], S. 130.

7) Die Gleichungen (8) stellen die Integrabilitatsbedingungen fiir die Abbildungsfunk-
tionen dar. Sie sind fiir » > 2 eine direkte Folge von P;\#v‘” = 0.
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Es sei hier noch darauf hingewiesen, dafl die Geradlinigkeitsbedingun-
gen fiir die Dimension » = 2 eine Differentiationsordnung mehr ent-
halten, als fiir alle tibrigen Dimensionen.

3. Geoddtische Hyperflichen.
Definition : Eine Hyperfliche

D(zt,...,2") =0

oder das Schnittgebilde mehrerer solcher Hyperflichen heifit geoddtisch in
etner A,, wenn jede Integralkurve von (2), welche eitn Limienelement mait
diesem Qebrilde gemeinsam hat, ganz darin verlduft.

Fiir die einparametrige Hyperflichenschar
D(xt,...,2") =c (10)
mit ¢ als Parameter ergibt sich als Bedingung fiir geodétische Lage die
Existenz eines Konvektorfeldes u,, so daf3
VA ¢I" = 2u(l¢”’) 8) s (11)
wobei @, =09,P.

Satz: Das Schnittgebilde geoditischer Hyperflichen ist selbst wieder
geodditisch.

Zum, Beweise betrachte man ein Linienelement des Schnittgebildes ;
die zugehorige Geoditische liegt ganz in allen Hyperflichen und daher
auch ganz im Schnittgebilde.

II. Hyperflichengewebe im n-dimensionalen projektiven Raum P,

Zur Darstellung der Gewebe im n-dimensionalen euklidischen Raum
werden im folgenden affine Koordinaten benutzt. Da aber im Verlaufe
der Untersuchungen die Gruppe der projektiven Abbildungen des Rau-
mes auf sich eine wesentliche Rolle spielt, ist es naheliegend, den n-di-
mensionalen projektiven Raum zugrunde zu legen.

Definition: n einparametrige Hyperflichenscharen

PB(xt,...,2") =const., B=1,...,n

8) Vgl. [3], Bd. I, S. 181.
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bilden innerhalb eines Gebietes G des P, ein Hyperflichennetz, wenn in
jedem Punkte von G

(D, ...,D"
o(xt, ..., 2"

£ 0 (1)

ist. (1) bedeutet, daBl im kleinen n Hyperflichen aus verschiedenen
Scharen hochstens einen Punkt gemeinsam haben.

Definition: Ein System von k (k>mn) Hyperflichenscharen innerhalb
eines Gebietes G herfit evn Gewebe, wenn n beliebig herausgegriffene Scharen
stets esn Hyperflichennetz erzeugen.

Firr k£ Hyperflichenscharen bestehen somit die Gewebebedingungen

im Nichtverschwinden von (f;) Funktionaldeterminanten.

1. Projektive Zusammenhdinge iiber einem Hyperflichen-(n-1)-Gewebe.

Wir stellen uns zunéchst die Aufgabe, die Klasse projektiver Zusammen-
hiénge aufzusuchen, in denen ein vorgeschriebenes (n 4 1)-Gewebe aus
geodiitischen Hyperflichen besteht. Durch Uberfithrung eines Gewebe-
netzes in das Koordinatennetz ) vereinfacht sich die Konstruktion dieser
projektiven Zusammenhidnge wesentlich. Eine derartige Abbildung ist
wenigstens im kleinen als Folge der Gewebebedingungen (1) immer mog-
lich. Die (n -+ 1)-te Hyperflichenschar gehe dabei iiber in

D (x,. .., a") = const. (2)

In unserem speziellen Koordinatensystem wird das Gewebe durch die
(n 4+ 1)-Gradientenfelder

(1,0, , 0)
(O’ ]‘ ) > 0)
(3)
(0,0, ...,1)
(Dy, Dy,. .., D,)
aufgespannt und die Gewebebedingungen 9) lauten :
@, #0 fir i=1,...,n . (4)

Die Forderung, da die Gewebescharen geoditisch in einer A, liegen
sollen, zieht fiir jedes Feld in (3) ein Gleichungssystem von der Form

%) Netz, welches aus den Koordinatenhyperebenen da® =0 (s = 1,...,n) besteht.
10y Die (n + 1)-te Gewebebedingung steckt im Netz der Koordinatenhyperebenen.
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(I, 11) nach sich. Die ersten n Felder haben zur Folge, daB} zunéchst fiir
alle in Betracht kommenden 4,,

=0 fir ¢4 und k #j (5)

ist. Unter Beriicksichtigung von (5) liefert nun das letzte Gradienten-
feld in entsprechender Weise die Beziehungen :

2 = @;; — 2u; D, (6)
P, F:k + D I;I;c = Dy — (u; P + w D))
v und k durchlaufen dabei die Zahlen von 1 bis n. u, stellt ein willkiirliches
Kovektorfeld dar.
Dieses lineare Gleichungssystem von = - ( g) Gleichungen ist in-

folge (4) nach den darin auftretenden Christoffelschen Symbolen losbar

und wir erhalten @

P.i. e o 2u.;
1 ¢z‘ 1
. @, 1)

E&=%¢k_uk+z¢k

: i<k ™

k D (%) T

Pk = '% ®k — Uy — }b ¢,;

wobei fiir jedes Indexpaar (¢, k) ein Losungsparameter
(ik)
Az, 22,..., 2%)
auftritt ; es ist ndmlich fiir die beiden Symbole I}, und I}, nur eine
einzige Bestimmungsgleichung vorhanden.

Das Kovektorfeld «,, das vom letzten Gradientenfeld herriihrt, steckt
noch als willkiirliche GroBe in der Losung. Durch Vergleich von (7) mit
(I, 5) stellt man sofort fest, daB eine Anderung dieses Kovektorfeldes
dquivalent mit einer bahntreuen Transformation der Ubertragung ist. Da-
gegen durchliuft man bei Anderung der A die Gesamtheit aller projek-
tiven Zusammenhinge, welche unser Gewebe geoditisch enthalten. Dar-
aus folgt :

Satz 1: Die Gesamtheit der projektiven Zusammenhinge, die ein vor-
gegebenes Hyperflichen-(n + 1)-Gewebe geoddtisch enthalten, wird auf-

gespannt durch (727’\) Funktionen in n Variabeln.

Dabei ist die Meinung, da durch jede feste Wahl dieser ( g) Funktionen

(ik)
A ein derartiger projektiver Zusammenhang eindeutig bestimmt ist.
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ik

Fiir ein gewisses System dieser (l) sei das Symbol [A] gesetzt. Zur

Charakterisierung des zu [i] gehorenden projektiven Zusammenhanges

konnen wir uns auf eine spezielle Wahl von %, beschrinken. Wir wihlen

dazu diejenige A4,, fiir welche in unserem speziellen Koordinatensystem

I ebenfalls verschwindet. Fiir diesen Reprisentanten ergibt sich dann
nach einer einfachen Rechnung

(k)

q@:%akln(@)+z¢

1<k .
(1K) 8
I}"}c:—%—ailn(g'ﬁ)—}h@i (8)

P
I, = 0, sonst.

2. Hin Satz wber Hyperflichen-(n + 2)-Gewebe.

Satz 2: Ein Hyperflichen-(n + 2)-Gewebe bestimmit stets eindeutig
einen projektiven Zusammenhang, in dem es geoddtisch enthalten istl!).

Das Gewebe sei durch die (» + 2) Hyperflichenscharen

drt=0; 1 =1,2,...,n
dd =0; d¥ =0

gegeben. Die Gewebebedingungen lauten dann

D, D,
P, P,

Wir adjungieren nun zum Netz der ersten » Scharen einmal die Schar

d® = 0 und einmal die Schar d¥’ = 0. Es werden dadurch zwei (n 4 1)-
(ik)
Gewebe ausgezeichnet. (8) stellt mit Hilfe der Funktionen 4 die Klasse

der projektiven Zusammenhinge iiber dem erstern dieser beiden (n» -+ 1)-
(ik)

Gewebe dar ; entsprechend kénnen wir mit den Funktionen ux die Klasse

der projektiven Zusammenhinge iiber dem andern (n -+ 1)-Gewebe er-

zeugen. Der Durchschnitt dieser beiden Klassen liefert dann diejenigen

Zusammenhinge, welche das ganze (n + 2)-Gewebe enthalten. Dies

driickt sich aus in

D, =0 ; ¥,=0 ; =0 fir 2#Fk . 9)

. (tk)
%akln(¢)+z¢k_%a ln(gj')—}—p‘ﬁk
. (10)
(ik)
rk=14s, 1n(q;’°) Yo, = 1o, ln(g’,’:)—w,.

11) Dieser Satz ist bekannt fir n = 2. Vgl [1], S. 246.
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Betrachtet man diese Beziehungen fiir ein festes Indexpaar (¢, k) als
(ik) (ik)
lineares Gleichungssystem fiir 4 und x , so ist dieses infolge (9)

eindeutig losbar. Der Durchschnitt besteht daher aus einem einzigen
projektiven Zusammenhang ; Satz 2 ist damit bewiesen.

Aus Satz 2 schlieft man sofort, dafl jede topologische Abbildung des
P, auf sich, welche ein Hyperebenen-(n -+ 2)-Gewebe wieder in ein
solches iiberfithrt, geradentreu und damit eine Projektivitét ist.

3. Schnittgewebe. Fiir die weiteren Untersuchungen bendtigen wir
einen Hilfssatz iiber projektive Zusammenhénge :

Satz: In einem projektrven Zusammenhang des P, sev eine geoddtische
Hyperflichenschar gegeben. Dann erzeugen die Geoddtischen des P, , welche
ganz in dieser Schar verlaufen, in jeder threr Hyperflichen einen (n — 1)-
dimensionalen projektiven Zusammenhang.

Zum, Beweise filhren wir ein spezielles Koordinatensystem ein ;
da" = 0

sei gerade die Differentialgleichung der ausgezeichneten Hyperflichen-
schar. Die affinen Zusammenhinge 4,, welche diese Schar geoditisch
enthalten, sind dann ausgezeichnet durch

=0 fuar ¢#n und k#mn .
Unter diesen 4, gibt es genau eine, fiir welche sogar
= fiir beliebige 1, k 12) .

Mit einem geeigneten Parameter ¢ lauten die Differentialgleichungen der
Geodétischen eines Zusammenhanges im P, :

I =
T ,i‘% ,El *odt de
1=1,2, , N

In unserem Falle vereinfachen sie sich zu

dz2 xt n n o dal dak
“ r.‘l————-—-———-zzo, .<
PR I IR a7 P
dz x® _
dez

12) Es existiert genau eine bahntreue Transformation p;, so da

n L
Iy, +0yp; +07p, =0 fur i=1,...,n .
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Fiir die Geodétischen, die ganz in unserer Hyperflichenschar verlaufen,
ist aber dauernd dn
x

dt

das heillt diese geniigen den Gleichungen

=0,

dz xi n—1 n—1 . dxj d(l?k
— F." _— =0 ; <
T A AL s
dx™
i 0 .

Dies sind aber die Gleichungen (n — 1)-dimensionaler quasigeoditischer
Systeme in den Hyperebenen dz® = 0. Unser Hilfssatz ist damit be-
wiesen.

Wir betrachten nun wieder ein (n + 1)-Gewebe im P, . Das Schnitt-
gebilde von (n — m)'?) Gewebehyperflichen, welche verschiedenen
Scharen angehoren, ist eine m-dimensionale Mannigfaltigkeit R™, und
die iibrigen (m 4 1) Gewebescharen erzeugen in dieser R™ ein (m + 1)-
Gewebe. Wir bezeichnen dieses als das Schnittgewebe.

Wie im Abschnitt I gezeigt wurde, ist das Schnittgebilde geodétischer
Hyperflichen selbst wieder geodétisch. Aus dem eben bewiesenen Hilfs-
satz liber projektive Zusammenhdnge schlieft man daher auf den im
folgenden Satz formulierten Sachverhalt :

Satz: Ein projektiver Zusammenhang ither einem (n + 1)-Gewebe in-
duziert im Schnittgebilde R™ von (n — m) Gewebehyperflichen aus ver-
schiedenen Scharen einen projektiven Zusammenhang von der Dimension
m, welcher das Schnittgewebe geoddtisch enthdlt.

4. Das Doppelverhiltnis-System. Wir verlegen nun unsere Betrach-
tungen fiir einen Moment in den P,, das heillt in die projektive Ebene.
Es liege hier das Kurven-3-Gewebe

dat = 0, da? =0, dd =0 (11)
vor. Fiir jeden gegebenen (von x! und 2? unabhingigen) Wert o ist
c D dat + D, da? =0 (12)

die Differentialgleichung einer einparametrigen Kurvenschar, welche mit

den Kurven des 3-Gewebes (11) in jedem Punkt das Doppelverhilinis o
bildet. Es sei

By np—m>1.
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Y (xt, a?)
das Integral von (12) und f der zugehorige integrierende Faktor
T]_: G'f'¢1 3 TQ': f‘¢2 . (13)

Fiir jedes o £ 1 bilden die Kurvenscharen (11) und (12) zusammen ein
Kurven-4-Gewebe, durch welches gem#fl Satz 2 ein projektiver Zu-

sammenhang eindeutig bestimmt ist. Man findet aus (10), daB3 dieser
(12)
Zusammenhang fiir jeden Wert von o durch 4 = A= 0 gegeben ist.

Satz 3: Sdmtliche einparametrigen Kurvenscharen der Ebene, welche mit
den Kurven eines 3-Gewebes ein festes Doppelverhiltnis bilden, sind Geodd-
tische eines ausgezeichneten projektiven Zusammenhanges. Dieser ist in
unserem speziellen Koordinatensystem durch i = 0 gekennzeichnet.

Dieser ausgezeichnete projektive Zusammenhang war bereits Thom-
sen bekannt *) und wurde von ihm Doppelverhiltnis-System genannt. Das
Doppelverhiltnis-System, im folgenden kurz als D.V.-System bezeich-
net, erlaubt bereits einem Kurven-3-Gewebe invariant einen projektiven
Zusammenhang zuzuordnen.

Da keine der drei Gewebekurvenscharen irgendwie ausgezeichnet ist,
folgt sofort, dafl das D.V.-System nach Abbildung eines Gewebenetzes
auf das Koordinatennetz immer durch

Ik :%akln(g;) fir ©#k

A
=0, sonst

i,j,k=1,2 (14)

gegeben ist. Dabei ist @, das Gradientenfeld der restlichen Schar.
Nach diesen Vorbemerkungen betrachten wir nun ein (n + 1)-Gewebe
im P, . Dieses sei gegeben durch die Differentialgleichungen

dz’ = t=1,...,n .

3 H ) 15
dd = 0. (15)
Bei Voraussetzung eines geeigneten Parameters ¢ lauten die Gleichungen
der Geoditischen eines projektiven Zusammenhanges iiber diesem Ge-
webe

dz xt noon dal dxk
D At 16
dt2+,-§1k2;1 ot dt ’ (19)

1) vgl [7].
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wobei fiir die Christoffelschen Symbole (8) zu setzen ist. Fixieren wir nun
fiir einen Augenblick zwei Indizes ¢ und k. Im Schnittgebilde R? von
(n — 2) Gewebehyperflichen aus den Scharen

del =0, j#¢ und 1§ F#k
aber sonst alle Zahlen von 1 bis n

wird ein 2-dimensionaler projektiver Zusammenhang induziert, dessen
Geodétische durch die Gleichungen

az xt ; dxt dak

KT T -
d? x* e dxt dxk

g T 2lug g =0

gegeben sind. Dieser Zusammenhang ist gemdfl den vorangegangenen
Betrachtungen in der Ebene dann und nur dann ein D.V.-System?’),

wenn
(ik) _
A=0 oder I3

2

l

%akln(g’i) und I} = %ailn(ﬁf)

ik
ist. Es driickt daher das Verschwinden Von(l)einen geometrischen Sach-
verhalt aus. (ik)

Setzen wir nun A4 = 0 fiir alle Indizespaare (i, k). Fiir den zugehori-
gen projektiven Zusammenhang fithren wir das Symbol [0] ein. Dieser
Zusammenhang ist einmal dadurch ausgezeichnet, dal er in simtlichen
Schnittgebilden R?, bei deren Erzeugung die Schar d® = 0 nicht be-
teiligt ist, das D.V.-System iiber dem Schnittgewebe induziert.

Wir wollen nun zeigen, dafl dies iiberhaupt fiir alle 2-dimensionalen
Schnittgewebe gilt. Dazu haben wir noch diejenigen Schnittgebilde zu
untersuchen, bei deren Bildung die Gewebeschar d® = 0 beteiligt ist.

Betrachten wir etwa das Schnittgebilde R? aus je einer Hyperfliche
der Scharen

det =0, da®=0,...,da"=0, dd =0 1)

Diese R? hat mit der Schar daz' = 0 eine Kurvenschar gemeinsam,
deren Tangentenfeld sich als Vektorprodukt im P, darstellen 1iBt. Man
findet dafiir

ri=(0 |, — @, , ®, , 0,...,0).

15) und zwar das D.V.-System iiber dem Kurven-3-Gewebe, welches durch die rest-
lichen drei Gewebescharen im Schnittgebilde R? erzeugt wird.
16) Fiir die iibrigen verlauft der Nachweis genau gleich.
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Entsprechend erhdlt man fiir die T'angentenfelder der Schnittkurven mit
den Scharen da? =0 und da® = 0:

st=( @, , o , —@, , 0,...,0),
tt = (— @, , o, 0 , 0 ,...,0).

Normiert man diese drei Felder so, dall ihre Summe verschwindet, so
wird etwa

ri=( 0 ,—&& , &b, 0,...0),
si=( @&, 0 , —&,d,, 0,...,0), (18
= (—®,0,, &0, 0o , 0,...,0).

Eine zu diesen drei Scharen harmonische Schar ist dann gegeben durch
das Tangentenfeld

hi=rt —s=(—D0, D3, —D,D,, 20,D,, 0 ,...,0) . (19)

Die Integralkurven des Vektorfeldes A liegen natiirlich ganz in unserer
R?. Falls wir nun zeigen konnen, daBl sie gleichzeitig Geodétische im
projektiven Zusammenhang [0] sind, so ist unsere Behauptung bewiesen.
Der in unserer R? induzierte projektive Zusammenhang enthélt ndmlich
dann nebst dem Schnittgewebe (18) noch eine Kurvenschar (19), die mit
den Gewebekurven ein konstantes Doppelverhéltnis bildet ; es handelt
sich daher um das D.V.-System iiber dem Schnittgewebe.

Setzt man in (I, 3) P
x

V= —
at ’

so erhdlt man daraus die Bedingungen fiir ein geodétisches Tangenten-
feld. Sie lauten

vk 9, v* + T',Z‘v vhYY = xvr (20)
Diese Beziehungen haben wir nun fiir das Vektorfeld 2* zu verifizieren.

Da h* nur drei wesentliche Komponenten aufweist, reduziert sich (20)
in unserem Falle auf

3
S heo,ht + 2TAW R + 2T MRS = aht

l

s9,h2 + 212H b2 4 21202 h3 = ah? (21)

$9,h3 + 23R A3 + 213 b2 A3

o h® .

8=1

3
N
8=1

3
Mh
8=1
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Die Rechnung zeigt, dall diese drei Beziehungen miteinander vertriglich

sind. Damit ist aber unsere Behauptung bewiesen. Wir formulieren dieses
Resultat in

Satz 4: Der projektive Zusammenhang [0] iber einem (n + 1)-Gewebe
1st geometrisch ausgezeichnet. Er induziert in simtlichen 2-dimensionalen
Schnittgebilden des Gewebes das D.V-System diber dem Schnittgewebe.

Aus naheliegenden Griinden werden wir nun diesen eindeutig be-
stimmten projektiven Zusammenhang [0] auch in hoheren Dimensionen
als das D.V.-System zum gegebenen (n -+ 1)-Gewebe bezeichnen. Dieser
Zusammenhang hat iibrigens die bemerkenswerte Eigenschaft, dal nach
Abbildung irgendeines Gewebenetzes auf das Koordinatennetz die Chri-

stoffelschen Symbole einer geeigneten, eindeutig bestimmten 4, stets die
Gestalt ®.

,&:%akln((pk) fir ¢ #£k

It =0, sonst

(22)

annehmen. Dabei ist @, das Gradientenfeld der restlichen Gewebeschar.
Die erste Zeile in (22) driickt ndmlich gerade aus, daf in gewissen 2-dimen-
sionalen Schnittgebilden des Gewebes D.V.-Systeme induziert werden.

Da die Christoffelschen Symbole des D.V.-Systems in jedem Koordi-
natensystem, dessen Parameterflichen mit einem Gewebenetz iiberein-
stimmen, die Gestalt (2) haben, gilt in simtlichen Dimensionen » = 2:

Satz b: [0] besitzt den Charakter einer Invarianten. In jedem Koordi-
natensystem, dessen Parameternetz mit einem Gewebenetz fiberesnstimmdt, vst

das D.V.-System durch das System [0], das heifft durch das Verschwinden
(i%)
aller A gekennzeichnet.

Aus dem Beweise des Satzes 4 entnehmen wir noch ein Kriterium fiir
das D.V.-System :

Satz 6: Induziert ein projektiver Zusammenhang iber einem (n -+ 1)-
Gewebe in simtlichen (g’) Scharen von 2-dimensionalen Schnittgebilden,

welche durch n Gewebescharen erzeugt werden, D.V .-Systeme, so tut er dies
auch in allen iibrigen 2-dimensionalen Schnittgebilden und es handelt sich
um das D.V.-System zum vorgelegten (n + 1)-Gewebe.

5. Ebenheitsfragen. Das Kriterium fiir die Existenz einer topologischen
Abbildung, die ein vorgegebenes Gewebe in ein Hyperebenengewebe iiber-
fithrt, ist im folgenden Satz enthalten :
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Satz 7: Ein Hyperflichengewebe lift sich dann und nur dann eben
machen, wenn es aus geoddtischen Hyperflichen eines projektiveuklidischen
quasigeoddtischen Systems besteht?).

Die Richtigkeit ist leicht einzusehen. Da ein Hyperebenengewebe im
projektiven Zusammenhang der Geraden des P, enthalten ist, ist die
Bedingung notwendig ; sie ist auch hinreichend, weil jedes projektiv-
euklidische quasigeoditische System mit den Geraden des P, topologisch
dquivalent ist.

Wir wollen nun die Ebenheitsfragen noch speziell fiir (n 4 1)-Gewebe
weiter diskutieren. Da der Projektivkriimmungstensor fir » = 2 iden-
tisch verschwindet, ist dabei die Ebene gesondert zu behandeln.

n = 2. GemiB (8) lassen sich die projektiven Zusammenhénge iiber
einem Kurven-3-Gewebe durch die beiden wesentlichen GrofBen

11112 - H(¢1’ qu, 4511, ¢12: ¢22, l)
F122 = L(qjl’ ¢2, ‘pus ¢12’ (pzz, }*)

darstellen. Der Zusammenhang ist projektiveuklidisch, wenn
Vie=10
ist. Die Rechnung liefert hiefiir

2H(2H, + L) + 2H,, + Ly, = 0

23
2L(2L2 +H1)+2L12 +H11=0, ( )

worin die Indizes Ableitung nach ! bzw. 2? bedeuten.

Sollen nun die Kurven eines 3-Gewebes einem projektiveuklidischen
quasigeodétischen System angehoren, so heiflt dies, daB eine Funktion 4
existiert, derart, daf} (23) befriedigt wird. Da @ durch das Gewebe ge-
geben ist, kann man diesen Sachverhalt auch folgendermafien formu-
lieren :

Satz 8: Ein Kurven-3-Gewebe der Ebene lift sich dann und nur dann
geradlinig machen, wenn das System (23) von zwei partiellen Differential-
gleichungen zweiter Ordnung in A eine Liosung hat'8).

Die Entscheidung, ob sich ein vorgelegtes 3-Gewebe geradlinig machen
148t, fiihrt somit auf die Aufgabe, fiir ein gewisses partielles Differential-
gleichungssystem zweiter Ordnung die Existenz von Lésungen abzu-
kldren.

17) Im P, sind natiirlich die Hyperflichen Kurven und die Hyperebenen Geraden.
18) Vgl. [1], S. 173.
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n>2. Die Gesamtheit der projektiven Zusammenhinge iiber einem
(n 4+ 1)-Gewebe ist gemifl Satz 1 durch die Systeme [1] von (g) Funk-

tionen in n Variabeln gegeben. Das Gewebe kann dann und nur dann
eben gemacht werden, wenn es ein [] gibt, so dal der Projektivkriim-
mungstensor des zugehorigen Zusammenhanges verschwindet !?). Da nur
erste Ableitungen der I/, in diesen Tensor eingehen, ergibt sich

Satz 9: Ein (n + 1)-Gewebe lift sich dann und nur dann eben machen,
wenn das Differentialgleichungs-System erster Ordnung

(k) (ik)
th(}" 0;A) =10 (24)

n den (g) Funktionen von [1)] eine Losung besitzt.

Die Entscheidung, ob sich ein vorgelegtes (n -4 1)-Gewebe eben
machen 148t, ist genau gleich wie in der Ebene dquivalent mit der Auf-
gabe, die Existenz von Losungen eines gewissen partiellen Differential-
gleichungs-Systems nachzuweisen. Der einzige Unterschied besteht darin,
daB dieses fiir »>2 nur von erster Ordnung ist.

Die Abbildung, welche ein projektiveuklidisches quasigeoditisches
System in die Geraden des P, iiberfiihrt, ist bis auf Projektivititen ein-
deutig bestimmt ; denn sind etwa 7', und 7', zwei Abbildungen, die ein
derartiges System gerade machen, so ist

T, T;1

eine geradentreue Abbildung des P, auf sich, das heifit eine Projektivitét.
Daraus folgt aber

Satz 10:  Sowohl zu einer Losung A von (23) als auch zu einer Losung [A]

von (24) gehort genau eine Klasse projektiv-dquivalenter gerader bzw. ebener
Realisationen des (n -+ 1)-Gewebes?9).

Da die parallelisierbaren Kurven-3-Gewebe in der Ebene?!) nach einem
Satz von Graf und Sauer?) unendlich viele projektiv verschiedene gerade
Realisationen zulassen, haben wir in diesen Geweben ein Beispiel dafiir,
dafl die Losung A von (23), falls sie iiberhaupt existiert, nicht unbedingt

19) Es geniigt natiirlich zu fordern, daBl die wesentlichen Komponenten von Pruv®
verschwinden. Eine Abzaéhlung findet sich in [9].

) Fir n =2 wvgl [1], 8. 178.

1) Gewebe, die drei Parallelenscharen topologisch dquivalent sind. Blaschke bezeichnet
sie auf Grund einer SchlieBungseigenschaft als Sechseckgewebe.

) Vgl. [1], § 3.
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eindeutig zu sein braucht. Die Vermutung, dafl die Lésungen von (23)
fiir ein nichtparallelisierbares Kurven-3-Gewebe hochstens eine Klasse
projektiv-aequivalenter gerader Realisationen erzeugen, ist der Inhalt
des bekannten Eindeutigkeitsproblems der Nomographie?3).

Fiir ein Gewebe aus mehr als (n + 1) Hyperflichenscharen verein-
facht sich das Kriterium fiir die topologische Aquivalenz mit einem
Hyperebenengewebe bedeutend. Handelt es sich um ein (» 4 2)-Gewebe,
so ist der projektive Zusammenhang stets eindeutig bestimmt ; zur Ent-
scheidung, ob eine Abbildung auf ein Hyperebenengewebe moglich ist,
bleibt bloB (I, 8) bzw. (I, 9) zu verifizieren. Bei mehr als n + 2 Hyper-
flichenscharen hat man zunéchst noch zu priifen, ob das Gewebe einem
projektiven Zusammenhang angehort. Trifft dies zu, so ist er jedenfalls
eindeutig gegeben. Da er sich mit Hilfe eines willkiirlich herausgegriffenen
(» + 2)-Gewebes bestimmen 148t, ist das weitere Vorgehen dasselbe wie
im Falle eines (n + 2)-Gewebes.

III. Invarianten im D. V.-System

1. (n + 1)-Gewebe, deren D.V.-System projektiveuklidisch ust.
Betrachten wir zuniichst die Kurven-3-Gewebe in der Ebene. Fiir diese
gilt :
Satz 11: Ein Kurven-3-Gewebe in der Ebene ist dann und nur dann
parallelisierbar, wenn das zugehorige D.V.-System projektiveuklidisch ist.

Zum Beweise fithren wir die Hilfsgrole

ein. Die Geradlinigkeitsbedingungen (I, 8) heiflen dann fiir das D.V.-
System laut (II, 23):

—0t+e- aln( )
e:to- 3111( )

Durch Differentiation nach a2 bZW. 2! entnimmt man daraus

(2)

7)) D
@z— 0 —@-dIn(z-)=0; gp+e*+e-0n __1_)=
D, P,

2) Vgl. [1], S. 176.

24) Die GroBe g ist identisch mit der von Blaschke eingefiihrten Sechseckinvarianten.
Vegl. [1], § 16.
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Unter Beriicksichtigung von (2) ergibt sich dafiir

(012 — %) —01'02=0; (012 + 0*) —01r0.=0,

was nur fir ¢ = 0 vertridglich ist. Die Funktion @, welche die dritte
Gewebeschar kennzeichnet, mufl somit der Differentialgleichung von
de Saint- Robert

m@m(%)=o%) (3)

geniigen. Daraus folgt aber die Abbildbarkeit auf drei Parallelenscharen.

Da das D.V.-System zu drei Parallelenscharen aus den Geraden der
Ebene besteht, so folgt auch umgekehrt, daBl dieses fiir ein parallelisier-
bares Gewebe notwendigerweise projektiveuklidisch ist. Ferner schlieit
man weiter auf

Satz 12: Ist das D.V.-System eines Kurven-3-Gewebes projektiveukli-
disch, so geht bei jeder Abbildung desselben auf die Geraden der Ebene das
Gewebe iiber in drei Geradenbiischel, deren Scheitel auf einer (eventuell un-
endlichfernen) Geraden liegen.

Gemil Satz 10 sind ndmlich simtliche geraden Realisationen des Ge-
webes, die zu einer Losung 4 von (I, 23) gehoren, projektiv dquivalent.
Dies gilt speziell auch fiir die Losung 4 = 0, das heillt fiir die geraden
Realisationen des D.V.-Systems.

Der entsprechende Satz fiir Flichen-4-Gewebe im P, lautet :

Satz 12a: Ist das D.V.-System eines Flichen-4-Gewebes itm P, projek-
tiveuklidisch, so fithren die zugehorigen ebenen Realisationen das Gewebe
iiber in Ebenenbiischel-4-Gewebe, deren Trigergeraden den Rang 3 haben?).

Zum Beweise betrachten wir eine Abbildung des D.V.-Systems auf
die Geraden des P, 27). Das Gewebe wird dabei zu einem Ebenengewebe.
Die 2-dimensionalen Schnittgebilde auf den Gewebeebenen bestehen
dann gemidf Satz 11 je aus drei Geradenbiischeln, deren Scheitel auf
einer Geraden liegen. Daraus schliet man aber, dal das Ebenen-4-Ge-

28) Vgl. etwa Schwerdt, H., Lehrbuch der Nomographie, Berlin 1924, S. 136.

26) Als Rang einer Anzahl Geraden bezeichnet man den Rang der Matrix ihrer Plicker-
schen Koordinaten.

?7) Mit dem Gewebe ist natiirlich auch das quasigeoditische System nur in einem
Gebiete @ des P, definiert, so daB man im strengen Sinne hochstens von einer Abbildung
auf die Geraden eines Teilgebietes G* des P, sprechen kann. Durch Hinzunahme der

restlichen Geraden des P; laBt sich aber das quasigeoditische System iiber G* hinaus
fortsetzen.
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webe vier Ebenenbiischel umfat. Seine T'rdiger seien die Geraden g¢,, ¢,,

gs und g,. Beziiglich ihrer gegenseitigen Lage sind folgende Fallunter-
scheidungen zu machen :

a) Die g, sind paarweise windschief. Dann gehoren sie notwendigerweise
derselben Erzeugendenschar einer Regelfliche zweiten Grades an.

b) Zwei Triger, etwa g, und g,, schneiden sich. Von g, und g, wird nur
verlangt, dal} sie g, und g, nicht treffen. In diesem Falle sind auch g,
und g, miteinander inzident, und es liegen die Schnittpunkte von
g1, g und g5, g, auf der Schnittgeraden der durch die beiden Geraden-
paare aufgespannten Ebenen.

¢) Drei Triger liegen in einer Ebene «. Dann liegt auch der restliche
Triager in o und es bilden die 4 Triger ein Vierseit. Die Gewebe von
diesem Typus sind parallelisierbar ; befordert man néamlich die Ebene
dieses Vierseits durch eine Projektivitdt ins Unendlichferne, so gehen
die 4 Ebenenbiischel in 4 Parallelebenenscharen iiber 28).
Weitere Moglichkeiten bestehen nicht.

Da die Trigergeraden in allen drei Fillen stets den Rang 3
haben ), ist unser Satz bewiesen. Die 3 festgestellten Gewebetypen
sind sogar die allgemeinsten Ebenenbiischel-4-Gewebe vom Rang 3.
Es gibt ndmlich neben a), b) und ¢) nur noch 2 weitere Moglich-
keiten fiir die gegenseitige Lage von 4 Geraden vom Rang 3.

d) ¢,, 92, 93, 9, schneiden sich in einem Punkt.
e) g1, 92, 93, 9, liegen in einer Ebene, aber ohne ein Vierseit zu bilden.

Da aber fiir die beiden Konfigurationen d) und e) die Gewebebedin-
gungen nicht erfiillt sind, erzeugen die ebenen Bilder unserer Gewebe
mit projektiveuklidischem D.V.-System genau die Klasse der ebenen
4-Gewebe vom Rang 3.

Ein Analogon zu den Sitzen 11 und 12 fiir hohere Dimensionen ist
noch nicht gefunden. Es la8t sich hochstens aussagen, dafl ein (n + 1)-
Gewebe, dessen D.V.-System projektiveuklidisch ist, topologisch dqui-
valent einem Hyperebenen-(n + 1)-Gewebe ist, dessen simtliche Schnitt-
Flichen-4-Gewebe in den 3-dimensionalen Schnittgebilden Ebenen-
biischel-4-Gewebe vom Rang 3 sind. Beachtenswert ist, daf fiir »>2
ein projektiveuklidisches D.V.-System zur Charakterisierung der paralle-
lisierbaren Gewebe nicht mehr geniigt.

8) Blaschke bezeichnet diesen Typus auf Grund von SchlieBungsfiguren als Achtflach-
gewebe.

29) Eine Aufzihlung der Geradenquadrupel vom Rang 3 findet sich bei Blaschke, W.,
Projektive Geometrie, S.97/98, Wolfenbiittel-Hannover 1947.

278



2. Ewn Satz iber Hyperflichensechseckgewebe.

Wie weiter vorn bereits bemerkt wurde, werden die parallelisierbaren
Kurven-3-Gewebe in der Ebene infolge der Existenz einer SchlieBungs-
figur als Sechseckgewebe bezeichnet. Wenn nun in diesem Abschnitt von
Sechseckgeweben die Rede ist, so wollen wir uns dabei eher diese Schlie-
Bungsfigur vor Augen halten, als die Abbildbarkeit auf Parallelenscharen.

Definition: Sind sdmtliche 2-dimensionalen Schnittgewebe eines Hyper-

flichen-(n + 1)-Gewebes Sechseckgewebe, so heifen wir dieses ein Hyper-
flachensechseck-Gewebe.

Fiir diesen Gewebetypus soll nun im folgenden eine geometrische
Eigenschaft nachgewiesen werden.

Wir betrachten zunéchst ein beliebiges (n + 1)-Gewebe im P, (n>2).
Fiir seine Hyperflichenscharen setzen wir die Symbole

61’625"':6727 6n+1 ¢ (4)

Es werde ein beliebiges Netz herausgegriffen, etwa das Netz, bestehend
aus den Scharen

Gjl’ 6"27' « .y G]ﬂ » (5)
(@) (@) _ ‘
w, sei das Gradientenfeld von &;, und v* die Schnitt- (6)
kongruenz der Scharen S; , ..., S;, , PR S;, -

Uber dem Gewebe (4) errichten wir nun das D.V.-System. P, wy Sei
dessen Projektivkriimmungstensor.

Satz: FEs seien a und b zwei verschiedene feste Indizes. Wenn in einem

Gewebenetz der Pseudoskalar
(a) (B (¢) (o

B,S v vt v w, (7)

fiir einen von a und b verschiedemen Index ¢ verschwindet, dann fiir alle
andern ebenfalls.

Zum Beweise ziehen wir ein spezielles Koordinatensystem heran ; das
ausgezeichnete Netz sei gerade das Koordinatennetz. Fiir den P-Tensor
liefert dann eine einfache Rechnung :

P.h_p wenn h nicht mit esnem unteren
Yik Index ibereinstimmd. :
8)
p.b_ 1 2.9, In D,\ fur alle Tripel voneinander ver-
Uk T 2m 1) ¢ @, ) schiedener Indizes i, j und k.
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Weiter wird
& )

w, = (1,0,...,0 v =(1,0,...,0)
@ @)
w, = (0,1,...,0) vi=(0,1,...,0)
(9)
() ()
w;, = (0,0,...,1) v* = (0,0,...,1)
Somit ergibt sich fiir ¢ A% und § #k
@) ) (k) (k)
I)ly.vw v} vk pY ww:Pijkk : (10)

Gemif (8) ist aber die rechte Seite vom Index %k unabhingig, wenn nur
k #¢ und k 54 ist. Damit ist aber unser Satz bewiesen.

Satz: Wenn in einem Gewebenetz simtliche Pseudoskalare (7) wver-
schuinden, dann verschwinden diese auch in allen andern Netzen.

Wir nehmen etwa an, daf3 in unserem Koordinatennetz (9) simtliche
Pseudoskalare verschwinden, also

P, f=0 far i#k und jHEk. (11)
Betrachten wir nun ein anderes Netz, etwa dasjenige aus den Scharen
d2 =0, dax?=20,...,de"=0, dd=0.

Fiir dieses wird
Q) (1)

w, — (D, D,,. .., D, w=(1, 0,...,0)
® @
w, = (0, 1,...,0) v = (@, — D, ..., 0)
(12)
(n) )
wz:(o, O,...,l) 'l)i—'—‘-—(an,o,...,—'®1)

Infolge des vorhergehenden Satzes haben wir nur zu zeigen, dafl

(a) (B) (¢) (o

h i k -
B, " vt ol oF w, =0

fiir alle moglichen @ und b zu einem festen, von a und & verschiedenen c.
Dabei treten als Folge der Symmetrien von F,;;* und als Folge der
speziellen Gestalt von (12) nur zwei wesentlich verschiedene Fiille auf:

280



a«) a =1, bund c beliebig.

0 @@ @ ,
'z}l'EhPiikvz v vk w, = — @, P, 1b1+¢1:)1bc=
,7’ b

laut (8) laut (11)

p) a, b und ¢ von 1 verschieden.

(@) (B) (e) (o)

B By o 0 ok = — BB, 0, Byt + BLO,R,S
v,7,K,
- (pld)b ¢c ablc + (152¢ Pabc
+ ¢% D, I)ablc - ¢:; I)abcc =0,

da auch hier die einzelnen Summanden verschwinden.
Gehen wir nun iiber zu unserm angekiindigten Satz iiber Hyperflichen-
sechseckgewebe.

Satz 13: Sind in einem (n + 1)-Gewebe die (g) Schnittkhurvengewebe

m den durch n Gewebescharen aufgespannten 2-dimensionalen Schnitt-
gebilden Sechseckgewebe, so sind auch die restlichen ( g) derartigen Schnitt-
kurvengewebe Sechseckgewebe und es liegt ein Hyperflichensechseckgewebe
vor30),

Der Beweis folgt direkt aus den vorangehenden Betrachtungen. Sind
etwa die Schnittkurvengewebe in den durch das Koordinatennetz er-
zeugten R? Sechseckgewebe, so ist

@ P 31
2, akln(q)k)_o )

Dann verschwinden gemaf3 (8) und (11) sdmtliche Pseudoskalare (7) des
Koordinatennetzes ; laut dem letzten Hilfssatz verschwinden aber in
diesem Falle die Pseudoskalare (7) auch in allen iibrigen Netzen des
Gewebes. Daraus folgt wiederum, daf3 simtliche Schnittkurven-3-Gewebe
Sechseckgewebe sind und es liegt daher ein Hyperflichensechseckgewebe
vor.

80) Fiir Flichen-4-Gewebe im P, ist dieser Satz erstmals von J. Dubourdieu angegeben
worden. Vgl. [1], S. 185. Seine Verallgemeinerung auf hohere Dimensionen gelang H. Aue.
Vergleiche Mitt. Math. Ges. Hamburg 7, 1938, S. 367/399.

81) Differentialgleichung von de Saint- Robert fiir die Projektion des Gradienten von @
in eine bestimmte R? hinein.
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3. Parallelisierbare (n + 1)-Gewebe in Dimensionen n = 3.

Wie im vorhergehenden Abschnitt gezeigt wurde, geniigt ein projektiv-
euklidisches D.V.-System fiir die Abbildbarkeit auf (n + 1) Parallel-
hyperebenescharen nicht.

Ein Kovektorfeld p, ist integrabel, das heilt Vielfaches eines Gradien-

tenfeldes, wenn
p[lvp.pv] =0 32) . (13)

Unser (n» 4+ 1)-Gewebe sei nun statt durch (n 4+ 1) Gradientenfelder
(a)
durch die entsprechende Anzahl integrabler Kovektorfelder p, gegeben.

Der Index (a) bezeichne dabei die Nummer des betreffenden Feldes.
Diese Kovektorfelder seien so normiert, dafl

n+1

E Py = 0 ’ (14)

a=1

was infolge der Gewebebedingungen im wesentlichen nur auf eine Art
moglich ist.
Wir greifen nun durch die normierten Kovektorfelder

(a1) (ag) (an

Drs Pas -5 Pa s a’i#ak

ein beliebiges Netz aus dem Gewebe heraus.

Definition: Die n invariant mit dem Gewebe verkniipften Kovektor-

(ak)
felder q, , welche durch
(ak) n (a) (ak)
QA:Epln(n——2)p7\9 k"—"‘l,...,n (15)
i-1

bestimmit sind, heiffen ein Querfelder-System des Gewebes.

Da jedes Gewebenetz Anlafl zu einem Querfelder-System gibt, sind
durch ein (n + 1)-Gewebe deren (n + 1) festgelegt. Eine Ausnahme
liegt nur fiir » = 3 vor; in diesem Falle sind alle Querfelder-Systeme
identisch33).

Die Querfelder eines Systems sind infolge der Netzbedingungen im
Gewebe linear unabhingig, denn die Determinante der Substitution (15)
ist von Null verschieden.

32) Vgl [2], 8. 120.

) Das eindeutig bestimmte Querfelder-System wird dort als Diagonal-System be-
zeichnet.
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Fiir unser Gewebe (11, 3) hat das Querfelder-System zum Koordinaten-
netz die Gestalt

(_(n—‘3)¢1’ ¢2 s ¢39°--7 ¢n )

( @, , —n—3)0, , B, , ..., @, )
(16)

( D, : D, , Py, ... . —(n—3)D,)

Fiir die Integrabilititsbedingungen des ¢-ten Feldes dieses Systems findet
man durch einfache Rechnung

ailn(—g—i)::() fir j5%¢ und k#7 . (17)
k

Satz 16: Swnd (n — 1) Felder eines Querfelder-Systems integrabel, so
15t es auch das letzte34).

Sind (» — 1) Querfelder integrabel, so heifit dies bei geeigneter Nume-
rierung etwa

9, In (%—) =0 fir j=1,2,...,n—1) und i, ks£j - (18)
k
Wie sich leicht bestédtigen 148t, besteht fiir drei voneinander verschiedene
Indizes ¢, §, k die Identitét

®, @ ’ @
®,,9, In (%) + 6, 8,9, In (‘&f) + &,,5, In (dﬁi) —0. (19)

Aus (18) und (19) schlieBt man nun sofort, dafl auch

d, In (QD,.) =0 fir ¢2,k+#n,
D,

das heillt es ist laut (17) auch das noch verbleibende n-te Querfeld inte-

grabel. Damit ist aber unser Satz bewiesen.

Satz 16 : EHxistiert in einem (n + 1)-Gewebe ein System von tnte-
grablen Querfeldern, so ist es parallelisierbar.

Fiir n = 3 ist dieser Satz ebenfalls bekannt, denn durch die Existenz
simtlicher Diagonalfiichen sind gerade die Gewebe gekennzeichnet,
welche vier Parallel-Ebenenscharen topologisch dquivalent sind.

%) Fir n = 3 ist dieser Satz bekannt. Vgl. [1], S. 177/186.
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Der Beweis kann auf folgende Weise gewonnen werden. Durch eine
Koordinatentransformation kann stets erreicht werden, dafl das System
von integrablen Querfeldern durch (16) gegeben ist und es gilt dann

J; In (g‘) = 0 fiir simtliche Tripel verschiedener Indizes (v,7,k). (20)
k

Infolgedessen ist

¢k - ¢k @i _ @i

7 J

Daraus schliefit man, daB

o (%) =1, e

]

fiir alle j 5% 4. Mit (20) ergibt sich weiter fir &

b, P,
aij:akaj h‘l (¢j):aj(ak 111 (®‘)):0 s

J

da ja 7 beliebig, also von j und % verschieden gewidhlt werden kann. Es
ist daher 7', nur eine Funktion von z7 allein, also etwa

?;
D,

J

7, =2 () = ) 22
und entsprechend
7o —2:1n (Gh) = fulw) ) .

Daraus ergibt sich mit (20) zusammen der Ansatz
In (&) = F;(x)) + F;(a7) ,
P,
wo F;(z') wiederum eine Funktion von z* allein ist. Hieraus resultiert
aber die Existenz einer Abbildung

7t = zi(at) %) |
welche die Schar d® = 0 in die Parallel-Hyperebenenschar
da' + da? +-- -+ da® = 0

iiberfithrt, womit die Parallelisierbarkeit nachgewiesen ist.

35) Der untere Index ¢ von f; bedecutet hier die Nummer der Funktion und nicht die
Ableitung nach a'.
88) 7! ist nur eine Funktion von z¢ allein.
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Wir haben bis jetzt zur Charakterisierung des Gewebes das D.V.-
System noch gar nicht beigezogen. Zunéchst folgt aus der Parallelisier-
barkeit des Gewebes, dal} es projektiveuklidisch ist, eine Bedingung, die
sicher notwendig, aber noch nicht hinreichend ist.3?’) Wir wollen nun
noch zeigen, dal} ein parallelisierbares Gewebe sich mittels einer andern
Eigenschaft des D.V.-Systems charakterisieren 1a8t.

Versuchen wir etwa, die invarianten Beziehungen (20), welche die
Parallelisierbarkeitsbedingungen ausdriicken, im D.V.-System zu deuten.

Bei Zugrundelegung des Reprisentanten (II, 8) heilen die Gleichungen
des D.V.-Systems iiber unserem Gewebe

a2zt no o dat dxt
i TEPE T

mit
) 1 d)i . 1
ik ™ 9 ak In ¢k 5 Ff" = 0 sonst.

Das D.-V.-System induziert in jeder Hyperfliche der Schar S, ,(d® = 0)
einen projektiven Zusammenhang, ndmlich das (n» — 1)-dimensionale
D.V.-System

a2 xt no o dat da®

2N It =0,
dt2 T ,gl YO odt dt

(23)
dd = zn, @, dxt =0 .

§=1

Wir projizieren nun dieses in der Umgebung eines Gewebepunktes P
mittels der Schnittkongruenz der Scharen

S;:dx* =10, 1=1,2,...,(n — 1)

auf die Hyperfliche der Schar G, (dz® = 0) durch den Punkt P. Die
Differentialgleichungen der Projektionen erhalten wir durch Elimination
von dx™:

1 n—1

o D dx® .
dx q)nz:l,x

37) Das D.V.-System eines Parallelgewebes besteht aus den Geraden des P,,.
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Die ersten (n — 1)-Gleichungen von (23) gehen dann iiber in

d? at n—1 D . dat dzxt
2 — sy i 7 _
di2 + ,z ( 45,,) “ odt dt
t=1,...,(n —1) .

Die Projektion des D.V.-Systems in der Schar &, ist somit gegeben
durch

_-i Q)

I}i:: @fpi

i i D, . .
p'zl-'ij'"_@—_[?n far ¢ %9 . (24)

I‘k_ 0, sonst.

Die bahntreue Transformation

—. A ; . D
F:k = I3} + 0; pi + O p; mit pk="5ipkkn

fithrt diesen Zusammenhang in die Normalform iiber, und zwar ergibt
sich

L =T — g T —Tj)  fir i o0
I7 =0, sonst.

)

Da nun aber
2(I} - P’k) = 0, In (2’—)
D,

stimmt (24) mit dem D.V.-System in der Schar &, iiberein, wenn
P,
2, In ( (pj) 0
ist.
Andererseits ist diese Projektionseigenschaft bei einem parallelisierbaren

Gewebe sogar im GroBen erfiillt. Da simtliche Gewebescha.ren S, gleich-
berechtigt sind, folgt daraus

Satz 17: Die Parallelisterbarkeit eines (n + 1)-Gewebes st dquivalent
mit der Eigenschaft, daf die Projektion des D.V .-Systems jeder Schar S,
auf eine andere Schar &, mittels der Schnittkongruenz der dbrigen (n — 1)-
Scharen mit dem D.V.-System in S, tibereinstimmd.
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Der Inhalt von Satz 15 1aBt sich jetzt ebenfalls ins D. V.-System iiber-
setzen. Er besagt, daB fiir die Parallelisierbarkeit die Projektions-
beziehung zwischen einer einzigen Schar S; und den (n — 1) weiteren
Scharen

S, 8;,,..-. 6,
schon geniigt. Sie ist dann fiir die restlichen Scharpaare S,, S, des
Gewebes automatisch erfiillt.

4. Parallelisierbare m-Gewebe (m>n -+ 1).

Auch fiir die folgenden abschlieBenden Betrachtungen setzen wir
n>2 voraus. Wir untersuchen zunichst ein (n 4 2)-Gewebe im P, mit
der Eigenschaft, daBl die simtlichen (n + 2) (n + 1)-Gewebe, die
durch Weglassen einer Hyperflichenschar entstehen, einzeln paralleli-
sierbar sind. Durch geeignete Koordinatentransformation konnen die
Differentialgleichungen eines derartigen Gewebes immer auf die Gestalt

dxt = 0 , 1=1,2,...,n
n
S dxt =0
8=1

dd = 0

gebracht werden. Die Gewebebedingungen lauten dann
D, #0 farallei, @,+D, fur 1 #£k.

Die Parallelisierbarkeit der einzelnen (n + 1)-Gewebe driicken wir durch
die Integrabilititsbedingungen geeigneter Querfelder-Systeme aus. Fiir
das Gewebe, bestehend aus dem Koordinatennetz und der Schar d® = 0,
lauten die Parallelisierbarkeitsbedingungen

d; In (%) = 0, wenn i,j, k voneinander verschieden . (25)

k

Zur Herleitung der entsprechenden Bedingungen fiir die restlichen
(n 4 1)-Gewebe betrachten wir als Reprisentanten etwa das Gewebe
mit den Gleichungen

n

3> da® =0

§=1
dxt = 0 t=2,3,...,n (26)
dd =0 .
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Durch die Abbildung

y' =t fir 1 #£1 baw =y far i#1 (27)
gehen die Gleichungen (26) iiber in
dyt =0 1=1,2,...,n
dd =0
und die Parallelisierbarkeitsbedingungen lauten dann
0P
a ]Il ay‘l — 0 t .. k . 'I‘bd | h. d
Evi o | = mit 1,7, k voneinander verschieden.
oyk
Wir setzen nun speziell £ = 1. Infolge (27) ergibt sich
0P
0 dyt | D, — D, ?;, — &, — 38
s (| = - (B o (B 0.
dyk

Durch Umformung folgt daraus weiter

Py Py Py — Py n Dy — Dy
o, @, o, — D, D, — D,

=0,
und man erhélt nach einigen Zwischenrechnungen

¢'H Ql:f ¢11 Q
(5 =)+ (3:-3) -

am( )+al(g)=o.

Mit (25) zusammen fiithrt dies auf

b
mm(é):o.

oder

38) 0, bedeutet Ableitung nach a3 Py == _g_g— ’
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Die Parallelisierbarkeit aller (n 4 1)-Gewebe vom Typus (26) ist daher
dquivalent mit den Beziehungen

akln(ﬁ)—_—o fir i£k . (28)
D,

Dies bedeutet aber, dafl das D.V.-System des (n 4 1)-Gewebes

dxt =0 , 1=1,2,...,n
dd = 0

durch das Verschwinden sdmtlicher Christoffelscher Symbole charakteri-
siert ist; es ist daher identisch mit den Geraden des P, und die ver-
bleibende Hyperebenenschar

n
> dat =0
8 =1

ist darin geodétisch. Da in unserem (n + 2)-Gewebe keine Hyperflichen-
schar gegeniiber den andern ausgezeichnet ist, folgt :

Jede Hyperflichenschar unseres (n -+ 2)-Gewebes liegt geodditisch im
D.V.-System des verbleibenden (n -+ 1)-Gewebes.

Satz 18: Hin (n + 2)-Gewebe, in welchem jedes (n + 1)-Tupel seiner

Hyperflichenscharen einzeln parallelisierbar ist, ist gesamthaft parallelisier-
bar.

Der Beweis kann leicht auf folgendem Wege gewonnen werden. Wie
oben festgestellt wurde, ist der eindeutig bestimmte projektive Zusam-
menhang zugleich D.V.-System zu allen (rn 4 1)-Geweben ; infolge der
Parallelisierbarkeit dieser (n 4 1)-Gewebe ist er projektiveuklidisch.
Wir betrachten nun eine Abbildung, die ein (n + 1)-Gewebe @, parallel
macht sowie eine zweite Abbildung, die ein von (7, verschiedenes (n + 1)-
Gewebe @, parallel macht. Die beiden dabei entstehenden ebenen Reali-
sationen des projektiven Zusammenhanges sind aber projektiv dquivalent.
Es existiert daher eine projektive Abbildung des P, auf sich, welche die
eine in die andere iiberfiihrt. Da sie die n Parallel-Hyperebenenscharen,
welche G, und G, gemeinsam sind, wieder in solche tiberfiihrt, ist sie not-
wendigerweise eine Affinitdt. Es machen daher die beiden genannten
Abbildungen das ganze (n + 2)-Gewebe parallel.

Aus dem Beweise entnimmt man noch, daf} jede Abbildung, die irgend-
eines der (n -+ 1)-Gewebe parallel macht, zugleich auch die noch ver-
bleibende Schar parallelisiert.
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Satz 19: Ein m-Gewebe, in welchem jedes (n + 1)-Tupel von Hyper-
flachenscharen einzeln parallelisierbar ist, 1st gesamthaft parallelisierbar.

Zum Beweise greifen wir auf die Vorbereitungen zum Satz 18 zuriick.
Darnach ergibt sich, dafl das D.V.-System jedes (n 4+ 1)-Gewebes sdmt-
liche restlichen Gewebe-Hyperflichenscharen geoditisch enthilt. Jede
Abbildung, welche irgendeines der (n + 1)-Gewebe parallel macht,
fithrt daher auch die verbleibenden Scharen in Parallel-Hyperebenen-
scharen iiber.

Die beiden Sitze 18 und 19 sind nur fir 2 > 3 richtig. In der Ebene
tritt beispielsweise an Stelle des erstern der Satz von Mayrhofer-Reide-
meisters?).

(Eingegangen den 1. Februar 1950.)
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