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Topologische Fragen der Differentialgeometrie

Projektive Methoden in der Gewebegeometrie
Von M. Jeger, Olten/Zurieh

Einleitung
Zur Abklârung differentialgeometrischer Fragen der Gewebegeometrie

ist bis jetzt zur Hauptsache der Kalkul der Differentiatoren bzw. der
schiefen Differentialformen verwendet worden. Im zusammenfassenden
Werk ,,Geometrie der Gewebe'' von Blaschke und Bol1) ist zwar im § 29

ein Ansatz in anderer Richtung vorhanden. Blaschke ermittelt dort ge-
wisse Invarianten von ebenen Kurven-4-Geweben unter Verwendung
der Geodàtischen geeigneter projektiver Zusammenhànge. Weiter scheint
aber dieser Ansatz nicht mehr ausgewertet worden zu sein.

Gewebe sind geometrische Gebilde mit projektivem Charakter. Es ist
daher naheliegend, zur Diskussion gewebegeometrischer Fragen die
Methoden der projektiven Differentialgeometrie beizuziehen. Es soll im fol-
genden gezeigt werden,daB sich der oben erwâhnte Blaschkesche Ansatz
auf beliebige Dimensionen erweitern lâBt und dadurch die Einordnung
der Differentialgeometrie der Gewebe in die projektive Differentialgeometrie

moglich wird. Dièses Vorgehen gestattet einerseits, sàmtliche
differentialgeometrischen Aussagen ûber Gewebe auf hôhere Dimensionen

zu ûbertragen. Andererseits treten die Vorteile des weit um-
fassenderen Absoluten Differentialkalkûls klar hervor.

Der Rechenapparat ist dem Ricci-Kalkûl entnommen. Entsprechend
den Prinzipien der Kern-Index-Méthode werden fur die allgemeinen
Koordinatensysteme griechisehe Indizes «, A,yw, v,..., fur die speziellen
Koordinatensysteme lateinische Indizes h, i, j, k,... verwendet. Dies
hat den Vorteil, daB zur Unterscheidung invarianter und nichtinvarian-
ter Gleichungen kein besonderes Zeiehen notwendig wird. Eine Gleichung
zwischen GrôBen mit lateinischen Indizes bezieht sich somit immer auf
ein spezielles Koordinatensystem ; durch die lateinisehen Indizes ist aber

gleichzeitig zum Ausdruck gebracht, daB die Gleichung nicht invariant
ist, das heiBt nur in einem entsprechend speziellen Koordinatensystem

x) Grundlehren der Mathematischen Wissenschaften, Bd. 49.
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richtig ist. Von der Vorschrift des Ricci-Kalkuls, daB uber Indizes,
welche in derselben Beziehung ko- und kontravariant auftreten, stets zu
summieren ist, wird insofern etwas abgewichen, als sie nur fur griechische
Indizes zur Anwendung kommen soll. Dièse Konvention erlaubt, ver-
schiedene, in speziellen Koordinatensystemen ôfters auftretende Aus-
drucke in einfachere Gestalt zu bringen. Eine Summatiorî liber lateini-
sche Indizes wird durch Voranstellung des gewôhnlichen Summen-
zeichens E angedeutet.

Kurven bzw. Hyperflâchen der in dieser Arbeit untersuchten Gewebe
sind stets genûgend oft stetig differenzierbar vorausgesetzt. Damit dièse

Eigenschaft der Gewebe erhalten bleibt, soll dasselbe auch fur die zu-
gelassenen topologischen Abbildungen gelten.

I. Projektive Zusammenhânge

1. Affine Zusammenhânge und ihre Geodâtischen2). In einem w-dimen-
sionalen Raum mit den affinen Koordinaten xv sei durch die in den
untern Indizes symmetrischen GrôBen F^v eine affine tlbertragung An
gegeben.

Bei Parallelverschiebung eines Vektors v7- lângs einer Kurve xv(t)
ândert sich dieser gemâB

dv*= - r]lvv^dxv (1)

Verschiebt man speziell ein Linienelement dxx im Sinne der zugrunde
gelegten Ûbertragung stets in seiner eigenen Richtung, so wird

Seine Bahn heiBt eine geodàtische Linie der An. Aus (1) und (2) folgt fur
die Difïerentialgleichungen der Geodâtischen

r~~W + l»v ~~df ~W "" * * ~W ' (6)

Darin ist a (a;1,..., xn) eine Funktion, die von der speziellen Wahl des

Kurvenparameters t abhângt. Durch eine geeignete Parametertransfor-
mation kann oc stets zum Verschwinden gebracht werden. Die Integral-
kurven von (3) besitzen zwei charakteristische Eigenschaften der
Geodâtischen eines Riemannschen Raumes ; sowohl durch zwei benachbarte

2) Vgl. [1] § 29, [2] Abschnitt IV, sowie des Literaturverzeichnisses.
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Punkte als auch durch einen Punkt und eine Richtung ist genau eine

Systemkurve bestimmt.
Eine Transformation der Ûbertragung von der Gestalt

4 (a\

heiBt bahntreu, wenn die Lage der Geodàtischen invariant bleibt. Fur
eine derartige Transformation hat das additive Glied notwendigerweise
die Form

Kv =ô^Pv + àlp^=2ô(uPv) ») (5)

pv ist ein willkiirliches Kovektorfeld.
Eine Klasse affiner Ûbertragungen, welche sich nur durch bahntreue

Transformationen unterscheiden, heiBt eine Klasse isogeodâtischer Ûber-

tragungen und die invariant damit verknûpften Integralkurven (3) be-
zeiehnet man als das zu dieser Klasse gehôrige quasigeodâtische Kurven-
system*). Sie bilden eine 2(n — l)-parametrige Kurvenschar. Geht man
von einem quasigeodâtischen System aus, so sind dadurch die Christoffel-
schen Symbole F£v nur bis auf bahntreue Transformationen bestimmt.
Man spricht in diesem Falle von einem projektiven Zusammenhang. Im
Gegensatz zur Géométrie der affinen Zusammenhànge gibt es in der
Géométrie der projektiven Zusammenhànge nur die Verschiebung eines

Linienelementes in seiner eigenen Richtung.

2. Der Projektivkrûmmungstensor. Mit einer affinen Ûbertragung An
sind verschiedene tensorielle GrôBen oder Beziehungen bestimmt. Fiir
die nachfolgenden Untersuchungen sind diejenigen von Bedeutung,
welche gegeniiber bahntreuen Transformationen invariant sind, das heiBt
durch einen projektiven Zusammenhang allein schon bestimmt sind.
Eine derartige GrôBe ist der Projektivkrûmmungstensor.

Wir legen iiber dem betrachteten projektiven Zusammenhang eine

spezielle An mit den Dreiindizes-Symbolen F*v zugrunde.

ist deren Elrummungstensor. Dieser bildet keine projektive Invariante.
Durch Verjûngung folgt daraus

8) Bachsche Symbolik zur Abkûrzung symmetrischer und alternierender Summen.
4) In der englischen Literatur System of paths" genannt.
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Mit der daraus abgeleiteten GrôBe

stellt

schlieBlich einen mit dem projektiven Zusammenhang invariant ver-
knûpften Tensor dar. In der Tat ist Px^ invariant gegeniiber bahn-
treuen Transformationen der An.

PXftl,o> heiBt der Projektivkrummungstensor des Zusammenhangs. Er
versehwindet identisch fur n 2.

Unter den quasigeodatischen Systemen sind diejenigen ausgezeichnet,
welche sich dureh eine topologische Abbildung in die Geraden des

projektiven Raumes Pn \iberfiihren lassen. Die Ani welche zu einem der-
artigen System gehôren, heiBen projektiv-euklidisch.

Flir die topologische Âquivalenz der Geodatischen einer An mit den
Geraden des Pn ist der Tensor

^ ^ - V^Pxv 5)

maBgebend. Wie man leicht zeigen kann, ist

eine gegenûber bahntreuen Transformationen invariante Beziehung und
es gilt der

Satz : Eine affine tïbertragung ist dann und nur dann projektiv-eukli-
disch, wenn

v
0 6) (8)

Da die Beziehungen (8) fur n > 2 âquivalent mit

P^v™ 0 (9)

sind7), laBt sich der Satz auch in folgender Form aussprechen :

Eine An ist fur n>2 dann und nur dann projektiv-euklidisch, wenn der

Projektivkrummungstensor versehwindet, und fur n 2 dann und nur
dann, wenn fur den Tensor P^ die Gleichungen (8) bestehen.

5) V ist das Symbol fur den kovarianten Differentialquotienten.
•) Vgl. [2], S. 130.
7) Die Gleichungen (8) stellen die Integrabilitâtsbedingungen fur die Abbildungsfunk-

tionen dar. Sie sind fur n > 2 eine direkte Folge von Pa/av*0 0.
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Es sei hier noch darauf hingewiesen, daB die Geradlinigkeitsbedingun-
gen fur die Dimension n 2 eine Differentiationsordnung mehr ent-
halten, als fur aile ubrigen Dimensionen.

3. Geodâtische Hyperflâchen.

Définition : Eine Hyperflàche

1,..., xn) 0

oder das Bchnittgebilde mehrerer solcher Hyperflâchen heiflt geodâtisch in
einer Ani wenn jede Integralkurve von (2), welche ein Linienelement mit
diesem Gebilde gemeinsam hat, ganz darin verlâuft.

Fur die einparametrige Hyperflâchensehar

..,aP) c (10)

mit c als Parameter ergibt sich als Bedingung fur geodâtische Lage die
Existenz eines Konvektorfeldes u\, so daB

Vx^ 2^) s) 9 (H)
wobei 0^ 3^0.

Satz: Dos Schnittgebilde geodâtischer Hyperflâchen ist selbst wieder

geodâtisch.

Zum Beweise betrachte man ein Linienelement des Schnittgebildes ;

die zugehôrige Geodâtische liegt ganz in allen Hyperflâchen und daher
auch ganz im Schnittgebilde.

II. Hyperflâchengewebe im n-dimensionalen projektiven Raum Pn

Zur Darstellung der Gewebe im w-dimensionalen euklidischen Raum
werden im folgenden affine Koordinaten benutzt. Da aber im Verlaufe
der Untersuchungen die Grappe der projektiven Abbildungen des Rau-
mes auf sich eine wesentliche Rolle spielt, ist es naheliegend, den n-di-
mensionalen projektiven Raum zugrunde zu legen.

Définition: n einparametrige Hyperflâchenscharen

0P (x1, ,..,f) const., (} 1,..., n

8) Vgl. [3], Bd. II, S. 181.
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bilden innerhalb eines Gebietes G des Pn ein Hyperflachennetz, wenn in
jedem Punkte von G

> (i)air1 rn\

ist. (1) bedeutet, da6 im kleinen n Hyperflâchen aus verschiedenen
Scharen hôchstens einen Punkt gemeinsam haben.

Définition: Ein System von k (k>n) Hyperflâchenscharen innerhalb
eines Gebietes G heifit ein Gewebe, wenn n beliebig herausgegriffene Scharen
stets ein Hyperflachennetz erzeugen.

Fur k Hyperflâchenscharen bestehen somit die Gewebebedingungen

(k\i Funktionaldeterminanten.n)
1. Projektive Zusammenhânge uber einem Hyperflâchen-{n-\-\)-Gewebe.

Wir stellen uns zunâchst die Aufgabe, die Klasse projektiver Zusammenhânge

aufzusuchen, in denen ein vorgeschriebenes {n + 1)-Gewebe aus
geodâtischen Hyperflâchen besteht. Durch Ûberfiihrung eines Gewebe-
netzes in das Koordinatennetz 9) vereinfacht sich die Konstruktion dieser

projektiven Zusammenhânge wesentlich. Eine derartige Abbildung ist
wenigstens im kleinen als Folge der Gewebebedingungen (1) immer môg-
lich. Die (n + l)-te Hyperflâchenschar gehe dabei ùber in

0(x1,..., xn) const. (2)

In unserem speziellen Koordinatensystem wird das Gewebe durch die
(n + Vj-Gradientenfélder

(1,0, ...,0)
(0,1, ...,0)

(3)

(0,0, ...,1)

aufgespannt und die Gewebebedingungen10) lauten :

0t ^ 0 fûr i 1,..., n (4)

Die Forderung, daB die Gewebescharen geodâtisch in einer An liegen
sollen, zieht fur jedes Feld in (3) ein Gleichungssystem von der Form

9) Netz, welches aus den Koordinatenhyperebenen dxl 0 (i 1,..., n) besteht.
10) Die (n -f l)-te Gewebebedingung steckt im Netz der Koordinatenhyperebenen.
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(I, 11) nach sich. Die ersten n Felder haben zur Folge, da8 zunâchst fur
aile in Betracht kommenden An

/& 0 fur i ^ j und k ^ j (5)

ist. Unter Berucksichtigung von (5) liefert nun das letzte Gradienten-
feld in entsprechender Weise die Beziehungen :

0tI% =0n-2ut0t (6)

0, r>h + 0k r?k 0lk - (u, 0k + uk 0,)

i und Je durchlaufen dabei die Zahlen von 1 bis n. ut stellt ein willkiirliches
Kovektorféld dar.

Dièses lineare Gleichungssystem von n + ™ \ Gleichungen ist in-

folge (4) nach den darin auftretenden Christoffehchen Symbolen lôsbar
und wir erhalten ^

wobei fiir jedes Indexpaar (i, k) ein Lôsungsparameter

auftritt ; es ist nâmlich fur die beiden Symbole 7^. und /J% nur eine

einzige Bestimmungsgleichung vorhanden.
Das Kovektorféld uiy das vom letzten Gradientenfeld herruhrt, steckt

noch als willkiirliche GrôBe in der Lôsung. Durch Vergleich von (7) mit
(I, 5) stellt man sofort fest, daB eine Ânderung dièses Kovektorfeldes
aquivalent mit einer bahntreuen Transformation der Ûbertragung ist. Da-

gegen durchlâuft man bei Ânderung der A die Gesamtheit aller projek-
tiven Zusammenhânge, welche unser Gewebe geodâtisch enthalten. Dar-
aus folgt :

Satz 1: Die Gesamtheit der jyrojektiven Zusammenhânge, die ein vor-
gegebenes Hyperflachen-(n + l)-Gewebe geodâtisch enthalten, wird auf-

gespannt durch \Z\ Funktionen in n Variabeln.

Dabei ist die Meinung, daB durch jede festeWahl dieser (^ Funktionen

X ein derartiger projektiver Zusammenhang eindeutig bestimmt ist.
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Fur ein gewisses System, dieser A sei das Symbol [A] gesetzt. Zur
Charakterisierung des zu [A] gehorenden projektiven Zusammenhanges
konnen wir uns auf eine spezielle Wahl von ut beschranken. Wir wahlen
dazu diejenige Ani fur welche in unserem speziellen Koordinatensystem,
F%\ ebenfalls verschwindet. Fur diesen Reprasentanten ergibt sich dann
nach einer einfachen Rechnung

(8)($)-*?/
PJk — 0 sonst.

2. Ein Satz liber Hyperflachen-(n + 2)-Gewebe.

Satz 2: Ein Hyperflachen-(n + 2)-Gewebe bestimmt stets eindeutig
einen projektiven Zusammenhang, in dem es geodatisch enthalten ist11).

Das Gewebe sei durch die (n + 2) Hyperflâchenscharen

dxl 0; i =1, 2,...,rc,
d& 0 dîP 0

gegeben. Die Gewebebedingungen lauten dann

y,1
0 fur i # fc (9)

Wir adjungieren nun zum Netz der ersten n Scharen einmal die Schar
d<P 0 und einmal die Schar dW= 0. Es werden dadurch zwei (n -f-1)-

Gewebe ausgezeichnet. (8) stellt mit Hilfe der Funktionen A die Klasse
der projektiven Zusammenhânge uber dem erstern dieser beiden (n + 1)-

Gewebe dar ; entsprechend konnen wir mit den Funktionen fi die Klasse
der projektiven Zusammenhânge uber dem andern (n + 1)-Gewebe er-
zeugen. Der Durchschnitt dieser beiden Klassen liefert dann diejenigen
Zusammenhânge, welche das ganze (n + 2)-Gewebe enthalten. Dies
druckt sich aus in

0t\ <•*>
x (xFt\ ilk)

- x 0, i a, in -^ - p y.

u) Dieser Satz ist bekannt fur n 2. Vgl. [1], S. 246.
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Betrachtet man dièse Beziehungen fur ein festes Indexpaar (i, k) als

lineares Gleichungssystem fur k und /j, so ist dièses infolge (9)
eindeutig lôsbar. Der Durchschnitt besteht daher aus einem einzigen
projektiven Zusammenhang ; Satz 2 ist damit bewiesen.

Aus Satz 2 schlieBt man sofort, daB jede topologische Abbildung des

Pn auf sich, welche ein Hyperebenen-(n + 2)-Gewebe wieder in ein
solches uberfuhrt, geradentreu und damit eine Projektivitàt ist.

3. Schnittgewebe. Fur die weiteren Untersuchungen benôtigen wir
einen Hilfssatz uber projektive Zusammenhànge :

Satz: In einem projektiven Zusammenhang des Pn sei eine geodâtische

Hyperflachenschar gegeben. Dann erzeugen die Geodâtischen des Pn, welche

ganz in dieser Schar verlaufen, in jeder ihrer Hyperflâchen einen {n — 1)-
dimensionalen projektiven Zusammenhang,

Zum Beweise fiihren wir ein spezielles Koordinatensystem ein ;

dxn 0

sei gerade die Differentialgleichung der ausgezeichneten Hyperflachenschar.

Die affinen Zusammenhànge An, welche dièse Schar geodàtisch
enthalten, sind dann ausgezeichnet durch

rtk ~ 0 fàr i 7^n und k ^n
Unter diesen An gibt es genau eine, fur welche sogar

TTJ. 0 fur beliebige i,k 12)

Mit einem geeigneten Parameter t lauten die Differentialgleichungen der
Geodâtischen eines Zusammenhanges im Pn :

~d¥~+ & à ik~d7~dT~ ¦

i 1,2, ...,».
In unserem Falle vereinfachen sie sich zu

jél h ik~d7~dT~ '

d2xn
Q

dt*
12 Es existiert genau eine bahntreue Transformation pt, so daÛ
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Fur die Geodâtischen, die ganz in unserer Hyperflâchenschar verlaufen,
ist aber dauernd

dt ~ •

das heiBt dièse genugen den Gleichungen

<J2 xi »-l n-1 dx> dxk

dxn

^r ° •

Dies sind aber die Gleichungen (n — \)-dimensionaler quasigeodatischer
Système in den Hyperebenen dxn 0. Unser Hilfssatz ist damit be-
wiesen.

Wir betrachten nun wieder ein (n + l)-Gewebe im Pn. Das Schnittgebilde

von (n — m)13) Gewebehyperflachen, welche verschiedenen
Scharen angehoren, ist eine m-dimensionale Mannigfaltigkeit Rm, und
die ubrigen (m + 1) Gewebescharen erzeugen in dieser Rm ein (m + 1)-
Gewebe. Wir bezeichnen dièses als das Schnittgewebe.

Wie im Abschnitt I gezeigt wurde, ist das Schnittgebilde geodâtischer
Hyperflâchen selbst wieder geodatisch. Aus dem eben bewiesenen Hilfs-
satz uber projektive Zusammenhânge schlieBt man daher auf den im
folgenden Satz formulierten Sachverhalt :

Satz: Ein projektiver Zusammenhang uber einem {n + l)-Gewebe in-
duziert im Schnittgebilde Rm von (n — m) Gewebehyperflachen aus
verschiedenen Scharen einen projektiven Zusammenhang von der Dimension
m, welcher das Schnittgewebe geodatisch enthalt.

4. Das Doppelverhaltnis-System. Wir verlegen nun unsere Betrach-
tungen fur einen Moment in den P2, das heiBt in die projektive Ebene.
Es liège hier das Kurven-3-Gewebe

Oi da? O, *Z> 0 (11)

vor. Fur jeden gegebenen (von a;1 und x2 unabhângigen) Wert a ist

a01dx1 + 02dx2 0 (12)

die Dififerentialgleiehung einer einparametrigen Kurvenschar, welehe mit
den Kurven des 3-Gewebes (11) in jedem Punkt das Doppelverhâltnis a
bildet. Es sei

38) n — m> 1.
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das Intégral von (12) und / der zugehorige integrierende Faktor

Wx a-f-@1 iP2 /*^2 (13)

Fur jedes a ^ 1 bilden die Kurvenscharen (11) und (12) zusammen ein
Kurven-4-Gewebe, durch welches gemaB Satz 2 ein projektiver
Zusammenhang eindeutig bestimmt ist. Man findet aus (10), daB dieser

(12)

Zusammenhang fur jeden Wert von a durch X X 0 gegeben ist

Satz 3: Samtliche einparametrigen Kurvenscharen der Ebene, welche mit
den Kurven eines 3-Gewebes ein festes Doppelverhaltnis bilden, sind Geoda-

tische eines ausgezeichneten projektiven Zusammenhanges. Dieser ist in
unserem speziellen Koordinatensystem durch X 0 gekennzeichnet.

Dieser ausgezeichnete projektive Zusammenhang war bereits Thom-
sen bekannt14) und wurde von ihm Doppelverhaltnis-System genannt. Das

Doppelverhaltnis-System, im folgenden kurz als D.V -System bezeich-

net, erlaubt bereits einem Kurven-3-Gewebe invariant einen projektiven
Zusammenhang zuzuordnen.

Da keine der drei Gewebekurvenscharen îrgendwie ausgezeichnet ist,
folgt sofort, daB das D.V.-System nach Abbildung eines Gewebenetzes
auf das Koordinatennetz immer durch

T11T* ?* "~^~ le

i j h 1 2 (14)

Fjk 0 sonst

gegeben ist. Dabei ist &t das Gradientenfeld der restlichen Schar.
Nach diesen Vorbemerkungen betrachten wir nun ein (n + 1)-Gewebe

im Pn. Dièses sei gegeben durch die Difïerentialgleichungen

dx% 0, i 1,..., n

Bei Voraussetzung eines geeigneten Parameters t lauten die Gleichungen
der Geodâtischen eines projektiven Zusammenhanges uber diesem Ge-

webe

M) Vgl. [7].
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wobei fur die Christoffelschen Symbole (8) zu setzen ist. Fixieren wir nun
fur einen Augenblick zwei Indizes i und k. Im Schnittgebilde JR2 von
(n — 2) Gewebehyperflachen aus den Scharen

dx1 0, j =£ i und j ^ k

aber sonst aile Zahlen von 1 bis n

wird ein 2-dimensionaler projektiver Zusammenhang mduziert, dessen
Geodàtische durch die Gleichungen

d»8

dx% dx
- n

(17)

gegeben sind. Dieser Zusammenhang ist gemaB den vorangegangenen
Betrachtungen in der Ebene dann und nur dann ein D.V.-System15),
wenn

=0 oder r;, lafcln(|l) und ^ \ dt In (^
d)

ist. Es druckt daher das Verschwmden von X emen geometrischen Saeh-
verhalt aus. (a)

Setzen wir nun A 0 fur aile Indizespaare (i, k). Fur den zugehori-
gen projektiven Zusammenhang fuhren wir das Symbol [0] em. Dieser
Zusammenhang ist einmal dadurch ausgezeichnet, daB er m samtlichen
Schnittgebilden E2, bei deren Erzeugung die Schar d& 0 nicht be-

teiligt ist, das D.V.-System uber dem Schnittgewebe induziert.
Wir wollen nun zeigen, daB dies uberhaupt fur aile 2-dimensionalen

Schnittgewebe gilt. Dazu haben wir noch diejenigen Schnittgebilde zu
untersuchen, bei deren Bildung die Gewebeschar d& — 0 beteiligt ist.

Betrachten wir etwa das Schnittgebilde i?2 aus je einer Hyperflache
der Scharen

dx* 0 dxh 0,..., dxn 0 d0 0 16)

Dièse R2 liât mit der Schar dx1 0 eine Kurvenschar gemeinsam,
deren Tangentenfeld sich als Vektorprodukt im Pn darstellen lâBt. Man
findet dafur

F« (0 -<2>3 02 0 ...,0)
15) und zwar das D.V.-System uber dem Kurven 3-Gewebe, welches durch die rest-

hchen drei Gewebescharen un Schnittgebilde R2 erzeugt wird.
le) Fur die ubrigen verlauft der Nachweis genau gleich.
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Entsprechend erhâlt man fur die Tangentenfelder der Schnittkurven mit
den Scharen dx2 0 und dcc? 0 :

i"* <2>3
9 0

9 — 0X 0 0

j< (— $2 0X o o o

Normiert man dièse drei Felder so, da8 ihre Summe verschwindet, so

wird etwa

rl 0 — 0X 03 0X 02 0 0

«• 0203 0 -^(Pg 0,...,0), (18)

Eine zu diesen drei Scharen harmonische Schar ist dann gegeben durch
das Tangentenfeld

Die Integralkurven des Vektorfeldes h% liegen natiirlich ganz in unserer
iî2. Falls wir nun zeigen kônnen, daB sie gleichzeitig Geodàtische im
projektiven Zusammenhang [0] sind, so ist unsere Behauptung bewiesen.
Der in unserer R2 induzierte projektive Zusammenhang enthâlt nâmlich
dann nebst dem Schnittgewebe (18) noch eine Kurvenschar (19), die mit
den Gewebekurven ein konstantes Doppelverhàltnis bildet ; es handelt
sich daher um das D.V.-System iiber dem Schnittgewebe.

Setzt man in (I, 3)

dt >

so erhàlt man daraus die Bedingungen fur ein geodâtisches Tangentenfeld.

Sie lauten
(20)

Dièse Beziehungen haben wir nun fur das Vektorfeld h4 zu verifizieren.
Da h* nur drei wesentliche Komponenten aufweist, reduziert sich (20)

in unserem Falle auf

2 h8 d8hl + 2riJ*1*8 + 2^W och1

2 h*d8h2 + 2J8ÎA1*2 + 2r2ih2h* och2 (21)

2 h'dêh* + îr
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Die Rechnung zeigt, daB dièse drei Beziehungen miteinander vertrâglich
sind. Damit ist aber unsere Behauptung bewiesen. Wir formulieren dièses
Résultat in

Satz 4: Der projelctive Zusammenhang [0] liber einem (n + l)-Gewebe
ist geometrisch ausgezeichnet. Er induziert in sâmtlichen 2-dimensionalen
Schnittgebilden des Gewebes das D. V-System liber dem Schnittgewebe.

Aus naheliegenden Griinden werden wir nun diesen eindeutig be-
stimmten projektiven Zusammenhang [0] auch in hôheren Dimensionen
als das D.V.-System zum gegebenen (n + l)-Gewebe bezeichnen. Dieser
Zusammenhang hat iibrigens die bemerkenswerte Eigenschaft, daB nach
Abbildung irgendeines Gewebenetzes auf das Koordinatennetz die Chri-
stoffelschen Symbole einer geeigneten, eindeutig bestimmten An stets die
Gestalt ,0

ne t k y-0^j ur i #
(22)

r?\ 0 sonst

annehmen. Dabei ist 0t das Gradientenfeld der restlichen Gewebeschar.
Die erste Zeile in (22) drûckt nàmlich gerade aus, daB in gewissen 2-dimensionalen

Schnittgebilden des Gewebes D.V.- Système induziert werden.
Da die Christoffelschen Symbole des D.V.-Systems in jedem Koordi-

natensystem, dessen Parameterflàchen mit einem Gewebenetz ùberein-
stimmen, die Gestalt (2) haben, gilt in sâmtlichen Dimensionen n ^ 2 :

Satz 5: [0] besitzt den Charakter einer Invarianten. In jedem Koordi-
natensystem, dessen Parameternetz mit einem Gewebenetz libereinstimmt, ist
das D.V.-System durch das System [0], das hei/it durch das Verschwinden

aller X gekennzeichnet.

Aus dem Beweise des Satzes 4 entnehmen wir noch ein Kriterium fur
das D.V.-System :

Satz 6: Induziert ein projektiver Zusammenhang ûber einem (n + 1)-

Gewebe in sâmtlichen o Scharen von 2-dimensionalen Schnittgebilden,

welche durch n Gewebescharen erzeugt werden, D.V.-Système, so tut er dies
auch in allen ûbrigen 2-dimensionalen Schnittgebilden und es handelt sich
um das D.V.-System zum vorgelegten (n + l)-Gewebe.

5. Ebenheitsfragen. Das Kriterium fur die Existenz einer topologischen
Abbildung, die ein vorgegebenes Gewebe in ein Hyperebenengewebe ùber-
fuhrt, ist im folgenden Satz enthalten :
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Satz 7: Ein Hyperflâchengewebe lafit sich dann und nur dann eben

machen, wenn es aus geodâtischen HyperjlMhen eines projektiveuklidischen
quasigeodâtischen Systems besteht17).

Die Riehtigkeit ist leicht einzusehen. Da ein Hyperebenengewebe im
projektiven Zusammenhang der Geraden des Pn enthalten ist, ist die

Bedingung notwendig ; sie ist auch hinreiehend, weil jedes projektiv-
euklidische quasigeodâtische System mit den Geraden des Pn topologisch
Equivalent ist.

Wir wollen nun die Ebenheitsfragen noch speziell fur (n + 1)-Gewebe
weiter diskutieren. Da der Projektivkrûmmungstensor fur n 2 iden-
tisch verschwindet, ist dabei die Ebene gesondert zu behandeln.

n 2. GemàB (8) lassen sich die projektiven Zusammenhànge iiber
einem Kurven-3-Gewebe durch die beiden wesentlichen GrôBen

darstellen. Der Zusammenhang ist projektiveuklidisch, wenn

ist. Die Rechnung liefert hiefûr

2H(2H1 + L2) + 2H12 + L22 0
}

worin die Indizes Ableitung nach x1 bzw. x2 bedeuten.
Sollen nun die Kurven eines 3-Gewebes einem projektiveuklidischen

quasigeodâtischen System angehôren, so heiBt dies, da8 eine Funktion X

existiert, derart, da8 (23) befriedigt wird. Da 0 durch das Gewebe ge-
geben ist, kann man diesen Sachverhalt auch folgendermaBen formu-
lieren :

Satz 8: Ein Kurven-3-Gewebe der Ebene Utfit sich dann und nur dann
geradlinig machen, wenn das System (23) von zwei partiellen Differential-
gleichungen zweiter Ordnung in % eine Losung hat18).

Die Entscheidung, ob sich ein vorgelegtes 3-Gewebe geradlinig machen
lâBt, fûhrt somit auf die Aufgabe, fur ein gewisses partielles Differential-
gleichungssystem zweiter Ordnung die Existenz von Lôsungen abzu-
klâren.

17 Im P2 sind natûrlich die Hyperflachen Kurven und die Hyperebenen Greraden.
18) Vgl. [1], S. 173.
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n > 2. Die Gesamtheit der projektiven Zusammenhânge uber einem

(n+ 1)-Gewebe ist gemàB Satz 1 durch die Système [A] von (z) Funk-

tionen in n Variabeln gegeben. Das Gewebe kann dann und nur dann
eben gemacht werden, wenn es ein [A] gibt, so daB der Projektivkrûm-
mungstensor des zugehôrigen Zusammenhanges verschwindet19). Da nur
erste Ableitungen der F/k in diesen Tensor eingehen, ergibt sich

Satz 9: Ein (n + l)-Oewebe lafit sich dann und nur dann eben machen,

wenn das Differentialgleichungs-System erster Ordnung

(%k) (ik)
Prsth(*> 3,A) 0 (24)

in den \Z\ Funktionen von [X] eine Lôsung besitzt.

Die Entseheidung, ob sich ein vorgelegtes (n + 1)-Gewebe eben
machen lâBt, ist genau gleich wie in der Ebene àquivalent mit der Auf-
gabe, die Existenz von Losungen eines gewissen partiellen Differential-
gleichungs-Systems nachzuweisen. Der einzige Unterschied besteht darin,
daB dièses fur n>2 nur von erster Ordnung ist.

Die Abbildung, welche ein projektiveuklidisches quasigeodâtisches
System in die Geraden des Pn uberflihrt, ist bis auf Projektivitaten ein-
deutig bestimmt ; denn sind etwa Tx und T2 zwei Abbildungen, die ein
derartiges System gerade machen, so ist

rp rp—l1 1 i2

eine geradentreue Abbildung des Pn auf sich, das heiBt eine Projektivitât.
Daraus folgt aber

Satz 10: Sowohl zu einer Lôsung A von (23) dis auch zu einer Lôsung [A]
von (24) gehort genau eine Klasse projektiv-âquivalenter gerader bzw. ebener

Realisationen des (n + l)-Oewebes20).

Da die parallelisierbaren Kurven-3-Gewebe in der Ebene21) nach einem
Satz von Oraf und Sauer22) unendlich viele projektiv verschiedene gerade
Realisationen zulassen, haben wir in diesen Geweben ein Beispiel dafur,
daB die Lôsung X von (23), falls sie uberhaupt existiert, nicht unbedingt

ld) Es genûgt natûrlich zu fordern, dafî die wesentlichen Komponenten von Px/iv*0
verschwinden. Eine Abzàhlung findet sich in [9].

20) Fur n 2 vgl. [1], S. 173.
21) Gewebe, die drei Parallelenscharen topologisch àquivalent sind. Blaschke bezeichnet

sie auf Grand einer SchlieBungseigenschaft als Sechseckgewebe.
22) Vgl. [1], § 3.
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eindeutig zu sein braucht. Die Vermutung, daB die Lôsungen von (23)
fur ein nichtparallelisierbares Kurven-3-Gewebe hôchstens eine Klasse

projektiv-aequivalenter gerader Realisationen erzeugen, ist der Inhalt
des bekannten Eindeutigkeitsproblems der Nomographie23).

Fur ein Gewebe aus mehr als (n + 1) Hyperflàchenseharen verein-
facht sich das Kriterium fur die topologische Âquivalenz mit einem
Hyperebenengewebe bedeutend. Handelt es sich um ein (n + 2)-Gewebe,
so ist der projektive Zusammenhang stets eindeutig bestimmt ; zur Ent-
scheidung, ob eine Abbildung auf ein Hyperebenengewebe môglich ist,
bleibt bloB (I, 8) bzw. (I, 9) zu verifizieren. Bei mehr als n + 2

Hyperflàchenseharen hat man zunàchst noch zu priifen, ob das Gewebe einem

projektiven Zusammenhang angehôrt. Trifft dies zu, so ist er jedenfalls
eindeutig gegeben. Da er sich mit Hilfe eines willkiirlich herausgegrififenen
(n -f- 2)-Gewebes bestimmen lâBt, ist das weitere Vorgehen dasselbe wie
im Falle eines (n + 2)-Gewebes.

III. Invarianten im D. F.-System

1. (n -f- 1)-Gewebe, deren D.V.-System projektiveuklidisch ist.

Betrachten wir zunàchst die Kurven-3-Gewebe in der Ebene. Fur dièse

gilt:
Satz 11: Ein Kurven-3-Gewebe in der Ebene ist dann und nur dann

parallelisierbar, wenn das zugehôrige D.V.-System projektiveuklidisch ist.

Zum Beweise fûhren wir die HilfsgrôBe

M)
(1)

ein. Die Geradlinigkeitsbedingungen (I, 8) heiBen dann fur das D.V.¬
System laut (II, 23) :

- ffi + e • 3i In (-J-) 0
V 2/ (2)

Q2 + e. d2 In (p\ 0

Durch Differentiation nach x2 bzw. x1 entnimmt man daraus

-j 0 ; eit + q2 + Ql • a2 In (-|^ 0

23) Vgl. [1], S. 176.
24 Die GrôBe q ist identisch mit der von Blaschke eingefûhrten Sechseckinvarianten.

Vgl. [1], § 16.
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Unter Berûcksichtigung von (2) ergibt sich dafûr

Q(Qi2 — Q2) " £i*02 0 ; q(q12 + q2) — q1-q2 O

was nur fur q 0 vertràglich ist. Die Funktion 0, welche die dritte
Gewebeschar kennzeichnet, mu8 somit der Differentialgleichung von
de Saint-Robert ^ (3)

geniigen. Daraus folgt aber die Abbildbarkeit auf drei Parallelenscharen.
Da das D.V.-System zu drei Parallelenscharen aus den Geraden der

Ebene besteht, so folgt aueh umgekehrt, daB dièses fur ein parallelisier-
bares Gewebe notwendigerweise projektiveuklidisch ist. Ferner schlieBt
man weiter auf

Satz 12: Ist das D.V.-System eines Kurven-3-Gewebes projektiveuklidisch,

so geht bei jeder Abbildung desselben auf die Geraden der Ebene das
Gewebe ûber in drei Geradenbûschel, deren Scheitel auf einer (eventuell un-
endlichfernen) Geraden liegen.

GemaB Satz 10 sind nâmlich sàmtliche geraden Realisationen des Ge-

webes, die zu einer Lôsung X von (II, 23) gehôren, projektiv âquivalent.
Dies gilt speziell auch fur die Lôsung A 0, das heiBt fur die geraden
Realisationen des D.V.-Systems.

Der entsprechende Satz fur Flâchen-4-Gewebe im P3 lautet :

Satz 12 a: Ist das D.V .-System eines Flâchen-4:-Gewebes im P3
projektiveuklidisch, so fûhren die zugehôrigen ebenen Realisationen das Gewebe

ûber in EbenenbûschelA-Gewebe, deren Trâgergeraden den Rang 3 Jiaben26).

Zum Beweise betrachten wir eine Abbildung des D.V.-Systems auf
die Geraden des P3 27). Das Gewebe wird dabei zu einem Ebenengewebe.
Die 2-dimensionalen Schnittgebilde auf den Gewebeebenen bestehen
dann gemâB Satz 11 je aus drei Geradenblischeln, deren Scheitel auf
einer Geraden liegen. Daraus schlieBt man aber, daB das Ebenen-4-Ge-

26) Vgl. etwa Schwerdt, H., Lehrbuch der Nomographie, Berlin 1924, S. 136.
26 Als Rang einer Anzahl Geraden bezeichnet man den Rang der Matrix ihrer Plûcker-

schen Koordinaten.
27 Mit dem Gewebe ist natûrlich auch das quasigeodàtische System nur in einem

Gebiete G des P3 definiert, so dafi man im strengen Sinne hôchstens von einer Abbildung
auf die Geraden eines Teilgebietes G* des P3 sprechen kann. Durch Hinzunahme der
restlichen Geraden des P3 làfit sich aber das quasigeodàtische System ûber G* hinaus
fortsetzen.
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webe vier Ebenenbiischel umfaBt. Seine Tràger seien die Geraden gx, g2,

gz und gr4. Beziiglich ihrer gegenseitigen Lage sind folgende Fallunter-
scheidungen zu maehen :

a) Die gi sind paarweise windschief. Dann gehôren sie notwendigerweise
derselben Erzeugendenschar einer Regel]lâche zweiten Grades an.

b) Zwei Tràger, etwa gt und g2, schneiden sich. Von gs und g± wird nur
verlangt, daB sie gx und g2 nicht treffen. In diesem Palle sind auch g^
und g4 miteinander inzident, und es liegen die Schnittpunkte von
g1, g2 und gd, gé auf der Schnittgeraden der durch die beiden Geraden -

paare aufgespannten Ebenen.

c) Drei Trâger liegen in einer Ebene ex. Dann liegt auch der restliche
Tràger in a und es bilden die 4 Trâger ein Vierseit. Die Gewebe von
diesem Typus sind parallelisierbar ; befôrdert man nàmlich die Ebene
dièses Vierseits durch eine Projektivitât ins Unendlichferne, so gehen
die 4 Ebenenbiischel in 4 Parallelebenenscharen iiber28).
Weitere Môglichkeiten bestehen nicht.

Da die Tràgergeraden in allen drei Fâllen stets den Rang 3

haben29), ist unser Satz bewiesen. Die 3 festgestellten Gewebetypen
sind sogar die allgemeinsten Ebenenbuschel-4-Gewebe vom Rang 3.

Es gibt nâmlich neben a), b) und c) nur noch 2 weitere Môglichkeiten

fur die gegenseitige Lage von 4 Geraden vom Rang 3.

d) ffi, 9%^ 9z, 94 schneiden sich in einem Punkt.
e) 9i> 92 > 9z > 94 liegen in einer Ebene, aber ohne ein Vierseit zu bilden.

Da aber fur die beiden Konfigurationen d) und e) die Gewebebedin-

gungen nicht erfiillt sind, erzeugen die ebenen Bilder unserer Gewebe

mit projektiveuklidischem D. V.-System genau die Klasse der ebenen
4-Gewebe vom Rang 3.

Ein Analogon zu den Sàtzen 11 und 12 fur hôhere Dimensionen ist
noch nicht gefunden. Es lâfit sich hôchstens aussagen, daB ein (n + 1)-

Gewebe, dessen D.V.-System projektiveuklidisch ist, topologisch âqui-
valent einem Hyperebenen-(?i+ 1)-Gewebe ist, dessen sâmtliche Schnitt-
Mâchen-4-Gewebe in den 3-dimensionalen Schnittgebilden Ebenen-
buschel-4-Gewebe vom Rang 3 sind. Beachtenswert ist, daB fur n>2
ein projektiveuklidisches D.V.-System zur Charakterisierung der paralle-
lisierbaren Gewebe nicht mehr genûgt.

28) Blaschke bezeichnet diesen Typus auf Grand von Sehliefîungsfiguren als Achtflach-
gewebe.

29) Eine Aufzàhlung der Geradenquadrupel vom Rang 3 findet sich bei Blaschke, W.,
Projektive Géométrie, S. 97/98, Wolfenbûttel-Hannover 1947.
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2. Ein Satz liber Hyperflàchensechseckgewebe.
Wie weiter vorn bereits bemerkt wurde, werden die parallelisierbaren

Kurven-3-Gewebe in der Ebene infolge der Existenz einer SchlieBungs-
figur als Sechseckgewebe bezeichnet. Wenn nun in diesem Absehnitt von
Sechseckgeweben die Rede ist, so wollen wir uns dabei eher dièse Schlie-
Bungsfigur vor Augen halten, als die Abbildbarkeit auf Parallelenscharen.

Définition: Sind sâmtliche 2-dimensionalen Schnittgewebe eines Hyper-
flâchen-(n -f- l)-Gewebes Sechseckgewebe, so heijien wir dièses ein Hyper-
flachensechseck-Gewebe.

Fur diesen Gewebetypus soll nun im folgenden eine geometrische
Eigenschaft nachgewiesen werden.

Wir betrachten zunàchst ein beliebiges (n, + 1)-Gewebe im Pn (n>2).
Fur seine Hyperflâchenscharen setzen wir die Symbole

Es werde ein beliebiges Netz herausgegriffen, etwa das Netz, bestehend
aus den Scharen

S, S S (5)

(a) (a) \

Wp sei das Gradientenfeld von S7-a und vi* die Schnitt- \ /§\
kongruenz der Scharen S?i, S?^t, ®?a+1 • • •, ®/w •)

Ober dem Gewebe (4) errichten wir nun das D.V.-System. P^p™ sei
dessen Projektivkrûmmungstensor.

Satz: Es seien a und b zwei verschiedene feste Indizes. Wenn in einem
Gewebenetz der Pseudoskalar

(a) (b) (c) (c)

P,,. Hw v^ t;f* vv Wet (7)

fur einen von a und b verschiedenen Index c verschwindet, dann fur aile
andern ebenfalls.

Zum Beweise ziehen wir ein spezielles Koordinatensystem heran ; das

ausgezeichnete Netz sei gerade das Koordinatennetz. Fur den P-Tensor
liefert dann eine einfache Rechnung :

p h wenn h nicht mit einem unteren
ijk ~~ Index iibereinstimmt.

(8)

fiir aile Tripel voneinander ver-
schiedener Indizes i, j und k.
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Weiter wird
(i) (i)

(2) (2)

wt (0, l,...,0) V (0, l,...,0)
(9)

(») (»)

wt (0,0,..., 1) V (0,0,...,l)
Somit ergibt sich fur i ^ fc und

(i) 0)
«>„ %,**¦ (10)

GemàB (8) ist aber die rechte Seite vom Index k unabhângig, wenn nur
k ^ i und k # j ist. Damit ist aber unser Satz bewiesen.

Satz: Wenn in einem Gewebenetz sâmtliche Pseudoskalare (7) ver-
schurinden, dann verschwinden dièse auch in allen andern Netzen.

Wir nehmen etwa an, daB in unserem Koordinatennetz (9) sâmtliche
Pseudoskalare verschwinden, also

Betrachten wir

dx

Fur dièses wird
d)
wt
(2)

W%

(n)
W%

nun

2

<*!

(0

(0

ein

,*.
1

o

0 fur

anderes

dx? 0

,...,0)

,...,1)

i ^
Netz,

i

k und j =fi k

etwa dasjenige aus

(D

(2)

(n)

0, 00 0.

(i,o
(*,,-*1,...,

Infolge des vorhergehenden Satzes haben wir nur zu zeigen

(«) (b) (c)
A U

V1 V

(e)
0

den

0)

0)

h)

daB

(H)

Scharen

(12)

fur aile môglichen a und 6 zu einem festen, von a und 6 verschiedenen c.
Dabei treten als Folge der Symmetrien von Pif£ und als Folge der

speziellen Gestalt von (12) nur zwei wesentlich verschiedene Fâlle auf :
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a) a 1, b und c beliebig.

(1) (6) (c) (c)

2 3,*V * v« wh= - 0!0M+ &ÎPlbcc 0

laut(8) laut(ll)

ft) a, b und c von 1 verschieden.

(a) (6) (c) (c)

Pa61" - 01 Pabc°=0

da auch hier die einzelnen Summanden verschwinden.
Gehen wir nun iiber zu unserm angekundigten Satz ûber Hyperflâchen-

sechseckgewebe.

Satz 13: Sind in einem (n + l)-Gewebe die [Z\ Schnittkurvengewebe

in den durch n Oewebescharen aufgespannten 2-dimensionalen Schnitt-

gebilden Sechseckgewebe, so sind auch die restlichen rï) derartigen

Schnittkurvengewebe Sechseckgewebe und es liegt ein Hyperflàchensechseckgewebe
vor30).

Der Beweis folgt direkt aus den vorangehenden Betrachtungen. Sind
etwa die Schnittkurvengewebe in den durch das Koordinatennetz er-
zeugten R2 Sechseckgewebe, so ist

Dann verschwinden gemâB (8) und (11) sàmtliche Pseudoskalare (7) des
Koordinatennetzes ; laut dem letzten Hilfssatz verschwinden aber in
diesem Falle die Pseudoskalare (7) auch in allen iibrigen Netzen des
Gewebes. Daraus folgt wiederum, da6 sàmtliche Schnittkurven-3-Gewebe
Sechseckgewebe sind und es liegt daher ein Hyperflâchenseehseckgewebe
vor.

*°) Fur Flâchen-4-Gewebe im P3 ist dieser Satz erstmals von J. Dubourdieu angegeben
worden. Vgl. [1], S. 185. Seine Verallgemeinerung auf hôhere Dimensionen gelang H. Aue.
Vergleiche Mitt. Math. Ges. Hamburg 7, 1938, S. 367/399.

81 Differentialgleiehung von de Saint-Robert fur die Projektion des Gradienten von 0
in eine bestimmte R2 hinein.
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3. Parallelisierbare (n + 1)-Gewebe in Dimensionen n ^ 3.

Wie im vorhergehenden Abschnitt gezeigt wurde, genugt ein projektiv-
euklidisches D.V.-System fur die Abbildbarkeit auf (n + 1) Parallel-
hyperebeneseharen nicht.

Ein Kovektorfeld px ist integrabel, das heiBt Vielfaches eines Gradien-
tenfeldes, wenn

p,3 0 *) (13)

Unser (n + 1)-Gewebe sei nun statt durch (n + 1) Gradientenfelder
(a)

durch die entsprechende Anzahl integrabler Kovektorfelder px gegeben.
Der Index (a) bezeichne dabei die Nummer des betrefïenden Feldes.
Dièse Kovektorfelder seien so normiert, daB

n+l
ZPx=-0 (14)
a=l

was infolge der Gewebebedingungen im wesentlichen nur auf eine Art
môglich ist.

Wir greifen nun durch die normierten Kovektorfelder

(ai) (a2) (an

Vx 5 Px • • • > Px ; a. t^ «fc

ein beliebiges Netz aus dem Gewebe heraus.

Définition: Die n invariant mit dem Gewebe verlcnûpften Kovektor-

felder qx, welche durch

(ak) n (a%) (ajt)

qx - S Px - (n - 2) px ; * 1 n (15)

bestimmt sind, heifien ein Querfeider-System des Gewebes.

Da jedes Gewebenetz AnlaB zu einem Querfelder-System gibt, sind
durch ein (n + 1)-Gewebe deren (n + l) festgelegt. Eine Ausnahme

liegt nur fur n 3 vor ; in diesem Falle sind aile Querfelder-Systeme
identisch33).

Die Querfelder eines Systems sind infolge der Netzbedingungen im
Gewebe linear unabhangig, denn die Déterminante der Substitution (15)
ist von Null verschieden.

82) Vgl. [2], S. 120.
"

M) Das eindeutig bestimmte Querfelder-System wird dort als Diagonal-System be-

zeichnet.
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Fur unser Gewebe (II, 3) hat das Querfelder-System zum Koordinaten-
netz die Gestalt

(-(71-3)0, 02 <P8 0n

*, - (* - 3) 02 0, 0n

(16)

Fur die Integrabilitâtsbedingungen des i-ten Feldes dièses Systems findet
man durch einfache Rechnung

dt In {-^M 0 fur ^ i und k^i (17)

Satz 15: $md (?i — 1) Felder eines QuerfelderSystems integrabel, so
ist es auch das letzteu).

Sind (n — 1 Querfelder integrabel, so heiBt dies bei geeigneter Nume-
rierung etwa

3, In L~A 0 fur j 1 2, (n — 1) tmd i,k=£j - (18)

Wie sich leicht bestâtigen làBt, besteht fur drei voneinander verschiedene
Indizes i, j, k die Identitât

<Pt0kdf In (|t) + 0,^3, In {^j + 0,0tdk In ^ 0 (19)

Aus (18) und (19) schlieBt man nun sofort, daB auch

dn In (^ 0 fur i,k^n
das heiBt es ist laut (17) auch das noch verbleibende n-te Querfeld
integrabel. Damit ist aber unser Satz bewiesen.

16 : Existiert in einem (n + \)-Gewebe ein System von inte-
grablen Querfeldern, so ist es parallelisierbar.

Fur n 3 ist dieser Satz ebenfalls bekannt, denn durch die Existenz
sâmtlicher Diagonalflàchen sind gerade die Gewebe gekennzeichnet,
welche vier Parallel-Ebenenscharen topologisch âquivalent sind.

M) Fur n 3 ist dieser Satz bekannt. Vgl. [1], S. 177/186.
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Der Beweis kann auf folgende Weise gewonnen werden. Durch eine
Koordinatentransformation kann stets erreicht werden, daB das System
von integrablen Querfeldern durch (16) gegeben ist und es gilt dann

dj In l-^-j 0 fur sâmtliche Tripel verschiedener Indizes (i,j,k). (20)

Infolgedessen ist

Daraus schlieBt nian, daB

fur aile j 7^ i. Mit (20) ergibt sich weiter fur k

da ja i beliebig, also von j und k versehieden gewâhlt werden kann. Es
ist daher T3 nur eine Funktion von xj allein, also etwa

{^ (22)

und entsprechend

r, a, în^-j /,(**) 35)

Daraus ergibt sich mit (20) zusammen der Ansatz

wo Ft(xl) wiederum eine Funktion von x% allein ist. Hieraus resultiert
aber die Existenz einer Abbildung

le1 ^x^x*)™)
welche die Schar d& 0 in die Parallel-Hyperebenenschar

dx1 + dx2 H h dxn 0

ûberfuhrt, womit die Parallelisierbarkeit nachgewiesen ist.

8B) Der untere Index i von fi bedeutet hier die Nummer der Funktion und nicht die
Ableitung naxîh x1.

86) x1 ist nur eine Funktion von xi allein.
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Wir haben bis jetzt zur Charakterisierung des Gewebes das D.V.¬
System noch gar nicht beigezogen. Zunâchst folgt aus der Parallelisier-
barkeit des Gewebes, daB es projektiveuklidisch ist, eine Bedingung, die
sicher notwendig, aber noch nicht hinreichend ist. 37) Wir wollen mm
noch zeigen, daB ein parallelisierbares Gewebe sich mittels einer andern
Eigenschaft des D.V.-Systems charakterisieren laBt.

Versuchen wir etwa, die invarianten Beziehungen (20), welche die
Parallelisierbarkeitsbedingungen ausdrucken, im D. V.-System zu deuten.

Bei Zugrundelegung des Reprâsentanten (II, 8) heiBen die Gleichungen
des D. V.-Systems iiber unserem Gewebe

i i8 dt dtdt* ' ,tî " dt dt

mit

Ffk i dk In | ^ | ; T}* 0 somst.

Das D.-V.-System induziert in jeder Hyperflâche der Schar Qn+I(d&= 0)
einen projektiven Zusammenhang, nàmlich das (n — l)-dimensionale
D. V.-System

2 2 T?,— —- 0
.=i * dt

(23)
n

d0 ^ 08dxs 0

Wir projizieren nun dièses in der Umgebung eines Gewebepunktes P
mittels der Schnittkongruenz der Scharen

<5< : dx* 0 i 1,2,. (n - 1)

auf die Hyperflâche der Schar Sn (rf#n 0) durch den Punkt P. Die
Differentialgleichungen der Projektionen erhalten wir durch Elimination
von dxn :

X n-l
dxn y

37) Das D.V.-System eines Parallelgewebes besteht aus den Geraden des Pn.
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Die ersten (n — 1)-Gleichungen von (23) gehen dann iiber in

dt*

Die Projektion des D. V.-Systems in der Schar <£>„ ist somit gegeben
durch

r* — — 2 *' T'

JT^ 0 sonst.

Die bahntreue Transformation

fuhrt diesen Zusammenhang in die Normalform, ûber, und zwar ergibt
sich

ï,%vï.ti *i (24)

} 0

Da nun aber

stimmt (24) mit dem D.V.-System in der Schar <SW iiberein, wenn

ist.
Andererseits ist dièse Projektionseigenschaft bei einem parallelisierbaren
Gewebe sogar im GroBen erfûllt. Da samtliche Gewebeseharen <3< gleich-
berechtigt sind, folgt daraus

Satz 17 : Die Parallelisierbarkeit eines (n + l)-Oewebes ist àquivalent
mit der Eigenschaft, dafj die Projektion des D.V.-Systems jeder Schar Q€

auf eine andere Schar Qk mittels der Schnittkongruenz der ilbrigen (n — 1)-
Scharen mit dem D.V.-System in Qk ilbereinstimmt.
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Der Inhalt von Satz 15 làBt sich jetzt ebenfalls ins D. V.-System iiber-
setzen. Er besagt, da8 fur die Parallelisierbarkeit die Projektions-
beziehung zwischen einer einzigen Schar (S7l und den (n — 1) weiteren
Scharen

schon geniigt. Sie ist dann fur die restlichen Scharpaare Qt, Qk des
Gewebes automatisch erfullt.

4. Parallelisierbare m-Gewebe (m>n + 1).
Auch fur die folgenden abschlieBenden Betrachtungen setzen wir

n>2 voraus. Wir untersuchen zunâchst ein (n -f- 2)-Gewebe im Pn mit
der Eigenschaft, daB die sâmtlichen (n + 2) (n + 1)-Gewebe, die
durch Weglassen einer Hyperflâchenschar entstehen, einzeln paralleli-
sierbar sind. Durch geeignete Koordinatentransformation kônnen die
Differentialgleichungen eines derartigen Gewebes immer auf die Gestalt

dxl 0 i l}2 »

2 dx* =- 0

d0 0

gebracht werden. Die Gewebebedingungen lauten dann

0t ^ 0 fur aile i 0t ^0k fiir i ^k
Die Parallelisierbarkeit der einzelnen (n + 1)-Gewebe drucken wir durch
die Integrabilitâtsbedingungen geeigneter Querfelder-Systeme aus. Fiir
das Gewebe, bestehend aus dem Koordinatennetz und der Schar d0 0,
lauten die Parallelisierbarkeitsbedingungen

dj In l^-l 0 wenn i, j, k voneinander verschieden (25)

Zur Herleitung der entsprechenden Bedingungen fur die restlichen
(n + 1)-Gewebe betrachten wir als Reprâsentanten etwa das Gewebe
mit den Gleichungen

X dx8 0
s =1

dx1 0 t 2,3,...,n (26)

d0 0
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Durch die Abbildung

yl==Xl+...+ Xn Xl=yl_(y2+...+ yn)
yi xi fûr i^l bzw-

*'- 2/< far i^\ (27)

gehen die Gleichungen (26) liber in

d0 0

und die Parallelisierbarkeitsbedingungen lauten dann

A I 0 mit i j, k voneinander verschieden.

W
Wir setzen nun speziell k 1. Infolge (27) ergibt sich

Durch Umformung folgt daraus weiter

011 <Pli ^il ~ #11

0 0 00
und man erhâlt nach einigen Zwischenrechnungen

\0t 01)'f'\01 &<}
oder

Mit (25) zusammen fiihrt dies auf

d(l>
88) dj bedeutet Ableitung nach x* ; &^ -^—r
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Die Parallelisierbarkeit aller (n + 1)-Gewebe vom Typus (26) ist daher
âquivalent mit den Beziehungen

Bk In (—*\ =0 fur i # k (28)

Dies bedeutet aber, daB das D.V.-System des (n + 1)-Gewebes

dx*: 0 i 1, 2,. n
d& 0

durch das Verschwinden sàmtlicher Christoffehchev Symbole charakteri-
siert ist ; es ist daher identisch mit den Geraden des Pn und die ver-
bleibende Hyperebenenschar

J£ dx8 0

ist darin geodàtisch. Da in unserem (n + 2)-Gewebe keine Hyperflàchen-
schar gegeniiber den andera ausgezeichnet ist, folgt :

Jede Hyperflàchenschar unseres (n + 2)-Gewebes liegt geodàtisch im
D.V.-System des verbleibenden (n + l)-Gewebes.

Satz 18 : Ein {n + 2)-Oewebe, in welchem jedes (?i -\- l)-Tupel seiner
Hyperflâchenscharen einzeln parallelisierbar ist, ist gesamthaft parallelisier-
bar.

Der Beweis kann leicht auf folgendem Wege gewonnen werden. Wie
oben festgestellt wurde, ist der eindeutig bestimmte projektive Zusam-
menhang zugleich D.V.-System zu allen {n + 1)-Geweben ; infolge der
Parallelisierbarkeit dieser {n + 1)-Gewebe ist er projektiveuklidisch.
Wir betrachten nun eine Abbildung, die ein {n -f- 1)-Gewebe Ox parallel
macht sowie eine zweite Abbildung, die ein von Gx verschiedenes {n -j- 1)-
Gewebe G2 parallel macht. Die beiden dabei entstehenden ebenen Reali-
sationen des projektiven Zusammenhanges sind aber projektiv âquivalent.
Es existiert daher eine projektive Abbildung des Pn auf sieh, welche die
eine in die andere iiberfuhrt. Da sie die n Parallel-Hyperebenenscharen,
welche Gx und G2 gemeinsam sind, wieder in solche iiberfuhrt, ist sie not-
wendigerweise eine Affinitât. Es machen daher die beiden genannten
Abbildungen das ganze (n + 2)-Gewebe parallel.

Aus dem Beweise entnimmt man noch, daB jede Abbildung, die irgend-
eines der (n + 1)-Gewebe parallel macht, zugleich auch die noch ver-
bleibende Schar parallelisiert.
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Satz 19: Ein m-Oewebe, in wélchem jedes (n + l)-Tupél von Hyper-
fldchenscharen einzeln parallelisierbar ist, ist gesamthaft parallelisierbar.

Zum Beweise greifen wir auf die Vorbereitungen zum Satz 18 zuriick.
Darnach ergibt sich, da8 das D.V.-System jedes (n + 1)-Gewebes sâmt-
liche restlichen Gewebe-Hyperflâchenscharen geodâtisch enthâlt. Jede

Abbildung, welche irgendeines der (n + 1)-Gewebe parallel macht,
fuhrt daher auch die verbleibenden Scharen in Parallel-Hyperebenen-
scharen iiber.

Die beiden Sâtze 18 und 19 sind nur fur n > 3 richtig. In der Ebene
tritt beispielsweise an Stelle des erstern der Satz von Mayrhofer-Reide-
meister39).

(Eingegangen den 1. Februar 1950.)
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