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Uber die Randwerte meromorpher Funktionen
und hinreichende Bedingungen fiir Regularitit
von Funktionen einer komplexen Variablen

Von Kurr E. MEIER, Ziirich

EINLEITUNG

Die vorliegende Arbeit zerfdllt in zwei Teile, welche scheinbar nur
wenig Beziehung zueinander haben ; jedoch rechtfertigt sich die gemein-
same Darstellung der darin enthaltenen Resultate dadurch, dal sie aus
eng verwandten Fragestellungen hervorgehen, &dhnliche Begriffe ver-
wenden und fast mit denselben Mitteln gewonnen werden kénnen.

Der erste Teil gibt einen Beitrag zum bekannten Satz von Fatou,
welcher aussagt, dal eine im Innern des Einheitskreises | z | <1 regulédre
und beschrinkte analytische Funktion f(z) fast iiberall auf dem Rand
| 2| = 1 Winkel-Grenzwerte besitzt. Der vorliegende Satz schliefit sich
an eine von A. Pleiner [1] herrithrende Verschirfung des Fatouschen
Satzes an, welche sich auf meromorphe Funktionen bezieht.

Sodann stellen wir Bedingungen an die Randwerte meromorpher
Funktionen, welche zur Folge haben, daf3 eine analytische Fortsetzung
iber gewisse Randpunkte des Definitionsgebietes dieser Funktionen
hinaus moglich ist. Es handelt sich dabei um eine Verschirfung eines
Satzes von F. Wolf [2] und einige einfache Anwendungen der Beweis-
methode auf das Schwarzsche Spiegelungsprinzip.

Als Grundgebiete habe ich in diesen Sétzen Gebiete gewihlt, deren
Rand ein Intervall der reellen Achse enthéilt ; die meisten Begriffsbildun-
gen und Beweise lassen sich aber miihelos auf den Fall beliebiger Gebiete
iibertragen, welche von rektifizierbaren Kurven berandet werden.

Der zweite Teil enthélt sogenannte Regularitdtsbedingungen, das heil3t
hinreichende Bedingungen dafiir, daB eine im Gebiet G eindeutig defi-
nierte komplexe Funktion, im ganzen Gebiet G, oder doch wenigstens in
einem Teilgebiet desselben, reguldr analytisch ist.

Es deckt sich hier eine gewisse Analogie zu Sitzen des ersten Teils auf,
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indem viele Beweisgedanken in fast unverinderter Form iibernommen
werden konnen.

Der zweite Teil schlieBt mit einer Regularitdtsbedingung, welche
Resultate von J. Ridder [3] und S. Kametani [4] enthdlt, und aus der
sich leicht eine von P. T. Maker [5] angegebene Verschirfung des Satzes
von Morera herleiten 148t.

In allen diesen Satzen handelt es sich in erster Linie darum, mit einem
Mindestmall an Voraussetzungen auszukommen.

Als mengentheoretisches Hilfsmittel tritt im folgenden wiederholt ein
Satz von R.Baire auf?):

Wenn sich ein vollstéindiger metrischer Raum £ als Vereinigungsmenge
abzéhlbar vieler Teilmengen darstellen 1it: F = 2 E,, so enthilt
mindestens eine der abgeschlossenen Hiillen E, eine volle Kugel.

Es ist noch zu bemerken, dafl simtliche Integrale im Lebesgueschen
Sinn zu verstehen sind, und demgemifl bedeutet die Ausdrucksweise,
eine gewisse Bedingung sei in einem Gebiet ,,fast iiberall® erfiillt, dafl die
Menge der Ausnahmepunkte das Lebesguesche Mafl 0 besitzt.

I. UBER DIE RANDWERTE MEROMORPHER FUNKTIONEN

A. Zum Satz von Fatou

1. Begriffe und Bezeichnungen. Die Funktion f(z) sei meromorph in
einem Gebiet G der oberen Halbebene, dessen Rand ein Intervall
x, < & < x, der reellen Achse enthilt.

Mit s(é,«) (£€ [z, x,], 0<a<<m) bezeichnen wir den von & aus-
gehenden Strahl, dessen Punkte z durch

=&+ r.e*, r>0

charakterisiert sind. Die zu diesem Strahl gehorige Bild-Héufungsmenge
S (&, x) sei folgendermaBen definiert :

Die komplexe Zahl a sei dann und nur dann Element von S(¢,«),
falls eine auf s(£, ) gegen & konvergierende Punktfolge z,,z,,... exi-
stiert, so daB3

lim f(z,) = a .
k> oo

1) Der obige Satz ist ein Spezialfall eines allgemeineren Theorems von R. Baire. Vgl. [6],
S. 54.
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CS (&, «) sei das Komplement von S(&, «) in bezug auf die Vollebene E.
Wir bezeichnen ferner mit w(é;«,f) (0<a<f<n) den Winkel-
raum, dessen Punkte
z2=£&+ r-e'?
den Bedingungen
x<p<h, r>0

geniigen, und W (£ ; x, B) sei wieder die zugehorige Bild-Héaufungsmenge.

2. PleBner [1] hat den Fatouschen Satz folgendermafien verschérft :
Satz von Plefner. Voraussetzung : f(2) sei meromorph in G.

Behauptung : Es existiert eine Menge Z < [x,, ,] vom Mafl 0, so
daB in allen Punkten £€ [x,, ,] — Z einer der folgenden Félle zutrifft :

1) f(z2) besitzt in & einen Winkel-Grenzwert.

2) Jede Bild-Haufungsmenge W (¢;«, ) (0<x<pf<m) ist identisch
mit der Vollebene.

In diesem Abschnitt beweise ich folgenden
Satz 1. Voraussetzung: f(z) meromorph in G (= o).

Behauptung : Es existiert eine Teilmenge Z C [«,, z,] vom MaB 0,
so daB fiir jedes &€ [x,, x,] — Z einer der folgenden Fille zutrifit :

1) f(z) hat in £ einen Winkel-Grenzwert 2).

2) f(2) nimmt in jedem Winkelraum w (&, «, ) (0<x<f<n) jeden
Wert c€CS (&, x)-C8S (&, B) unendlich oft an.

Der Satz von PleBner ist in Satz 1 enthalten : Tritt nimlich im Punkt
E€[x,, x,] —Z der Fall 2 des Satzes 1 ein, so hat man W (¢, «, )
2 C8(&,x)-C8(&,B), und dazu, wie in jedem Punkt € [z, x,],
W, o, B)28E, o)+ 8(E, B, also W(E,a,p)28E, o) + SE P
+ CS(,x) - CS(&,B8). Es gilt aber immer OCS(&,«)-CS(&, ) =
C[8(&, «) + S(&, B)] und damit schlieBt man sofort W (&, x, f) = E,
d. h. im Punkt £ tritt der Fall 2 des Satzes von PleBner ein.

Der Satz 1 enthilt neben dem Satz von PleBner z.B. foigenden
Spezialfall. Voraussetzungen :

2) Nach einem Satz von Lusin und Privaloff [7] hat die Menge der Punkte & € [#,, %3],
wo f(z) einen unendlichen Winkel-Grenzwert besitzt, das Ma8 0-(f(z) Z=oc). Man kann
also statt 1 setzen: 1’) f(z) hat in & einen endlichen Winkel-Grenzwert.
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1) f(2) seiin G holomorph.

2) Zu jedem Punkt £ einer beliebigen Menge M C [z,, x,] existieren
zwei Strahlen s(§,«), s(&, f) (x<f), auf welchen f(z) beschriankt ist.

Behauptung : In fast allen Punkten £€ M hat f(2) einen (endlichen)
Winkel-Grenzwert.

3. Ein Zusatz zum Satz von PleBner.

Man kann die Aussage 2 des Satzes von Plelner folgendermaBen leicht
verschirfen : 2') Es gibt sogar vom Punkt & ausgehende Strahlen s(¢, «),
deren zugehorige Bild-Héufungsmenge S(&, «) mit der Vollebene iden-
tisch ist ; und zwar ist die Menge der Werte «, fiir welche dies der Fall ist,
eine Menge 2. Kategorie beziiglich (0, x).

(Der Beweis dieser Bemerkung ergibt sich leicht mit Hilfe des in der
Einleitung erwidhnten Baireschen Satzes und wird hier nicht durch-
gefiihrt.)

4. Beweis zu Satz 1.

a) M sei die Menge aller Punkte &€ [z, x,], zu welchen reelle
Zahlen «, f8, 0 existieren (0< x<fi<m, 6>0), sowie eine komplexe
Zahl ¢, so daB CS(§,«)-CS(&,B8) #0, c€CS(&,x)-CS(&,B) und
f(2) % ¢ in allen Punkten z & des von den Geraden :

z=&4re, r>0; z=&4reB, r>0; y=390

begrenzten Dreiecks.

In jedem Punkt £€ [x,, z,] — M ist die Aussage 2 des Satzes 1 er-
filllt : Ist ndmlich w(&,«, ) irgendein Winkelraum eines Punktes
§€(x,, x,] — M, so tritt einer der folgenden Fille ein :

1) CS(§,x)-C8S(&, B) = 0 fiir diesen Winkelraum, und die Aussage 2
von Satz 1 ist trivialerweise erfiillt.

2) O8(&,n)-CS8(£,8) #0. In diesem Fall nimmt f(z) jeden Wert
c€ECS(&,x)-CS(&, B) in w(&, «, f) beliebig nahe bei & an (nonst wire ja
§ € M). Auch hier ist also die Aussage 2 von Satz 1 erfiillt.

Um Satz 1 zu beweisen, geniigt es also zu zeigen, dafl f(z) in fast allen
Punkten &€ M einen Winkel-Grenzwert hat.

b) Wir fiihren folgende Bezeichnung ein : w, =0, w,, w,,... (W, 700
fir k £ 1) sei irgendeine Folge von Punkten, welche in der ganzen
w-Ebene iiberall dicht liegen.
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Wir denken uns ferner die Tripel (¢, v, ¥) von rationalen Zahlen
O<p<y<zm, 0<d<1) irgendwie numeriert und (p,, v,, #,) sei das
Tripel mit der Nummer v. Unter D,(£) verstehen wir nun das Dreieck,
welches von den Geraden :

z=E+re®, r>0; z2=§&+re", r>0; y=79,

begrenzt wird. Alle Dreiecke D, (&) mit festem 7 sind also kongruent.
In dhnlicher Weise bezeichnen wir mit A4(&;«, 8, 6) das Dreieck mit
den Begrenzungsgeraden

z=¢4re® r>0; z=¢6+47ref, r>0; y=294.

Mit Hilfe dieser Bezeichnungen definieren wir nun Mengen A (g, o, 1)
(0, o, T natiirliche Zahlen) :
Der Punkt £€ M sei dann und nur dann Element von A (g, 0, 7)

(wir setzen zunidchst ¢ 7 1 voraus), falls reelle Zahlen «, §, § existieren
1

0<a<pf<m, §>0) und eine komplexe Zahl ¢ mit |c — w,| <§E ,

so daB folgende Bedingungen erfiillt sind :

«) D(§) s 4(;x,8,9),

B) | f(z)— w,| 2—3—fﬁr alle z % ¢ auf dem Rand von 4(¢;«, 6,9) ,
y) f() #c fir z€4(6;4,8,0), z#E&.

Fiir den Fall ¢ = 1 lauten diese Bedingungen :

o) =,
) |f()| <o auf dem Rand von A4(¢;«, 8, 9) ,
y) [(z) #oo fir z€4, z #¢ .

Da die Mengen CS(&,«)-CS(&, B) ihrer Definition zufolge offen sind,
so sieht man leicht ein, daB3 jeder Punkt &€ M mindestens einer der
Mengen A(p,o, t) angehort (wir setzen im folgenden ¢ %00 voraus.
Der Fall ¢ =oco ldf3t sich ganz analog behandeln).

Wenn € M ist, gibt es Werte &, 8, 8, ¢, so dal S(&,4) + S(&,B8) # E,
cEC8(£,0)-C8(E, B); [(2) #c, 2€A(E;4,B8,08). Da S(&, ) + S(,p)
abgeschlossen ist und ¢ zur Komplementirmenge gehort, gibt es ein
€>0, so daB |f(z) —c|>=€ auf der Begrenzung des Dreiecks
A&;x«, B, 0). Gidbe es ndamlich auf ihr eine Folge {z,} mit lim f(z;)
= ¢, so miillten sich die Punkte 2, in £ hdufen. Das ist aber wegen

c€(CS(§,x)-CS (&, B) ausgeschlossen. Man wihle dann o so, daf3 % < €
1

und g so, dafl |wg~cl<§; .
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Es gilt daher M = 2" A4 (g, 0, 7).

c¢) Wir erteilen den Parametern g, o, v irgendwelche bestimmte Werte
r, 8, t. Essoll gezeigt werden, dafl f(z) in fast allen Punkten £€ A (r,s,t)
einen Winkel-Grenzwert besitzt. Ist 4(r, s,t) vom Mafl 0, so ist natiir-
lich nichts zu beweisen.

&, sei ein nicht-isolierter Wert der Menge A (r, s, t) und &,€ A(r,s,t),
k=1,2,... eine gegen ihn konvergierende Folge.

Wir denken uns jedem Punkt &,, £ =0,1,2,... ein bestimmtes
Dreieck A4, = A(&,; &%, Br, 0x) zugeordnet mit o =7, o =38, v =1,
¢ = Cp.

Auf dem Rand des Durchschnitts A4,-4, (k 7% 0) gilt nun

o |~

\f(z)—w,\}

und f(2) % ¢, im Innern. Wegen
1
I Co — wr‘ < 5:3"
folgt somit fiir den Rand von 4,-4,

1) — ol > o .

Die Funktion 1
f(z) — ¢,
ist nun regulir auf A4,-4,. Auf dem Rand gilt
1 3s
e <t

also auch im Innern. Aus

1

1@) — ol > o und Loy — w, | <4

folgt somit fiir z€ A4,-4,
1
Wegen D,(¢,) € 4, (k= 0,1,2,...) iiberdecken die Mengen A4,-4,,
k=1,2,3,... das Innere des Dreiecks D,(%,) vollstindig und daher
gilt : 1
\f(z)_‘wrl>§gs zEDt(Eo)’z#"Eo-
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Nunsei B(r, s, t) die Menge der nicht-isolierten Punkte von 4 (r,s,).
(Die Menge A — B ist abzihlbar.) Die abgeschlossene Hiille B 148t eine
Zerlegung B = P 4 D zu (P perfekter Kern, D abzihlbar).

Man sieht nun sofort :
1) P enthilt alle Punkte von A bis auf abzidhlbar viele.
2) In jedem Punkt £€ P gilt:

1
‘f(z)"‘wrl>§’ ZEDt(E)’z¢Ea

d)?) Das Komplement (x,,x,) — P besteht aus abzéhlbar vielen
offenen Intervallen¢,, k=1, 2,3,...

I' gei die Kurve, welche in den
Punkten £€ P mit der x-Achse
zusammenfillt, und jedes Inter- B
vall i, = (4,, C,) auf dem in der *
nebenstehenden Figur eingezeich-
neten Streckenzug 4, B, C, iber-

springt. P e
Diese Kurve ist rektifizierbar 7 4, ; .C \\
und besitzt daher in fast allen g *

Punkten &€ P eine Tangente, welche notwendig mit der x-Achse zu-
sammenfallen muB.

Man erkennt nun leicht, daBl die Vereinigungsmenge aller D,(¢),
& e P in hochstens endlich viele Gebiete &,,Q,,...,G, zerfillt, die
alle von rektifizierbaren Kurven umschlossen sind. Der Rand jedes
Gebietes G enthilt ein Stiick von I

Die Funktion F(z) = 7—(?)—1_—‘? ist in jedem Gebiet G, beschrinkt

und besitzt daher in fast allen Randpunkten von @, einen Winkel-Grenz-
wert.

Jeder Punkt £€ P ist aber Randpunkt eines der Gebiete G, und da-
her besitzt F(z) in fast jedem Punkt &€ P einen Winkel-Grenzwert in
bezug auf eines der Gebiete G,.

Besitzt I'in £ eine Tangente und f(z) einen Winkel-Grenzwert in bezug
auf @,, so auch in bezug auf G. F (z) hat also im Gebiet G in fast jedem
Punkte &€ P einen Winkel-Grenzwert und dies gilt daher auch fiir f(2).

3) Die Methode dieses Abschnitts stammt von J. Privaloff. Man vergleiche die Beweis-
darstellung in [7].
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e) f(z) besitzt also in fast allen &€ P(r,s,t) einen Winkel-Grenz-
wert, also auch in fast allen £€ A(r, s, t). (Der Beweis wurde nur voll-
stindig durchgefiihrt fiir » # 1. Er verlduft fir » =1 ganz analog.)

Da wir nur abziéhlbar viele Mengen A4 (o, o, v) haben, gilt dies auch
fir fast jedes (€X' A(p,0,7) = M.

B. Zu einem Satz von F. Wolf

5. Das Intervall z, <<ax <z, der reellen Achse sei gemeinsames
Randstiick der Gebiete G, (in der oberen Halbebene) und @, (in der
unteren Halbebene) ; ferner seien f,(z) und f,(z) meromorph in G, bzw.
G,. Mit f(z) bezeichnen wir die Funktion, welche = f,(2) in @, und
= f,(?) in G, ist.

Wir fragen nach Beziehungen, welche zwischen den Randwerten der
Funktionen f,(z) und f,(z) in den gemeinsamen Randpunkten &€[x,,x,]
bestehen miissen, damit f(z), bei geeigneter Festsetzung der Funktions-
werte in den Punkten £, mindestens in einem Punkt &€ (x,, x,) regulir
analytisch ist. Unser Ziel ist dabei, mit einem moglichst geringen MaBl an
Voraussetzungen auszukommen.

Zu dieser Frage hat F. Wolf ¢) folgendes bewiesen :

Satz von F. Wolf. Voraussetzungen :

1) f,(2) sei holomorph in @,, f,(z) holomorph in G,.

2) Fir &£e(x,, 2, (abzdhlbare Ausnahmemenge von Punkten zu-
lassig) existieren

lim f,(§ ++1y) und limf,(§ — iy)
y->+0 y>+0
und besitzen denselben endlichen Wert.
Behauptung : Es existiert eine holomorphe Funktion f(z), welche
=f1(?) inG,, = f,(2) in G, und auf einer im Intervall («,, x,) iiberall
dichten Menge von Punkten & regulir ist.

6. Um diesen Satz zu verschirfen, fithren wir folgende Begriffe und
Bezeichnungen ein: Die Menge S,(£) sei wie folgt definiert: a € S,(£)
gelte dann und nur dann, falls es eine Nullfolge ¥, ¥,,...(y,>0) gibt,

so daB lim f, (¢ + 1y,) = a ist. Ferner sei C,(£) das Komplement von
k> oo

S, (&) in bezug auf die Vollebene E. Ganz entsprechend seien die sich auf
die Funktion f,(2) beziehenden Mengen S,(¢) und C,(£) definiert.

1) Vgl. [2], S. 883.
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Mit diesen Bezeichnungen gilt folgender
Satz 2. Voraussetzungen :

1) fi(2) und f,(2) seien meromorph in G, bzw. G, (F=00).
2) Die Menge N der Punkte &, fiir welche C,(&)-C,(£) oder S,(&)-S,(£)
leer ist, sei von 1. Kategorie und vom MaB 0 beziigl. [z, , %,].

Behauptung : Es existiert eine meromorphe Funktion f(z), welche
= f,(2) in@G,, = f,(2) in G,, und auf einer im Intervall (x,, x,) iiberall
dichten Menge von Punkten & regulir ist.

7. Beweis von Satz 2. w,,w,,... sei eine Folge von Punkten
w #oo, welche zur Vollebene E iiberall dicht liegt. Die Menge M (p,0,7)
(0, o, T natiirliche Zahlen) sei wie folgt definiert :

E€[x,, z,] sei Element von M (p,0, v) dann und nur dann, falls
. 1 . 1 . 1
[HE+iy) —we| > und [f(§—iy) —wp | > fir 0<y<— .

Fir &€{z,,xz,] — N ist C (&) - Cy(&) #£0, 8;(6)83(8) #0. In
diesem Fall existieren (da C,(£)-C,(¢) offen ist), natiirliche Zahlen
0,0, T, so daf}

x 1 . 1 1
|f1(§+"’?/)”—we|>;$ 'fz(f——@y)-'le;;, 0<y<;.

Jeder Punkt &€[x,, z,] ist also in einer der Mengen M (p, o, 7) ent-

halten, d. h. : (%), ] =X M(po,0,7) + N .

N ist eine Menge erster Kategorie und die Mengen M (p, o, 7) sind
abgeschlossen. Damit folgt aus dem in der Einleitung erwéihnten
Kategoriesatz von Baire, dall mindestens eine der Mengen M (p, o, 7)
ein volles Teilintervall von [z,, z,] enthdlt. Es gibt also natiirliche
Zahlen r, s, t, sowie ein Teilintervall [zj, z;] c [, %,], so daB
M(r,s,t) o [x;, z;].

1
5O =1m—w

und ebenso F,(z) = 7
/1

[—y

ist also beschrinkt fiir 2] <o <z, 0<y < i
I ! / 1
@ —w fir oy <ax <oy, 0>y > 7
Nach dem Satz von Fatou existieren also in fast allen Punkten
£ €[], x3] die Grenzwerte :
lim Fi(§+¢y) und lim F,(& — iy)

y->+0 y->+0
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und sind wegen Voraussetzung 2 auf [x], ;] — Z gleich. (Z Menge vom
linearen Ma@3 0.)

Nun sei F(2) in G, durch F,(z), in G, durch ¥,(z) und in den Punk-
ten von [z}, «;] —Z durch den gemeinsamen Grenzwert von F,(2)
und F,(z) definiert.

Es sei ferner I(&,&,, ny, ;) = [F(2)dz, erstreckt iiber den Rand
des Rechtecks & <o <&, m<y<m (€[ %), &€l z),
""1—< 1 <0, "}“2 75>0) .

Fir 7, <n;<0, 0<n, <n, ist nun I(&,&,,7,,7) = I (&1,&2,71,7)
(Cauchyscher Integralsatz) und damit folgt aus dem Lebesgueschen
Grenzwertsatz :

I(&,,&:, m,me) = 1(6,,8,,0,0) .

Das letzte Integral verschwindet aber ; es ist also

1(51’ 52’ 771, 7]2) = ) N

Mit Hilfe des Satzes von Morera, in einer von P. T. Maker bewiesenen

Verschirfung [5], schlieBt man nun, daB F(z) im Rechteck z; < z < 3,

— % <y<+ —:— reguldr analytisch ist, sofern man auf der Menge Z

die Funktionswerte geeignet festsetzt und daraus ergibt sich sofort die
Behauptung des Satzes.

8. Die Mengen 8,(£), S,(¢§), C,(§), C,(&) sind oben definiert mit
Hilfe der Randwerte der Funktionen f,(2) und f,(z), welche man bei
radialer Anndherung an den Punkt & erhilt. Betrachtet man hingegen
Winkel-Randwerte, so 1a8t sich ein ganz entsprechender Satz beweisen.

Der Menge 8,(£) entspricht dabei die Menge W, (&), die wir folgender-
maflen definieren :

a€W,(&) gelte dann und nur dann, falls ein Winkel w(&, «, B)
(0<a<f<m) existiert und eine darin gegen & konvergierende Folge

215 29,... (2,€G,), so daB lim f,(z;) = a.
k> oo

Ferner sei K, (&) die Menge aller komplexer Zahlen a, fiir welche ein

solcher Winkel existiert, so dafl lim f,(z;,) = @ fiir keine in diesem Win-
k> o0

kel gegen & konvergierende Punktfolge z,,2,,... (2,€@,) gilt.
Ganz entsprechend seien mit Hilfe der Funktion f,(2) die Mengen
W,(¢) und K,(£) definiert.
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Satz 3. Voraussetzungen :

1) wie in Satz 2.

2) Die Menge N der Punkte &, fiir welche K, (£)- K, (&) oder W,(&)- Wy(&)
leer ist, sei von erster Kategorie und vom Mafl 0 beziiglich [x,, x,].

Behauptung : wie in Satz 2.

Der Beweis verlauft hier ganz analog wie in Satz 2 und wird deshalb
nicht durchgefiihrt.

C. Zum Schwarzschen Spiegelungsprinzip

9. Das Gebiet G sei wiederum in der oberen Halbebene gelegen und
sein Rand enthalte das Intervall x, << a <z, der reellen Achse. Wir
machen folgende

Annahme. Zu fast jedem Punkt £€[z,, x,] existiere ein Winkel
W(;x,B) (0<x<pB<m) und eine darin gegen & konvergierende Punkt-

folge 2,,2,,..., so dafl lim f(z,) reell ist (eventuell = oco).
k>

Ich gebe im folgenden Bedingungen an, aus welchen unter obiger An-
nahme die Existenz mindestens eines Randpunktes &€ [z,, x,] folgt, in
welchem f(z) reguldr ist.

Eine Bedingung dieser Art ist z. B. die folgende (f(2) muB} hier im Ge-
biet G' als regulir vorausgesetzt werden) :

Bedingung 1. Zu jedem Punkt £€([xz,,z,] — N (N Menge erster
Kategorie beziiglich [z,, x,]) existieren zwei Strahlen s(£,«) und
$(é,8) (0<x<f<m), auf welchen f(z) beschrinkt ist.

Die folgenden zwei derartigen Bedingungen gelten auch noch, wenn
f(2) in G meromorph ist.

Bedingung 2. Fir jedes &€ [xz,, x,] — N (N Menge erster Kategorie
beziiglich [x,, z,]) enthalte die zugehorige Menge C(§)°) mindestens
zwei Punkte, welche zu verschiedenen Seiten der reellen Achse liegen.

Bedingung 3. Fiir jedes &€ [x,, x,] — N (N Menge erster Kategorie
beziiglich [z, x,]) enthalte die zugehorige Menge K (£)¢) mindestens
zwei Punkte, welche zu verschiedenen Seiten der reellen Achse liegen.

8) wegen der Definition vgl. I. B. 6.
8) wegen der Definition vgl. I. B. 8
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10. Wenn man f(2) = f,(2) setzt, und die Funktion f,(z) in dem
zur reellen Achse gespiegelten Gebiet G, definiert durch f,(z) = f, (@)
(z€@,), so konnte man den Beweis fiir die Giiltigkeit der obigen drei
Bedingungen nach der im Satz 2 vorgezeichneten Methode fiihren ;
jedoch ist der hier vorliegende Fall, in welchem f(z) reelle Randwerte
besitzt, schon sehr eingehend untersucht worden, so dal man sich an
einigen Stellen auf schon vorhandene Resultate stiitzen kann.

Ich fiihre hier nur den Beweis zur Bedingung 2 durch, denn die beiden
anderen Beweise verlaufen ganz éhnlich.

Bewets zur Bedingung 2. Essei w,, w,,... eine Folge von Punkten
w #*o0o der oberen Halbebene, welche in dieser Halbebene iiberall dicht

liegen und wj, w},... eine entsprechende Folge von Punkten der untern
Halbebene.

Mit M(p,0,7) (0, 0, T natiirliche Zahlen) bezeichnen wir die Menge
der Punkte £€[x,, x,], in welchen fiir jedes 0 <y < —;— :

1€+ i) —we | > und | f(E +ig) —wfl > .

C(&) ist ihrer Definition gemidB eine offene Menge. Fiir jedes
£ €[x,, z,] — N enthilt sie nach Voraussetzung mindestens zwei Werte,
welche zu verschiedenen Seiten der reellen Achse liegen. Folglich gibt es

1
zu jedem £ € [x,, ,] — N natiirliche Zahlen g, o, 7, so daf} fir 0 <y < -

FE+in) —wel >, 1fE+iy) —wh| >

Daraus schliet man
[z, 2] =N+ X M(p,0,7) .

Aus dem Baireschen Kategoriensatz folgt wieder, dal wenigstens eine
der (abgeschlossenen) Mengen M (p,0,t) ein ganzes Teilintervall
(%, 2}] < [2,, £,] umfaBt; es sei dies M(r,s,t). Also:

M(r,s,t)D[x), x3] .
1 . .
Im Gebiet; (x{ <z <oy, 0<y< 7) sind nun w, und w, keine Héu-

fungswerte von f(z). Da w, und w, zu verschiedenen Seiten der reellen
Achse liegen, folgt damit nach einem Satz von C.Carathéodory[8], dafl
f(z) in jedem Randpunkt € (x], ;) entweder reguldr ist oder einen
Pol besitzt. Daraus ergibt sich unmittelbar die Behauptung.
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II. HINREICHENDE BEDINGUNGEN FUR ANALYTIZITAT

1. Die Funktion f(z) =u(x,y)+2-v(xr,y) (=2 -+ 1y) sei in
einem Gebiet G der xy-Ebene eindeutig definiert, und es sollen Bedin-
gungen in moglichst abgeschwichter Form angegeben werden, welche die
Existenz mindestens eines Punktes 2z e sichern, in welchem f(z)
reguldr analytisch ist.

Auch hier spielen wieder, wie im ersten Teil, gewisse Hiufungswert-
mengen eine Rolle. Wir definieren :

a € H(2) gelte dann und nur dann, falls eine gegen z konvergierende
Folge z,,z,,... existiert, so daB

=a .

— 2

k> oo

Mit C(z) bezeichnen wir das Komplement von H (2) in bezug auf die
Vollebene E .

H'(z) und H” (z) seien analog wie H (z) definiert, jedoch werden nur
solche Punktfolgen z,,z,,... zugelassen, welche auf der durch z gehen-
den Parallele zur z-Achse bzw. y-Achse gegen z konvergieren.

Mit dieser Definition gilt nun folgender
Satz 4. Voraussetzungen :

1) f(z) sei stetiginG.
2) C(2) #0 fir z€@ — N (N Menge erster Kategorie beziiglich ).
3) H'(z)-H"(z) enthalte fiir jedes z mindestens einen endlichen Wert.

Behauptung : Es existiert mindestens ein Punkt z €@, in welchem
f(z) reguldr ist. (Natiirlich folgt daraus sofort, daBl unter den angegebe-
nen Voraussetzungen die Punkte z, in welchen f(2) regulér ist, im Ge-
biet @ iiberall dicht liegen.)

2. Beweis zu Satz 4. w,, w,,... seieine Folge von Punkten w oo,
welche zur Vollebene Z dicht liegt. Die Menge M (o, 0, 7) (o, 0, T natiir-
liche Zahlen) sei folgendermaBen definiert : z €@ sei dann und nur dann
Element von M (p, o, 7), falls

&) -1 _

1 1
- We >“‘E‘, O<Iz’~ZI<—;.

Fir 2€G — N ist nach Voraussetzung C(z2) = @, also H(z) # E.
Da H(z) abgeschlossen ist, gibt es natiirliche Zahlen ¢, o, 7, so daB
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1
-

1Z') — (2

2l — 2

Folglich gilt: G = N + X M (o, o, 7).

Die Menge N ist von erster Kategorie, und infolge der Stetigkeit
von f(2) sind die Mengen M (g,o, v) abgeschlossen. Damit folgt aus
dem in der Einleitung erwihnten Kategoriesatz von R. Baire, daB
mindestens eine der Mengen M (o, o, 7) ein volles Teilgebiet von G

enthilt. Es gibt also natiirliche Zahlen r, s, ¢, sowie ein Teilgebiet
@ c @, sodaB M(r,s,t) o G*.

— We 2—;——, 0< |2 —2] <

e...l -

Wir nehmen im folgenden an, G* besitze einen Durchmesser <
Fiir die Funktion F(z) = f(z) — z w, gilt nun
F(') — F(z)

2/ — 2z

1
>——8—’

sofern z #£ 2/, z€G*, 2’ €G* .

Durch w = F(2) wird das Gebiet G* also schlicht und stetig auf ein
Gebiet I'* der w-Ebene abgebildet. Man kann daher in I'* die Um-
kehrungsfunktion z = @(w) einfiihren, welche ebenfalls stetig ist.

Fir w #w', wel”*, w €r* gilt nun

D (w') — D (w)
w — w

~X

und daher besitzt @ (w) in fast jedem Punkt von I'" ein totales
Differential im Sinn von Stoltz-Frechet [9].

Es sei nun w, = F(z,) ein Punkt, in welchem @ (w) ein totales Diffe-
rential besitzt. Nach Voraussetzung 3 existieren zwei Punktfolgen

/ /A
zk,zk, k=1,2,3,...,

welche lings der durch z gezogenen Parallele zur z-Achse bzw. y-Achse
gegen z, konvergieren, so da3

fe) — i) o fE) — i)

7 /4
2, — % 2y — 2o

denselben endlichen Grenzwert besitzen, der wegen

O TE) >l @re, sear, e

von w, verschieden ist. Die beiden Bildfolgen
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wi =F@), w,=FF); k=1,2,3,...
fallen daher unter rechtem Winkel in den Punkt w ein und es gilt

i 208 — Plwy) . P(wp) — P(w)
k> o w]: — Wy k> wZ — Wy

Daraus folgt aber, dal @ (w) im Punkt w, differenzierbar ist [4].

@ (w) ist also in fast allen Punkten w e I'* differenzierbar. Da @ (w)
ferner stetig ist und beschrinkte Differenzenquotienten besitzt, schlieft
man auf die Regularitit von @ (w) in I'*, z. B. auf Grund des Satzes von
Looman-Menchoff 7).

Daraus ergibt sich sofort die Behauptung des Satzes.

3. Mit der Bezeichnung Q(z, k) = fz + h’)b — &) fe+ Z:’;}“ f(2)
gilt ferner :

Satz 6. Voraussetzungen :
1) Im Gebiet G sei f(z) lings den Parallelen zur x- und y-Achse stetig.
2) lim@(z,h) =0 (hreell) fir 2z€G@ — N (N : Menge vom Flichen-

h>0
maf 0 und von erster Kategorie beziiglich G).

Behauptung : Es existiert mindestens ein Punkt z€(@, in welchem
f(z) reguldr ist.

4. Der Beweis stiitzt sich auf folgende zwei Hilfssétze :
Hilfssatz 1. Voraussetzungen :

1) Im Gebiet D sei F(z) lings den Parallelen zur z- und y-Achse
stetig.
2) Im Punkt z€D sei |F(z)|<M(>M).

Behauptung : Es existiert mindestens ein Teilgebiet von D, in welchem
| F' () | <M (>M).

Ich fiihre den Beweis dieses Hilfssatzes nur fiir den Fall | F(z) | <M
durch. Der Fall | F'(z) | > M 4Bt sich ganz analog behandeln.

Beweis des Hilfssatzes 1: Ist | F(2,) | <M, so existiert wegen der
Stetigkeit von F(z) nach x ein reelles hy>0, sodaB | F(z, + h) | <M
fir alle reellen A mit | h | <h,.

7) Vgl. [6]. Beachte die Bemerkung S. 200, unten.
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Es sei nun M (A) (A natiirliche Zahl) die Menge der Werte 2 mit
| b | < by, fiir welche | F(zo + h + ¢ k) | <M, sofern |k | g—}(k reell).

Die Mengen M (A) sind abgeschlossen (infolge der Stetigkeit von F (2)
nach x) und es gilt (wegen der Stetigkeit von F'(z) nach y)

[— ko, + Bol = 2 M(4) .

Es existiert daher nach Baire ein Teilintervall (h,, &,) & (— by, hy)
und eine natiirliche Zahl I, so daBl M (1) o (k,, k).
| F'(2) | <M gilt nun im ganzen Rechteck mit den Ecken

.1 .1 .1 .1
z0—|—h1+@--l—, Zo+h1-—’l/°*z—,zo+h2——1/'~l——, Zo+h2+2"‘l—‘.

Hilfssatz 2. Voraussetzungen :

1) u(z,y) und v(z,y) seien im Gebiet D integrierbar und lidngs
den Parallelen zur z- und y-Achse stetig.

2) In jedem Punkt z€D sei |Q(z,h)| <m fir jedes reelle 2 mit

1
] <.

3) lim@(z,h) = 0 (h reell) fast iiberall in D.
h>0 :
Behauptung : f(z) = u(z, y) + ¢-v(x, y) ist im Gebiet D holomorph.
Der Beweis des Hilfssatzes 2 ergibt sich leicht aus dem untenstehenden
Satz 7 (vgl. Bemerkung a).

5. Beweis zu Satz 5. Ist M (A) (A natiirliche Zahl) die Menge der
1

Punkte z €G, in welchen |Q(z,h)| <A fiir allereellen A mit 0 <|h| << -

so gilt wegen Voraussetzung 2
G=N-+XM@QA) .

N ist eine Menge von erstex Kategorie. Damit folgt aus dem Baireschen
Kategoriesatz, da mindestens eine der Mengen M (1) ein ganzes Teil-
gebiet von G enthilt. Es existieren also eine natiirliche Zahl 7 und ein
Gebiet G, G, so daB M(l)> @,. Aus Hilfssatz 1 folgt nun leicht
sogar M (l) > G,.

Der Hilfssatz 1 sichert ferner die Existenz eines Gebietes G* — @4, in
welchem f(z) beschrinkt ist, und damit sind u(x, y) und v(x, y) als
beschrinkte, nach z und y stetige Funktionen iiber G* integrierbar 8).

8) Vgl. [10], S. 644.
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Die Funktion f(z) erfiillt nun in G* simtliche Voraussetzungen von
Hilfssatz 2.
6. Eine dhnliche Aussage macht folgender Satz 6 :

Satz 6. Voraussetzungen :
1) Im Gebiet G sei f(z) lings den Parallelen zur z- und y-Achse stetig.

2) ﬁmsup'f(z+2—f(z)<+oo; lim sup

h—>0 h->0

fz+1h) — [ (2)
h

< 400

(b reell) gelte fiir alle z€G — N (N Menge erster Kategorie
beziiglich G)

3) Auf der Menge der Punkte z €@, in welchen zugleich -a—zfv— und aa ;
existieren, sei fast iiberall ——f~ % =0 .

Behauptung : Es existiert mindestens ein Punkt z€(@, in welchem
f(2) reguldr ist.

7. Beweis zu Satz 6. Es sei M(A) (4 natiirliche Zahl) die Menge
aller Punkte 2€G, in welchen |f(z+ k) —f(z)| <<A|h| und

1fe+ih) — f@) | <A-1h| (hreell) fir || <

Es gilt wieder @ = N + 2 M (4). Aus dem Baireschen Kategoriesatz
und dem Hilfssatz 1 schliet man wieder (wie im Beweis zum Satz 5),
daf} eine natiirliche Zahl I, sowie ein Gebiet G, c @ existieren, so daf}
M(l)>a,.

Mit Hilfe des Satzes von Lebesgue, nach welchem eine reelle Funktion
mit beschrinkten Differenzenquotienten fast iiberall eine Ableitung be-

sitzt, ergibt sich daher, daBl in @, die Ableitungen L/ und o fast

ox oy
iiberall existieren. Wegen Voraussetzung 3 gilt also fast iiberall in G,
df . of
—a—a; + ? - ay =9 ,

Der Hilfssatz 1 sichert nun wieder die Existenz eines Gebietes @* < @,
iiber welches u(z, y¥) und v(z, y) integrierbar sind, und damit sind in
Q* wieder alle Bedingungen von Hilfssatz 2, Satz 5, erfiillt.

8. Zum SchluB dieser Arbeit gebe ich noch eine Bedingung an, welche
die Regularitit der Funktion f(z) im ganzen Definitionsgebiet G nach
sich zieht. Ich fiihre hier diesen Satz an, obwohl seine Beweismethode
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etwas aus dem Rahmen der obigen Betrachtungen herausfillt ; denn es
lassen sich daraus leicht zwei Sidtze herleiten, auf welche wir uns in dieser
Arbeit wiederholt gestiitzt haben : Hilfssatz 2 und der Satz von Morera
in der von P.T.Maker bewiesenen verschirften Form.

Wir fithren folgende Bezeichnung wieder ein

Qe m - LEEN 1@ _ fetib )

_feth) —f@) 4 fetih)—i- [
h

Damit @(z, 2) unabhingig von z €G und % definiert ist, setzen wir fest :
fz) =0, 2 Q.

Ist Ay, h,,... eine Nullfolge von reellen Zahlen, so sagen wir, die
zugehorige Funktionenfolge @,(z) = @(z,k)) konvergiere auf dem
Rechteck R(zx, < < @, y; <y < ¥, ,im Mittel“ gegen 0, falls

lim [fQ)dzdy=0 .
B

A->o0

Wir sagen ferner, eine gewisse Bedingung sei fiir ,,fast alle Rechtecke
Re@“ erfiillt, falls die Ecken jener Rechtecke, fiir welche diese Bedin-
gung nicht erfiillt ist, auf einer festen Punktmenge vom Flichenmafl 0
liegen.

9. Mit diesen Bezeichnungen gilt nun folgender

Satz 7. Voraussetzungen :
1) u(x,y) und v(x, y) seien iiber G integrierbar.

2) Es existiere eine Nullfolge &,, k,,... von reellen Zahlen, so dafl die
zugehorige Funktionenfolge @,(z) = @(z, k)) auf fast jedem Rechteck
Bx, <z <y, y, <y <y,), welches in G liegt, im Mittel gegen 0
strebt.

Behauptung : Es existiert eine in G regulire Funktion F(z), so da3
F(z) = f(z) = u(z, y) + 2-v(x, y) in fast allen Punkten z€G.

10. Beweis zu Satz 7.

a) Der Einfachheit halber nehmen wir an, G sei die ganze Ebene. Ist
nun eine reelle Funktion A(x,y) iiber jedes endliche Intervall
Bz, <z <z, 9y, <y <y, integrierbar, so besitzt das Mittel (o> 0)
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+e +e

f fz(x+s, y + t)dtds

—e —e

te(@.9) = 45

folgende Eigenschaften ?) :
x) lim 4,(x, y) = A(x, y) in fast allen Punkten (z,y),

0->0

B) Z,(x,y) ist auf jedem endlichen Intervall

Rz, <o <2, 9 <YK Y)

absolut stetig im Tonellischen Sinn, das heiflt 4,(x, y) ist auf R stetig;
ferner im Intervall z;, << 2 < z, absolut stetig als Funktion von z fiir
fast alle y€(y;, y,) und im Intervall y, <<y <<y, absolut stetig als
Funktion von y fiir fast alle x € (z,, x,), und dazu sind die Ableitungen

dx ' Ody

iiber R integrierbar.

b) Setzen wir nun f,(z) = u,(x, y) + ¢-v,(x, y), so wird

il B~ fe 4t i) — i fo@)| =
A

. +e +e
= iy J Qllx—}—s—}—i(y—{—t)]dtds '
—e —e

Die linke Seite dieser Gleichung besitzt fiir 4 —oco in fast allen Punkten z
den Grenzwert

ofe | . 9fe
2z T oy
f ¢ und /e fast iiberall.)

(Wegen B existieren ]a 3y

Die rechte Seite hingegen strebt wegen Voraussetzung 2 fiir fast alle
z=1x-+ 1y gegen 0.

Die Funktion f,(z) erfillt also in fast allen Punkten die Cauchy-
Riemannsche Bedingung

Ge y i ey

+ - 3y

%) Vgl. [11], S. 258.
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Da ferner wu,(x,y) und wv,(x,y) absolut stetig (Tonelli) sind, folgt
nach einem Satz von P.T.Maker, dal f,(z) inG reguldr analytisch ist [5].

¢) Das Quadrat * —h <&+ h,y—h <np<y-+ h werde mit
R(x, y, k) bezeichnet. Wir betrachten ein bestimmtes solches Quadrat
Ry, = R(x,, Yo, hy) € G@ und beweisen, daBl die Funktionen f,(z) auf
diesem Quadrat gleichméBig beschrinkt sind.

Zu diesem Zweck wihlen wir ein h, >h, (h, bleibt im folgenden fest),
fiir welches jedes Quadrat R(x, y, ;) D R, ganz in G liegt.

Mit A(x, y) bezeichnen wir die Funktion |u(z,y)| 4+ | v(x, y)| und
I(z,y) sei das Integral j‘l ds, erstreckt iiber den Rand des Quadrates
R(x, y, h,). Nach « gilt fiir fast alle (x, y):

lim I, (z, y) = I (2, y) -
>0
Wir wihlen nun den Punkt (z,,y;) so, daBl 2|z, — z,|<h, — hy,
2|y, — Yol <hy — by und lim I, (z,, y,) existiert und endlich ist.

>0

Aus dem Cauchyschen Integralsatz folgt nun fiir z € R, leicht

Fe @)1 < gy d el ds -

(Integral iiber den Rand von R(z,, y,, k,) erstreckt.)
Ferner gilt
J1felds < [4,ds

und (Anderung der Integrationsreihenfolge)
Jheds =TI (2,9 .
Fiir o — 0 bleibt aber die rechte Seite beschrinkdt.

d) Die Funktionen f,(2) sind also in R, regulir und gleichmifig

beschrinkt ; ferner existiert nach « lim f, () fast {iberall in R,.
2->0

Auf Grund des bekannten Satzes von Vitali schlieBt man daraus leicht,
daf die Grenzfunktion

lim f, (z) = F () ,

e~>0

welche nach « fast iiberall = f(z) ist, in R, reguldr ist.
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11. Bemerkungen zu Satz 7.
a) Aus Satz 7 folgt leicht :
Satz 7'. Voraussetzungen :

1) u(x,y) und v(x, y) seien iiber @ integrierbar.

2) Es existiere eine reelle Nullfolge %,, %,,..., so daB fast iiberall in &
lim @(z, k)) = 0.
A>oo

3) Es existiere eine iiber G integrierbare Funktion ¢(z) > 0, so daB
1@, h) | <g() (A=1,2,3,...).

Behauptung : wie in Satz 7.

Die Giiltigkeit dieses Satzes ergibt sich sofort mit Hilfe des Lebes-
gueschen Grenzwertsatzes: Aus 2 und 3 (Satz 7’) folgt damit ndmlich
Voraussetzung 2 zu Satz 7.

Satz 7’ ist eine weitgehende Verschirfung eines von S.Kametani (4]
ganz dhnlich bewiesenen Satzes.

Der obige Satz enthilt auflerdem das Hauptresultat eines Satzes von
J.Ridder [3] und liefert ferner sofort den Hilfssatz 2 zu Satz 5.

b) Z c G sei eine Menge vom Mafl 0 und f(z) sei reguldr in allen
Punkten 2€G — Z.

Hinreichend dafiir, daBl f(z) iiber die Menge Z analytisch fortgesetzt
werden kann (d. h., daB eine in G holomorphe Funktion F(z) existiert,
welche = f(z) ist auf G — Z) ist folgende Bedingung, die sich fast un-
mittelbar aus Satz 7' ergibt :

u(x,y) und v(x, y) seien iiber G integrierbar und es existiere eine
integrierbare Funktion ¢(z) >0, so dafl |Q(z,h)| <g(2), sofern
2€Q —Z, 2+ h€G@ —Z, z+1h€Q@ —Z (hreell).

c) Mit Hilfe der Beweismethode des Satzes 7 leitet man auch leicht die
von P.T.Maker herriihrende Verschiarfung des Satzes von Morera her [5] :

Satz. Voraussetzungen :
1) u(x,y) und v(x, y) seien iiber G integrierbar.

2) Fiir fast jedes Rechteck R(x, < z < @, ¥, < ¥y < ¥,) aus G ver-
schwinde das iiber seinen Rand erstreckte j' f(z) dz.

Behauptung wie in Satz 7.
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Man kann hier den Beweis von Satz 7 in fast unverdnderter Form iiber-
nehmen : Neu zu begriinden ist nur, daf} fiir f(z) die Cauchy-Riemann-

sché Bedingung
_q_f_Q. + 2 . _9&. = 0
ox oy
fast iiberall erfiillt ist, und dies folgt sofort aus der Relation 19)

%fi— i-aa—]:;’—=—4?;2j'f(z)dz.

(Das Integral ist iiber den Rand des Quadrates R(x,y ; o) zu erstrecken.)
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10) Nach L. M. Graves [11], S. 58, gilt fast tiberall

o I v+e

e ___ —_ —

__.5__.492 f [A(x+ o0, t) —A(x—p, t)]dt
y—e

und daraus folgt leicht obige Relation.
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