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tîber die Randwerte meromorpher Funktionen
und hinreichende Bedingungen fur Regularitât

von Funktionen einer komplexen Variablen

Von Kurt E. Meieb, Zurich

EINLEITUNG

Die vorliegende Arbeit zerfâllt in zwei Teile, welche scheinbar nur
wenig Beziehung zueinander haben ; jedoch rechtfertigt sich die gemein-
same Darstellung der darin enthaltenen Resuitate dadureh, daB sie aus

eng verwandten Fragestellungen hervorgehen, âhnliche Begriffe ver-
wenden und fast mit denselben Mitteln gewonnen werden kônnen.

Der erste Teil gibt einen Beitrag zum bekannten Satz von Fatou,
welcher aussagt, da8 eine im Innern des Einheitskreises | z | < 1 regulàre
und besehrânkte analytische Funktion f(z) fast iiberall auf dem Rand
| z | 1 Winkel-Grenzwerte besitzt. Der vorliegende Satz schlieBt sich

an eine von A. PleBner [1] herruhrende Verschârfung des Fatouschen
Satzes an, welche sich auf meromorphe Funktionen bezieht.

Sodann stellen wir Bedingungen an die Randwerte meromorpher
Funktionen, welche zur Folge haben, daB eine analytische Fortsetzung
uber gewisse Randpunkte des Definitionsgebietes dieser Funktionen
hinaus môglich ist. Es handelt sich dabei um eine Verschârfung eines
Satzes von F. Wolf [2] und einige einfache Anwendungen der Beweis-
methode auf das Schwarzsche Spiegelungsprinzip.

Als Grundgebiete habe ich in diesen Sàtzen Gebiete gewàhlt, deren
Rand ein Intervall der reellen Achse enthalt ; die meisten Begrifîsbildun-
gen und Beweise lassen sich aber muhelos auf den Fall beliebiger Gebiete

iibertragen, welche von rektifizierbaren Kurven berandet werden.
Der zweite Teil enthalt sogenannte Regularitâtsbedingungen, das heiBt

hinreichende Bedingungen dafûr, daB eine im Gebiet G eindeutig defi-
nierte komplexe Funktion, im ganzen Gebiet 0, oder doch wenigstens in
einem Teilgebiet desselben, regulâr analytisch ist.

Es deckt sich hier eine gewisse Analogie zu Sâtzen des ersten Teils auf,
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indem viele Beweisgedanken in fast unverânderter Form tibernommeii
werden kônnen.

Der zweite Teil schlieBt mit einer Regularitâtsbedingung, welche
Resultate von J. Ridder [3] und S. Kametani [4] enthâlt, und aus der
sich leicht eine von P. T. Maker [5] angegebene Verschârfung des Satzes

von Morera herleiten lâBt.
In allen diesen Sâtzen handelt es sich in erster Linie darum, mit einem

MindestmaB an Voraussetzungen auszukommen.
Als mengentheoretisches Hilfsmittel tritt im folgenden wiederholt ein

Satz von R.Baire auf1) :

Wenn sich ein vollstândiger metrischer Raum E als Vereinigungsmenge
abzàhlbar vieler Teilmengen darstellen lâBt : E EEn, so enthâlt
mindestens eine der abgeschlossenen Hùllen En eine voile Kugel.

Es ist noch zu bemerken, daB sâmtliche Intégrale im Lebesgueschen
Sinn zu verstehen sind, und demgemàB bedeutet die Ausdrucksweise,
eine gewisse Bedingung sei in einem Gebiet ,,fast uberall" erfullt, dafî die
Menge der Ausnahmepunkte das Lebesguesche MaB 0 besitzt.

I. tlBER DIE RANDWERTE MEROMORPHER FUNKTIONEN

A. Zum Satz von Fatou

1. Begrifïe und Bezeichnungen. Die Funktion f(z) sei meromorph in
einem Gebiet G der oberen Halbebene, dessen Rand ein Intervall
#i ^ oc ^ x2 der reellen Achse enthâlt.

Mit s(Ç, oc) (f € [#1} x2], O<oc<7t) bezeichnen wir den von f aus-
gehenden Strahl, dessen Punkte z durch

z £ + r-etCÙ r>0

charakterisiert sind. Die zu diesem Strahl gehôrige Bild-Hâufungsmenge
8(Ç,oc) sei folgendermaBen definiert :

Die komplexe Zahl a sei dann und nur dann Elément von S (|, oc),

fails eine auf s(|, oc) gegen £ konvergierende Punktfolge zl9z29... exi-
stiert, so daB

lim / (zk) a

1) Der obige Satz ist ein Spezialfall eines allgemeineren Theorems von R. Baire. Vgl. [6],
S. 54.
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C8(f, oc) sei das Komplement von 8(ij,ot) in bezug auf die Vollebene E.
Wir bezeichnen ferner mit w(Ç;oc9p) (O<oc<p<7t) den Winkel-

raum, dessen Punkte
z £ -f r-e**

den Bedingungen
oc ^<p ^p r>0

geniigen, und ^(1 ; ac /?) sei wieder die zugehôrige Bild-Hâufungsmenge.

2. PleBner [1] hat den Fatouschen Satz folgendermaBen verschârft :

Satz von Plefiner. Voraussetzung : /(z) sei meromorph in G.

Behauptung : Es existiert eine Menge Z £ \xl9 x2] vom MaB 0, so
daB in allen Punkten f € [xl9 #2] — Z einer der folgenden Falle zutrifft :

1) f(z) besitzt in £ einen Winkel-Grenzwert.

2) Jede Bild-Hâufungsmenge W(Ç;oc,fi) (O<ot<f}<7i) ist identisch
mit der Vollebene.

In diesem Abschnitt beweise ich folgenden

Satz 1. Voraussetzung : f(z) meromorph in O (=|= oo).

Behauptung: Es existiert eine Teilmenge Zg [#i> #2] vom ^aÛ 0,
so daB fur jedes | € \xl9 x2] — Z einer der folgenden Fâlle zutrifft :

1) f(z) hat in £ einen Winkel-Grenzwert2).

2) /(z) nimmt in jedem Winkelraum w(|, oc, fi) (O<oc<(}<7i) jeden
Wert c € CS (f, oc) CS (£, /S) unendlieh oft an.

Der Satz von PleBner ist in Satz 1 enthalten : Tritt nâmlich im Punkt
£€ [xl9 x2] —Z der Fall 2 des Satzes 1 ein, so hat man W(Ç, oc9 /$)

3 C8(i-,oc)-C8(Ç, fi) und dazu, wie in jedem Punkt i^[xl9x2],
W{S ,oc,p)2 8(Ç, oc) + flf({, fi), also TF(f, * 0) i i8f(f, «) + /S(|, j8)

+ C/8f(f, «) • Ci8f(f, fi) Es gilt aber immer GS(f, «). C/S(|, /?)

C7[/8f(f, «) + S{Ç, P)] und damit schlieBt man sofort W(f, a, 0) iï,
d. h. im Punkt | tritt der Fall 2 des Satzes von PleBner ein.

Der Satz 1 enthalt neben dem Satz von PleBner z. B. folgenden
Spezialfall. Voraussetzungen :

2) Nach einem Satz von Lusin und Privaloff [7] hat die Menge der Punkte £ € [xl9 #a],
wo /(z) einen unendlichen Winkel-Grenzwert besitzt, das Maû 0»(/(z) =|=c>o). Mankann
also statt 1 setzen: 1') /(z) hat in f einen endlichen Winkel-Grenzwert.
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1) f(z) sei in G holomorph.

2) Zu jedem Punkt f einer beliebigen Menge M £ [#i, #2] existieren
zwei Strahlen s(i-,oc), s (£,(}) (<x<ji), auf welchen /(z) besehrânkt ist.

Behauptung : In fast allen Punkten | € M hat / (z) einen (endlichen)
Winkel-Grenzwert.

3. Ein Zusatz zum Satz von PleBner.

Man kann die Aussage 2 des Satzes von PleBner folgendermaBen leicht
verschârfen : 2') Es gibt sogar vom Punkt | ausgehende Strahlen s(|, oc),

deren zugehôrige Bild-Hâufungsmenge S (f, oc) mit der Vollebene iden-
tisch ist ; und zwar ist die Menge der Werte oc, fur welche dies der Fall ist,
eine Menge 2. Kategorie bezuglich (0, n).

(Der Beweis dieser Bemerkung ergibt sich leicht mit Hilfe des in der
Einleitung erwâhnten Baireschen Satzes und wird hier nicht durch-
gefûhrt.)

4. Beweis zu Satz 1.

a) M sei die Menge aller Punkte £ € [xx, x2], zu welchen réelle
Zahlen oc, /?, ô existieren (0< oc<f}<n, ô>0), sowie eine komplexe
Zahl c, so daB C8{Ç,a).C8{£, fi) ^O, ctCS(Ç,oc)-C8(Ç, j8) und
f(z) 7^ c in allen Punkten z ^ | des von den Geraden :

z i + r-et<x, r>0 ; z | + r-e*P r>0 ; t/ (5

begrenzten Dreiecks.
In jedem Punkt f € [a?l9 a;2] — -"" is^ die Aussage 2 des Satzes 1 er-

fûllt : Ist nâmlich w(f,<%,/8) irgendein Winkelraum eines Punktes
(G[xl9 x2] — M, so tritt einer der folgenden Fâlle ein :

1) C8(Ç, oc) • CS(i, p) 0 fur diesen Winkelraum, und die Aussage 2

von Satz 1 ist trivialerweise erfullt.

2) C8(£9a)-C8(Ç,p) ^0. In diesem Fall nimmt /(z) jeden Wert
c € CS(l-, oc) • CS(Ç, j3) in w(i-}oc, f}) beliebig nahe bei | an (nonst wâre ja
16 ilf Auch hier ist also die Aussage 2 von Satz 1 erfullt.

Um Satz 1 zu beweisen, genûgt es also zu zeigen, daB / (z) in fast allen
Punkten £ € M einen Winkel-Grenzwert hat.

b) Wir fiihren folgende Bezeichnung ein : wx 00, w.2i wz,... (wk 7^00
fur le ^ 1) sei irgendeine Folge von Punkten, welche in der ganzen
w-Ebene uberall dicht liegen.
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Wir denken uns ferner die Tripel (<p, y), ê) von rationalen Zahlen
(0<<p<y)<7i, 0<#<l) irgendwie numeriert und ((p%, tpt, êt) sei das

Tripel mit der Nummer r. Unter Dt verstehen wir nun das Dreieck,
welches von den Geraden :

z £ + r.ei9t9 r>0; s f + r.e<*f, r>0; y &t

begrenzt wird. Aile Dreiecke DT(!) mit festem r sind also kongruent.
In âhnlieher Weise bezeichnen wir mit A ; oc, /?, ô) das Dreieck mit

den Begrenzungsgeraden

z f + r.ete, r>0; z Ç + r-eiP, r>0; y=ô.
Mit Hilfe dieser Bezeichnungen definieren wir nun Mengen A (q a, r)
(q, a, r natûrliche Zahlen) :

Der Punkt | € M sei dann und nur dann Elément von A (g, a, r)
(wir setzen zunâchst q =£ 1 voraus), falls réelle Zahlen oc, /?, <5 existieren

(0< oc<(5<7z, ^>0) und eine komplexe Zahl c mit | c -~ wQ \ ^ —
so da8 folgende Bedingungen erfiillt sind :

a) Dt(£)GA(£;*,p,â)
P) I f(z) ~~ wq I ^ —^r aile z 7^ auf dem Rand von A(Ç ;oc, (3, ô)

y) f(z) ^c fur zeA{Ç;a,p,d), z^Ç.
Fur den Fall g l lauten dièse Bedingungen :

*') a
P') I /(«) I < o auf dem Rand von A((',<x, p, ô)

/) f(z) ^00 fur z€zl, 2 #f
Da die Mengen C8(i-,oc)'CS(i;, P) ihrer Définition zufolge offen sind,

so sieht man leicht ein, daB jeder Punkt |€ ilf mindestens einer der
Mengen A(q,a, r) angehôrt (wir setzen im folgenden c^oo voraus.
Der Fall c =00 lâBt sich ganz analog behandeln).

Wenn ÇeM ist, gibt es Werte<%, p, ô, c, so da8 8{Ç,ot) + 8{Ç, P) ^ E,
ceCS(S,oc)-CS(Ç,p); f(z)^c, z£ A(S ;*, p, (5). Da 8(£,<x) + 8{S,P)
abgeschlossen ist und c zur Komplementârmenge gehôrt, gibt es ein
€ > 0, so da8 | / (z) — c \ > € auf der Begrenzung des Dreiecks
A(Ç ;oc, p, ô). Gâbe es nâmlich auf ihr eine Folge {zk} mit lim/(zfc)

c, so mûBten sich die Punkte zk in hâufen. Das ist aber wegen
2

c€C8(i;,oc)'C8(i;, P) ausgeschlossen. Man wâhle dann a so, daB - < €

1 °
und q so, daB | wQ — c | < —
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Esgiltdaher M Z A(q, a, r).

c) Wir erteilen den Parametern q a, r irgendwelche bestimmte Werte

r, s, £. Es soll gezeigt werden, daB / (z) in fast allen Punkten | € A (r, s, £)

einen Winkel-Grenzwert besitzt. Ist -4(r, «s, f) vom MaB 0, so ist natûr-
lich nichts zu beweisen.

|0 sei ein nicht-isolierter Wert der Menge A (r, s, t) und Çk € A (r, s, ^),
fc 1,2,... eine gegen ihn konvergierende Folge.

Wir denken uns jedem Punkt Çk, ifc 0,l,2,... ein bestimmtes
Dreieck Ak A(Çk;ock, f}k, ôk) zugeordnet mit q r, cr «, r £,

Auf dem Rand des Durchschnitts A0-Ak (le ^ 0) gilt nun

und /(a;) ^ c0 im Innern. Wegen

folgt somit fur den Rand von A0-Ak

Die Funktion

ist nun regulâr auf A0-Ak, Auf dem Rand gilt

.35
H*)-*o 2 '

also auch im Innern. Aus

folgt somit fur z € zl 0 • A k

2 1

^ und | c0 - wr \ < —

| f(z) -Wr\>~.
Wegen Dt(Çk) £ Ak (k 0,1,2,...) ûberdecken die Mengen A0-Ak,
h 1, 2, 3,... das Innere des Dreiecks Dt(^0) vollstândig und daher
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Nun sei B(r, s, t) dieMenge der nicht-isolierten Punkte von A (r,s,t).
(Die Menge A — B ist abzàhlbar.) Die abgeschlossene Huile ]3 lâBt eine
Zerlegung B P + D zu (P perfekter Kern, D abzàhlbar).

Man sieht nun sofort :

1) P enthàlt aile Punkte von A bis auf abzàhlbar viele.

2) In jedem Punkt f€P gilt :

\f(z) -wr\>Ys> zeD*& > z*£ >

d)3) Das Komplement (xt, x2) — P besteht aus abzàhlbar vielen
offenen Intervallen ik, k 1, 2, 3,...

F sei die Kurve, welche in den
Punkten |€P mit der #-Achse
zusammenfallt, und jedes Inter-
vall ik (Ak, Gk) auf dem in der
nebenstehenden Figur eingezeich-
neten Streckenzug AkBkCk ûber-
springt.

Dièse Kurve ist rektifizierbar
und besitzt daher in fast allen
Punkten £ € P eine Tangente, welche notwendig mit der #-Achse zu-
sammenfallen muB.

Man erkennt nun leicht, da6 die Vereinigungsmenge aller Dt(Ç),
|cP in hôchstens endlich viele Gebiete GlyG2y.. ,,Gn zerfâllt, die
aile von rektifizierbaren Kurven umschlossen sind. Der Rand jedes
Gebietes Gk enthâlt ein Stûck von P.

Die Funktion F(z) -rr-. ist in iedem Gebiet Gh beschrânktw f{z)-wr
und besitzt daher in fast allen Randpunkten von Gk einen Winkel-Grenzwert.

Jeder Punkt | € P ist aber Randpunkt eines der Gebiete Gk, und
daher besitzt F(z) in fast jedem Punkt 16 P einen Winkel-Grenzwert in
bezug auf eines der Gebiete Gk.

Besitzt Pin £ eine Tangente und / (z) einen Winkel-Grenzwert in bezug
auf Gki so auch in bezug auf G. F(z) hat also im Gebiet G in fast jedem
Punkte f€P einen Winkel-Grenzwert und dies gilt daher auch fiir /(z).

8) Die Méthode dièses Abschnitts stammt von J. Privaloff. Man vergleiche die Beweis-

darstellung in [7].
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e) f(z) besitzt also in fast allen £€P(r,s,t) einen Winkel-Grenz-
wert, also auch in fast allen ÇÇA(r, s, t). (Der Beweis wurde nur voll-
stândig durchgefûhrt fur r ^ 1. Er verlâuft fur r 1 ganz analog.)

Da wir nur abzâhlbar viele Mengen A(q, a, r) haben, gilt dies auch
fur fast jedes £ €£ A(g,a, t) M.

B. Zu einem Satz von F.Wolï

5. Das Intervall x1 ^ x ^ x2 der reellen Aehse sei gemeinsames
Randstiick der Gebiete G1 (in der oberen Halbebene) und G2 (in der
unteren Halbebene) ; ferner seien ft(z) und /2(z) meromorph in Gx bzw.
G2. Mit / (z) bezeichnen wir die Funktion, welehe jx (z) in Ox und

f2(z) in G2 ist.
Wir fragen nach Beziehungen, welehe zwischen den Randwerten der

Funktionen f1(z) und f2(z) in den gemeinsamen Randpunkten £€[xl9x2]
bestehen mùssen, damit / (z), bei geeigneter Festsetzung der Funktions-
werte in den Punkten f, mindestens in einem Punkt £ € (xx, x2) regulâr
analytisch ist. Unser Ziel ist dabei, mit einem môglichst geringen Ma8 an
Voraussetzungen auszukommen.

Zu dieser Frage hat F. Wolf 4) folgendes bewiesen :

Satz von F. Wolf. Voraussetzungen :

1) fi(z) sei holomorph in Gx, /2(z) holomorph in G2.

2) Fiir |€(#1?a;2) (abzâhlbare Ausnahmemenge von Punkten zu-
làssig) existieren

lim /x (| + i y) und lim /2 (f — i y)

und besitzen denselben endlichen Wert.
Behauptung : Es existiert eine holomorphe Funktion f(z), welehe
/x (z) in Gx, f2 (z) in G2 und auf einer im Intervall (xx, x2) libéral]

dichten Menge von Punkten | regulàr ist.

6. Um diesen Satz zu verschàrfen, fuhren wir folgende Begriffe und
Bezeichnungen ein : Die Menge 8t{S) sei wie folgt definiert : aESt(S)
gelte dann und nur dann, falls es eine Nullfolge yl9 y2,.. -(yk>0) gibt,
so da8 lim ^(f + iyk) a ist. Ferner sei G1(£) das Komplement von

&->oo

8x(i;) in bezug auf die Vollebene E. Ganz entsprechend seien die sich auf
die Funktion /2(z) beziehenden Mengen #2(f) und O2(f) definiert.

4) Vgl. [2], S. 883.
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Mit diesen Bezeichnungen gilt folgender

Satz 2. Voraussetzungen :

1) ft(z) und f2(z) seien meromorph in O1 bzw. O2 (=|=oo).
2) Die Menge iV der Punktel, fur welche ^ (f) • £7a (f) oder S^-S^Ç)

leer ist, sei von 1. Kategorie und vom MaB 0 beziigl. [xl9 #2],

Behauptung : Es existiert eine meromorphe Funktion f(z), welche

fx(z) in Ol9 f2(z) in G2, und auf einer im Intervall (xl9 x2) iiberall
dichten Menge von Punkten f regulàr ist.

7. Beweis von Satz 2. ti^,^,... sei eine Folge von Punkten
w t^oo, welche zur Vollebene E iiberall dicht liegt. Die Menge M(q ,a, r)
(q, a, x nattirliche Zahlen) sei wie folgt definiert :

^Ç.{x1,x2\ sei Elément von M(q,a,r) dann und nur dann, falls

l/i(f + iy) -^1 >l und \h(S-iy)-*>q\>\ fûr o<i/<i

Fiir ^{x^x^-N ist (7,(1). C2(£) ^0, ^(|)S2(|) ^ 0. In
diesem Fall existieren (da C1(|)-C2(|) offen ist), naturliche Zahlen

q, o, t, so da8

Jeder Punkt f € f^, a;2] ist also in einer der Mengen M(q,g, t) ent-
halten, d. h. :

[a?^] rjlfte<y, r) + N

N ist eine Menge erster Kategorie und die Mengen M(q,g, t) sind
abgeschlossen. Damit folgt aus dem in der Einleitung erwàhnten
Kategoriesatz von Baire, daB mindestens eine der Mengen M (q a, r)
ein voiles Teilintervall von [#1?a;2] enthâlt. Es gibt also naturliche
Zahlen r, s, t, sowie ein Teilintervall [#{, x2] c [xl9 x2], so daB

M{r, s, t) z> [x[, x2],

jP\ (z) ist also beschrânkt fur #£^#<a;2, 0<y ^ -
und ebenso F2(z) fiir #{<#^#2, 0>î/>

Nach dem Satz von Fatou existieren also in fast allen Punkten

| € [x[, x2] die Grenzwerte :

lim Ft(Ç + iy) und lim F2(Ç — iy)

246



und sind wegen Voraussetzung 2 auf [x[9 x2] — Z gleich. (Z Menge vom
linearen MaB 0.)

Nun sei F (z) in G1 durch Ft(z), in O2 duxch F2{z) und in den Punk-
ten von [#{, x'2] — Z durch den gemeinsamen Grenzwert von Ft(z)
und F2(z) definiert.

Es sei ferner I(£l9 !2, Vi* Vz) $F(z)dz, erstreckt iiber den Rand
des Rechtecks ^ < x ^ |2, rj1 ^ ?/ ^ ?y2 (|x € [#{, a;^]' ^2e lxi> ^2!»

^^0
Fur rjt <^<0, 0<^ <% ist nun Jfo,fa,*h,t?a) -^(f1 »f2»

(Cauchyscher Integralsatz) und damit folgt aus dem Lebesgueschen
Grenzwertsatz :

Das letzte Intégral verschwindet aber ; es ist also

Mit Hilfe des Satzes von Morera, in einer von P. T. Maker bewiesenen

Verschârfung [5], schlieBt man nun, daB F(z) im Rechteck x[ < x ^ xf2,

^ ^ + ^ analjrtisch ist, sofern man auf der Menge Z
t t

die Funktionswerte geeignet festsetzt und daraus ergibt sich sofort die
Behauptung des Satzes.

8. Die Mengen 8^), S2(f), O^f), Ca(|) sind oben definiert mit
Hilfe der Randwerte der Funktionen fi(z) und f2(z), welche man bei
radialer Annâherung an den Punkt £ erhâlt. Betrachtet man hingegen
Winkel-Randwerte, so lâBt sich ein ganz entsprechender Satz beweisen.

Der Menge S^Ç) entspricht dabei die Menge Wx(^), die wir folgender-
maBen definieren :

gelte dann und nur dann, falls ein Winkel w(£,(x,fj)
r) existiert und eine darin gegen f konvergierende Folge

3i,2a,... {zk €(?!), so daB lim f± (zk) a.
k->- 00

Ferner sei Kx die Menge aller komplexer Zahlen a, fur welche ein
solcher Winkel existiert, so daB lim fx(zk) a fur keine in diesem Win-

kel gegen konvergierende Punktfolge zl9z29... (zk€@i
Ganz entsprechend seien mit Hilfe der Funktion f2(z) die Mengen

TF2(!) und Jfa(f) definiert.
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Satz 3. Voraussetzungen :

1) wie in Satz 2.

2) Die Menge N der Punkte fur welche Kx • K2 oder WX{S) • W2(!)
leer ist, sei von erster Kategorie und vom MaB 0 bezuglich [xl7 x2],

Behauptung : wie in Satz 2.

Der Beweis verlâuft hier ganz analog wie in Satz 2 und wird deshalb
nicht durchgefûhrt.

C. Zum Schwarzschen Spiegelungsprinzip

9. Das Gebiet G sei wiederum in der oberen Halbebene gelegen und
sein Rand enthalte das Intervall xx ^ x ^ x2 der reellen Aehse. Wir
machen folgende

Annahme. Zu fast jedem Punkt ÇG[xlix2] existiere ein Winkel
W ; oc, /?) (0 < oc < fi < ut) und eine darin gegen konvergierende Punkt-
folge z1? z2î..., so daB lim f(zk) reell ist (eventuell — oo).

Ieh gebe im folgenden Bedingungen an, aus welchen unter obiger
Annahme die Existenz mindestens eines Randpunktes € [xl9 x2] folgt, in
welchem f(z) regulâr ist.

Eine Bedingung dieser Art ist z. B. die folgende (f(z) muB hier im
Gebiet 0 als regulâr vorausgesetzt werden) :

Bedingung 1. Zu jedem Punkt !€[#1? x2] — N (N Menge erster
Kategorie bezuglich [#!, #2]) existieren zwei Strahlen s(Ç,oc) und
s j8) (0 <oc < /S < 7t), auf welchen / (z) beschrânkt ist.

Die folgenden zwei derartigen Bedingungen gelten aueh noeh, wenn
f(z) in 0 meromorph ist.

Bedingung 2. Fur jedes € [x1} x2] — N (N Menge erster Kategorie
bezuglich [xt, x2]) enthalte die zugehôrige Menge 0(!)5) mindestens
zwei Punkte, welche zu verschiedenen Seiten der reellen Achse liegen.

Bedingung 3. Fût jedes € [#l5 x2] — N (N Menge erster Kategorie
bezuglich [xl9 x2]) enthalte die zugehôrige Menge jSl(!)6) mindestens
zwei Punkte, welche zu verschiedenen Seiten der reellen Achse liegen.

5) wegen der Définition vgl. I. B. 6.

6) wegen der Définition vgl. I. B. 8.
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10. Wenn man f(z) fx(z) setzt, und die Funktion f2(z) in dem

zur reellen Achse gespiegelten Gebiet G2 definiert durch /2(z) f1(z)
(z€G2), so kônnte man den Beweis fur die Gultigkeit der obigen drei
Bedingungen nach der im Satz 2 vorgezeichneten Méthode fiihren ;

jedoch ist der hier vorliegende Fall, in welchem f(z) réelle Randwerte
besitzt, schon sehr eingehend untersucht worden, so daB man sich an
einigen Stellen auf schon vorhandene Resultate stutzen kann.

Ich fiïhre hier nur den Beweis zur Bedingung 2 durch, denn die beiden
anderen Beweise verlaufen ganz âhnlich.

Beweis zur Bedingung 2. Essei wl5w;25... eine Folge von Punkten
w ^oo der oberen Halbebene, welche in dieser Halbebene uberall dicht
liegen und w[, w2,... eine entsprechende Folge von Punkten der untern
Halbebene.

Mit M(q, a, r) (q, a, x naturliche Zahlen) bezeichnen wir die Menge

der Punkte £ € \xx, x2], in welchen fur jedes 0 < y < — :

\ftè + iy) -*>Q\ >— und |/(f+ »y) - w'a\ >—

O(|) ist ihrer Définition gemâB eine ofifene Menge. Fur jedes

£€[#!, x2] — N enthâlt sie nach Voraussetzung mindestens zwei Werte,
welche zu verschiedenen Seiten der reellen Achse liegen. Folglich gibt es

zu jedem £ € [x±, x2] — N naturliche Zahlen q a, r, so daB fur 0 < y < —

\f(£ + iy) -w6\ >~,
Daraus schlieBt man

[Xl,x2] N + ZM(q,o,t)
Aus dem Baireschen Kategoriensatz folgt wieder, daB wenigstens eine
der (abgeschlossenen) Mengen M(Q,a,r) ein ganzes Teilintervall
[x[, x'2] c [xl9 x2] umfaBt ; es sei dies M {r, s, t). Also :

Im Gebiet [x^ ^ x ^ x2, 0<y<— \ sind nun wr und w'8 keine Hâu-

fungswerte von f(z). Da wr und wf8 zu verschiedenen Seiten der reellen
Achse liegen, folgt damit nach einem Satz von C. Carathéodory[8], daB

f(z) in jedem Randpunkt £€(#£, xf2) entweder regulâr ist oder einen
Pol besitzt. Daraus ergibt sich unmittelbar die Behauptung.
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II. HINREICHENDE BEDINGUNGEN FtR ANALYTIZITlT

1. Die Funktion f{z) u(x,y)~\-i*v(x,y) (z x + iy) sei in
einem Gebiet G der xy-Woene eindeutig definiert, und es sollen Bedin-

gungen in môgliohst abgesehwâchterForm angegeben werden, welche die
Existenz mindestens eines Punktes zcG sichern, in welchem f(z)
regulâr analytiseh ist.

Auch hier spielen wieder, wie im ersten Teil, gewisse Hâufungswert-
mengen eine Rolle. Wir definieren :

a£H(z) gelte dann und nur dann, falls eine gegen z konvergierende
Folge z1, z2,... existiert, so da6

=g

Mit C(z) bezeiehnen wir das Komplement von H(z) in bezug auf die
Vollebene^.

Hf (z) und H" (z) seien analog wie H (z) definiert, jedoch werden nur
solche Punktfolgen zl9z29... zugelassen, welche auf der durch z gehen-
den Parallèle zur #-Achse bzw. y-Achse gegen z konvergieren.

Mit dieser Définition gilt nun folgender

Satz 4. Voraussetzungen :

1 / (z) sei stetig in G.
2) G (z) ^0 fur z£G — N (JVMenge erster Kategorie bezûglich G).

3) H' (z) - H" (z) enthalte fur jedes z mindestens einen endlichen Wert.

Behauptung : Es existiert mindestens ein Punkt z€G, in welchem
f(z) regulàr ist. (Natûrlich folgt daraus sofort, daB unter den angegebe-

nen Voraussetzungen die Punkte z, in welchen f(z) regulâr ist, im
Gebiet G ûberall dicht liegen.)

2. Beweis zu Satz 4. wt, w2,... sei eine Folge von Punkten w ^00,
welche zur Vollebene E dicht liegt. Die Menge M(q, a, r) (q,o, t natiir-
liche Zahlen) sei folgendermaBen definiert : z € G se* dann und nur dann
Elément von M(q,o,t), falls

±1—L L±± ___ w — ; 0<|z'-z|< —

Fur zeG — N ist nach Voraussetzung C(z) =^0, also H(z) ^E.
Da H(z) abgeschlossen ist, gibt es naturliehe Zahlen q, o, t, so daB
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z' -z Wq
a ' ' t

Folglich gilt : G N + Z M(q, <r, t).
Die Menge JV ist von erster Kategorie, und infolge der Stetigkeit

von f(z) sind die Mengen M{q,o,ï) abgeschlossen. Damit folgt aus
dem in der Einleitung erwàhnten Kategoriesatz von R. Baire, daB
mindestens eine der Mengen M{q,o,t) ein voiles Teilgebiet von G
enthâlt. Es gibt also naturliche Zahlen r, s, t, sowie ein Teilgebiet
G*c G, sodaB M(r,s,t) => G*.

Wir nehmen im folgenden an, (?* besitze einen Durchmesser ^ —.t
Fur die Funktion F{z) f(z) ¦— zwr gilt nun

F{zr) - F(z)

sofern z^zf9 z£G*, zf €(?*

Durch w F (z) wird das Gebiet 6?* also schlicht und stetig auf ein
Gebiet J1* der w-Ebene abgebildet. Man kann daher in F* die Um-
kehrungsfunktion z 0{w) einfûhi*en, welche ebenfalls stetig ist.

Fur w t£ w', we T*, w' € F* gilt nun

0(wf) —0(w)
wr — w

und daher besitzt 0{w) in fast jedem Punkt von F* ein totales
Differential im Sinn \on Stoltz-Frechet [9].

Es sei nun w0 — F (z0) ein Punkt, in welchem 0 (w) ein totales
Differential besitzt. Nach Voraussetzung 3 existieren zwei Punktfolgen

zk J zk 9 K — l, ^ o

welche lângs der durch z gezogenen Parallèle zur #-Achse bzw. ?/-Achse

gegen z0 konvergieren, so daB

und
zk — zQ zk — z0

denselben endlichen Grenzwert besitzen, der wegen

1
(z z£z' z£G*z-z' — Wr

von wr verschieden ist. Die beiden Bildfolgen
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k =1,2,3,...
fallen daher unter rechtem Winkel in den Punkt w ein und es gilt

~ 0{Wo)

Daraus folgt aber, da8 <P(w) im Punkt w0 differenzierbar ist [4].
0 (w) ist also in fast allen Punkten w e F* differenzierbar. Da 0 (w)

ferner stetig ist und beschrânkte Differenzenquotienten besitzt, schlieBt
man auf die Regularitât von 0(w) in F*, z. B. auf Grund des Satzes von
Looman-Menehoff7).

Daraus ergibt sich sofort die Behauptung des Satzes.

3. Mit der Bezeichnung Q(z, h) f(* + h)f(z) _ /(» + »)/M
fb 1 tb

gilt ferner :

Satz 5. Voraussetzungen :

1) Im Gebiet G sei f(z) langs den Parallelen zur x- und t/-Achse stetig.

2) limQ(z,h) 0 (h reell) flir zEO — N (N : Menge vom Flâchen-

mafi 0 und von erster Kategorie bezuglich G).

Behauptung : Es existiert mindestens ein Punkt z € G, in welchem

f(z) regulâr ist.

4. Der Beweis stûtzt sich auf folgende zwei Hilfssâtze :

Hilfssatz 1. Voraussetzungen :

1) Im Gebiet D sei F(z) langs den Parallelen zur x- und t/-Achse
stetig.

2) Im Punkt zeD sei \F(z)\<M(>M).
Behauptung : Es existiert mindestens ein Teilgebiet von D, in welchem

\F{z)\<M(>M).
Ich fûhre den Beweis dièses Hilfssatzes nur fur den Fall \F(z) \<M

durch. Der Fall \F(z) \>M lâBt sich ganz analog behandeln.

Beweis des Hilfssatzes 1 : Ist \F(z0) \<M, so existiert wegen der

Stetigkeit von F(z) nach x ein réelles A0>0, so dafi \F(zQ + h)\<M
flir aile reellen h mit | h

7) Vgl. [6]. Beachte die Bemerkung S. 200, unten.
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Es sei nun M(X) (A natiirliche Zahl) die Menge der Werte h mit

| h |<h0, fur welche | F(z0 + h + i Je) \ <M, sofern \k\ < 4- (Jfc reell).

Die Mengen M (A) sind abgeschlossen (infolge der Stetigkeit von F(z)
nach x) und es gilt (wegen der Stetigkeit von F (z) nach y)

Es existiert daher nach Baire ein Teilintervall (hx ,h2) £ — h0, h0)

und eine natûrliche Zahl Z, so daB M (l) z) (hx, h2).
| F (z) \<M gilt nun im ganzen Rechteck mit den Ecken

H + K + i * y » ^o + h ~ * ' ~j > zo + h ~ i ' y » ^o + fe2 + * • y •

Hilfssatz 2. Voraussetzungen :

1) u(x, y) und v(x, y) seien im Gebiet D integrierbar und lângs
den Parallelen zur x- und «/-Aehse stetig.

2) In jedem Punkt z€D sei | Q(z, h) \ < m fur jedes réelle h mit

3) lim Q(z, h) 0 (A reell) fast ûberall in D.

Behauptung : /(z) w(#, y) + i-v(x, y) ist im Gebiet D holomorph.
Der Beweis des Hilfssatzes 2 ergibt sich leicht aus dem untenstehenden

Satz 7 (vgl. Bemerkung a).

5. Beweis zu Satz 5. Ist M(X) (A natûrliche Zahl) die Menge der

Punkte z€(?, inwelchen \Q(z,h)\^X iur aile reellen h mit 0<|&|<-*-
A

so gilt wegen Voraussetzung 2

N ist eine Menge von erstej Kategorie. Damit folgt aus dem Baireschen

Kategoriesatz, daB mindestens eine der Mengen M (A) ein ganzes Teil-
gebiet von 0 enthâlt. Es existieren also eine natiirliche Zahl l und ein
Gebiet Gx(zO, so daB Td(l) 3 Ot. Aus Hilfssatz 1 folgt nun leicht
sogar M(1)zd Gx.

Der Hilfssatz 1 sichert ferner die Existenz eines Gebietes 0* c Ol9 in
welchem f(z) beschrânkt ist, und damit sind u(x, y) und v(x, y) als

beschrânkte, nach x und y stetige Funktionen tiber G* integrierbar8).

8) Vgl. [10], S. 644.
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Die Funktion f(z) erfiillt nun in G* sâmtliche Voraussetzungen von
Hilfssatz 2.

6. Eine âhnliche Aussage macht folgender Satz 6 :

Satz 6. Voraussetzungen :

1) Im Gebiet G sei f(z) lângs den Parallelen zur x- und ^-Achse stetig.

2) lim sup h < -f- oo ; lim sup
ih)-f(z)

h <+oo

{h reell) gelte fur aile zEG — N (N Menge erster Kategorie
bezûglich G)

3) Auf der Menge der Punkte z € in welchen zugleich -—- und ~~-

existieren, sei fast ûberall —- + i • -J— 0
dx dy

Behauptung : Es existiert mindestens ein Punkt z€G, in welchem

/ (z) regulâr ist.

7. Beweis zu Satz 6. Es sei M (À) (A natiirliche Zahl) die Menge
aller Punkte z€G in welchen | /(z + h) — /(z) \ ^ A | h \ und

\f{z + ih) — f(z) | < h | h | (h reell) fur | h \ < 4~
•

À

Es gilt wieder G N + £ M(X). Aus dem Bairesehen Kategoriesatz
und dem Hilfssatz 1 schlieBt man wieder (wie im Beweis zum Satz 5),
da8 eine natiirliche Zahl l, sowie ein Gebiet GxczG existieren, so daB

Mit Hilfe des Satzes von Lebesgue, nach welchem eine réelle Funktion
mit beschrânkten Differenzenquotienten fast iiberall eine Ableitung be-

sitzt, ergibt sich daher, daB in Gx die Ableitungen -~- und -~- fast
ox dy

iiberall existieren. Wegen Voraussetzung 3 gilt also fast iiberall in Gx

dx dy

Der Hilfssatz 1 sichert nun wieder die Existenz eines Gebietes G* c Gt,
ûber welches u{x,y) und v(x, y) integrierbar sind, und damit sind in
G* wieder aile Bedingungen von Hilfssatz 2, Satz 5, erfiillt.

8. Zum SchluB dieser Arbeit gebe ich noch eine Bedingung an, welche
die Regularitât der Funktion f(z) im ganzen Definitionsgebiet G nach
sich zieht. Ich fiihre hier diesen Satz an, obwohl seine Beweismethode
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etwas aus dem Rahmen der obigen Betrachtungen herausfâllt ; denn es
lassen sich daraus leicht zwei Sâtze herleiten, auf welche wir uns in dieser
Arbeit wiederholt gestxitzt haben : Hilfssatz 2 und der Satz von Morera
in der von P.T.Maker bewiesenen verschârften Form.

Wir fiihren folgende Bezeichnung wieder ein

f(z + ih)-f(z) _-*\~>">- h ih ~

/(g + h) - f(z) + j.f(z + ih) — i- f(z)
h

Damit Q (z, h) unabhângig von 2 € G und h definiert ist, setzen wir fest :

/(z) 0, zÇQ.
Ist ht, h2,... eine Nullfolge von reellen Zahlen, so sagen wir, die

zugehôrige Funktionenfolge Q\{z) Q(z, h\) konvergiere auf dem
Rechteck R(xt ^ x < x2> yx ^ y < y2) ,,im Mittel" gegen 0, falls

lim $$Q\dxdy 0
X->oo 12

Wir sagen ferner, eine gewisse Bedingung sei fur ,,fast aile Rechtecke
E 6 (?" erfullt, falls die Ecken jener Rechtecke, fur welche dièse Bedingung

nicht erfullt ist, auf einer festen Punktmenge vom FlâchenmaB 0

liegen.

9. Mit diesen Bezeichnungen gilt nun folgender

Satz 7. Voraussetzungen :

1) u(x, y) und v(x, y) seien ûber G integrierbar.

2) Es existiere eine Nullfolge ht, h2,... von reellen Zahlen, so daB die
zugehôrige Funktionenfolge Q\(z) Q(z, h^) auf fast jedem Rechteck
R(x1 ^ x < x2, yx ^ y ^ y2), welches in G liegt, im Mittel gegen 0
strebt.

Behauptung : Es existiert eine in G regulâre Funktion F (z), so daB

F(z) f(z) u(x, y) + i-v(x, y) in fast allen Punkten z €

10. Beweis zu Satz 7.

a) Der Einfachheit halber nehmen wir an, G sei die ganze Ebene. Ist
nun eine réelle Funktion A(#, y) liber jedes endliche Intervall
R(xt ^ x ^ x29 yx ^ y ^ y2) integrierbar, so besitzt das Mittel
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+ Q + «

1 /"» /•
)dtds

— Q —Q

folgende Eigenschaften9) :

oc) lim hq(x, y) X(x, y) in fast allen Punkten (x, y),

/?) XQ (x, y) ist auf jedem endliehen Intervall

R(xy ^ x ^ x2, yt ^ y ^ 2/2)

absolut stetig im Tonellischen Sinn, das heiBt Xq(x, y) ist auf R stetig ;

ferner im Intervall xx ^ x ^C x2 absolut stetig als Funktion von x fur
fast aile y^(yx, y2) und im Intervall yx < y < y2 absolut stetig als
Funktion von y fur fast aile xE (xl9 x2), und dazu sind die Ableitungen

dx ' d y
ùber R integrierbar.

b) Setzen wir nun fQ(z) uQ(x9 y) + i-vQ(x, y), so wird

^[/e(z + h) -/«(«) + *• /• (» + ih) - i • M*)]

Die linke Seite dieser Gleichung besitzt fur A -*oo in fast allen Punkten z

den Grenzwert

dx dy

(Wegen B existieren ia -^ und -^ fast tiberall.)
die dy

Die rechte Seite hingegen strebt wegen Voraussetzung 2 fur fast aile
z x -\- iy gegen 0.

Die Funktion fQ(z) erfûllt also in fast allen Punkten die Cauchy-
Riemannsche Bedingung

dx dy

9) Vgl. [il], S. 258.
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Da ferner uQ(x,y) und vQ(x,y) absolut stetig (Tonelli) sind, folgt
nach einem Satz von P.T.Maker, daB fQ(z) in G regulâr analytisch ist [5].

c) Das Quadrat x — h^Ç^x-{-h,y — h ^ r] ^.y + h werde mit
R(x, y, h) bezeichnet. Wir betrachten ein bestimmtes solches Quadrat
Ro R(x0, y0, h0) c G und beweisen, daB die Funktionen fQ(z) auf
diesem Quadrat gleichmâBig beschrânkt sind.

Zu diesem Zweck wâhlen wir ein h1>h0 (Ax bleibt im folgenden fest),
fiir welches jedes Quadrat R(x, y,hx) z> Ro ganz in G liegt.

Mit À(x, y) bezeichnen wir die Funktion \ u(x, y) \ -\- \ v(x, y) \ und

/ (x, y) sei das Intégral J kds, erstreckt iiber den Rand des Quadrates
R(x, y, hx). Nach oc gilt fiir fast aile (x, y) :

limIQ(x, y) I(x, y)

Wir wâhlen nun den Punkt (xlt yx) so, daB 2 | xx — x0 \ <hx — h0,

xn Vi) existiert und endlich ist.

Aus dem Cauchyschen Integralsatz folgt nun fiir z € Ro leicht

(Intégral uber den Rand von R(xli yl9 hx) erstreekt.)
Ferner gilt ji/i*<Kb

und (Ânderung der Integrationsreihenfolge)

Fiir q -> 0 bleibt aber die rechte Seite beschrânkt.

d) Die Funktionen fQ(z) sind also in jR0 regulàr und gleichmâBig
beschrânkt ; ferner existiert nach oc Km fQ (z) fast iiberall in Ro.

Auf Grund des bekannten Satzes von Vitali schlieBt man daraus leicht,
daB die Grenzfunktion

limfQ(z)=F{z)

welche nach <x fast iiberall f(z) ist, in Ro regulâr ist.

17 Commentarii Mathematici Helvetici *u '



11. Bemerkungen zu Satz 7.

a) Aus Satz 7 folgt leicht :

Satz 7'. Voraussetzungen:

1) u(x, y) und v(x, y) seien iiber G integrierbar.

2) Es existiere eine réelle Nullfolge hl9h2>..., so daB fast tiberall in G

x
X->oo

3) Es existiere eine ûber G integrierbare Funktion g(z) ^ 0, so daB

\Q(*,hÙ\<9(*) (A =1,2, 3,...).
Behauptung : wie in Satz 7.

Die Gûltigkeit dièses Satzes ergibt sich sofort mit Hilfe des Lebes-

gueschen Grenzwertsatzes : Aus 2 und 3 (Satz 7') folgt damit nâmlich
Voraussetzung 2 zu Satz 7.

Satz 7' ist eine weitgehende Verschàrfung eines von S.Kametani [4]
ganz àhnlich bewiesenen Satzes.

Der obige Satz enthâlt auBerdem das Hauptresultat eines Satzes von
J.Ridder [3] und liefert ferner sofort den Hilfssatz 2 zu Satz 5.

b) Z c G sei eine Menge vom MaB 0 und f(z) sei regulàr in allen
Punkten z€(? — Z.

Hinreichend dafûr, daB / (z) iiber die Menge Z analytisch fortgesetzt
werden kann (d. h., daB eine in G holomorphe Funktion F(z) existiert,
welche f(z) ist auf G — Z) ist folgende Bedingung, die sich fast un-
mittelbar aus Satz 7' ergibt :

u(x, y) und v(x, y) seien iiber G integrierbar und es existiere eine

integrierbare Funktion g(z) ^ 0, so daB \Q(z,h)\ ^ g (z), sofern

zeG—Z, z + h£G —Z, z + iheG —Z (fereell).

c) Mit Hilfe der Beweismethode des Satzes 7 leitet man auch leicht die

von P. T. Maker herrûhrende Verschàrfung des Satzes von Morera her [5] :

S&tz. Voraussetzungen :

1) u(x,y) und v(x,y) seien iiber G integrierbar.

2) Fur fast jedes Rechteck R(xx < x < x2, yx < y < y2) aus G ver-
schwinde das ûber seinen Rand erstreckte J/(z) dz.

Behauptung wie in Satz 7.
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Man kann hier den Beweis von Satz 7 in fast unverânderter Form ûber-
nehmen : Neu zu begrûnden ist nur, daB fur f(z) die Cauchy-Riemann-
sché Bedingung

dx oy

fast uberall erfullt ist, und dies folgt sofort aus der Relation10)

(Das Intégral ist ûber den Rand des Quadrates R(x, y ; q) zu erstrecken.)
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10) Nach L. M. Graves [11], S. 58, gilt fast uberall

dx éç2 J

und daraus folgt leicht obige Relation.
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