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Die 1. Variation

der MaBzahlen eines Elementarkegels
Von H. Bieri, Bern

Zahlreiche Probleme der Flidchentheorie sowie der Theorie der kon-
vexen Korper konnen als Variationsprobleme aufgefaflt werden, ins-
besondere das fundamentale Problem der konvexen Grenzkérper?). Soll
dieser Standpunkt greifbare Resultate zeitigen, so miissen in erster
Linie die analytischen Ausdriicke fiir die erste Variation aller vorkom-
menden Groflen zur Verfiigung stehen. Nach meinen Wahrnehmungen
bestehen in der Literatur diesbeziigliche Liicken, die es zu schliefen gilt.

Wir betrachten konvexe Korper,
die von jedem nicht im AuBern
gelegenen Punkte O aus in Ele-
mentarkegel aufteilbar sind?)3). g

Einen derartigen Elementarkegel
beschreiben wir durch die fiinf
MaBzahlen Volumen V, Oberfliche
F, Integral der mittlern Kriim-
mung M, Bogenlinge der Begren-
zungskurve s, rdumlicher Winkel
@ (Abb.1).

Unter F soll nur die Fliche der von ¢ aufgespannten Membran ver-
standen werden. 9 sei der Einheitsvektor in Richtung der innern Nor-
malen von W, ®* der Einheitsvektor in Richtung der innern Normalen
des durch ¢ laufenden Streifens S im Punkte . Es treten jetzt folgende
Formeln der Differentialgeometrie in Kraft :

77772

1) H. Hadwiger, Uber eine fehlende Ungleichung in der Theorie der konvexen
Korper. Elemente der Mathematik, Bd. I1, Nr. 3.

2) Vergleiche W. Scherrer, Integralsatze der Flachentheorie, Commentarii,
Vol. 19, Fasc. sekundus, S. 110.

3) Dank der implicite getroffenen starken Voraussetzungen iiber Oberflache und Kanten
des konvexen Korpers kann der Formelapparat der Differentialgeometrie im gewiinschten
Umfang angewendet werden. Eine Beeintrachtigung der Allgemeinheit findet nicht statt,
kann doch der allgemeinste konvexe Korper durch abzihlbar unendlich viele Elementar-
kegel simultan in allen drei Maf3zahlen V, F und M approximiert werden.
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L. F:ffl/‘ﬁmeludv 13
I. V=4 [fP.dF; P=—Rx (Sitafunktion)
. M=M,+ M,
a) M, = f f H.dF ; H = mittlere Kriimmung

b) M, = %f(p-ds : @ = arccos (R\N*)

Iv. 8 :fVEa2+2Fab+Gézdt

v w”fj I(sz;l’z -

Vermittelst des Ansatzes
T=x+e{pu,v)x, +q(u,v)x, +n, )R} ; || <eg (1)

erreicht man vom extremalen Elementarkegel aus, sofern nur den
varierenden Funktionen =, p und ¢ passende Beschrinkungen auf-
erlegt werden, alle zulidssigen Vergleichsgebilde. Wir setzen, wie es

iiblich ist, .
d=c¢: 2
o de £=0

und wenden diese Operation auf die Fundamentalgroen an. Als Para-
meter werden zweckmiBig Kriimmungslinienparameter gewihlt.

L. 6F=~—-effn-2H-dF——s¢Vf§(pdv»—qdu)"). (2)

I1. Die Normalvariation des Volumens eines Eikorpers findet sich bei
Blaschke, S. 248, die Normalvariation des Volumens eines Elementar-
kegels (Sektorkorper) in der unter FuBnote 2) zitierten Arbeit. Wir
miissen also weiter ausholen. Aus 1) folgt :

[z, ) =%z, , 3,] +¢ Pu,v) ;

4) Die Bezeichnungen sind iibernommen aus: W. Blaschke, Vorlesungen iiber
Differentialgeometrie, 3. Aufl,, sowie aus der unter FuBnote %) zitierten Arbeit
(zitiert wird kiinftig mit Blaschke, Scherrer).

) Vergleiche W. Scherrer, Geometrische Deutung des Gauf3schen Verschlin-
gungsintegrals, Commentarii, Vol. 5, Fasc. primus, S. 25.

¢) Blaschke, S. 241—243.
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E L E . —2L'
¢={(pu+qv+ 2 P2 g B
G, - p+G,-¢g—2N-n
+ < 50 )x[x,.,x,,]}+

+ {m,, b @ N) 2[5, R + (e + p-L) 2[R, 5,] + - V‘E‘é} .

Wegen V = — } f f ¥[%,, ¥,] dudv, unter Beriicksichtigung der
beiden Identitéiten

L.Bx, +VEG-P,=0 ; N-%xu—Vﬁ-PvEO
P=—[MN,xz] (Stitzvektor)?)

und nach Ausfithrung einiger Zwischenrechnungen erhdlt man :

V= — ff'nd nqsx dt_mﬁpl/EG (pdv — qdu) .
(3)
III. a) Blaschke gibt S. 258 die erste Normalvariation von H mit

0,H=(2H*— K)n +%-A(n) an. 4 bedeutet den zweiten Differential-
parameter von Beltrami?®). Ks folgt :

0,M, = — sff{n-K — 4 -4(n)}dF ; K = GauBsche Kriimmung.
Zwecks Berechnung der Tangentialvariation gehen wir aus von

¥ =zx+epx, (1a)
und erhalten :

B G
m+8{<pu+ 2E“ ‘P“l‘-ié—'p)m"p-x(“-xu}
E, G,
V1+28(m+~2—~E'P+§*§'P)

T BN, m_ ol G
E-E'1+2s(pu+2E,)s, G-—G(l—l—Qs 50 ps

7 —

={L+ 8:L<3pu

— Eu Gu Gu _ -
NZ{N+82N(pu+'2—E"p+“§'p) + p V. 5 2} /

) Scherrer, S. 106. 8) Blaschke, S. 172—173.
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2H‘={2H+e

Q E B L\ | -
. (1), ~» __ ,Q01), "% (2) , _ ¥ v .

ffzﬁ-l/ﬁdudv :ffZH-dF-a¢2H-VE@~pdv—
—e [ [P}l + 22 VEG], -

_ [,‘(1) . _Ciﬂ — (1), E“ + »(2) .

Eu Lu ——_—f .
G 2E 2E+“E“]VEGsd“d”’
21, 2(2) = Hauptkrimmungen.

Das Ergebnis einer analogen, von

X =1x+e9qx, (1b)
ausgehenden Rechnung ist

ffzﬁ-l/ﬁdudv=ffzﬂ.dfv+eglﬁ'zﬂ.vm.qdu _
_gffqz[(%m + %2 V—;T(';‘]v —

E G G N e
e e e, T w, Tv . v
[x 7 % 2G+x 2G+ G]VEGsdudv.

Nun verschwinden aber in den Doppelintegralen die Koeffizienten von p
und ¢ identisch, da sie mit den linken Seiten der Codazzischen Gleichun-
gen libereinstimmen!?). Somit gilt abschlieBend

SM, — —eff{n-l(—%-A(n)}dF~8¢HVFC—¥ (pdv — qdu). (4)

IV. Es hat sich herausgestellt, dal die 1. Variation von M, am be-
quemsten zu berechnen ist, wenn der Formelapparat der invarianten
Ableitungen beniitzt wird!). Da ds mit M, innig verkniipft ist, fiihren
wir denselben schon an dieser Stelle ein, gehen also aus von

=3+ e{pxy+q¢t+nR. (le)

—_3 —— 5,
%) Die Terme F ,— 2M F diirfen weggelassen werden, da die Entwicklung nach
Potenzen von & mit &2 beginnt und somit zur ersten Variation nichts beigesteuert wird,

19) Blaschke, S. 134—139. Die innige Verkniipfung des Variationsproblems (f H dF =
Extremum mit den Codazzischen Gleichungen ist bemerkenswert.

1) Blaschke, S. 123—139.
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Es gilt dann :
=%+ e{(p + ¢ # —n-x) 5 + (¢ — p-5) 1+ (0 + p-2V) N}
To=%+e{(qa + P — n-2®) x5+ (py — q- %) % + (g + g - %) N}
#W, %" = geoditische Kriimmungen der Parameterlinien,

und mit diesen Daten gewinnt man die Formel

ds
0s=¢ | (py+ q-#¥ —m.W) ——L___ .ds
f l ’ Vs + ds: '
* ds
+ el (ge+p ) —n.n®) 2 - ds (5)
J : g Vis + d2
ds, - ds,

+ efme @ — g% — P-xP)

¢

Vds® + ds

111. b) Die Berechnung der 1. Variation von M, macht am meisten
Miihe. In der Tat muf hier nicht nur die Membran W, sondern auch der
Streifen S variiert werden, und zwar so, dafl er der Kurve ¢ bestindig
aufliegt (Abb.1). Infolgedessen setzen wir an :

Membran: % =3x +¢e{px +qx, + nN}
Streifen: " =x" +e{p*x +q¢" 1 + 0N}

Die erwihnten Kontaktbedingungen lauten :

—

=23 =%; P+ RN =px, +qx, + N 2.

Die varierenden Funktionen des Streifens kénnen nun miihelos berechnet
werden. Man erhilt :

P=p%%5 +q¢huy +2RNx

" =pu% +ent +n1N

w=p N +q¢uR + RN
Es folgt weiter :

[ %] =N+ e{N(py + @2 + Q'”s,“) =+ P'”f,v) —n-2H)}
— e{xy(my + q-%?) + %, (ny 4 p- %)}

[, %) =1+ 2¢{p, + ¢o + 9’"‘(,,“) + P"‘f,v) —n-2H}

12) Dies gilt natiirlich nur lings ¢. Zwecks Entlastung des Druckes sei auf einen dies-
beziiglichen Index verzichtet.
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N =N —c{xy(n, + q-2) + x,(n, + p-x1)}
NP =NRN* —e-D(u,v);
D = Ny (ng + ¢ %) + 1, N (n, + ¢- %)
+ Nz (ny + p*" D) + % N (g + prx?)

Nun ist nach Definition M, = } | arccos (MN*) ds, mithin
OM, =} [arccos (MN*) 6ds + } [ 6 arccos (MRN*) ds

oder soweit als tunlich ausgerechnet :

My = o (i + o+ V) ;
Jy=[g-dds

1 * %k * * *
J2:“-Jsin {Reg(ng + ¢ -6 P)+ 1,0 (ng + ¢ - x?) } ds

Je':_fsm 1 (ng +p" - *(1))+3€;m*(nl +p- %)} ds

V. Der rdumliche Winkel w nimmt eine Sonderstellung ein, indem
er gegeniiber Ahnlichkeitstransformationen invariant bleibt. In der Tat
148t sich miihelos zeigen, daB mit ¥ = x + & {m(u, v) x} die 1. Variation
verschwindet. Mit dem Ansatz gemidfB (1) berechnet man nach dem
Muster von II:

———~36ff 2)5/ dF+3sff( ) (p-xx, +q-xx,)dF

Px PVE@G
~e¢n-w<-dt—s¢7§ﬁ~(pdv—qdu)- (10)

s —

Nachtriglich hat sich herausgestellt, dal auch Variationen von der
Form ¥ = x + ¢{m (u, v) x} hedeutungsvoll sind.

(Eingegangen den 30. Oktober 1949.)
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