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On a Generalization of Tauber’s Theorem
By C.T.Rajacorar, Tambaram, India

§ 1. Tauber’s classical converse of Abel’s theorem [7]!) is essentially
a result concerning the Laplace transform ; and it has been generalized
[4, p. 9] for any transform @ in which the kernel ¢(u) satisfies suitable
conditions such as the following :

(C). For u> 0, @(u) is a positive, continuous and monotonic de-
creasing function,

o0

p0) =1, f <p;u) du is convergent ; (1)
for w > 0, ¢@(u) has a continuous derivative — y(u) so that
p) = [p@de. ) @)

For the ®-transform the generalization of Tauber’s theorem runs as
follows.

Theorem A. Suppose that A(u) s a function of bounded variation in
every finite interval of w > 0 and A(0) = 0 3). Suppose also that

f put)yd{A(u)} s convergent for t>0 ,
0

@(t)EI:p(ut)d{A(u)}—>A as t— +0 . (3)

1) Numbers within square brackets refer to the literature cited at the end.

%) From the monotony of ¢ and the convergence of the integral in (1) it follows that
pu)—>0 as u—> oo,

o0 oo
IW(u) du exists, ¢@(u)= flp(w)dx + a constant
0 %

where the constant is 0 as we can see by letting u— oc.

It is usually assumed that, in addition to (1), ( A—gi) du exists. This is ensured
by our conditions since b

1 —

lim L2 i g () =1lim () .

%w->0 u u->0 u->0 *
3) A(0) = 0 is part of the usual assumption that A4 (u) is ‘normalized’.
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—:?fxd{A(x)}zo(l) as w—> oo . (4)

Then
Aw)—>4 as u—> oo .

It is the main object of this note to extend Theorem A to cases where
(3) is not satisfied and (4) is given with O instead of o, in much the
same way as Hadwiger (2], Agnew [1] and Wintner [9] have extended
Tauber’s theorem.

§ 2. Tauber himself gave his theorem in two different formy of which
the simpler has been extended by Hadwiger and Agnew, the other has
been extended in like manner by Wintner. The former extension, in its
integral form, can be further extended to any transform @ as in

Theorem 1. Suppose that s(u) is integrable and

S (u) ———.f‘s(u) du , (5)
lim us(u)= — K/p, ILim usu)=K|/q,
> u->o0 . (6)

K>O, p>0, q>0, p_l—l—-q—]‘:l

Suppose that @ (u) satisfies the conditions (C) of § 1 and

oo

Ft) = fcp(ut) 8 (u) du 1is convergent for t>0. (7)
Then ’
lim S(E%Efl) — F(t)1 > ——f{—w(p) )
e - ®)
= | s( 2@\ _pol< E
tEToLS< ; ) F(t)_ < 7 75(q)
where
@1 (x1) o
To () = f ~1-:g—(ﬁ)-—du+(x—1) f %ﬂdu. ) (9)
0 9-1(z1)

4) The existence of the inverse function ¢-!(z~1) is ensured for the values of z in
question by’ supposing that @(z) is monotonic decreasing in the strict sense for at least

0<az<l.
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In the particular case p = q = 2 of (5), (8) reduces to

S(.‘PL@) — P

; < 10(2) im |us(u)| . (10)

U > ®©

lim
t>+0

Proof. For any 6>0, we have the identity
o/t o0

S(—?) — F(t) =j‘us(u) Rl ACUR du~fus(u) ﬂgi)—— du

U
8/t

_f__ (."i) 1—o() .. fﬁs(f‘_)wdu
u t ¢ U
3
whence, letting ¢t— + 0 and appealing to Fatou’s theorem, we obtain

— T, p) < m [S(i}) ~F0| <769 |

tTIo
T, 0) = ——f du-{—K( ;)fi’if:‘—)du -

(8) can be deduced from (11) by observing that, in the latter, it is most
advantageous to have the extreme left-hand member maximum and the
extreme right-hand member minimumn, considering these members as
functions of 4. Now it is easily verified that Min 7'(d, q) corresponds to

£ _x(o- ) oo,

5 le. d=97 ),

and similarly Max — 7'(d, p) corresponds to & = ¢~1(p~1). Therefore
using these values of § in (11), we get (8) as the best form of (11) and
thence (10) as a particular case.

The case ¢ (u) = e¢~* of Theorem 1. In this case 7,(x) defined by (9)
reduces to

log oo
] — e U L
'c,-(x):f— u du 4+ (x — 1) l (I<x< o0)
(; log «
log :vd oo o0
» —u e—U
:lim[ _:u__fe du]—{—xf du
€>0 U u u
€ € log z

- (9)
—_— lim(loge -}-j —1 e‘“du) + loglog x + « f —1e~% gy,

€->0
log
=y + log logxz + xfu‘le‘“du
log = 221




where y is Euler’s constant. Consequently, when ¢(u) = e~%, (10) takes
the form

[ -]

8(1052 ) ——F(t)t < [y+ loglog 2 4+ 2fu—1 e—“du] Lim |us (u)]

U > o

log 2 (10")

lim
t->+0

which is essentially the result of Agnew [1, § 3] and Hadwiger [2] already
referred to?).

We can argue with (10) as Agnew has argued with (10’). Suppose that
¢ is a limit point of S(¢~1(2-Y)/t) [or of F(t)] as t— + 0. Then there
is a sequence ?,,1,,... such that f,— +0 and S(p~1(27Y)/t,) — &
[or F(t,) - &]. From this and (10) we deduce that F(t,) [or
S(p~2(2-Y)/t,)] is bounded and therefore there is a subsequence
Ty, T,,... such that F(Ty) [or S(p~1(272)/Ty)] has limit & when
t— + 0 over the subsequence, &” satisfying the condition

|8 — & | < 1,(2) lim | ws(u)]| .

We thus get

Corollary 1.1. Let ¢(u) satisfy the conditions (C) of § 1 and be
strictly monotonic for at least 0 <u<<1. Let S(u) be defined as in (5) and
F(t) asin (7). Let L denote the set of limit points of S(u) as u —>oco and
L, the set of limit points of F(t) as t— + 0. Then, to each &' e L cor-
responds a &" e L, and conversely such that the inequality

| & — & | < vhim | ws(u)|
uU->» oo

holds for © = t,(2), provided Ogﬁr_n_lus(u)|<oo.

U ->» o

In particular L = L, when lim u s(u) = 0.

U0

The proof of (8) establishes at the same time

Corollary 1.2. In Theorem 1 we have, in addition. to (8), the conclusion :

lim PO~ vo(p) < B Sw) < T FO) + - 70(0)

t>+0 % —> 00 t->-40 q

§) Hadwiger’s paper is not accessible to me and all my information about it is derived
from Mathematical Reviews.
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The argument leading up to (11) shows that, in the limiting case in
which p— oco(g— 1),

lim F(t)-Kf P0) g < Tom Sw) < im F) + K [ 2=2 gy
t>+o0 Prprarss t>+0 . u

whence we obtain, letting J — co in the extreme left-hand member and
6 — 0 in the extreme right-hand member,

lim F(t) < lim S(u) < Lim F() .

t>+0 % > 00 t->4+0

This, in conjunction with the Abelian result

lim S(u) < Iim F(t) < lim S (#) 9

%> oo t—> 40 U > 00

yields, in our limiting case,

lim S(u) = lim F(t) , lim S(u) = lim F() .

* > o0 t->+0 U > ®© t> +0

We have therefore proved

Corollary 1.3. If @(u) satisfies the conditions (C) of § 1 and if S(u),
F(t) are as in (5), (7) respectively, then

0< E us (u) < oo
implies o
osc S(u) =o0sc F(t) .

u> N0 t>+0

This is a result of Minakshisundaram [5, Theorem 3].

Note. All the results proved thus far hold for the undermentioned
kernels besides Laplace’s kernel ¢(u) = e~%.

puw)=(1—u), £k >1, 0<u<l; @(u)=0, u>1 [Riesz kernel].
pu)y=01+u)y*, k>0, u>0 [Stieltjes kernel].
pu) =u/(e* — 1), u>0 [Lambert kernel].

) This can be proved on the supposition that @(u) is positive, differentiable with
continuous derivative, monotonic decreasing in (0, o<),

@(0)=1, @ (c0) =0 .
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In particular, Corollary 1.1 establishes the existence of an absolute
constant 7,(2) associated with each of the @-transforms involving these
kernels.

§ 3. The next theorem generalizes Wintner’s result mentioned in the
beginning of § 2, in the same way as Theorem 1 generalizes the corres-
ponding result Hadwiger and Agnew.

Theorem 2. Suppose that A (u) is a function of bounded variation in
every finite interval of w >0 and A(0) =0,

1 K —1¢p K
t%—@;—!wd{A(x)}:——z—)-, hm—i—&—afxd{A(x)}z—g—!—, a2

U > o

K>0, p>0, ¢>0, pl4+gi=1

Suppose further that ¢ (u) satisfies the conditions (C) of § 1 and is such that

o]

o(t) E!(p(u t)d{A (u)} exists for t>0 . (13)
Then
lim A(-"i'—liﬂll>—«d>(t) = —£[T¢(p)+p] ;
t—>—{-0L - p (]4)
— (4 (e 0]l K
i |47 ) - e0]| < Jle@ +a,

where t4(x) s defined by (9).
In the proof of this theorem we require, in addition to Theorem 1,
Lemma 1. If
K

limb(u)-—z—!—{—, lim b(u) = — ,

ot Y4 "> o0 q

K>0, p>0, ¢>0, pt+gqgl=1,

then, for any 6>0, -
_K< Tm {b(-%) _ tf'cp(ut) b () du] <K

t>+0 0
where y is defined by (2).

The proof of this lemma is obvious and left to the reader.
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Proof of Theorem 2. Comparing (12) with (6), we find that we can
choose, in Theorem 1,

5 (w) = —J—zfxd{A(x)} (15)

_ “A(“)Q;; A4 ) Al(u):-:-fA(x)dx.

With this choice of s(#) in Theorem 1, we have

u

S () :f{ A(x) A, () }dm

x x?
(16)
_ [Al (x)]u _ A4, (w) )
xr 0 u
after an integration by parts. And
. A4,())| _
F) ==[ p(ut)d [T} =d,(t), say . (17)

When we substitute for S(u), F(t) from (16), (17) in the conclusion (8)
of Theorem 1, we get

tim [428) 0| > — Ky, w, = D |

ot P t . (18)
— T ] -1{n—1

lim Al (uq) . @1 (t) < £TQ (q) , uq — ¢ (q ) I

t>+0l U ) q t

Now @(t) defined by (13) and @,(t) defined by (17) are connected by
the relation

=<}

D(t) — D, () :fgo(ut)d{fl(u) _ A }

— [(p(ut)lA () — _‘TIJ«(_“).”"::+ tfzp(ut){A(u) _ %(—Q—Q}du :

0

) We suppose, as we may without loss of generality, that 4 (z) = O(x) as z— + 0
and therefore A,(x) = O(z?).
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Since, for every t>0, @(ut) >0 as u—> oo and also A4 (u) — A,(u)/u
= 0(1) as w —>oco in consequence of (12), the last step gives

@(t)——@At):tfzp(ut)}fl(u)——%ﬁlgdu . (19)

(19) and (12) show that we can take b(u) = 4 (u) — A,(v)/v in Lemma 1
and reach the conclusion

lim {Aw ~Al) g da(t)} >-K, 4=,

t-> 40 »

fim {A(uq)—é-‘—-@f"‘gl—w) +q>1<t>]< K, u,=20

t>+0 q 7

(20)

Combining the first half of (20) with that of (18) and the second helf
of (20) with that of (18), we establish (14) and so complete the proof.

Remark. It is obvious that Theorem 2 has a corollary analogous to
Corollary 1.1, which extends Theorem A in precisely the same way as
the case ¢@(u) = e* of Corollary 1.1 (due to Hadwiger and Agnew)
extends Tauber’s simpler theorem in its integral form.

§4. The theorem in this section is a ‘converse’ theorem on the Laplace
and Riesz transforms, very similar to the ’converse’ theorem in §3 on
the @-transform. More precisely, the former theorem assumes a Taube-
rian condition wider than (12) and relates the behaviour of the rth Riesz
transform of A(u), r > 0, to the behaviour of the Laplace transform
of A(u), A(u) being a function of bounded variation in every finite
interval of u > 0. The Laplace transform of A4 (u) is of course

(e <]

J(t) :fe:utd{A(u)} , >0 ; (21)

0

while the rth Riesz transform of 4 (u) is defined by
. A@=r [w—9rd@ds, r>0,
0

ogo(u) =A,(uw) =4 (u) .

A, (w)

a.(u) = o

(22)

The theorem to be proved depends on Theorem 1 and Lemma 1 as
well as on the two lemmas which follow.
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Lemma 2. A,(u) defined by (22) ts integrable for r>0 and

AT-{—I — 7‘“:!:“1“ fA (u) du .

This result is well-known [3].

Lemma 3. Let o,(u), k> 1, be defined by (22) and J(t) by (21).
Then

Ju(t) =t f e "o (u)du is convergent (absolutely) for £>0 , (23)
0

lim J() < Tm Jo(0) < Tim Jo) . (24)

t>+0
t> 10 t>+0 >+

Proof. Since we may suppose that A4 (0) = 08), we can write J(f) in
the form

o0 0

» tk+1 ?

— —ut — —ut

J(t)__tje A(u)du—r(k+l)Je Ay(wyduw , k>1,
0 0

either integral converging (absolutely) for ¢>0. From this (23) follows
at once.

To prove (24) we note that, when ¢>0 ,

r'k 4+1) stcg?l — tye-1dx ::f(x — f)F-1 dxlfe—"“’ A (u) du
t

0

[~ o]

JA (u) dufe uE (g — )1 dg (25)

= (k) f ’“Sﬂu) du

the interchange of the order of integration in (25) being justified by
Fubini’s theorem. From (25)

8) The supposition just means, in case A(0)3Z 0, we consider 4 (u) — A(0) instead
of A(u) and consequently A, (u)— A(0) uk, 0, (u) — A(0) instead of A, (u), o (w)
respectively. It is, however, usual to assume that A4 (u) is normalized and so 4(0) = 0.
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th «©
J
I () = ktf_x% (x — )k-1dax + Ictf (t< 1) (26)
: o
211 +12 ’

where

I, < bound J(x) (1 — %)k , I, << bound J(z)[1— (1 —t%)*]. (27)

t<y<th tr<z <o

We may first suppose that J(¢) is bounded as t— 4+ 0?); and use (27)
in (26) letting ¢— + 0. We then obtain

lim J, () < lim J() .
t>+0 t>+0

and complete the proof of (24) in the case J(t) = O(1), t— + 0, by a
repetition of the above argument involving bound J(z).

The case lim J(t) =—oo, lim J () =oo, is trivial. The case lim J (f)
= — oo, lim J(t) = finite, requires merely the proof of lim J,(t) <
lim J (¢) which is supplied above ; and the case lim J (¢) = finite, lim J(t)
=00, is dealt with similarly. In the case lim J () = Iim J(t) = —oo,
our argument shows that Iim J,(f) =—oo, i.e. lim J,(f) = —oo which
is the conclusion sought. The conclusion in the remaining case lim J(t)
lim J (!) =co follows from a similar argument.

We can now prove

Theorem 3. Let A(u) be a function of bounded variation in every finite
interval of w >0 and let A,(u) defined by (22) satisfy

lim w1 B, (u) = — K/p , lim w* 1B, (u)=K|g .
B.(w) =+ 1){ud,(u) — 43, (w)} . k=0 (28)

K>0, p>0, ¢>0, pl4qgl=1.

Then J,(t) defined by (23) is convergent for t>0 even if 0<k<1 and
related as below to o,(u) defined by (22):

: log p\ |~ _ K P |
__lér_}xﬁa( 52— no) > — - luw + 2, n
— log g . | _IS q )

%) This means, by virtue of the known fact J(o0) = A(+ 0), |J(x)|<<K for
0<z<oo.
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where v,(x) 18 defined by (9'). Further
i _ Ky 1 ‘ < Bim J K| ]
lim J(t) 7,(p) + hm o (w) < lim (t)+ T (q) + .
— p ! k+ 1) k + k+ 1)
t>+0 -»> 00 t>+490
(30)
Proof. From Lemma 3 we know that when either k¥ =0 or £ >1
J(t) defined by (23) is convergent for £>0. When 0<k <1, the same
conclusion follows from the identity

[>]

Je®) = Jewel®) + o +1 f e~ u~k-1 B, (u) du

in which the two integrals on the right are (absolutely) convergent by
virtue of (23) and (28).
To prove (29) we note that, on account of (28), (6) is satisfied with

8(u) = u 2B, (u) .

This choice of s(u), along with ¢(u) = e*, defines the S(u) and
F(t) of Theorem 1 thus.

S(u) = J {(k + 1) A, (@) &1 — (k + 1) Ay, (x) 2} da
e [Ak+1 (x) x‘k.‘l]g = 0y, (u) 19)

after an integration by parts in which we use Lemma 2 ;

-

F(t) = fe-"'u‘k*2Bk(u) du = tbf e~ %o, (u)du = J () .
L

After this, we can complete the proof of (29), arguing exactly as in the
proof of Theorem 2, but with o, (%), o.(%), Jr.(t), J:@), 7;(x)
instead of A4,(uw)/u, A(u), D,(t), D), 7,(x) respectively.

To prove (30) we substitute, in the conclusion of Corollary 1.2, the
expressions for S(u), F(t) in the preceding paragraph. The result is

. K e K
El_lf_ Sierr () — ‘];Ta'(p) < 11_}_11_ Oy (U) < lim Jier1(8) + "‘T (@) -

t>+0 u-> oo t>+0

10) As in footnote 7) we may suppose that A (x)=0(x) as *—> -+ 0 and thus 4 ,(x)
= 0 (aT+1),
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This, in conjunction with (28) in the form

K ETI K
2o Im o) — o 0} = gy

lim {oy (u) — 044, () } = —

and (24) in the form

h._m_J(t)giI—I_{l_Jkﬂ(t)ng(t)’ k=0,

t>+0 t>+0 t>+0
leads us to (30).

The case K = 0 of Theorem 3 deserves separate mention as
Corollary 3.1. If, in Theorem 3, (28) takes the particular form

lim u=*-1B,(u) = 0 , k>0,

U > 00
the conclusion (29) becomes the assertion that the limit points of o,(u) as
u —oo are tdentical with those of J,(t) as t— + 0 and (30) reduces to

osc o,(u) = osc J(I) .
U > 0 t>+0

Another noteworthy case of Theorem 3 is

Corollary 3.2. In Theorem 3 we can write the hypothesis (28) briefly in
the form
Lim | u=*1B,(u) | <co , k>0,

U -» 00

and, in addition thereto, supposing that
lim J(t) =4 oo,

t>+0

deduce from (30) the conclusion

lim o, (%) = 4+ oo .
U > oo

The above corollaries are in the same class as a theorem I have
proved elsewhere [6] to the effect that ¢f (vn the notation of Theorem 3)
lim u~*-1B,(u)>—oo, then J() > A as t > + 0 involves o, ,(u) > 4
as u—> oo.

Theorem 2 shows that, in the case £ = 0 of Corollary 3.2, J(t) de-
fined as in (21) can be replaced by @(t) defined as in (13). Results of this
kind for the @-transform can be reformulated expressly for series. For
instance, the particular result just referred to can be reformulated as
under.
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Let

D)= X a,p(A,t), t>0, O<h<d< -+, A, >oo,
n=1

where @ (u) s the kernel of either Laplace or Stieltjes or Lambert.
Let A(u) be the A-step funclion :

Auw)=a,4+a,+---+a, for L, <u<i, ., Au)=0 for 0<u<i
Then the hypothesis

either lim |a, A, +aydy+---+a, 4, |[A,<oo ,

n-> oo

or (more particularly) Tim |a, 4, |/(A, — A,_;) <oo ,

n->oo

and lim @(t) = 400 ,
t>+0
together lead to the conclusion

lim 4 (u) = 400 .
The last result reduces to a theorem of Vijayaraghavan [8, Theorem 1]
when ¢@(u) =%, 1, =n.
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