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Zerlegungsgleichheit
und additive Polyederfunktionale

Von H. Hadwiger, Bern

In der vorliegenden Arbeit werden einige Resultate einlâfilicher er-
lâutert und bewiesen, welche bereits bei friiheren Gelegenheiten mitge-
teilt worden sind1). Es handelt sich vorerst um einen Zerlegungssatz,
welcher aussagt, da6 ein beliebiges Polyeder P des dreidimensionalen
euklidischen Raumes in eindeutiger Weise im Sinne der Zerlegungs- bzw.

Ergânzungsgleichheit au s Basispolyedern Ar aufgebaut werden kann. —

Die Polyeder At der Zerlegungsbasis ermôgliehen weiter die Konstruk-
tion einerKlasse additiver Funktionale %x, die ihrerseits ein System von
Bedingungen veranlassen, welche fur die Zerlegungsgleichheit zweier
Polyeder notwendig und hinreichend sind. Damit wird fur das Problem
der Zerlegungsgleichheit, das u. a. durch eine Fragestellung von
D. Hilhert2) veranlaBt und durch eine wichtige Feststellung von
M.Dehn3) vertieft worden ist, eine Interprétation einer Lôsung gegeben,
welche zwar nur rein formaler Natur ist.

Es soll hier eingerâumt werden, dafi der Existenznachweis der genann-
ten Zerlegungsbasis der bekannten Konstruktion von G. Hamel*) nach-
gebildet ist, so daG also die Gûltigkeit des Wohlordnungssatzes nach
E. Zermelo eine wesentliche Voraussetzung darstellt.

Die formate Entwicklung in dieser Arbeit wird dadurch ermôglicht,
dafi durch Einfûhrung eines geeigneten neuen Âquivalenzbegriffes (âqui-
valent oder zerlegungsgleich mod. E ; E Einheitswurfel) die Voraus-
setzungen dafiir geschaffen werden, da6 sich eine lineare Polyederalgebra
aufbauen Iâ6t. Wegweisend war hierbei eine merkwûrdige Ausnahme-
stellung des Wurfels in einigen sich auf die Zerlegungsgleichheit beziehen-

x) Eine Mitteilung erfolgte an der Jahresversammlung der Schweizerischen Mathema-
tischen Geselkchaft am 5. September 1948 in St. Gallen; ein ausfûhrlicheres Selbstreferat
erschien unter dem gleichen Titel im Archiv der Mathematik 1, 468—472, 1949.

2) D. Hilbert, Math. Problème, Gôtt. Nachr. 1900, 266.
3) M.Dehn, Math. Ann. 55, 465—478, 1901.
4) G. Hamel, Math. Ann. 60, 459—462, 1905.
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den Aussagen ; vor allem sind es die von J. P. Sydler5) aufgestellten
Sâtze, welche sich interpretieren lassen als die Distributivgesetze der
linearen Polyederalgebra, welche auf der neuen Àquivalenz beruht.

1. Aquivalenz (Zerlegungsgleichheit) und bekannte Tatsachen

Wir betrachten in der vorliegenden Arbeit beschrânkte, abgesehlossene
und eigentliche 6) Polyeder des dreidimensionalen euklidischen Raumes.
— Zwei Polyeder P und Q nennt man àquivalent oder zerlegungsgleich,

gesehrieben

falls sich P bzw. Q in endlich viele abgesehlossene eigentliche Teilpolyeder
Pv bzw. Qv zerlegen lâBt, gesehrieben

P= EPV ; Q= ÊQV, (2)
i i

so daB die Teilpolyeder Pv bzw. Qv paarweise keine inneren Punkte ge-
meinsam haben, und so, daB

PvQéQv (t>=l,2,...,n) (3)

gilt, d. h. daB die Teilpolyeder Pv mit den entsprechenden Qv kongruent
sind.

Zunâchst sollen einige teilweise einfache, teilweise auch tieferliegende
Eigenschaften der mit (1) ausgedrûckten Àquivalenz zusammengestellt
werden. Es gilt :

(I) P~P;
(II) Ans P ~Q folgt Q~P ;

(III) Ans P ~Q und Q ~ R folgt P ~ R ;

(IV) Ans P~Q und P +U ~Q+ V folgt U~V.
Zu dem letzten Gesetz sei Folgendes erklarend hinzugefiigt : Unter einem

Polyeder P + Q verstehen wir ein solches, das sich in die beiden
Teilpolyeder P und Q zerlegen laBt, d. h. als Vereinigungsmenge schreibbar
ist, unter der wesentlichen Bedingung, daB die Teile keine inneren Punkte

5) J. P. Sydler, Comm. Math. Helv. 16, 266—273, 1943/44.
6) Unter einem eigentlichen Polyeder wollen wir die Vereinigungsmenge endlich vieler

abgeschlossener und nicht entarteter Tetraeder verstehen. Unterdimensionale Bestand-
teile sind demnach ausgeschaltet.
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gemeinsam haben. Hierdurch ist der Begriff der Zerlegung nochmals
prâzisiert und wird fortab stets in diesem Sinne verwendet. Das Ge-

setz (IV), welches u. a. auch von J. P. Sydler1) bewiesen wurde, driickt
den wesentlichen Sachverhalt aus, daB zwei ergânzungsgleiche Polyeder
auch zerlegungsgleich sind.

(V) Sind U und V zwei (gerade oder schiefe) Parallehtope gleichen
Inhaltes, 80 dap J(U) J(V) ist, so gilt U ~ F.

Insbesondere ist also jedes Parallelotop mit einem inhaltsgleichen
Wurfel zerlegungsgleich. Dièse bekannte fundamentale Tatsache wurde
u. a. auch von A. Emch8) bewiesen.

(VI) Es existieren zwei inhaltsgleiche Polyeder U und V, so da/5 also

J(U) J(V) ist, dagegen aber U r^ V gilt.

Das Zeichen r^ symbolisiert selbstverstândlich eine bestehende Nicht-
âquivalenz. Einen Existenzbeweis fur solche Polyederpaare erbracht zu
haben, ist bekanntlich das viel zitierte Verdienst von M. Dehn.

n

(VII) Es sei <xv>0(v 1, 2,..., n) und ]£ ocv 1 ; dann gilt fur
jedes Polyeder P die Âquivalenzrelation *

wobei E den Einheitswûrfel bezeichnet und X > 0 durai

bestimmt ist.

p j(P) (i

Mit dem letzten Gesetz geben wir ein Theorem von J. P. Sydler9)
wieder. Zur richtigen Interprétation unserer symbolischen Schreibweise
sind noch einige Hinweise erforderlich : Einmal verstehen wir unter AP
ein zu P âhnliches Polyeder, dessen linearen MaBe sich zu denjenigen
von P wie X : 1 verhalten. Seine Lage im Raum sei indessen frei wâhlbar.
Den Polyedern in der Summe auf der rechten Seite der in (VII) ge-
schriebenen Âquivalenzrelation ist eine solche râumliche Lage zuzuertei-
len, daB dièse keine inneren Punkte gemeinsam haben.

7) Vgl. Fufînote 6).
8) A. Emch, Comm. Math. Helv. 18, 224—231, 1945/46.
9) Vgl. FuÔnote 6).
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2. tlberleitende Betrachtungen

Am Schlusse des letzten Abschnittes hat sich eine gewisse Unsicher-
heit dadurch ergeben, daB die Bezeichnung eines Polyeders in den Âqui-
valenzrelationen seine Lage im Raum nicht charakterisiert. So ist mit
XP ein Polyeder definiert, dessen râumliche Lage noch frei wâhlbar ist.
Dièse Vieldeutigkeit kann dadurch zum Verschwinden gebracht werden,
daB man aile unter sich kongruenten Polyeder identifiziert. Dièse Ab-
straktion ist indessen unserer Théorie noch zu wenig angepaBt. Wir
wollen wesentlich weiter gehen und sogar aile unter sich âquivalenten
Polyeder identifizieren. Ein Polyeder P ist dann der vollwertige Ver-
treter der ihm zugeordneten Âquivalenzklasse.

Ûberprûfen wir nun die bisher erklârten Operationen, so erkennen wir,
daB nunmehr eine eindeutige Addition P + Q und eine eindeutige
Multiplikation XP fur A>0 zur Verfiigung stehen10). Dagegen fehlt
eine Multiplikation XP fiir X ^ 0, und demzufolge lâBt sich auch keine
Subtraktion durch den Ansatz P — Q P -\-( — l)Q gewinnen. Da-
mit ist ein erster Mangel aufgezeigt, welcher einem Versuch, eine lineare
Polyederalgebra aufzubauen, ein wesentliches Hindernis entgegenstellt.

Ein zweiter Mangel ist dadurch gegeben, daB das distributive Gesetz
ocP + f}P (a + P)P auch bei Beschrânkung auf oc>O und /?>0
nicht gilt.

Hier setzt nun das Bestreben des Verfassers ein, durch passende Modi-
fikation des Âquivalenzbegriffes die genannten Schwierigkeiten zu be-

seitigen, um eine lineare Polyederalgebra in die Wege zu leiten.
In welcher Weise dièses Ziel erreicht werden kann, zeigt der folgende

Abschnitt.

3. Âquivalenz mod. E und lineare Polyederalgebra

Zwei Polyeder P und Q wollen wir âquivalent mod. E oder auch zer-
legungsgleich mod.E nennen, geschrieben

P * Q (4)

falls es zwei Koeffizienten oc ^ 0 und p â 0 so gibt, daB die Âquivalenz

oder Zerlegungsgleichheit

P + <xE ~Q + pE (5)

besteht, wobei E den Einheitswûrfel bezeichnet.

io) A 0 ist zunâchst nicht zugelassen, da 0P nur unterdimensional zu interpretieren
ist; vgl. Fufînote 6).
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Wir besprechen zunàchst die Ûbertragungen der Grundeigenschaften
(I) bis (VII), welche im l.Abschnitt erôrtert wurden, auf die mit (4)
eingefiihrte neue Âquivalenz :

(I*) P^P;
(II*) Aus P fi*Q folgt Q ** P

Dièse beiden ersten Gesetze folgen trivial aus (I) und (II).

(III*) Aus P &Q und Q a* R folgt P & R

Beweis : Es sei P + <xE ~ Q + pE und Q + yE ~ R + ÔE.

Essei jSây. Wegen pE ~yE + CE mit /S3 y3 + £3

(vgl. (V)) hat man zunàchst P + ocE ~Q + yE + CE und also (vgl.
(III)) P + otE ~ R + ÔE + CE oder mit <53 + I3 V3 a^ch ^ +
<xE ~ R + t)E ; also P & R.

2. Fall. Es sei 0 ^ y. Wegen yE ~@E + £E mit y3 /S3 + £3

hat man zunàchst R + ÔE ~Q + fiE + CE, also E + <5,E ~ P +
aE + ÇE und damit JB + ÔE ~ P + rçJB mit ^3 a3 + |3, also

iî^P.
(IV*) Aus P ™Q und P + R ^Q + 8 folgt R & S.

Beweis: Es sei P + <xE ~Q + pE und P + R + yE ~Q + 8
+ SE. Man wâhle o>>0 so, da8 y3 + co3 ^oc3 und â3 + co3 ^ /?3

gilt. Nun ist P + R + yE+a)E~Q + S+ôE+ o>E. Weiter hat
man yE + coE ~ <xE + SE und ôE + coE ~ pE + r\E mit y3 +
co3 oc3 -\- |3 und <53 + co3 j83 + ys- So ergibt sich zunàchst P +
otE + R + ÇE~Q + pE + S + riE und nach Anwendung von (IV)
hieraus jB + SE ~ 8 + rjE, also R & 8.

Es bezeichne das Symbol 0 das ,,leere Polyeder". Dièses formale
Polyeder soll zu der Klasse der urspriinglich eingefuhrten eigentlichen
Polyeder hinzugefiigt werden. Nunmehr kann die friiher fiir A>0 eingef

uhrte Multiplikation XP auch auf X 0 ausgedehnt werden, indem
wir fiir ein beliebiges Polyeder P die Konvention OP 0 trefïen.
Ferner soll W 0 und P -f 0 P sein. Es mu8 hier nachtrâglich
noch eingerâumt werden, daB die hier getroffenen sehr naheliegendcn
Konventionen fiir die vollstândige Interprétation der fur die gefaBte
Âquivalenzdefinition maBgeblichen Beziehung (5) erforderlich sind, und
dort also bereits vorweggenommen sind.
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In bezug auf die neu eingefiihrte Àquivalenz ergibt sich jetzt

XE &0 (6)

Nach dieser Einschiebung fahren wir mit der Erôrterung der Grand-
eigenschaften fort :

(V*) Es sei U ein (gerades oder schiefes) Parallelotop; alsdann gilt
U ^0.

Beweis : Nach (V) hat man U ~ XE oder im Hinblick auf (6) U & 0.

(VI*) Es gibt ein Polyeder P, so da/3 P qb 0 gilt.

Beweis : Nach (VI) gibt es ein Polyeder P, so daB P r^ XE ist, wobei
X3 J(P) sein soll ; andernfalls wâren wegen (III) aile inhaltsgleichen
Polyeder àquivalent. Nun lâBt sich schlieBen, daB P ï# 0 ist. In der
Tat : Wàre nâmlich P + txE ~ @E mit p3 oc3 + J(P)9 so wurde
sich aus ftE ~otE + XE mit /S3 ^x3 + A3 zunâchst P + ocE ~ XE

+ <xE, und hieraus wegen (IV) P ~ XE ergeben.

Es sei P ein beliebiges Polyeder. Wir definieren nun durch

-P=XE-P° (XEz>P) (7)

das zugehôrende ,,negative Polyeder". Hierbei bedeute XE einen aus-
reichend groBen Wurfel in passender Lage, der P ganz ûberdeckt11).
P° bezeichne den ofïenen Kern von P und die Subtraktion auf der
rechten Seite von (7) sei die iibliche Mengensubtraktion, welche nun des-
halb môglich ist, weil P° eine Teilmenge von XE ist.

Zunâchst treffen wir die Verabredung, daB aile unter sich mod.J?

àquivalenten Polyeder identifiziert werden sollen. Ein Polyeder P ist
dann ein vollwertiger Repràsentant der ihm zugehôrenden Âquivalenz-
klasse mod.l?.

Nun zeigt sich, daB die Konstruktion (7), welche aus einem Polyeder P
das ,,negative Polyeder" — P hervorgehen lâBt, durchaus eindeutig ist.
Lage und GrôBe des Ùberdeckungswiirfels hat also keinerlei EinfluB auf
das definierte Polyeder.

In der Tat : Es seien (-P) XE - P° und (- P)f X'E' - P°
zwei nach (7) auf verschiedene Weise konstruierte Polyeder — P. Hierbei
sollen E und E' zwei Einheitswiirfel in verschiedener Lage bezeichnen.
Wir wâhlen XE und X!E' mit E und E' homothetisch und konzentrisch.

11 Jeder Punkt von P ist demnach innerer Punkt des ùberdeckenden Wûrfels.
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Das nâmliche treffe zu fur die Wûrfel jbtE und fiE\ wobei fi>X, X'

gewâhlt sei. Nun ist doch juE jnE — P° -f- P und gleichzeitig auch

pE' - P° + P, also wegen pE ~ pEf und (I) und (IV)
— P° r^juE' — P°. Nun ist weiter pE XE + R und /*J£'

A'U' -f i?', wobei R und jR' zwei mantelfôrmige Polyeder bezeichnen,
so daB man zunàehst XE — P° + R ~ Xf Ef — P° + Rf hat. Da sich
R und 2?' in gerade Parallelotope zerlegen lassen, so daB nach (V) R ^a-E
und Rf ~ ot! E' gilt, hat man nunmehr (— P) + ocE ~ (— P)' + a' jE7'

oder also (—P) ^ (—P)'.
Es lâBt sich zeigen, daB die ,,positiven" und ,,negativen" Polyeder in

bezug auf ihre Stellung rechts und links vom Âquivalenzzeichen im
iiblichen linar algebraischen Sinne gehandhabt werden kônnen. Genauer
ist zu zeigen, daB die beiden Relationen

P + Q & R <—* P ^ R -Q (8)

gleichbedeutend sind. In der Tat : Aus R ^ P -\- Q folgt R + yE ~
P + Q + ocE und weiter also

R + yE + {XE - Q°) — P + Q + ocE + (XEf - Q1*)

Hierbei bezeiehnet Q'° den offenen Kern von Q\ wo Q' ^ Q sein soll.
Nun ist doch XE1 — Q'° + Q ~ AJ5, so daB jetzt J? + yJ? — Q ~
P -{- <xE + XE oder R — Q ?& P folgt. Analoge SchluBweise ist in um-
gekehrter Richtung môglich.

Mtihelos zeigt man weiter, daB

-(-P)^P (9)

gilt.
Nun ist die Entwicklung so weit fortgeschritten, daB sich die Multi-

plikation AP fur —oo<A<oo in eindeutiger Weise erklâren lâBt. Fiir
A<0 setzt man XP (~X)(— P).

Von groBer Bedeutung ist nun die Gultigkeit der distributiven Ge-

setze, welche die Regeln (8) und (9) speziell enthalten. Der Numerierung
gemâB lassen wir dièse Gesetze an die Stelle der Sydler&chen Sâtze

treten, aus welchen sie im wesentlichen hervorgegangen sind. So haben
wir:

(VII*) Fur bdiebige Polyeder P und Q und — oo<oc, /?<oo gelten die
OeS6tZe l

(a) <x(P + Q) * ocP + *Q ;

(b) (K(fiP) « (*0)P ;

(c) ocP + pP ?x(oc + P) P
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Beweise : (a) und (b) sind fur oc, P ^ 0 trivial ; die andern Fâlle er-
ledigt man miihelos mit Beanspruchung der bereits begrûndeten Regeln
(8) und (9). (c) ergibt sich zunâchst fur oc, p ^ 0 nach (VII), wonaeh
doch ocP + pP + XE ~ (oc + P)P mit A3= J(P)[(oc + p)3- (*3+ £3)]
ist. Aile andern Fàlle lassen sich mit Anwendung der Regel (8) auf diesen
ersten zuruckfiihren.

4. Eine Zerlegungsbasis aller Polyeder

Es bezeichne ty die Klasse aller Polyeder P, fur welche

P gfc 0 (10)

gilt. Nach (VI*) ist ^} nicht leer. Wir denken uns nun dièse Polyeder-
menge wohlgeordnet. Die zu ty gehôrenden Polyeder sollen fortab als
PH angeschrieben werden, wobei x einen Ordnungsindex symbolisiert.
Der Anfang der Wohlordnung sei etwa durch

PXoL.PXlLPXiL--- (il)
gegeben ; hierbei ist Z_ das Zeichen fur die Ordnungsbeziehung.

Wir definieren jetzt : Ein Polyeder P e ^ heiUt vorabhângig, falls eine
Àquivalenzbeziehung

besteht, wobei die Koeffizienten ocx in der rechtstehenden Summe fast
aile12) verschwinden, so daB sich der Ausdruck auf eine endliche Summe
reduziert und sich die Summation nur ûber diejenigen x erstrecken soll,
fur welche PHL. P gilt.

Es bezeichne jetzt weiter % die Klasse aller nicht vorabhângigen
Polyeder in ^. Da jedenfalls das erste Polyeder Px von ^J nicht vorab-
hângig sein kann, ist 21 nicht leer. Ferner ist 91 als Teilmenge einer wohl-
geordneten Menge selbst wieder wohlgeordnet bezuglich der gleichen
Ordnungsbeziehung. Die zu 91 gehôrenden Polyeder sollen fortab als AT
bezeichnet werden, wobei r den Ordnungsindex symbolisiert.

Aus Grunden, welche durch die folgenden Resultate erhellt werden,
nennen wir die At auch Basispolyeder. Die Klasse 91 aller Basispolyeder
werden wir als Zerlegungsbasis ansprechen. Als wohlgeordnete Menge
beginne sie etwa mit

Ar%l_AXxl_A1%l_..- (13)

12) Die Bezeichnung ,,fast aile" soll hier und ira folgenden zur Abkûrzung fur ,,alle, mit
endlich vielen Ausnahmen" gebraucht werden.

211



Wir zeigen zunâchst :

(VIII*) Die Basispolyeder A% sind unabhângig, d. h. ans

wobei im Ausdruck der linken Seite fast aile ocr verschwinden, so dafi sich
dieser auf eine endliche Summe reduziert, folgt dafi aT 0 filr aile r ist.

Beweis : Es sei im Gegensatz zur Behauptung etwa

Ofifenbar muB n ^ 2 sein, da sich andernfalls fur das einzige beteiligte
Basispolyeder A p&O folgern lieBe im Widerspruch zur Konstruktion
von % als Teilklasse von ^3 mit Eingangsbedingung (10). Nach den
Rechengesetzen, welche fur die im vorstehenden Abschnitt entwickelte
lineare Polyederalgebra Geltung haben, làfit sich nunmehr ausrechnen,

n—1

daB ATn x& Jg Xv Axv mit Xv — ocrvlocTn gilt. Da die Numerierung so
i

gewâhlt sein soll, daB Atv/L Ar^ fur v</Lt ist, muB mithin ATn vorab-
hângig sein ; dies steht jedoch im Widerspruch zur Konstruktion.

Ein bedeutungsvoller Sachverhalt, der auch die Bezeichnung
Basispolyeder rechtfertigt, ist nun folgender :

(IX*) Ein beliebiges Polyeder P geht mit den Basispolyedern AT eine

und nur eine Àquivalenzrelation

P & £ <xT AT (~oo<ocT<oo)

ein, wobei im rechtsstehenden Ausdruck fast aile Koeffizienten ocr verschwinden,

so dafi sich dieser auf eine endliche Summe reduziert.

Beweis. Wir zeigen zuerst, daB jedenfalls wenigstens eine solche Relation

besteht. In der Tat : Ist P & 0, so genûgt es ocr 0 fur aile r zu
setzen. Es sei P qbO und es bestehe keine Àquivalenzrelation der be-

haupteten Art. AUgemeiner sei jetzt S die Teilmenge derjenigen Polyeder
von ^5, fur welche eine solche Àquivalenzrelation nicht besteht. Auf
Grund der oben getroffenen Annahme ist also S nicht leer. S ist bezûg-
lich der gleichen Ordnungsbeziehung wohlgeordnet ; es sei 8 das erste

Polyeder.
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1. Fall. Es sei Se 31. Mit 8 A folgt trivialerweise A &A, also
eine Relation der fraglichen Art im Widerspruch zur Konstruktion von S.

2. Fall. Es sei S$%. Es gibt mithin eine Relation S & ]? pxPx mit
Px <S Im Hinblick auf die Erklarung von S gibt es fur jedes in der
obenstehenden Summe vorkommendes Px eine Relation Px x& £ tx* AT.
Hieraus folgert man 8 ^ J£ YrAT, wobei yx J£ Px <*r ^- Man ^e"
achte, daB aile vorkommenden Summen endlieh sind. Somit hat sich
doch fur 8 eine gefragte Âquivalenzrelation ergeben, womit erneut ein
Widerspruch erreicht ist. Damit ist dargetan, daB die eingangs formu-
lierte Annahme betreffend das Polyeder P unstatthaft ist ; damit ist die
erste Teilbehauptung bewiesen.

Wir haben noch zu zeigen, daB hôchstens eine solche Relation besteht.
In derTat : Es soll P & J£ ocr At und auch P x& £ pt AT gelten, wobei
sich beide rechtsstehenden Ausdrucke auf endliche Summen reduzieren
sollen. Nach den gûltigen Rechengesetzen folgt hieraus J£ (ocT — pr)Ar^O
und nach (VIII*) also ott f}T fur aile r. Damit ist auch die zweite
Teilbehauptung bewiesen.

Um die hiermit erzielten Resultate, welche sich auf die Âquivalenz ^
oder Zerlegungsgleichheit mod.l? mit der formalen Ausdehnung auf ,,ne-
gative" Polyeder beziehen, in den Bereich der Âquivalenz ~ oder der
gewôhnlichen Zerlegungsgleichheit mit nur ,,positiven" Polyedern leich-
ter umdeuten zu lônnen, ist es von Vorteil, den letzten Sachverhalt der
âuBeren Form nach abzuândern.

Wir denken uns aile in der Behauptung (IX*) auf der rechten Seite
stehenden Summenden mit negativen Koeffizienten nach MaBgabe der
Regel (8) auf die linke Seite gebracht. Mit passend verânderter Schreib-
weise hat man jetzt die mit (IX*) gleichwertige Aussage :

(X*) Ein beliebiges Polyeder P geht mit den Basispolyedern AT eine und
nur eine Âquivalenzrelation der Form

P + S Px Ar *> 2 ocT Ax (ocr, pt ^ 0 ; *r j8f 0)

ein, wobei sowohl im redits- dis auch im linksstehenden Ausdruck fast aile

Koeffizienten ocT und pt verschwinden, so dafi sich dièse auf endliche
Summen reduzieren.

Die Bedingung ocT pT 0 driiekt in kurzer Form nur das Erfordernis
aus, daB fur das nâmliche r hôchstens auf einer Seite ein nichtverschwin-
dender, in unserm Fall also positiver Koeffizient vorkommen kann ; nur
unter dieser Bedingung ist naturlich eine Eindeutigkeit vorhanden.
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5. Der Zerlegungssatz

Mit der Ûbertragung von (IX*) in (X*) haben wir den Weg beschritten,
der uns aus dem Bereich der formalen Polyederalgebra wieder zu den
konkret geometrisch deutbaren Zerlegungsbeziehungen zuriiekfuhren
soll. Eine letzte Etappe besteht nunmehr darin, den mit (X*) ausgedruck-
ten Sachverhalt nach Rûckblick auf die definitorische Beziehung (5) von
der Zerlegungsgleichheit mod.U auf die gewôhnliche Zerlegungsgleich-
heit zu ûbertragen. So erzielen wir das eigentliche Hauptergebnis dieser
Arbeit, nâmlich den folgenden

Zerlegungssatz : Es existiert eine Klasse von Basispolyedern (Zerlegungs-
basis) Ar so, dafî jedes beliebige Polyeder P zwei Sàtze nicht negativer Koef-
fizienten (!;<xT) und ; jST) unter den Bedingungen frç 0, otTjît=O
(fur aile r) eindeutig bestimmt, so da/i die Àquivalenz oder Zerlegungsgleichheit

P + rjE + £ PTAT~ÇE+ ZocTA7

besteht, wobei fast aile Koeffizienten der beiden Sàtze verschwinden, so da/i
sich also beide Ausdrûcke in der oben stehenden Âquivalenzrelation auf end-
liche Summen reduzieren ; E bezeichnet den Einheitswûrfel.

Die eindeutige Bestimmtheit der Koeffizienten ocT und f}r ist bereits
mit (X*) gegeben; es muB noch diejenige der Koeffizienten f und rj ein-
gesehen werden. Dièse ergibt sich denn aus der Inhaltsgleichheit der in
der Relation des Zerlegungssatzes beidseitig stehenden Polyeder, wonach

J(P) p ~ V* + E («J - Pi) J{Ar) (14)

gelten muB. In Verbindung mit f r\ 0 ergeben sich die fraglichen
Koeffizienten eindeutig.

Wir haben nur die Existenz einer derartigen Zerlegungsbasis mit An-
wendung des Wohlordnungssatzes nachgewiesen, ohne iiber ihre Struktur
irgendeinen AufschluB geben zu kônnen. So ist noch nichts bekannt ûber
die Mâchtigkeit der Basispolyedermenge. Es ist an und fur sich wohl
denkbar, daB sie endlich ist und auf irgendeine Weise mit der endlichen
Zahl der wesentlichen Parameter, die ein allgemeines Tetraeder bewe-

gungsinvariant charakterisieren, zusammenhângt.
Es soll eventuellen spateren Arbeiten vorbehalten bleiben, auf dièse

Problème nâher einzutreten sowie Folgerungen verschiedener Art aus
dem Zerlegungssatz zu ziehen. Es soll nur vorlâufig erwàhnt werden, daB
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sich beispielsweise ein von J.P.Sydler bewiesener Satz13) unmittelbar
ablesen làBt, wonach es eine Schar inhaltsgleicher Polyeder von der
Mâchtigkeit des Kontinuums so gibt, da8 dièse paarweise nicht zer-
legungsgleich sind. Es ist dies eine Verschârfung einer von M.Dehn ge-
machten Aussage14).

AbschlieBend wollen wir durch einen Zusatz eine einfachere Formulie-
rung des Zerlegungssatzes vorschlagen. Hierzu ist erforderlich, dafi wir
ftir die Zerlegungsgleichheit eine zu (8) adâquate Konvention treffen.
Danach sollen die beiden Relationen

P + Q ~ R <—> P~R — Q (15)
gleichbedeutend sein.

So lâBt sich der Zerlegungssatz auf die folgende Form bringen

Zusatz : Jedes Polyeder P bestimmt eindeutig einen Satz positiver oder

negativer Koeffizienten (f ; yT), so dap die Zerlegungsgleichheit

besteht, wobei fast aile Koeffizienten des Satzes verschwinden, so dap sich der
oben rechts stehende Ausdruck auf eine endliche Summe reduziert.

Der neue Koeffizientensatz (f ; yt) bestimmt sich aus denjenigen des

ursprûnglichen Zerlegungssatzes nach den Umrechnungsformeln :

£3 |3 „ ^3 + £ [a3 _ fi „ {0Ct __ ^jaj J{Aj) (16)

yx (xx — j8T

6. Âdditive Fimktionale

Unter einem additiven Funktional wollen wir im Folgenden ein fur aile
Polyeder P definiertes Funktional q>(P) verstehen, welches die drei
nachfolgend aufgefûhrten Eigenschaften hat :

(A) <p(P) <p(Q), falls P ^Q ist (bewegungsinvariant) ;

(B) <p(P) + q>(Q) <p(P + Q) (additiv);
(C) (p(ÀP) ist eine stetige Funktion von A fur A>0

Die Gesamtheit aller Lôsungsfunktionale fur (A) bis (C) bildet offenbar
eine lineare Mannigfaltigkeit ; sie soll mit 501 bezeichnet werden.

18) Vgl. Fufînote 5).
14) M. Dehn, Math. Ann. 59, 84—88, 1904.
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Eine triviale Lôsung ist durch den elementaren Inhalt

<p(P) J(P) (17)

gegeben. Wir vermerken noch zwei zusâtzliehe Eigenschaften dièses

Funktionals, nâmlich

J(E) 1 und J(XP) WJ(P) (18)

Fur die elementare Inhaltstheorie ist es von Interesse, die Frage ab-
zuklâren, ob durch die Forderungen (A) und (B), eventuell durch (A),
(B) und (C) allein der elementare Inhalt im wesentlichen bereits charak-
terisiert ist, das heiBt ob sich aus den erwâhnten postulierten Voraus-
setzungen auf

—oo<c<oo) (19)

sehlieBen lâBt. Nach dieser an sich plausiblen Annahme wâre demnach
9ft identisch mit der eindimensionalen linearen Mannigfaltigkeit der tri-
vialen Lôsungen (19). Verf. hat sich langere Zeit vergeblich darum be-

mùht, einen solchen Nachweis zu erbringen.
Der nunmehr in dieser Arbeit abgeleitete Zerlegungssatz lâBt nun aber

leicht erkennen, daB es im Gegensatz zu der erwâhnten Vermutung nicht
triviale Lôsungsfunktionale gibt. Er erlaubt sogar, die Mannigfaltigkeit
9Jt aller Lôsungen vollstândig zu beschreiben.

Nach dem Zusatz zum Zerlegungssatz gilt nâmlich fur ein beliebiges
Polyeder die Àquivalenz P ^*> Ç E -{- £ Yt At, wobei die rechts auf-
tretenden Koeffîzienten eindeutig durch P bestimmt sind. Fur ein fest
gewâhltes r ist somit yx Xr(P) e*n eindeutiges Funktional von P.
Im Hinblick auf die Additions- und Eindeutigkeitssâtze [vgl. (VII*) und
(IX*)] ergibt sich, daB das Funktional

<p(P) Xr(P) (20)

den drei Forderungen (A), (B) und (C) genugt. Wir vermerken noch zwei
zusatzliche Eigenschaften, nâmlich

Xr(E) 0 und Xr(XP) XXr{P) (21)

Jedes t gibt AnlaB zur Bildung des Funktionals Xr(P)- Die ,,Anzahl" der
verschiedenen nach Ansatz (20) gegebenen Lôsungen ist somit gleich der-

jenigen der Basispolyeder, welche die Zerlegungsbasis enthâlt. Da dièse

wie friiher erôrtert sicher nicht leer ist, gibt es sicher wenigstens eine
solche Lôsung.
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Wir behaupten jetzt den folgenden

Funktionalsatz : Ist (p(P) ein bewegungsinvariantes, additives und
stetiges Polyederfunktional, das also Eigenschaften besitzt, die durch (A),
(B) und (C) nâher erklàrt sind, so gibt es einen eindeutig bestimmten Koeffi-
zientensatz (c ; cx) so, daji

<p(P) cJ(P) + £ cx xAP) (- oo<c, cr<oo)

ist. Hierbei bezeichnen J(P) den elementaren Inhalt und %X{P) die durch
Ansatz (20) eingefûhrten linearen Funhtionale. Fur ein festes Polyeder P
verschwinden die Funktionalwerte Xr(P) far fast aile r, so da/i sich der oben

rechts stehende Ausdruck auf eine endliche Summe reduziert. Die nicht tri-
vialen ZusatzfunJctionale %x (P) verschwinden fur den Wûrfel und fur jedes
mit einem solchen zerlegungsgleichen Polyeder.

Beweis. Wir setzen ausgehend vom Einheitswiïrfel E zunâchst
<p(XE) /(A). Die Eigenschaften (A) und (B) lassen aus der ublichen
Zerlegungsmôglichkeit eines Wiirfels in kleinere fur ganze p, q ^> 1 vor-

erst die Beziehungen f(~\ (—V/(l) dann f(^-\ (~Yf(l)
und endlich im Hinblick auf (C) /(A) /(1)A3 hervorgehen. Setzt man
/(l) c, so hat man

<p(XE) cJ{XE) (22)

Nun bilden wir ein neues Funktional durch den Ansatz

<p(P)-cJ(P) (23)

Dièses hat offenbar ebenfalls die verlangten Eigenschaften (A), (B) und
(C) und auBerdem ist wegen (22) W(XE) 0. Darnach hat man fur
PtvQ (zerlegungsgleich mod.E) *F(P) W(Q). Setzt man jetzt
W(XP)=F{X) fur ein festgewàhltes P, so hat man wegen (VII*) (c) die
Beziehung F(x) + F (y) F(x + y) und mit erneuter Beanspruchung
von (C) also F(x) =F(l)x, so daB W{XP) X W{P) gilt. - Weiter
ist nach dem Zusatz zum Zerlegungssatz W(P) £ yT W(AX). Nun ist
nach (20) yx %X{P) und wenn noch W(AX) cx gesetzt wird, er-
reicht man

V(P) SctXt{P) (24)

Nach Ruckblick auf (23) folgt so

<p(P) cJ(P)+ Scr
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Damit ist der wesentliche Teil der Behauptung des Funktionalsatzes be-
wiesen. Die ûbrigen ergânzenden Aussagen ergeben sich aus der Beweis-
konstruktion, aus (21) und aus dem genannten Wortlaut des Zusatzes.

7. Notwendige und hinreichende Bedingungen fur Zerlegungsgleichheit

Der im vorstehenden Abschnitt bewiesene Funktionalsatz gibt eine

vollstàndige Charakterisierung der Mannigfaltigkeit SOI der Lôsungs-
funktionale zu den Bedingungen (A), (B) und (C).

Es zeigt sich nun, daB genau die Funktionale dieser Mannigfaltigkeit
fur die Zerlegungsgleichheit zweier Polyeder von entscheidender Bedeu-

tung sind. Wir formulieren das folgende

Kriterium : Notwendig und hinreichend dafûr, dafi die beiden Polyeder P
und Q àquivalent oder zerlegungsgleich sind, ist das simultané Bestehen der

folgenden Relationen :

(a) J(P)=J(Q); (b) Xr(P) Xr(Q) fur aile r.
Beweis. Die Notwendigkeit ergibt sich leicht aus der Tatsache, daB

die im Kriterium genannten Funktionale bewegungsinvariant und addi-
tiv sind. Das Hinreichen ergibt sich so : Wegen den Gleichheiten (b) haben
P und Q tibereinstimmende Koeffizienten yx gemâB Zusatz zum Zer-
legungssatz. Wegen der Gleichheit (a) sind auch die Koeffizienten f
gleich. Im Zerlegungssatz weisen somit die beiden Polyeder P und Q
identische Koeffizientensàtze (f ; ocT) und (rj ; /?r) auf. So schlieBt man
zunâchst auf

und sodann nach (IV) auf P ~Q, was zu zeigen war.

(Eingegangen den 17. August 1949.)
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