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Zerlegungsgleichheit
und additive Polyederfunktionale

Von H. HADWIGER, Bern

In der vorliegenden Arbeit werden einige Resultate einldBlicher er-
ldutert und bewiesen, welche bereits bei fritheren Gelegenheiten mitge-
teilt worden sind!). Es handelt sich vorerst um einen Zerlegungssatz,
welcher aussagt, daB ein beliebiges Polyeder P des dreidimensionalen
euklidischen Raumes in eindeutiger Weise im Sinne der Zerlegungs- bzw.
Ergéinzungsgleichheit aus Basispolyedern 4, aufgebaut werden kann. —
Die Polyeder 4, der Zerlegungsbasis ermoglichen weiter die Konstruk-
tion einer Klasse additiver Funktionale y,, die ihrerseits ein System von
Bedingungen veranlassen, welche fiir die Zerlegungsgleichheit zweier
Polyeder notwendig und hinreichend sind. Damit wird fiir das Problem
der Zerlegungsgleichheit, das wu. a. durch eine Fragestellung von
D. Hilbert?) veranlaBt und durch eine wichtige Feststellung wvon
M. Dehn3) vertieft worden ist, eine Interpretation einer Losung gegeben,
welche zwar nur rein formaler Natur ist.

Es soll hier eingerdiumt werden, daf3 der Existenznachweis der genann-
ten Zerlegungsbasis der bekannten Konstruktion von G. Hamel*) nach-
gebildet ist, so dal also die Giiltigkeit des Wohlordnungssatzes nach
E. Zermelo eine wesentliche Voraussetzung darstellt.

Die formale Entwicklung in dieser Arbeit wird dadurch ermoglicht,
daB durch Einfiihrung eines geeigneten neuen Aquivalenzbegriffes (iqui-
valent oder zerlegungsgleich mod. E ; E = Einheitswiirfel) die Voraus-
setzungen dafiir geschaffen werden, da8 sich eine lineare Polyederalgebra
aufbauen liBt. Wegweisend war hierbei eine merkwiirdige Ausnahme-
stellung des Wiirfels in einigen sich auf die Zerlegungsgleichheit beziehen-

1) Eine Mitteilung erfolgte an der Jahresversammlung der Schweizerischen Mathema-
tischen Gesellschaft am 5.September 1948 in St. Gallen; ein ausfiihrlicheres Selbstreferat
erschien unter dem gleichen Titel im Archiv der Mathematik 1, 468—472, 1949.

2) D. Hilbert, Math. Probleme, Gé6tt. Nachr. 1900, 266.

3) M. Dehn, Math. Ann. 55, 465—478, 1901.

4) G. Hamel, Math. Ann. 60, 459—462, 1905.
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den Aussagen; vor allem sind es die von J. P. Sydler?) aufgestellten
Sitze, welche sich interpretieren lassen als die Distributivgesetze der
linearen Polyederalgebra, welche auf der neuen Aquivalenz beruht.

1. Aquivalenz (Zerlegungsgleichheit) und bhekannte Tatsachen

Wir betrachten in der vorliegenden Arbeit beschrinkte, abgeschlossene
und eigentliche 8) Polyeder des dreidimensionalen euklidischen Raumes.
— Zwei Polyeder P und ¢ nennt man dquivalent oder zerlequngsgleich,
geschrieben

P~Q, (1)

falls sich P bzw. @ in endlich viele abgeschlossene eigentliche Teilpolyeder
P, bzw. @, zerlegen 148t, geschrieben

n

P::EPV; QZIEQV’ (2)

1

so daB} die Teilpolyeder P, bzw. @, paarweise keine inneren Punkte ge-
meinsam haben, und so, daB

P~Q (=1,2,...,n) (3)

gilt, d. h. dal die Teilpolyeder P, mit den entsprechenden @, kongruent
sind.

Zunichst sollen einige teilweise einfache, teilweise auch tieferliegende

Eigenschaften der mit (1) ausgedriickten Aquivalenz zusammengestellt
werden. Es gilt :

(I) P~P;

(II) Adus P~Q folgt Q~UP;

(II1) Aus P~Q und @ ~R folgt P~R;

(IV) Aus P~Q und P+U~Q-+7V folgg U~V.

Zu dem letzten Gesetz sei Folgendes erkldrend hinzugefiigt : Unter einem
Polyeder P 4 @ verstehen wir ein solches, das sich in die beiden Teil-
polyeder P und @ zerlegen laBt, d. h. als Vereinigungsmenge schreibbar
ist, unter der wesentlichen Bedingung, dafl die Teile keine inneren Punkte

8) J. P. Sydler, Comm. Math. Helv. 16, 266—273, 1943 [44.

8) Unter einem eigentlichen Polyeder wollen wir die Vereinigungsmenge endlich vieler
abgeschlossener und nicht entarteter Tetraeder verstehen. Unterdimensionale Bestand-
teile sind demnach ausgeschaltet.
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gemeinsam haben. Hierdurch ist der Begriff der Zerlegung nochmals
prézisiert und wird fortab stets in diesem Sinne verwendet. Das Ge-
setz (IV), welches u. a. auch von J. P. Sydler ?) bewiesen wurde, driickt
den wesentlichen Sachverhalt aus, daBl zwei erginzungsgleiche Polyeder
auch zerlegungsgleich sind.

(V) Swnd U und V zwes (gerade oder schiefe) Parallelotope gleichen In-
haltes, so dafy J(U) = J (V) ist, so gilt U ~ V.

Insbesondere ist also jedes Parallelotop mit einem inhaltsgleichen
Wiirfel zerlegungsgleich. Diese bekannte fundamentale Tatsache wurde
u. a. auch von A. Emch?®) bewiesen.

(VI) Es existieren zwet inhaltsgleiche Polyeder U und V, so daf also
J(U) = J (V) ist, dagegen aber U ~ V gilt.

Das Zeichen ~~ symbolisiert selbstverstindlich eine bestehende Nicht-
dquivalenz. Einen Existenzbeweis fiir solche Polyederpaare erbracht zu
haben, ist bekanntlich das viel zitierte Verdienst von M. Dehn.

(VII) Es set x,>0(rv=1,2,...,n) und 20‘ = 1; dann gilt fir
jedes Polyeder P die Aquwalenzrelatzon

P~JlE+ Xa P,
1

wobei B den Einheitswiirfel bezeichnet und A>0 durch

pzﬂmb—z@)
1
bestimmt ist.

Mit dem letzten Gesetz geben wir ein Theorem von J. P. Sydler?®)
wieder. Zur richtigen Interpretation unserer symbolischen Schreibweise
sind noch einige Hinweise erforderlich : Einmal verstehen wir unter AP
ein zu P dhnliches Polyeder, dessen linearen Mafle sich zu denjenigen
von P wie A:1 verhalten. Seine Lage im Raum sei indessen frei wihlbar.
Den Polyedern in der Summe auf der rechten Seite der in (VII) ge-
schriebenen Aquivalenzrelation ist eine solche riumliche Lage zuzuertei-
len, dal diese keine inneren Punkte gemeinsam haben.

7) Vgl. FuBinote 5).
8) A. Emch, Comm. Math. Helv. 18, 224——231 1945/46.
%) Vgl. FuBnote 5).
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2. Uberleitende Betrachtungen

Am Schlusse des letzten Abschnittes hat sich eine gewisse Unsicher-
heit dadurch ergeben, daB die Bezeichnung eines Polyeders in den Aqui-
valenzrelationen seine Lage im Raum nicht charakterisiert. So ist mit
AP ein Polyeder definiert, dessen rdumliche Lage noch frei wihlbar ist.
Diese Vieldeutigkeit kann dadurch zum Verschwinden gebracht werden,
da man alle unter sich kongruenten Polyeder identifiziert. Diese Ab-
straktion ist indessen unserer Theorie noch zu wenig angepaflt. Wir
wollen wesentlich weiter gehen und sogar alle unter sich dquivalenten
Polyeder identifizieren. Ein Polyeder P ist dann der vollwertige Ver-
treter der ihm zugeordneten Aquivalenzklasse.

Uberpriifen wir nun die bisher erklirten Operationen, so erkennen wir,
daB nunmehr eine eindeutige Addition P -+ ¢ und eine eindeutige
Multiplikation AP fiir A>0 zur Verfiigung stehen!®). Dagegen fehlt
eine Multiplikation AP fir 2 < 0, und demzufolge 148t sich auch keine
Subtraktion durch den Ansatz P — @ = P 4 (— 1) gewinnen. Da-
mit ist ein erster Mangel aufgezeigt, welcher einem Versuch, eine lineare
Polyederalgebra aufzubauen, ein wesentliches Hindernis entgegenstellt.

Ein zweiter Mangel ist dadurch gegeben, daBl das distributive Gesetz
«P + BP = (x + )P auch bei Beschrinkung auf x>0 und g>0
nicht gilt.

Hier setzt nun das Bestreben des Verfassers ein, durch passende Modi-
fikation des Aquivalenzbegriffes die genannten Schwierigkeiten zu be-
seitigen, um eine lineare Polyederalgebra in die Wege zu leiten.

In welcher Weise dieses Ziel erreicht werden kann, zeigt der folgende
Abschnitt.

3. Aquivalenz mod. E und lineare Polyederalgebra

Zwei Polyeder P und @ wollen wir dquivalent mod. E oder auch zer-
legungsgleich mod. E nennen, geschrieben

P~Q, (4)

falls es zwei Koeffizienten « =0 und g =0 so gibt, daB die Aquiva-
lenz oder Zerlegungsgleichheit

P+ab~Q+pE (5)
besteht, wobei £ den Einheitswiirfel bezeichnet.

10) A = 0 ist zundchst nicht zugelassen, da 0P nur unterdimensional zu interpretieren
ist; vgl. FuBinote ¢).
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Wir besprechen zunichst die Ubertragungen der Grundeigenschaften
(I) bis (VII), welche im 1. Abschnitt erértert wurden, auf die mit (4)
eingefithrte neue Aquivalenz :

(I*) P~ P,;
(IT*) Aus P~Q folgt Q~ P .

Diese beiden ersten Gesetze folgen trivial aus (I) und (II).
(I11*) Aus P~Q und @~ R folgt P~ R.

Beweis: Es sei P+ al ~Q + BE und Q + yE ~R + 6.

1. Fall. Es sei f=y. Wegen fE ~yE 4+ (E mit f3 = y® &3
(vgl. (V)) hat man zunéchst P 4+ « B ~Q + yE + &£E und also (vgl
(I11)) P4+ aE ~R+ 6E + EE oder mit 6+ & =4® auch P +
«B ~R+4 nE; also P~ R.

2.Fall. Es sei B =y. Wegen yE ~fE 4+ (E mit p® = 2 + &
hat man zunédchst R+ 0E ~Q + BE + ¢E, also R+ 6E~P +
B 4+ ¢(E und damit R+ 6E ~ P+ nE mit 7® =« 4 &, also
R~ P.

(IV¥) Aus P~Q wnd P+ R~Q+ 8 folgt R~ S.

Beweis: Es sei P+ ol ~Q+ pfE und P+ R+yE~Q+ S
+ 6£. Man wihle w>0 so, dal 93 4 @® =Z&® und 0%+ ® = 3
gilt. Nun ist P+ R+ yE + ol ~Q + S + 0E 4+ wE. Weiter hat
man yE + wBE ~oaE + (E und 0E + wl ~BE 4+ nE mit y* +
w?=oa%+ & und 6% 4 w® = B2+ 5% So ergibt sich zunédchst P +
o+ R+ ¢tE~Q+ BE 4+ S+ nE und nach Anwendung von (IV)
hieraus R 4+ §E ~8 4+ nEH, also R~ S.

Es bezeichne das Symbol O das ,leere Polyeder“. Dieses formale
Polyeder soll zu der Klasse der urspriinglich eingefiihrten eigentlichen
Polyeder hinzugefiigt werden. Nunmehr kann die frither fir 4>0 ein-
gefiihrte Multiplikation A P auch auf 1 = 0 ausgedehnt werden, indem
wir fir ein beliebiges Polyeder P die Konvention 0P = O treffen.
Ferner soll A0 =0 und P + O = P sein. Es muf} hier nachtriglich
noch eingerdumt werden, dal die hier getroffenen sehr naheliegenden
Konventionen fiir die vollstindige Interpretation der fiir die gefaflte
Aquivalenzdefinition maBgeblichen Beziehung (5) erforderlich sind, und
dort also bereits vorweggenommen sind.
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In bezug auf die neu eingefiihrte Aquivalenz ergibt sich jetzt
AR ~ O . . (6)

Nach dieser Einschiebung fahren wir mit der Erérterung der Grund-
eigenschaften fort :

(V*) Es sei U ein (gerades oder schiefes) Parallelotop; alsdann gilt
U~~O.

Beweis : Nach (V) hat man U ~ AE oder im Hinblick auf (6) U ~ O.
(VI*) Es gibt ein Polyeder P, so da} P %% O gtlt.

Beweis : Nach (VI) gibt es ein Polyeder P, so dafi P ~ AE ist, wobei
A3 = J(P) sein soll ; andernfalls wiren wegen (III) alle inhaltsgleichen
Polyeder dquivalent. Nun 148t sich schlieBen, dal P 5 O ist. In der
Tat : Wire ndmlich P + «E ~ fE mit 2 =« 4 J(P), so wiirde
sich aus BE ~aE + AE mit B3 =o% + A3 zundchst P+ «H ~ AE
+ « £, und hieraus wegen (IV) P ~ AE ergeben.

Es sei P ein beliebiges Polyeder. Wir definieren nun durch
— P = AL — P° (A > P) (7)

das zugehorende ,,negative Polyeder“. Hierbei bedeute AL einen aus-
reichend groBen Wiirfel in passender Lage, der P ganz iiberdeckt?!!).
P° bezeichne den offenen Kern von P und die Subtraktion auf der
rechten Seite von (7) sei die iibliche Mengensubtraktion, welche nun des-
halb moglich ist, weil P° eine Teilmenge von A Z ist.

Zunichst treffen wir die Verabredung, dafl alle unter sich mod. &
dquivalenten Polyeder identifiziert werden sollen. Ein Polyeder P ist
dann ein vollwertiger Reprisentant der ihm zugehérenden Aquivalenz-
klasse mod.E. ,

Nun zeigt sich, da die Konstruktion (7), welche aus einem Polyeder P
das ,negative Polyeder”“ — P hervorgehen 1d8t, durchaus eindeutig ist.
Lage und GroBe des Uberdeckungswiirfels hat also keinerlei EinfluB auf
das definierte Polyeder.

In der Tat: Es seien (—P)=AE — P° und (—P) = VNE — P°
zwei nach (7) auf verschiedene Weise konstruierte Polyeder — P. Hierbei
sollen £ und E’ zwei Einheitswiirfel in verschiedener Lage bezeichnen.
Wir withlen AE und A2'E’ mit E und E' homothetisch und konzentrisch.

11) Jeder Punkt von P ist demnach innerer Punkt des iiberdeckenden Wiirfels.
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Das nédmliche treffe zu fir die Wiirfel uE und uFE’, wobei u>A24, A’
gewihlt sei. Nun ist doch u® = uE — P° + P und gleichzeitig auch
pE = uE — P°+ P, also wegen uE ~uE' wund (I) und (IV)
ulli — P°~uE' — P°. Nun ist weiter uf = AE + R und ul' =
AME + R, wobei R und R’ zwei mantelférmige Polyeder bezeichnen,
so dafl man zunidchst AE — P+ R~ A E' — P° + R’ hat. Da sich
R und R'in gerade Parallelotope zerlegen lassen, so dafl nach (V) R~«FE
und R'~«' B’ gilt, hat man nunmehr (— P) 4+ o« B ~(— P) + o' B’
oder also (— P) ~ (— P)'.

Es 148t sich zeigen, daf} die ,,positiven und ,,negativen* Polyeder in
bezug auf ihre Stellung rechts und links vom Aquivalenzzeichen im
iiblichen linar algebraischen Sinne gehandhabt werden kénnen. Genauer
ist zu zeigen, dafl die beiden Relationen

P+Qa~R<«—>P~R-—Q (8)

gleichbedeutend sind. In der Tat: Aus R~ P 4+ @ folgt R+ yE ~
P + Q + «E und weiter also

R+yE+ (AE—-Q)~P+Q+aE+ (AE' — Q') .

Hierbei bezeichnet @'° den offenen Kern von @', wo Q' ~ @ sein soll.
Nun ist doch AE' — Q'°+ Q ~ AE, so daBl jetzt R+ yE —Q ~
P+ aE + AE oder R — @ ~ P folgt. Analoge SchluBweise ist in um-
gekehrter Richtung moglich.

Miihelos zeigt man weiter, daf

—(=P)~ P (9)
gilt.

Nun ist die Entwicklung so weit fortgeschritten, dal sich die Multi-
plikation AP fiir —oo<A<oo in eindeutiger Weise erklaren laBt. Fiir
A<0 setzt man AP = (— A)(— P).

Von grofler Bedeutung ist nun die Giiltigkeit der distributiven Ge-
setze, welche die Regeln (8) und (9) speziell enthalten. Der Numerierung
gemif lassen wir diese Gesetze an die Stelle der Sydlerschen Sitze
treten, aus welchen sie im wesentlichen hervorgegangen sind. So haben
WIr :

(VII*) Fir beliebige Polyeder P und @ und —oo<<o,ff<<oo gelten die

Glesetze : (8) a(P+Q) ~aP-+aQ ;
(b) x(BP) ~ (xB)P
(¢) aP+ P~ (x+p)P .
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Beweise : (a) und (b) sind fiir «x, = 0 trivial ; die andern Fille er-
ledigt man miihelos mit Beanspruchung der bereits begriindeten Regeln
(8) und (9). (c) ergibt sich zunichst fiir «, 8 = 0 nach (VII), wonach
doch a P + P + AE ~ (x + B)P mit AB=J(P)[(x + p)*— (x*+ B?)]
ist. Alle andern Fille lassen sich mit Anwendung der Regel (8) auf diesen
ersten zuriickfiihren.

4. Eine Zerlegungshasis aller Polyeder
Es bezeichne B die Klasse aller Polyeder P, fiir welche

P %0 (10)

gilt. Nach (VI*) ist 8 nicht leer. Wir denken uns nun diese Polyeder-
menge wohlgeordnet. Die zu P gehorenden Polyeder sollen fortab als
P, angeschrieben werden, wobei » einen Ordnungsindex symbolisiert.
Der Anfang der Wohlordnung sei etwa durch

B, L B, [P [ (1)

gegeben ; hierbei ist /_ das Zeichen fiir die Ordnungsbeziehung.
Wir definieren jetzt : Ein Polyeder P ¢ P heillt vorabhingig, falls eine
Aquivalenzbeziehung

P~ ¥ «,P, (12)

besteht, wobei die Koeffizienten «, in der rechtstehenden Summe fast
alle 12) verschwinden, so daB sich der Ausdruck auf eine endliche Summe
reduziert und sich die Summation nur iiber diejenigen » erstrecken soll,
fiur welche P,/ P gilt.

Es bezeichne jetzt weiter U die Klasse aller nicht vorabhingigen
Polyeder in . Da jedenfalls das erste Polyeder F,, von ‘B nicht vorab-
hingig sein kann, ist A nicht leer. Ferner ist A als Teilmenge einer wohl-
geordneten Menge selbst wieder wohlgeordnet beziiglich der gleichen
Ordnungsbeziehung. Die zu A gehérenden Polyeder sollen fortab als A4,
bezeichnet werden, wobei t den Ordnungsindex symbolisiert.

Aus Griinden, welche durch die folgenden Resultate erhellt werden,
nennen wir die 4, auch Basispolyeder. Die Klasse U aller Basispolyeder
werden wir als Zerlegungsbasis ansprechen. Als wohlgeordnete Menge
beginne sie etwa mit

AfOLAtl[_ArgL"' . (13)

12) Die Bezeichnung ,,fast alle‘ soll hier und im folgenden zur Abkiirzung fiir ,,alle, mit
endlich vielen Ausnahmen‘‘ gebraucht werden.
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Wir zeigen zunichst :

(VIII*) Die Basispolyeder A, sind unabhingig, d. h. aus
Soa,d4; ~0 (—oo <oy <o0)

wober im Ausdruck der linken Seite fast alle «, verschwinden, so daf sich
dieser auf eine endliche Summe reduziert, folgt daff «, = 0 far alle v ist.

Beweis : Es sei im Gegensatz zur Behauptung etwa
n
EocthtvNO, Ocrv#io (’V=l,2,...,'ﬂ).
1

Offenbar mul n = 2 sein, da sich andernfalls fiir das einzige beteiligte
Basispolyeder A ~ O folgern liefe im Widerspruch zur Konstruktion
von U als Teilklasse von P mit Eingangsbedingung (10). Nach den
Rechengesetzen, welche fiir die im vorstehenden Abschnitt entwickelte
lineare Polyederalgebra Geltung haben, 148t sich nunmehr ausrechnen,

n—1

daBl 4;, ~ ¥ A, 4, mit i, = — oy, /x,, gilt. Da die Numerierung so
1

gewdhlt sein soll, dal 4.,/ Az, fir v<p ist, muf} mithin 4, vorab-
héngig sein ; dies steht jedoch im Widerspruch zur Konstruktion.

Ein bedeutungsvoller Sachverhalt, der auch die Bezeichnung Basis-
polyeder rechtfertigt, ist nun folgender :

(IX*) Ein beliebiges Polyeder P geht mit den Basispolyedern 4, eine
und nur eine Aquivalenzrelation

P~ X a4, (— oo <y <o0)

ein, wobei im rechtsstehenden Ausdruck fast alle Koeffizienten o, verschwin-
den, so daf3 sich dieser auf eine endliche Summe reduziert.

Beweis. Wir zeigen zuerst, dall jedenfalls wenigstens eine solche Rela-
tion besteht. In der Tat : Ist P ~ O, so geniigt es «, = 0 fiir alle v zu
setzen. Es sei P %0 und es bestehe keine Aquivalenzrelation der be-
haupteten Art. Allgemeiner sei jetzt S die Teilmenge derjenigen Polyeder
von B, fiir welche eine solche Aquivalenzrelation nicht besteht. Auf
Grund der oben getroffenen Annahme ist also & nicht leer. S ist beziig-
lich der gleichen Ordnungsbeziehung wohlgeordnet; es sei S das erste
Polyeder.
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1. Fall. Essei Se¢WU. Mit 8 = A folgt trivialerweise 4 ~ A4, also
eine Relation der fraglichen Art im Widerspruch zur Konstruktion von &.

2. Fall. Es sei S¢EUA. Es gibt mithin eine Relation § ~ ¥ g, P, mit
P, <8 . Im Hinblick auf die Erklirung von 8§ gibt es fiir jedes in der
obenstehenden Summe vorkommendes F,, eine Relation P, ~ ¥ «¥ 4,.
Hieraus folgert man S ~ ¥ y,4;, wobei y, = ¥ B, «¥ ist. Man be-
achte, daBl alle vorkommenden Summen endlich sind. Somit hat sich
doch fiir S eine gefragte Aquivalenzrelation ergeben, womit erneut ein
Widerspruch erreicht ist. Damit ist dargetan, dal die eingangs formu-
lierte Annahme betreffend das Polyeder P unstatthaft ist; damit ist die
erste Teilbehauptung bewiesen.

Wir haben noch zu zeigen, dafl hochstens eine solche Relation besteht.
InderTat: Essoll P~ ¥ «, A, und auch P~ ¥ B, A, gelten, wobei
sich beide rechtsstehenden Ausdriicke auf endliche Summen reduzieren
sollen. Nach den giiltigen Rechengesetzen folgt hieraus ¥ (x;, —f;) 4, ~0
und nach (VIII*) also «, = f, fiir alle 7. Damit ist auch die zweite
Teilbehauptung bewiesen.

Um die hiermit erzielten Resultate, welche sich auf die Aquivalenz
oder Zerlegungsgleichheit mod. £ mit der formalen Ausdehnung auf ,,ne-
gative“ Polyeder beziehen, in den Bereich der Aquivalenz ~ oder der
gewohnlichen Zerlegungsgleichheit mit nur ,,positiven Polyedern leich-
ter umdeuten zu lénnen, ist es von Vorteil, den letzten Sachverhalt der
dulleren Form nach abzuéindern.

Wir denken uns alle in der Behauptung (IX*) auf der rechten Seite
stehenden Summenden mit negativen Koeffizienten nach Mafigabe der
Regel (8) auf die linke Seite gebracht. Mit passend verédnderter Schreib-
weise hat man jetzt die mit (I1X*) gleichwertige Aussage :

(X*) Hin beliebiges Polyeder P geht mit den Basispolyedern A, eine und
nur eine Aquivalenzrelation der Form

P—{—Eﬂ,A,NEoc,A, (O‘t,ﬂzg(); xy By = 0)

etn, wober sowohl im rechis- als auch im linksstehenden Ausdruck fast alle
Koeffizienten o, und B, verschwinden, so dafy sich diese auf endliche
Summen reduzieren.

Die Bedingung «, 8; = 0 driickt in kurzer Form nur das Erfordernis
aus, daB fiir das namliche v héchstens auf einer Seite ein nichtverschwin-
dender, in unserm Fall also positiver Koeffizient vorkommen kann; nur
unter dieser Bedingung ist natiirlich eine Eindeutigkeit vorhanden.
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b. Der Zerlegungssatz

Mit der Ubertragung von (IX*) in (X*) haben wir den Weg beschritten,
der uns aus dem Bereich der formalen Polyederalgebra wieder zu den
konkret geometrisch deutbaren Zerlegungsbeziehungen zuriickfiihren
soll. Eine letzte Etappe besteht nunmehr darin, den mit (X*) ausgedriick-
ten Sachverhalt nach Riickblick auf die definitorische Beziehung (5) von
der Zerlegungsgleichheit mod.Z auf die gewohnliche Zerlegungsgleich-
heit zu iibertragen. So erzielen wir das eigentliche Hauptergebnis dieser
Arbeit, ndmlich den folgenden

Zerlegungssatz: Ks existiert eine Klasse von Basispolyedern (Zerlegungs-
basis) A, so, daf jedes beliebige Polyeder P zwer Sdtze nicht negativer Koef-
fizienten (&; ;) und (n; ;) unter den Bedingungen &9 =0, x;B;= 0
(fir alle v) eindeutig bestimmt, so daP die Aquivalenz oder Zerlegungs-
gleichheit

P4+nE+ X B, 4, ~EE+ X o 4y

besteht, wobei fast alle Koeffizienten der beiden Sdtze verschwinden, so daf
sich also beide Ausdriicke in der oben stehenden Aquivalenzrelation auf end-
liche Summen reduzieren ; B bezeichnet den Einheitswiirfel.

Die eindeutige Bestimmtheit der Koeffizienten «, und f, ist bereits
mit (X*) gegeben; es mull noch diejenige der Koeffizienten & und # ein-
gesehen werden. Diese ergibt sich denn aus der Inhaltsgleichheit der in
der Relation des Zerlegungssatzes beidseitig stehenden Polyeder, wonach

J(P) =& —n* 4+ X (of — B3) J (4,) (14)

gelten muBl. In Verbindung mit &# = 0 ergeben sich die fraglichen
Koeffizienten eindeutig.

Wir haben nur die Existenz einer derartigen Zerlegungsbasis mit An-
wendung des Wohlordnungssatzes nachgewiesen, ohne iiber ihre Struktur
irgendeinen Aufschlufl geben zu konnen. So ist noch nichts bekannt iiber
die Michtigkeit der Basispolyedermenge. Es ist an und fiir sich wohl
denkbar, daB sie endlich ist und auf irgendeine Weise mit der endlichen
Zahl der wesentlichen Parameter, die ein allgemeines Tetraeder bewe-
gungsinvariant charakterisieren, zusammenhéngt.

Es soll eventuellen spdteren Arbeiten vorbehalten bleiben, auf diese
Probleme nédher einzutreten sowie Folgerungen verschiedener Art aus
dem Zerlegungssatz zu ziehen. Es soll nur vorldufig erwidhnt werden, daf3
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sich beispielsweise ein von J.P.Sydler bewiesener Satz!?) unmittelbar
ablesen 1dft, wonach es eine Schar inhaltsgleicher Polyeder von der
Machtigkeit des Kontinuums so gibt, dall diese paarweise nicht zer-
legungsgleich sind. Es ist dies eine Verschéirfung einer von M.Dehn ge-
machten Aussage4).

AbschlieBend wollen wir durch einen Zusatz eine einfachere Formulie-
rung des Zerlegungssatzes vorschlagen. Hierzu ist erforderlich, daB3 wir
fiir die Zerlegungsgleichheit eine zu (8) addquate Konvention treffen.
Danach sollen die beiden Relationen

P+Q~R<«—> P~R—¢Q (15)
gleichbedeutend sein.

So 148t sich der Zerlegungssatz auf die folgende Form bringen

Zusatz : Jedes Polyeder P bestimmit eindeutig einen Satz positiver oder
negativer Koeffizienten (; y;), so daf die Zerlegungsgleichheit

PNCE”I‘E‘}":A:

besteht, wobei fast alle Koeffizienten des Satzes verschwinden, so daf sich der
oben rechis stehende Ausdruck auf eine endliche Summe reduziert.

Der neue Koeffizientensatz ({ ; y;) bestimmt sich aus denjenigen des
urspriinglichen Zerlegungssatzes nach den Umrechnungsformeln :

P=8—np4+ 3 [o] — B — (0 — B:)°] J(4o) 5 (16)
Yr =0y — Pz .

6. Additive Funktionale

Unter einem additiven Funktional wollen wir im Folgenden ein fiir alle
Polyeder P definiertes Funktional ¢(P) verstehen, welches die drei
nachfolgend aufgefiihrten Eigenschaften hat :

(A) @(P)=¢(@), falls P ~@ ist (bewegungsinvariant);
(B) ¢(P)+ ¢(@) = ¢(P + Q) (additiv) ;
(C) ¢@(AP) ist eine stetige Funktion von A fir 4>0.

Die Gesamtheit aller Losungsfunktionale fiir (A) bis (C) bildet offenbar
eine lineare Mannigfaltigkeit ; sie soll mit 9t bezeichnet werden.

13) Vgl. FuBnote 5).
149) M, Dehn, Math. Ann. 59, 84—88, 1904.
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Eine triviale Losung ist durch den elementaren Inhalt
¢(P) = J(P) (17)

gegeben. Wir vermerken noch zwei zusitzliche Eigenschaften dieses
Funktionals, ndmlich

JE)=1 und J(AP)= B3J(P) . (18)

Fiir die elementare Inhaltstheorie ist es von Interesse, die Frage ab-
zukldaren, ob durch die Forderungen (A) und (B), eventuell durch (A),
(B) und (C) allein der elementare Inhalt im wesentlichen bereits charak-
terisiert ist, das heilt ob sich aus den erwidhnten postulierten Voraus-
setzungen auf

@(P) = cJ(P) (—oo<e <o) (19)

schliefen 148t. Nach dieser an sich plausiblen Annahme wire demnach
I identisch mit der eindimensionalen linearen Mannigfaltigkeit der tri-
vialen Losungen (19). Verf. hat sich lingere Zeit vergeblich darum be-
miiht, einen solchen Nachweis zu erbringen.

Der nunmehr in dieser Arbeit abgeleitete Zerlegungssatz 148t nun aber
leicht erkennen, dafl es im Gegensatz zu der erwéhnten Vermutung nicht
triviale Losungsfunktionale gibt. Er erlaubt sogar, die Mannigfaltigkeit
IN aller Losungen vollstdndig zu beschreiben.

Nach dem Zusatz zum Zerlegungssatz gilt ndmlich fiir ein beliebiges
Polyeder die Aquivalenz P ~(E + X y, A,, wobei die rechts auf-
tretenden Koeffizienten eindeutig durch P bestimmt sind. Fiir ein fest
gewihltes 7 ist somit 9, = y,(P) ein eindeutiges Funktional von P.
Im Hinblick auf die Additions- und Eindeutigkeitssitze [vgl. (VII*) und
(IX*)] ergibt sich, dal3 das Funktional

¢(P) = x:(P) (20)

den drei Forderungen (A), (B) und (C) geniigt. Wir vermerken noch zwej
zuséitzliche Eigenschaften, ndmlich

xe(B) =0 und  y(AP)= Ax(P) . (21)

Jedes 7 gibt Anlafl zur Bildung des Funktionals y,(P). Die ,,Anzahl® der
verschiedenen nach Ansatz (20) gegebenen Losungen ist somit gleich der-
jenigen der Basispolyeder, welche die Zerlegungsbasis enthélt. Da diese
wie frither erortert sicher nicht leer ist, gibt es sicher wenigstens eine
solche Losung.
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Wir behaupten jetzt den folgenden

Funktionalsatz: Ist ¢(P) ein bewegungsinvariantes, additives und
stetiges Polyederfunktional, das also Eigenschaften besitzt, die durch (A),
(B) und (C) naher erklart sind, so gibt es einen eindeutig bestimmten Koeffi-
zientensatz (c; c;) so, daf

@(P) = cd (P) + X ¢; x2(P) (—o0<c, ;<o)

18t. Hierbei bezeichnen J (P) den elementaren Inhalt und y,(P) die durch
Ansatz (20) eingefithrien linearen Funktionale. Fir ein festes Polyeder P
verschwinden die Funktionalwerte y,(P) fir fast alle T, so daf sich der oben
rechts stehende Ausdruck auf eine endliche Summe reduziert. Die nicht tri-
vialen Zusatzfunktionale x,(P) verschwinden fiir den Wiirfel und fiir jedes
mat einem solchen zerlegungsgleichen Polyeder.

Beweis. Wir setzen ausgehend vom Einheitswiirfel E zunéchst
¢(AE) = f(A4). Die Eigenschaften (A) und (B) lassen aus der iiblichen
Zerlegungsmoglichkeit eines Wiirfels in kleinere fiir ganze p,q =1 vor-
erst die Beziehungen f(—ql~) = (—;—)3 f(1) , dann /(—g—) = (—Z—)—)af(l)

q
und endlich im Hinblick auf (C) f(4) = f(1)A® hervorgehen. Setzt man

f(1) = ¢, so hat man
p(AE)=cJ(AL) . (22)

Nun bilden wir ein neues Funktional durch den Ansatz
Y(P) = @(P) —cJ(P) . (23)

Dieses hat offenbar ebenfalls die verlangten Eigenschaften (A), (B) und
(C) und auBlerdem ist wegen (22) ¥W(AE) = 0. Darnach hat man fir
P ~ @ (zerlegungsgleich mod.E) W(P)= Y(Q). Setzt man jetzt
Y(AP)=F(A) fir ein festgewihltes P, so hat man wegen (VII*) (¢) die
Beziehung F(z) + F(y) = F(x + y) und mit erneuter Beanspruchung
von (C) also F(x) = F(l)x, so dal Y (AP) = A Y(P) gilt. — Weiter
ist nach dem Zusatz zum Zerlegungssatz ¥ (P) = ¥ y, ¥ (4;). Nun ist
nach (20) y, = y;(P) und wenn noch ¥ (4,;) = c, gesetzt wird, er-
reicht man

Y(P)= X ¢ x:(P) . (24)
Nach Riickblick auf (23) folgt so
¢(P) =cJ(P)+ X ¢; 2:(P) . (25)
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Damit ist der wesentliche Teil der Behauptung des Funktionalsatzes be-
wiesen. Die iibrigen erginzenden Aussagen ergeben sich aus der Beweis-
konstruktion, aus (21) und aus dem genannten Wortlaut des Zusatzes.

7. Notwendige und hinreichende Bedingungen fiir Zerlegungsgleichheit

Der im vorstehenden Abschnitt bewiesene Funktionalsatz gibt eine
vollstéindige Charakterisierung der Mannigfaltigkeit 9t der Losungs-
funktionale zu den Bedingungen (A), (B) und (C).

Es zeigt sich nun, dafl genau die Funktionale dieser Mannigfaltigkeit
fiir die Zerlegungsgleichheit zweier Polyeder von entscheidender Bedeu-
tung sind. Wir formulieren das folgende

Kriterium : Notwendig und hinreichend dafiir, daf die beiden Polyeder P
und @ dquivalent oder zerlegungsgleich sind, ist das ssmultane Bestehen der
folgenden Relationen :

(@) J(P)=J(@); (b) x:(P)= 2@  fiiralle.

Beweis. Die Notwendigkeit ergibt sich leicht aus der Tatsache, daf3
die im Kriterium genannten Funktionale bewegungsinvariant und addi-
tiv sind. Das Hinreichen ergibt sich so : Wegen den Gleichheiten (b) haben
P und @ iibereinstimmende Koeffizienten y, gemiBl Zusatz zum Zer-
legungssatz. Wegen der Gleichheit (a) sind auch die Koeffizienten {
gleich. Im Zerlegungssatz weisen somit die beiden Polyeder P und @
identische Koeffizientensdtze (¢;x,;) und (7; ;) auf. So schlieffit man
zunichst auf

P+"7E+2I3tAr~Q+"7E+EﬂtAr

und sodann nach (IV) auf P ~ @, was zu zeigen war.

(Eingegangen den 17. August 1949.)
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