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I gruppi con elementi multipli distinti
dalle cuspidi nelle serie algebriche sulle curve
| razionali cuspidate

Di AmBrocio LongHi, Lugano

Sopra una curva di genere p, il numero, finito sotto certe ipotesi, dei
gruppi di una serie lineare, o pill in generale di una serie algebrica costi-
tuita da gruppi equivalenti, con punti di date multiplicita, & espresso
dalla formula di De Jonquiéres!). Questa riesce tuttavia inadeguata alla
risoluzione di molti problemi numerativi, benché attinenti ai gruppi
predetti, appena la curva sostegno possegga delle cuspidi : essendo finora
rimasta insoluta la questione di precisare quanti fra i gruppi con le sin-
golarita assegnate vengano assorbiti dalla totalitd di quelli includenti
ciascuno almeno una cuspide.

Nel presente lavoro risolvo appunto tale questione limitatamente al
caso p = 0, riserbando al altro studio?) alcune importanti applicazioni
della formula che qui si stabilisce.

1. Prescindendo da ogni particolare modello proiettivo, il teorema
che si intende dimostrare pud cosi enunciarsi :

Sopra un ente razionale Q2, semplicemente infinito e irriducibile, abbias
una serie algebrica y, di gruppt di elementi: d’ordine n, di dimensione
r<n e dindice v = 1.

S supponga 2 dotato, genericamente, dv ¢ elements K, (1 =1,2,..., p)
singolari cuspidali per la serie y, , cioé aventi ciascuno per essa gli r carat-
ters 2,1,1,...,1, nel senso che ogni elemento K, sia doppio per uno gene-

1) E. De Jonquiéres, Mémoire sur les contacts multiples d’ordre quelconque...
(Journal fiir Math., 66, 1866). Cfr. pure: F. Severi, Trattato di geometria algebrica,
Vol. I, Parte I (Bologna 1926), p. 243; R. Torelli, Dimostrazione di una formula di
De Jonquiéres e suo significato geometrico (Rendiconti del Circolo Matematico di
Palermo, 21, 1906) e Sui sistemi algebrici di curve appartenenti ad una super-
ficie algebrica (Atti della Accademia di Torino, 42, 1907), n. 1, ultima nota.

%) Vedasi, in questi stessi Commentarii: A. Longhi, Sulle sviluppabili osculatrici
delle curve razionali iperspaziali.
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rico degli oo™~ grupps di y,, che lo contengono ; triplo per oo"~2 gruppi di
Vns« - -, T-uplo per oo' gruppi e (r + 1)-uplo per v gruppi di ;.
S¢ considerino poi t numeri interi positivi vy, v,,...,v,, con 1 <t
=n —r, tal che:
vw+ve+-oo4v,=1r,

e riducentist a v distinti in quanto che x, dv esst sono equali fra di loro ma
diversi dar rimaments t — o, (t=1,2,...,7; v <t).

Esiste allora su 2, in generale, un numero finito y di gruppt della serie
Ya QUenti ciascuno®) t elementi rispettivamente multipli3) secondo v; + 1
(9=1,2,...,t) etutts distinti dagli elementi singolari E, (1 =1,2,..., o).

Tale numero é dato dalla formula?*) :

v ¢ n—r—ky m—r—op
= ' (t— k)1 k!s , (1
X ool L og! ,,)_:o( ) k( t—k )( k ) M

ove 8 =1 eds, (k=1,2,...,t) denota la somma det prodott a k a k de:
t numers (distinti o no) vy, v,,...,7,.

2. Se p =0 la (1) diviene 'ordinaria formula di De Jonquiéres (per
un ente razionale) poiché il secondo membro riducesi a :

¢!

ool o

! (vl+1><v2+1)...(vt+1)v(”;“’) .

La (1) & pure vera se p>0 ed r=1 (onde t=7=1 e &, = v,
= 1), fornendo, sull’ente razionale £, il ben noto numero :

2y(n —1)—vp

dei gruppi di una serie algebrica oo!, d’ordine n e d’indice », dotati di
un elemento doppio distinto dai ¢ elementi singolari E,.

Per dimostrare la formula (1) si pud dunque supporre ¢>0 ed am-
metterne la validitd per le serie algebriche di dimensione inferiore ad r :
provando poi che essa vale anche per le serie di dimensione 7.

La sommatoria figurante nella (1) si indichera formalmente, per bre-
vita, col simbolo :

(M, 7, 0; V15 Vaye ooy V] -

8) Sottindendasi: almeno e in generale precisamente.
4) 8i veggano piu innanzi due altre formule equivalenti alla (1), cio® le (12) e (14).
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Fra i ¢ numeri v, sia allora »,, non superiore a tutti gli altri, e quelli
eguali a »,, siano in numero di «, (= 1).

Si supponga dapprima »,>1.

Sull’ente £2, dato un generico elemento H , tutti i gruppi di y, passanti
per H formano, privati dell’elemento stesso, una serie algebrica y:—1 col
medesimo indice » della y, ; e siccome é:

'”1—}_”2"‘""'4’"@;—-1—}"(’u'm"w 1)+’Vm+1+'-'—+-1’t:7'—— 1, (2)

con?d):
I<t<(n—1)—(r—-1),

la y:~] possiede un numero finito »’ di gruppi dotati ciascuno di certi
t —1 elementi H; multipli secondo » 4+ 1 (j=1,2,...,m —1,
m—+ 1,...,t) e distinti dai ¢ elementi singolari £,, nonche di un ele-
mento H’, esso pure distinto dagli B, (i =1, 2,..., ), multiplo se-
condo v,,.

Fra i t addendi del primo membro della (2), quelli eguali a »,, sono in
numero di «, — 1; mentre 'addendo v, — 1 differisce da tutti gli
altri, giacché », >, >v, — 1.

Si conclude allora, in base al’ammessa validita della (1) per le serie di
dimensione minore di r, che:

/ 4

n:‘

“1!. .. “’1,_..1! (“F' - l)!“}"‘f'l!' o “1! l!

[n— 1,7 — 1,05 v1,%, e sPmag s Vm— 1, Vi, oo e ] -

La corrispondenza algebrica W fra H e H' ha pertanto il secondo in-
dice eguale ad 7'.

Fissato ora, in modo generico, ’elemento H', i gruppi della serie y,,
che lo contengono come multiplo secondo »,, riempiono, toltone tale ele-
mento multiplo, una serie algebrica y;—}™ pure di indice » ; essendo poi :

Mttt Y T V=T — Yy, (3)
e’):
1<t —1<(n—v,) — (r—7,) ,

entro y, ;™ esiste un numero finito ¢ di gruppi aventi ciascuno ¢ — 1
elementi H, multiplisecondo », 4+ 1 (j=1,2,.... m —1,m+1,...,1%)
e distinti dagli elementi singolari E,, coi restanti :

—

5) Si suppone ¢> 1: se fosse ¢ = 1 il ragionamento subirebbe lievi e ovvie varianti.
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n—Vpy— W+ F Vgt et Fr+t—1)=n—r—t41

elementi tutti semplici ; uno qualunque H dei quali risulta cosi omologo
di H' nella corrispondenza W-1.

Dall’ipotesi che la (1) valga per le serie di dimensione inferiore ad r,
si deduce, osservando pure che nel primo membro della (3) sono «, — 1
i termini eguali a v, :

v

9 = X
ol opy N — Doty og!

[7— Y — V05 V1%, ooy Vi Vinbrs o -0 Vi)

Il primo indice della corrispondenza W fra H e H' & percio :
n=m—7r—t+1)9% .

3. Come risulta dal n. 2, quando H e H’ si corrispondono generica-
mente in W, esistono ¢ — 1 elementi H; (j=1,2,...,m — 1, m + 1,
..., t) diversi dai p elementi singolari ¥, e tali che il gruppo :

Gu=H+v,H + v+ 1V)H 4+ vy + 1) H,
+ Omas+ 1) Hpy 4+ 0+ D) H, @)

appartenga (come gruppo totale o parziale) alla serie y,,.
Se H ed H’ coincidono in un elemento unito U di W, il gruppo G,,,
espresso dalla (4) diviene :

o’-+t5(”m+ D+ n+1VH -+ (py + 1) H,y
+(7’m+1+ I)Hm-n 4.+, +1)H, .

Supposto allora U # E;, (1 =1,2,...,p), il gruppo G, della serie
¥» che, per definizione della corrispondenza W, include @, , (se t<n — 7)
o si identifica con @},, (se ¢ =mn — r), & precisamente uno dei gruppi
(coi t elementi di molteplicita assegnate) di cui si cerca il numero X : ed U
¢, entro G, , uno degli «, elementi multipli secondo 7, + 1.

Sia invece, ad esempio, U = E,; ciod il gruppo @, ,, e quindi il G,
di y,, contenga ’elemento singolare E, con la molteplicitd »,, + 1.
¥ Sisa (n.1) che E, & (v,,+ 1)-uplo per co"*™ gruppi della ¥ : i loro re-
sidui rispetto a (v,,4- 1) B, costituiscono una serie algebrica y;,~%™ _,, d’in-
dice », per la quale sono singolari (n.1)i ¢ — 1 elementi E,, E,,..., E o
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Tenendo allora presente la (3), ove «
sono eguali a »,,; osservando che:

x— 1 termini del primo membro

lst"'lg(n'—"vm'—‘l)”—(r*vm) ’

e applicando il teorema espresso dalla (1) alla serie y,’™ _,, di

dimensione minore di r, si conclude che questa serie possiede un numero
finito 4 di gruppi dotati ciascuno di ¢ — 1 elementi H; non singolari e
multipli secondo »; +1 (j=1,2,...,.m —1,m+1,...,¢), con:

14
A= X
“1!- ) “H'_l! (““ - 1)! “,‘(’+1!. .. “1!

[ — v — 1, r — w0 — 15 ¥, ooy Vg Vias - - -5 ¥e ]

E percio 4 anche il numero dei gruppi &, ,, sopra considerati, ove
U=E,.

Da quanto precede si desume che nel gruppo delle 5 + 7’ coincidenze
della corrispondenza W(yn, n’) ciascuno dei p elementi singolari di Q ne
assorbe 4, mentre le restanti sono in numero di «, X e tutte semplici.
Si ha pertanto :

n+n=0x,X+12 . (5)
4. Avuto riguardo al significato del simbolo :
[, 7, 0591, Vase oo, Ve

introdotto nel n. 2, mediante il quale si esprimono, nel modo gia preci-
sato, #, n, n’ e 4, si trova con facile calcolo che :

1

—(n—4g) =
L 1A ®)
v It n—r—k—1\ (m—r—p
= t—k—1)!(k 1!3’( )( )
ol oyl . ot ,EO( AR ALY R k41
ove sp=1 es; (k=1,2,...,t—1) indica la somma dei prodotti a

kakdei t—1 numeriv, ¢ =1,2,....m —1,m+1,...,1).
E poi:

A= Y é(t_.k)zk!s',g("""“k) (”“7"9), (7)

(x,;, al!“al...“z! k=0 t"‘k k




con 8y =1 ed &, (k=1,2,...,t) eguale alla somma dei prodotti a k
a k dei ¢t numeri:

Vis Voo~ =5 Vigetts Yo = L; Py qpe =3 Vg o

Richiamando il significato di s, (n.1) e ponendo s’ ; = 0, si puo

scrivere : ” ,
S = 8 — 81

per k=0,1,...,t; ed allora dalle (5), (6) e (7) si deduce infine :

X = v 'é(t—-k)zk!sk(”“"“k) ("“”_9); (8)
+ k=0

PR S t —k k

formola che confrontata con la (1) dimostra il teorema (nell’ipotesi
V> 1).

5. Sia ora », = 1. La corrispondenza W fra gli elementi H e H'
(n. 2) diviene simmetrica di indici #,, con:

m=m—r—=t+4+1)9, ,

essendo ¢, 'espressione & (n. 2) ove v, =

Le sue coincidenze hanno luogo: in ciascuno degli «, elementi doppi
dei gruppi, della serie y;, di cui si ricerca il numero X ; e nei p elementi
singolari di £, ognuno dei quali ne assorbe un numero eguale al valore
A, di 4 (n.3) per », = 1.

Si ha dunque :

2"71:0‘,;.X+}~19 . (9)
Ma si trova (cfr. n. 4) che, posto s; = 0 e conservando al simbolo
si(k=—1,0,1,...,¢t —1) il significato del n. 4, &:
1 v : n—r—k\ (mn—r—p
L= ho) = t——-k!k!s’_( )( )
O Cn 10) oyttt 0! kz=o( ) I\ t—k k ‘
(10)
e:
1 v L n—r—k\ m—r—p
L= t-lc!k!s'( )( ) 11
g 1L al!agl...a,!,fgo( AR WP k (1)

Sommando le (10) e (11), e notando che (per l'ipotesi », = 1) &:
8;: + 8;:—1 = 8 »
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risulta, in base alla (9), la formula (8); e il teorema del n. 1 riesce cosi
interamente dimostrato.

6. Non ¢& forse superfluo avvertire che applicando la formula (1) si
deve ritenerg (’5) =1 anche quando l'intero 2 & negativo o nullo, e

(”:): 0 solo se 0 < h<k; mentre se h<0 si puo porre:

(5=,

La formula (1), relativa al teorema del n. 1, é equivalente all’altra :

n—r— k) (g+ r—n-+k— 1)
k b

Ne deriva che:

v

k=0

PR 7% DU, 28 R t—k
(12)
preferibile alla (1) quando o>n — r.

7. Si dimostra facilmente, per induzione, ’eguaglianza :

(T =2eu (") w

che permette una nuova interessante modificazione della formula (1).
Eseguendo infatti nella (1) la sostituzione (13) si riconosce, dopo al-
cune ovvie trasformazioni, che:

Il numero y, oggetto del teorema del n. 1, oltre che con le formule (1) e
(12), st pud ancora esprimere con la formula ad esse equivalente :

y = d 'é(—l)i(t——i)!i!(n—_r;—i) (Q)i(k)sk

061!062!...0&1.,;=0 {— v/ k=i \ ?
(14)

8. Notevole ¢ il caso in cui i £ numeri »; (n. 1) sono eguali fra di loro,
e quindi ad r:¢. Si ha allora 7 =1, &, =1¢ e inoltre:

£ (=20 (6= (676
UG

onde sostituendo nella (14) risulta il teorema particolare :
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Se t ¢ divisore dv r (con 1 <t < r), sopra un ente razionale ocol, irri-
ducibile e dotato, in modo generico, di o elementi singolars cuspidali (n.1),
una serie algebrica y, di dimensione r, di ordine n >r -4t e d’indice
v > 1, possiede in generale un numero finvto di gruppi contenenti crascuno t

elementt tutlti con la multiplicita —% + 1 e dustinte dai o elements cuspidali.

Tale numero é precisamente eguale a :

5 () ) ) )

(Regu le 17 mai 1949.)

203



	I gruppi con elementi multipli distinti dalle cuspidi nelle serie algebriche sulle curve razionali cuspidate.

