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Finslersche Râume
mit der Grundfunktion L j

Von Arthur Moor (Szeged)

§ 1. Der Hauptskalar
L. Berwald fùhrte in die Théorie der Finslerschen Râume die grund-

legende Funktion, Hauptskalar genannt :

J(x,y,x,y)- [
ein1), wo

L L(x,y,x,y) (la)

die Fundamentalfunktion des Finslerschen Raumes, und

1
y2 dx2 xy dx dy x2 dy2

bedeutet.
Im folgenden werden wir Finslersche Râume untersuchen, deren

Grundfunktion die Form :

L 7
¦ «

/= jj>*(*, y) **-*£* (2 a)

9=nZh(x,y)ùn-k-lyk (2 b)
k=Q

hat. Diejenigen Finslerschen Râume, in denen im Ausdruck von L ein
homogènes Polynom von x, y vorkommt, hat zuerst Herr J. Wegener
untersucht und auf Grund ihrer Invarianten klassifiziert. Er wâhlte als
Grundfunktion 3

L=\ Zatio-Xy".*) (3)
y k=o

*) Vgl. [1] und [3]. Literaturverzeiehnis am Ende. 2) Vgl. [5].
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Fur die Râume mit der Grundfunktion (2) ist :

v - 1

1 ~ y*

xy
- fi9j9 -

X*

also F1 hat die Form :

wo A die Funktion :

A â

ZJ. {9iifg
xy

bedeutet. Es ist also

(5)

+ ix9y9 + fy9i9 - 2/flfiJt;)fy9i9 2/flfiJt;)

J(x,y,x,y) =~
1

§ 2. Besondere Fâlle

Wir werden jetzt spezielle Fâlle untersuchen :

I. n 2

(6a)

fifi /a; /y -/ A-X

Es ist

gibt

jetzt
4 • 2 i

g=box + 1

A= 2(ao&î-

2axxy
h y

fiir J die Gleichung :

J(x,y,x 9 y)

+ ^y2

bx + a26o) konst.

fih
•

(7)

(8)
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Die Funktion
fififi 61 «i — boat) y

ist eine Kovariante der Formen /, g, nâmlich die Funktionaldetermi-
nante3).

Durch J 0 sind die Riemannschen Râume charakterisiert4), bei
denen also der MaBtensor gik allein von x, y abhângt. Aus (8) be-
kommt man ftir J die Bedingung :

2CX

Anmerkung. Die Gleichung

0

ist immer erfûllt. Besteht die Gleichung

,4 0
so bekommt man

und das Bogenelement wird

dann ist J unbestimmt. J — 5)

Aus der Gleichung (10) folgt

a0 bx — ax 60 0

h ai — bo a2 0
oder

(10)

(H)

also

al, b0 /? • 6X

8) Vgl. [4]. «) Vgl. [2].
6) Dieser Fall tritt nur dann ein, wenn Fx 0 und somit L die Fonn

hat.
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Es wird aber auch in diesem Falle -4 0, J ist also wieder unbestimmt.
Es wird jetzt

Die Grundfunktion wird also

^(V^x+V^y) ¦ (12)

Das Bogenelement ist infolgedessen vom selben Typ wie bei (lia).
Wir werden nun die durch J konst. charakterisierten Ràume, die

sogenannten affinzusammenhângenden Raume, untersuchen6).
Nach (8) und (9) ist dazu notwendig und hinreichend (es ist nâmlich

wie schon erwàhnt wurde, A konst.), daB

/* BCX | B konst. |

sei, also

f &Cl (13)

Aus (13) bekommt man wegen (9) :

(ao61-a16o)« -^-ao (14 a)

(«o h - «h 60) (6t Oj - b0 a2) -^ ox (14b)

(ax 6X - 60 «2)a -gj- a2 (14 c)

Nach den Gleichungen (14) besteht die Identitât :

ai Vaoa2. •

Setzt man den Wert von (15) in (14a), (14b) und (14c) ein, so bekommt
man aus diesen Gleichungen die einzige Identitât :

l/^"61-l/^&o ^-1 • (16)

•) Vgl. [l], §4.
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Die Form der Grundfunktion ist denrnach :

L

M + Z- y

Es ist also nach (7) und (16) unter Beachtung von (15) A 2 jB~2, das
heiBt nach (8) „

J
2VI

II. n 3

Es ist in diesem Falle :

/ aoz* + 3at x2 y + 3a2 x y2 + a3 y3

gr =6^2 + 26!^^ + 62y2

.4 (6a2 6^ — 2a0 b0 62 — 12ax 6G bx + 8a0 6?) i3 + (19)

+ (6a3 6J + 12a0 bt b2 - 18^ 60 62) i2y +
+ (- 18a2 60 b2 + 12a3 b0 bt + 6a0 b\) xy2 +
+ (- 12a2 bx b2 + 8a3 6? - 2a3 60 62 + 6ax 62) ^3

Die Einteilung der Formen dritter Ordnung kônnen wir mit Hilfe der
Hessesehen Kovariante A und der Diskriminante R ausfûhren. Es ist

A \ {/i i fi y - f£-y} K«2 - «i) i2 + K«3 - «io») i y + K«3-«2) y2

JR 4(a0a2 — oj) (axa3 — a|) — (a0a3 — a^a)2

1. A 0

Verschwinden die Koeffizienten von A identisch, so ist auch R 0

und / hat die Form :

/ (C0i + C^)3. (20)

2. R 0 A # 0

In diesem Falle hat / einen zweifachen Faktor :

3. R ^ 0 A ^ 0

Dies ist der allgemeinste Fall ; / hat drei verschiedene Faktoren :

/ (aox + axy) (cox + cxy) (dox + dxy) 7) (22)

7) Vgl. [4].
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Der Fall 1. Wâhlen wir fur Parameterlinien x — konst., y konst.
die Nullinien von / und g. Es muB angenommen werden, da8 einer der
Faktoren von g von denjenigen des / verschieden ist, widrigenfalls be-

kommt man eine Riemannsche Géométrie (z.B. Gl.(12)).
Es reduziert sich also L wegen der Wahl der Parameterlinien auf :

L J= 2b1x°y+b2y* ' (23)

Nach (19) und (23) bekommt man

A 8ao6*i3 + \2a0bxb2x2y + 6aob22iy2 (24)
und

% fi xy + Gbty^ (24a)

Der Hauptskalar ist in diesem Falle nach (6)

Es ist J konst. fur b1 0 oder b2 0. bx 0 gibt fur J den Wert

Der Fall 62 0 ist nach (23) von demselben Typ wie (17). J hat den in
der Gleichung (18) gegebenen Wert.

Der Fall 2. In diesem Falle wâhlen wir fur Parameterlinien x konst.

y — konst. die Nullinien von / (Gleichung 21). Dann wird a0 az 0.
Wegen R — 0 bekommt man a2 0, also fur die Grundfunktion die
Gleichung

3ax^

(Aus B 0 kônnte man auch auf ax 0 schlieBen, aber das gibt den-
selben Typ wie a2 0.) Es ist nach (19) :

A — I2at b0 bx x3 — lSa1 b0 b2x* y + 6ax b\ y*

Der Hauptskalar wird

bl - ib2ob2)x*y + Zb^b^y* + 560&îify8 - bz2y5} (26)
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Ist 60 bx 0, dann ist (25) identisch mit (17) und (26) geht in (18)
ûber. In diesem Falle ist also J — konst.

In anderen Fâllen ist J eine verânderliche.
Es sei noch bemerkt : wenn die Grundfunktion die Form :

hat, oder auf dièse Form transformierbar ist, dann ist der Hauptskalar
eine Konstante. Es ist

J= 2/n~1 (28)

((28) gibt natiirlich fur n 2, 3 fur J die in (18) und (24b) gegebenen
Werte.)

§ 3. Der Kriiminungsskalar

Den Krûmmungsskalar 8) werden wir nur fur die Grundfunktion (27)
berechnen. Es ist ganz allgemein :

'V'*>V)- &\t\dxdp dydx)y î\dxdy dydx )X

wo
BL I &L 32L\1

(3Oa)

BL BL\ BLIB^L 3*L\\ ..._,,X + )[)\- <3° b)

Hat die Grundfunktion die Form (27), so bekommt man nach den

Gleiehungen (30a) und (30 b)

1 d a .9 1 d a #2
7 ^~ AOff -y-n — ldy B b

8) Vgl. [1].
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Der Kriimmungsskalar wird nach (29)

at • -\ l b2 d*
î a

Hat die Funktion log -j- die Form :

log-J-=«(*) + /? (y),

so wird 51 0 und (27) bestimmt (wegen J konst.) eine Minkowski-
sche Géométrie 9).

(Eingegangen den 3. April 1949.)
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