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Finslersche Riume

mit der Grundfunktion L=,

4

Von ARTHUR MOOR (Szeged)

§ 1. Der Hauptskalar

L. Berwald fiihrte in die Theorie der Finslerschen Rdume die grund-
legende Funktion, Hauptskalar genannt :

1 (aL oF, oL aﬁ;)
1 a..a'_al'a!
WY AR T

Jx,y,z,y) = (1)

einl), wo
L=Lx,y,z,y) (La)

die Fundamentalfunktion des Finslerschen Raumes, und

F___1_82L____ 1 L 1 L
17 ewr Ty oxoy  x* 0y

(1b)

bedeutet.
Im folgenden werden wir Finslersche Rdume untersuchen, deren
Grundfunktion die Form :

f
L=1

a @)
f = é‘oak(m,y) in gk (2a)
g= 3 by(z,y) 4k gk 2h)

k

I
=

hat. Diejenigen Finslerschen Rdume, in denen im Ausdruck von L ein
homogenes Polynom von z,y vorkommt, hat zuerst Herr J. Wegener
untersucht und auf Grund ihrer Invarianten klassifiziert. Er wéhlte als
Grundfunktion

3
3
L=]|/ Saa *g*. 2 3)
k=0
1) Vgl. [1] und [3]. Literaturverzeichnis am Ende. 2) Vgl. [5].
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Fiir die Rdume mit der Grundfunktion (2) ist:

2
1 (39" —9::09 —2f:9:9+ 29;f

F = = s _
1 9 —9s09 —1:9;9 —1;9:9 + 29:9;1
zy g° N
2
L ofos 8 —9,,19 —2f,9,9 + 29,1
also ¥, hat die Form :
A

wo A die Funktion :

1
A= (hif — 0i:f9 — 2fi0:9 + 29;1) =
1
=57 Witg — L@ + 2059 + 13059 — 2/9;9;) =
1
=§;(f5592*gggfg—2f,;95,9+293f) (58)

bedeutet. Es ist also

. . 1 f. f. f. f. g. g. }
J(@x,y,2,y) = ———p TV 34| TV — # oY . (6
(#,9,2,9) 4f%A%{gA:aA;, 0: g fAéA& (6)
§ 2. Besondere Fille

Wir werden jetzt spezielle Fille untersuchen :
I. n=2.
Es ist jetzt

f=a,22 4+ 2a, 29 + a,y?

g="byx + by

A = 2(aybh? — 2a,b,b, + a,b%) = konst. (7)

(6) gibt fiir J die Gleichung :

-3
. . A o fe
T = = 45|

929y )
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Die Funktion
C,=1% f% f&.
z%y

ist eine Kovariante der Formen f, ¢, nidmlich die Funktionaldetermi-
nante 3).

Durch J = 0 sind die Riemannschen Rdume charakterisiert ), bei
denen also der MaBtensor g,, allein von x, y abhéngt. Aus (8) be-
kommt man fiir J die Bedingung :
faf;
9:9y

= (@9 b, — a, by) z + (b, @, — by a'a)?} (9)

20, = =0 . (10)

Anmerkung. Die Gleichung

A2 4 20,2y + a, = ,f_“_o_:;:_*_ 24, _ G, g 0o + b9 |+
b, b, b2
1 .
0

ist immer erfiillt. Besteht die Gleichung

A=0
so bekommt man

G0 + 20,59 + g = |20 4 (29 _ %b) e i 1k g
bo bo bo

und das Bogenelement wird

a, . 2a ayb, \ .
L=.53_x+(b0‘ — Zgl)y (11a)
dann ist J unbestimmt. J = —g~ . 9 ‘

Aus der Gleichung (10) folgt

oder
b, %
b, a a, - Qqy
also p
@y, = a2, b, = 352’— b,
%) Vgl. [4]. 4) Vgl. [2].

%) Dieser Fall tritt nur dann ein, wenn F;, = 0 und somit L die Form

L=ayz +ay (o;=a4,y))
hat.
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Es wird aber auch in diesem Falle 4 = 0, J ist also wieder unbestimmt.
Es wird jetzt

f= WVani +Vari)
o=t (|[2i+9) = = (Vai+vai) -

Die Grundfunktion wird also

L=Y (Vagi 4 Varg) - a2

Das Bogenelement ist infolgedessen vom selben Typ wie bei (11a).

Wir werden nun die durch J = konst. charakterisierten Riaume, die
sogenannten affinzusammenhéngenden Rdume, untersuchen ¢).

Nach (8) und (9) ist dazu notwendig und hinreichend (es ist némlich
wie schon erwdhnt wurde, A = konst.), daB3

# = Bo, | B = konst. |
sei, also
f=BC. (13)

Aus (13) bekommt man wegen (9):

1

(@ by — a, by)? = Tgé““o (14 a)
1

(@ by — a, by) (b, @, — byay) = B a, (14b)
0 1

(@, b, — bya,)® = B % - (14c¢)

Nach den Gleichungen (14) besteht die Identitét :

a, = Vaya, . (15)

Setzt man den Wert von (15) in (14a), (14b) und (14¢) ein, so bekommt
man aus diesen Gleichungen die einzige Identitét :

V“Tbl — Va; by = B-1 . (16)

%) Vgl [1], § 4.
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Die Form der Grundfunktion ist demnach :

I ““o‘i’ -+ 'a'z?./)2 (Co“}+01?./)2
== — = Py . . (17)
bd + B! 4 Va, boz. dox + d,y
0 VZI,—O J

Es ist also nach (7) und (16) unter Beachtung von (15) A = 2 B-%, das
heifit nach (8) 3

J = — — | 18
573 (18)
II. »n=3.

Es ist in diesem Falle:
f =a,2®+ 3a, 22y + 3a,x 9% + a, 93
= by 2% + 2b, zy + b, y?
A = (6a, b2 — 2a,b,b, — 12a, b, b, + 8a, b2) x* + (19)
+ (Bag b2 + 12a, b, b, — 18a, by b,) 2%y +
+ (— 18ay by b, + 12a, by b, + 6a, b2) z 4% +
+ (— 12a, b, b, + 8ay b2 — 2a, by b, + 6a, b2) 3 .

Die Einteilung der Formen dritter Ordnung konnen wir mit Hilfe der
Hesseschen Kovariante 4 und der Diskriminante R ausfithren. Es ist

Az%}'{fééf&,}"féz&}:(aoaz_af) éz'i“(aoaa“‘alaz)‘if'/‘i"(%aa—ag)?./e
R = 4(a,a, — ai) (@ya0; — a}) — (@ga; — a,a5)* .
1. A=0.

!

Verschwinden die Koeffizienten von 4 identisch, so ist auch R = 0
und f hat die Form:

f=(Coz + Cyy)*. (20)
2. R=0,A#0.
In diesem Falle hat f einen zweifachen Faktor :
= (@& + a;9)2(Co% + ¢, Y) - (21)
3. R#0,A#0.

Dies ist der allgemeinste Fall; f hat drei verschiedene Faktoren :

f= (a2 4 a,9) (cox + ¢,9) (doz + dy7) 7) . (22)

7) Vgl. [4].
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Der Fall 1. Wiahlen wir fiir Parameterlinien x = konst., ¥ = konst.
die Nullinien von f und g. Es mufl angenommen werden, daBl einer der
Faktoren von g von denjenigen des f verschieden ist, widrigenfalls be-
kommt man eine Riemannsche Geometrie (z.B. Gl.(12)).

Es reduziert sich also L wegen der Wahl der Parameterlinien auf :

a, 3

_f_
L= g 2bjzy 4 by (23)

Nach (19) und (23) bekommt man

A = 8ayb®x3 + 12a,b,b, 22y -+ 64, b2 x y? (24)
und

A% — g (86242 + 12b,b,2 3 + 682 90)F (24a)
Der Hauptskalar ist in diesem Falle nach (6)

(byz + byy) (807 a2 4 10b,b,xy + 5559

J= —3 ; — T
(8b2x® + 12b, b,z y + 62 y2)°e

Esist J = konst. fiir b, = 0 oder b, = 0. b, = 0 gibt fiir J den Wert

5
J=— ETA (24 b)
Der Fall b, = 0 ist nach (23) von demselben Typ wie (17). J hat den in
der Gleichung (18) gegebenen Wert.

Der Fall 2. In diesem Falle wihlen wir fiir Parameterlinien x = konst.

y = konst. die Nullinien von f (Gleichung 21). Dann wird @y = a, = 0.

Wegen R = 0 bekommt man a, = 0, also fiir die Grundfunktion die
Gleichung b
I — 3a, 2%y

bo®* + 2b, 2y + by y*

(25)
(Aus R = 0 konnte man auch auf a, = 0 schlielen, aber das gibt den-
selben Typ wie a, = 0.) Es ist nach (19):

A= —12a,b,b, 23 — 18a, by b, 2% y + 6a, b% 4 .
Der Hauptskalar wird

Sy T H (2000 — Bbobty + B (- B30 o+

+ (2bob] — 4b5by) ty + 3bybiby ¥y + 5bybiaty® — Byt . (26)
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Ist by = b, = 0, dann ist (25) identisch mit (17) und (26) geht in (18)
tiber. In diesem Falle ist also J = konst.

In anderen Fillen ist J eine verdnderliche.

Es sei noch bemerkt: wenn die Grundfunktion die Form :

ag®

hat, oder auf diese Form transformierbar ist, dann ist der Hauptskalar

eine Konstante. Es ist
2n — 1
J = — . 28
2Vu(n — 1) (28)

((28) gibt natiirlich fir » = 2, 3 fiir J die in (18) und (24b) gegebenen
Werte.)

§ 3. Der Kriimmungsskalar

Den Kriimmungsskalar 8) werden wir nur fiir die Grundfunktion (27)
berechnen. Es ist ganz allgemein :

C o 1 a2(p az(p . az'lp 321/) .
Kz,y,r,y) = 12 {%(axay —' ayag{;)y —%(61:83'/_ ayaab)x+
Ry 2y ¢
+%(ax2 + axay)"’Jr%(axay T )"’—
op atp oy 2

Ay e

1 . oL [ 2L 2L
¢=—~———LF1{M( 5 %)+ o (seay ~oges)) O

1 oL .3L\ oL (&L  ®L\| .
=IF, {-”F( oz Y ay)“ % (aa'cay“ agax)}' (30 b)

wo

Hat die Grundfunktion die Form (27), so bekommt man nach den
Gleichungen (30a) und (30b)

Y=oz BB Y= T =10y

log -g—z’ﬂ

8) Vgl [1].
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Der Krimmungsskalar wird nach (29)

.. 1 b2 o2 a g2l
R(x,?/a-’”,?/)“—ng'—a;-a—g o mEeT

Hat die Funktion log —g— die Form:

a

log - = a(2) + A(9)

so wird & = 0 und (27) bestimmt (wegen J = konst.) eine Minkowski-
sche Geometrie ?).

(Eingegangen den 3. April 1949.)
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