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The Foundations of Minkowskian Geometry

By HErBERT BUseMANN, Los Angeles (Californien, U.S. A.)

The exploration of Minkowski (or finite dimensional Banach) spaces is
a necessary preliminary step for any progress in the theory of Finsler
spaces!). They are the local spaces which belong to any finitely compact
space with geodesics and a minimum of differentability properties.
Therefore they are natural geometric objects to study.

The fact that such a study has never been seriously undertaken seems
to be due to a lack of optimism on the one hand and of the proper tools
on the other. It was taken for granted that the narrow group of motions
of linear spaces necessitates a large number of invariants to determine
simple geometric objects. This is not o : a curve in a plane is determined
by two curvatures instead of one (section 5) and more generally, a
hypersurface is determined by three fundamental forms instead of two
(section 7)?2).

The new tools which are used in this paper are 1) the theorem (19) on
convex bodies on which most of the present work is based, 2) an adequate
concept of area, 3) a function which corresponds to the sine function in
euclidean geometry, and which seems to have many more applications
than similar functions defined by others. It also has the advantage over
the latter that its definition does not require differentiability properties
of the unit sphere.

The analytical reason for the success of these and other concepts
introduced here as compared to the tools previously used is their different
structure : they are integro-differential expressions instead of pure diffe-
rential expressions. This has as a consequence that they depend contin-
uously on the metric.

A brief synopsis of the content follows: first the basic concepts are
recalled (section 1). Then the sine function is introduced (section 2).

1) This is the main point of the author’s lecture [1] which will be useful as an intro-
duction to the present paper for the readers not familiar with Finsler spaces.

2) However, the problem of determining a k-dimensional manifold in an n-dimensional
space is open for £ <n-—1 and seems to be difficult.
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This function is used in section 3 to discuss normality of linear sub-spaces
as completely as seems reasonable in Minkowski spaces. The results go
in a different direction and considerably farther, than previous dis-
cussions of normality in Banach spaces. The solutions of the isoperi-
metric problem in Minkowski spaces are not spheres but new convex
surfaces (see [2]) which are closely connected with normality of hyper-
planes to straight lines (section 4). They are significant because many
euclidean results remain valid if the unitsphere is replaced by a properly
normalized solution of the isoperimetric problem which we call isoperimetriz.

Next, curvatures of curves are defined. Because important principles
are involved the statement that two curvatures determine a curve in a
plane is discussed in detail. One of these curvatures is obviously a Min-
kowski invariant. The other can be chosen in an invariant manner by
using an idea of Loewmer (explained in section 1), which permits to
associate intrinsically a euclidean space with a given Minkowski space.
It is shown (section 6) that the theorems of Meusnier (in its most general
form) and Euler for the distribution of the curvatures of curves on a
surface hold. We also compare the present first curvature with the pre-
viously given definition of curvature (see [3], [4], [5]) with which Men-
ger’s curvature (see [6]) coincides in linear spaces. This curvature is not
used here because it may not exist even if the curve is analytic, unless
the unitsphere is of class (? and has positive Gauss curvature3).

Finally a brief introduction to surface theory is given (without any
attempt whatever at completeness), just enough to show that the field
is promising. The main result is that the methods of relative differential
geometry (see [7] pp. 64, 65) become significant for Minkowskian geometry
if the isoperimetrix, instead of the unit sphere, is taken as carrier of the
spherical image.

1. Basie concepts

Let R be an n-dimensional euclidean space with the euclidean metric
e(z, ¥). An n-dimensional symmetric Minkowski (or Banach) space is a
convex (in Menger’s sense) metrization R with distance xy of B which
is invariant under the translations of R (compare [8, section 2]). Denote
by C(p,r) thelocus px = r. Then C(p,r) is a convex surface with p
as euclidean (and Minkowskian) center. We chose a fixed point z as
origin and call C = C(z,1) the Minkowskian unit sphere. Then the
distance zy, of two points x #% y in R can be obtained from R and C

3) The reason is again that the present curvature is an integro-differential expression.

157



as follows: If 2', ¥y’ is the diameter of C parallel to the (euclidean) line
g(xz, y) through x and y then

xy = 2e(x, y)le(x', y') . (1)

The different euclidean metrizations of R for which the translations of R
are also translations are related to each other by non-degenerate affine
transformations 4) and are called associated to R. In each euclidean space
associated to R the relation (1) holds.

Any concept or theorem which is independent of the choice of the associated
space has a Minkowskian meaning®). In particular r-dimensional linear
spaces ¥V, and parallelpipeds P, are Minkowskian concepts, which be-
cause of their frequent occurrence will be briefly called r-flats and r-boxes
respectively.

The r-dimensional exterior Minkowski measure | M |, of a set M in
an r-flat V, is defined by a formula similar to (1) : In a fixed associated
euclidean space R let | M | denote the r-dimensional exterior Lebesgue
measure of M. If U(V,) is the set in which the r-flat parallel to V,
through z intersects the solid Minkowskian unitsphere U : px <1, put

a(V,) = o [|U(V)I7 , @' = a?[I(r2 + 1) (2)
then
|M|,~=O’(Vr)|M|f (3)

If xy =e(x,y) then | M|, = | M | because w'” is the volume of the
unit sphere in euclidean r-space. The measure (3) is independent of the
choice of the associated space, in fact, it coincides with r-dimensional
Hausdorff measure (see [8, section 2]). In particular

M|,=oc|M|%E, where o=/ U|L. (3a)
n n

The statement that M is a manifold of the differentiability class C'®}
and similar ones are affine invariant and have therefore a Minkowskian
meaning. The same applies to Lipschitz surfaces, which may however be

4) This means more explicitly: if El and —1-2—, are associated to R and e,(z, y) is the
distance in R;, then an affine transformation @ of R, on itself exists such that e, (P, yD)
= eg(x, y) for all =, y.

5) In particular, affine geometry and affine differential geometry are part of Min-
kowskian geometry, but not an interesting part, because the Minkowskian group of
motions is even narrower than the euclidean.
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defined in direct Minkowskian terms: Let x(u), x ¢ R, u ¢, where
@ is a convex region in an r-dimensional euclidean space with rectangular
coordinates u,,...,u,. If a constant ¢ exists such that

x(u) x(v) < qge(u,v) for all u,v in @ (4)

then x(u) is a Lipschitz representation of a Lipschitz surface in R. The
intrinsic area A(x(u)) of z(u) is then evaluated as follows (see [2,
section 7]). Let x,,..., x, be rectangular coordinates in an associated

euclidean space B to R so that |z —y| = [Z(x; — y,-)z]% = e(x, ¥).
Because of (4) |x(u) — x(v)| <¢'|u — v| with a suitable ¢', hence
the partials 0dx,/0u, exist almost everywhere in ¢ and are bounded. If
the matrix (dz;/du,) has rank r then the vectors dx [du, = (9z,[ou,,. ..,
ox,/0u,) span an r-flat V). Then

Az (w)) = zg'cr(V',‘) A(w) du, . . . du, (5)

where A (u)du,,...,du, is the euclidean area element (that is

A4 (u) == [ 2 ( aa(xil s o Ty )2]%
1 <ig< ee < iy (ul,...,ur)

and the integrand is defined as 0 where 4 (u) = 0 or the matrix (0z/du,)
has rank less than r. If x(p) is defined on an r-dimensional manifold
of class C' which can be covered by a finite number of coordinate
neighborhoods u, such that x(p) = x(u) is a Lipschitz representation
of a Lipgchitz surface then (5) still holds. This applies in particular to
closed convex surfaces®) in (r 4 1)-flats.

Ellipsoids go into ellipsoids under affine transformations and are
therefore Minkowskian concepts. A direct Minkowskian characterization
is for instance this: ellipsoids are the only compact convex bodies for
which the centers of gravity of parallel plane sections lie on a straight
line, (see [9, pp. 18—19, 23—24, 213]). R

Since Minkowskian geometry has more invariants than the euclidean,
more special ellipsoids can be distinguished than in the euclidean. One
of these was discovered by Loewner and is particularly important for the
sequel : Among all ellipsoids with center that contain U there is exactly
one, called Loewner ellipsoid, which has smallest Minkowskian (or

8) A closed convex surface is the boundary of a compact convex set with interior points
with respect to some, and then all euclidean spaces associated to R.
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because of (3a)) also euclidean) volume. This ellipsoid as unitsphere
of a Minkowski space defines a euclidean space E(R) associated to
R whose distance we denote by E(x, y). This metric is intrinsically
determined by xy through the following requirements :

a) E(x, y) is assoctated to zy (6)

b) Bz, y) < zy

c) The volume of the solid unitsphere K (z,x) <1 is mintmal among
all metrics which satisfy a) and b).

The distance E(x, y) is easily seen to be invariant under all motion
of R. Any invariant of E(R) is therefore also an invariant of R.

Since Loewner did not publish his result a proot will be given for the
convenience of the reader :

Let E} and E, be two ellipsoids of minimal volume with center z that
contain U. By a volume preserving affine transformation one of them,
say E;';, can be transformed in a sphere E, with radius a, then E, be-
comes another ellipsoid E,. After a proper choice of rectangular coordi-

nates E, will have an equation of the form X /b3 =1, b,>0. The
volumes of £, and E, are equal: i=1

o™ ar = w™b,...b, .

The fact that E, and E, contain the transform U of U is expressed by
the inequalities

Saa2<1 and Y 22b5;72<1 for =2cU .
Therefore also
A @2+b3)/2<1 for =xcU ,

so that the ellipsoid £’ with the equation X a2 (a2 + 6;%)/2 ==1 also
contains U . The volume of E' is because of (a® -+ b%)% >(2a b,.)%

o™ II V2ab,(a? + b%)“% < o™ n(abi)%_-_—_ o™ an .

But by the minimum property of E, the volume of E’' must be at least
o™ an, so that a® + b3 = 2ab, for all 7, hence b, =a or E, = E,
and E; = E;.
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2. The sine function

_ In R let the a-flat A and the b-flat B, a, b>0, intersect in the d-flat
D, d > 0 (which implies that D is not empty). The relative position
of 4 and B as sets in an associated euclidean space can be described by a

single angle only if
e 8 Y min (a,b) =d + 1 (7)

(compare [10] or [11]), so that the ordinary sine of the angle between
A and B, which we denote by sin(4, B) is defined only in this case.
Therefore the Minkowsk: sine will be defined only if (7) holds. In that case

q=a-+b—d (8)

is the dimension of the flat ¢ of lowest dimension that contains A and B.

Call m-box a possibly degenerate m-dimensional parallelpiped. We
denote an m-box by P, with or without superscripts and put Pk =
|P|L and P, =|P,|,., Pi=Py,=1.

Let a, b, q, d satisfy (7) and (8), d > 0. Consider a d-flat D and an
a-flat A and a b-flat B with D ¢ A ~ B. Let P, be a proper (that is,
non-degenerate) d-box in D and P, , P, proper a- and b-boxes in 4 and
B respectively which contain P, as face. Because of (7) the boxes P, and
P, span a ¢-box P, which is degenerate if and only if one of the flats
A, B contains the other. Then (see [12])

sin (4, B) = P, P}/ PL P} . (9)
This relation suggests to define the Minkowskian sine sm(A, B) by
sm(4, B)y= P, P,|P, P, . (10)

Obviously sm(4, B) = sm(B, 4) and sm(A4, B) = 0 if and only if
one of the flats A, B contains the other. By (3) and (9)

sm(A, B) = P% PXo(D) 0(Q)/ PLP} o (4) o (B)

(11)
= sin (4, B) ¢(D) 6(@)/o(4) o(B) ,

where o(D) == 1 if D has dimension 0 and ¢(Q) = 1 if P, is degenerate.
(11) shows that sm(A4, B) does not depend on the choice of the boxes
P, P, P,.

It must be emphasized that sm (4, B) cannot be interpreted as function
of a real number, the ,,angle formed by a 4 and B”’. The absence of rota-
tions does not permit to combine such an interpretation with the geo-
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metric properties which this sinefunction has (or which one would re-
quire of any useful sinefunction).

In the simplest case, d =0, a =b =1 the definition (10) yields’
analogs to many elementary results of trigonometry, of which we mention
only a few: If A, B, C are the lines which carry the sides of lengths
A', B', C' respectively of a triangle with Minkowski area 4 then sm (4, B)
= 24[|A’" B', so that the law of sines

sm(4,B):sm(B,C):sm(C,A)=C":A": B (12)

holds. If D is a line through the intersection x of 4 and B and a point
y of the opposite side, then the sum of the areas of the triangle into
which D decomposes 4 equals 4, which yields with D' = xy the often
useful relation

sm(A, B)|D' = sm(4, D)|B' + sm(B, D)|A’ . (13)

Different trigonometric functions have been considered by others, of
which the most important is Finsler’s cosine function (see [13]). Unfortu-
nately it is defined only if C is differentiable: Let A+ and B+ be two
oriented straight lines through p and let a follow p on 4+. If the tangent
plane 7' to C(p, pa) at a intersects B+ at b, then the Finsler cosine of
A+ and B+t is defined by

pa/pb if b follows p on B+
cm(4+, Bty =] — pa[pb if b precedes p on B+ (14)
0 if T is parallel to B+

Notice that in general c¢m(A4+, B¥) # c¢m(B*, A+). As in ordinary tri-
gonometry cm is closely related to sm7), in fact the relations are quite
similar. If B+ is so oriented that b follows p and G = ¢g(a, b), then ex-
pressing the area of the triangle p, @, b in two different ways and (14)
yield

pb-ab-sm(B, Q) = pa-ab-sm(4,F) = pb-ab-cm(4+, Bt)sm(4,F) .

Anticipating a notation defined by (18) we put sm(4,d) = «(G) and

see that
cm(A+, Bt) = sm(B, G)[a(G) (15)

which corresponds to cos a = sin(%/2 — «a).

7) It is a priori certain that a relation of the form sm? 4 ¢m? = 1 cannot exist for
two functions which are both geometrically interesting in Minkowski spaces. For sin? 4
cos? = 1 expresses Pythagoras’ Theorem which does not hold in Minkowski spaces.
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With the notations which led to (13) assume that the line C lies in the
tangent plane to C(x, D') at y, then (13) and (14) yield

sm(A,B) = sm(4,D)cm(D+, Bt) 4+ sm(B,D)cm(D+, A+) (16)
where A+, B+, D+ are the orientations of 4, B, D in which points of C
follow .

The definitions of both sm and ¢m can in an obvious way be extended
to the third and fourth quadrants. Then the addition formula (16) can
be proved quite generally, but this will not be needed here.

3. Normality

A first application of the function sm will be a thorough discussion of
normality. A line G in a Minkowski space R is normal to an r-flat V at f
if @~ V = f and every point x ¢ G has f asfoot on V, thatis zf < zy
for xe@ and yeV. If G is normal to V at f, then V cannot contain
interior points of C(x, xf). Hence V lies on a supporting hyperplane
H to C(x, xzf) at f. Because the spheres C(p,r) are homothetic, the
converse follows: if V lies in H, then G is normal to V at f, so that G
is normal to H and to any flat in H through f. There will be only one
normal at f to H or to V in the flat (G,V) spanned by G and V if C
(and hence C(x, x f)) is strictly convex. For a given line G and a given
point p on G a hyperplane H exists to which G is normal, and H is unique
when C is differentiable 8).

The difficulty of defining normality of a flat of dimension greater than
one to other flats derives from the fact in Minkowskian geometry H is
(with the previous notation) in general not the locus of all lines through f
normal to G. Hence a hyperplane normal to a line is for instance not
defined. The present section will provide such a definition, its impor-
tance will become appearant in the following sections. For the reasons
just indicated it does not seem reasonable to attempt defining normality
for intersecting flats of arbitrary dimensions. We restrict ourselves to
flats 4, B for which sm(4,B) is defined and generalize the idea that
sin (A4,B) =1 when A is perpendicular to B.

Let A, B be flats of dimensions ¢ and b which intersect at a d-flat D,
d > 0 such that (7) holds. If @ is the g-flat of lowest dimension contai-
ning 4 and B then a + b = q + d by (8). Then A is called normal to B
and B transversal to A wn Q at D if for any D-flat A* through D in Q

sm(A*,B) <sm(4,B) . (17)

8) In that case we can say: @ is normal to V at f if and only if for any orientation G+
of G and any oriented line Lt through f in V the relation ¢ m(G+, L*) = 0 holds.
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We then put
sm(4,B) = «(B,D,Q) . (18)

Obviously o(B', D', Q) = a(B,D,Q) if B'||B and D'||D. If D is
a point then trivially D' || D and we simply write o(B, ). If in addi-
tion ¢ = n so that @ is unique, namely the whole space, and B is either
a line or a hyperplane, we write «(B) instead of «(B, D, Q).

That an a-flat A normal to B in Q at D exists follows from trivial contr-
nuity consitderations. The existence of a B transversal to A in Q at D lies
deeper, because our discussion will show that it is equivalent to the following
non-trivial theorem proved in [14]:

(19) In the s-dimensional euclidean space let A be a convex body with
interior points and @ an (s — 2)-flat which contains an interior point of
A. Let IT be a 2-flat perpendicular to @ at a point p. A half-hyperplane
bounded by & intersects A4 in a set y~A with |p~A|5_,>0. If
|p~ AL, is laid off on the ray y ~ Il from p, then the resulting
curve ["in /7 is convex. I is strictly convex if A is strictly convex.

I" is dufferentiable of A is differentiable.
Since this is not proved in [14] a proof will be given here. We introduce

rectangular coordinates z, ¥,2,,...,2,, with p as origin and such
that II is the (z,y)-plane. We also introduce polar coordinates
0,9(0>0)in I7, then o,¢,2,,...,72,_, may be regarded as a sort of

cylindrical coordinates in E$. The (s — 2)-dimensional cylinder parallel
to @ circumscribed to A has then an equation of the form p = R(g),
were R (@) is continuous (even continuously differentiable) and positive.
Let Ry< min R(p). If 4(p,) denotes the (s — 1)-dimensional volume

o< <

of the intersection of the half-hyperplane ¢ = ¢, with 4 we have to
show that 4 (¢) is a differentiable function of ¢. Let 4,(p,) denote the
volume which is cut out of 4 by the hyperplane ¢ = ¢, inside the
cylinder ¢ < R, and 4,(p,) the remainder, that is the part for which
Ry < o < R(p). It is quite easy to see that A,(p) is differentiable, so
that we may restrict the discussion to 4, ().

For any point (z,, y,) in the circle D: ¢ < R, in I denote by f(z,, ¥,)
the (s — 2)-dimensional volume of the intersection of the (s — 2)-flat
x =z, y= 1y, with 4. For any chord of D the function f(z,y) isa
. differentiable function of the length, as a simple differentiation under the
integral sign shows (the cylinder ¢ < R, was introduced to avoid diffi-
culties at the endpoints of the chord).
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Moreover, by the Brunn-Minkowski Theorem, fY7-2(x,y) is on this
chord a concave function?®). It follows that f!/»—2(z, y) is a concave
function of x,y in D. Since f(z,y) is differentiable and positive,
ft/»=2(x, y) is differentiable; as a concave function it is continuously
differentiable (see for instance [15, p.9]), hence f(x, y) has continuous
first derivatives. R,

It is to be shown that A4,(p) = | f(p cos ¢, osin ¢) dp is differen-
tiable. Since for ¢ # 0 0

0f(ocos g, psing) .
o = —fsosing + f,oco8 ¢

the function f(p cos ¢, o sin ¢) has for 0<p < R, a continuous and
bounded derivative with respect to ¢, therefore differentiation under the
integral sign is permitted, so that A](¢) exists.

With the previous notations let B be a euclidean space associated
to the given Minkowski space R. ,,Perpendicular’’ will be used for the
ordinary normality in R ; “rectangular’ will also refer to R. We are
going to construct a flat 4 normal to B, and a flat B transversal to 4
at D in Q. Chose a proper rectangular box P, in D. Since all definitions
are invariant under translations we may assume that the origin z is a
vertex of D. We distinguish the two cases a =d + 1 and b =d + 1.

1) a=d+1 or b=gq—1.

Let P, a proper rectangular b-box in B with P, as face, and B* # B
a b-flat in @ parallel to B. The g-boxes P? spanned by a variable point
in B* and P, have all the same Minkowski or euclidean volume. If P*
is the a-box spanned by x and P, and A* the a-flat through D and z
then by definition
sm(4%, B) = F,P; [P, P, .

Since P? is constant sm (A", B) will be maximal when P% is minimal.
In the case d =0 or a =1 we have P? = zx so that z must be a
foot of  on B. This shows that the definition of normality by (17) agrees
with the accepted comcept, as recalled in the beginning of this section,
where the latter is defined.
As an application consider a box P, whose sides have Minkowski length
1 and which has maximal volume P, . Such a box obviously exists. If z is

%) See [7, pp. 88].
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one of its vertices and 4,,..., 4, are the lines which carry the sides of
P, through z, call H; the hyperplane spanned by 4, with j %4, and
Pt | the face of P,in H,. Because P,= P! _, sm(A,, H,) is maximal,
sm(A,;, H;) must be maximal so that A4, is normal to H,. Hence

(20) There are lines A,,..., A, through z such that each A, s normal
to the hyperplane spanned by the remaining A, .

Theorem (20) and its proof are due to Taylor [16]. If P, is replaced by
the box P, with center z homothetic to P, and sides of length 2, then
A, intersects the faces of P, at the centers of the faces parallel to H;,
and these faces are supporting planes of C, at their intersections with A4,.
Therefore

(20a) For a given convex surface ' with center z there is a box P}
circumscribed to C such that the midpoint of each (n — 1)-dimensional
face of P, lies on C.

Returning to the general case we observe that P is constant as long
as x moves in the same a-flat through D. Therefore we may restrict the
attention to x which lie in the (¢ — d)-flat V in @ prependicular to D
at z. If 2* is the euclidean foot of z on B* then

e(z, x) = e(z, 2°) sec(xz2")
hence
P? — PL g(4%) = PLe(z, ) o (4%)

= e(z,2") PL g (4%) sec (x22")

so that P? is minimal if ¢(A%)sec(x22*) is minimal or | U (4%)|Ecos(zz2*)
is maxnnal

Any ray T with origin 2z in V determines with D an a-flat AT (the A=
are particular AT). If | U (A7) |£ is laid off on 7T from z, then the end-
points traverse a closed hypersurface W in V with center z. Theorem (19)
implies that every section of W by a 2-flat through z in ¥V is convex,
therefore W is convex.

Let the ray from z through x intersect W in y(x). Then

| U(A4%) | £ cos(zz2*)
will be maximal if the projection of y(x) on g(z, 2*) has maximal (eucli-
dean) distance from z. This is the case if and only if y(x) lies in a sup-

porting (9 —d —1=b —a + 1)flat of W (in V) perpendicular to
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g(z, z*) or parallel to B, such a supporting flat H exists (and would also
exist if W were not convex) and any point y(x) in H yields an A% normal
to B at D in Q. The point z is unique if H contains only one point of W,
which is by (19) the case when C is strictly convex.

This construction shows also that a b-flat through D in @ transversal
to a given a-flat A through D in @ exists. For if V denotes again the
(¢ — d)-flat perpendicular to D at z in ¢, then the surface W can be
constructed as before. The given flat A intersects W in a point y. Because
W i3 convex it has a supporting (b — a + 1)-flat H at y. The parallel
to H through z determines with Dan (b —a + 1 + d = b)-flat B which
is by the preceding construction transversal to A. Moreover H, and
therefore B, is unique if W is differentiable. This will be the case when
C is differentiable.

2) b=d+1 or a=q—1.

Let 4, be the a-flat through D in ¢ perpendicular to B (which is
given). In A, chose a proper rectangular box P, with P, as face and
form the union Z of all lines in @ perpendicular to A4, at points of P, .
Then Z is a cylindrical set of dimension ¢. On the line G in B perpendic-
ular to D at z chose an arbitrary point z*. If P, denotes the inter-
section of a variable a-flat A* through D in @ with Z and P, the box
spanned by 2" and P, then P, and P,” are constant. Each P, has in B
the same face, namely the box P, spanned by 2* and P, . Hence

sm(A*,B) = P, P,| P, P,

so that sm (A", B) is maximal when P} is minimal. If G is the (properly
oriented) line in @ perpendicular to A* at z, then P,L = PLlsec(@,G"),
hence

P: = 0@ PE| U(4)|% cos (@, ")

so that A* is normal to B when | U(A4") |L cos(@,G") is maximal.

The perpendiculars to G* to the various a-flats 4% through D in Q
form a (¢ — d)-flat Vin Q. If | U(4%) |£ is laid off in both directions
from z on @*, then the end points traverse a convex hypersurface W in V
(see [14, Theorem II]) and | U(4*) |£ cos(G, @) equals the length of the
projection on G of either of the two points W ~ G*. This projection is
maximal if the points W ~ @* lie in supporting (¢ — d — 1)-flats of W
in ¥ which are perpendicular to G. The line G* and therefore A* is uni-
quely determined if these supporting flats touch W in only one point
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each. This is the case when W is strictly convex, which is in turn true
when C is strictly convex.

Again, this construction leads to the solution of the problem to find
a B through D in @ transversal to a given A*. The surface W is deter-
mined by D and @ as above. Let @* be the perpendicular to A" in Q.
Because W is convex it has (parallel) supporting (¢ — d — 1)-flats at the
points G* ~ W. If G is the perpendicular to these supporting flats, then
the b-flat B perpendicular to G' and through D will be transversal to A™
by the preceding discussion. Moreover, B is unique, if the supporting
flats to W at G* ~ W are unique. This is true when W is differentiable,
hence when C is differentiable. Thus the following main result on nor-
mality has been established :

(21) Theorem. Leta,b, d, q be non-negative integers with min(a, b) =
d+1and g=a-+b—d. InR let a g-flat Q and a d-flat D in Q begiven.

For a given b-flat B through D in @ an a-flat A in Q normal to B at D
exists. A is unique if C 1s strictly convex.

For a given a-flat A through D in Q a b-flat B in Q transversal to A at
D exists. B is unique when C is differentiable.

4. The isoperimetrix

Normality of a hyperplane to a line is of particular importance and is
closely connected with the isoperimetric problem. We discuss this con-
nection first.

Let =z,,...,%, be rectangular coordinates in a euclidean space R
associated to the given Minkowski space B. Then 'z, u, =c¢, |u| =1,
represents a hyperplane H in normal form and ' z; 4, = 0 intersects U
in U(H). We put o(H) = o(u) and extend the definition of o(u) to
arbitrary vectors by

o) =|ul-o(u/|u|) for w0 -
=0 if wu=0

Then o(u) = 1 is the locus Z obtained by laying off o7'(u/|u|) =
U(H)/w™1 in the direction u. Since Z is by (19) convex, o(u) is a
convex function (see [7, section 14]). By (22) it is positive homogeneous
of degree 1, hence o (%) is supporting function of another convex body
([7, section 17]) whose boundary we denote by 7™. The surfaces homo-
thetic to T* are the solutions of the Minkowskian isoperimetric problem, to
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find among all surfaces with a given Minkowski area those which band
the largest volume (see [2, section 6]). Among these solutions we call
one, T, the isoperimetriz. T is determined by the requirement that it has
the origin z as center and that its Minkowski area equals n-times its
volume. The supporting function of 7' in R is (compare [2, section 6] or
(28) of the present paper)

T: o(w)o?r=o0o(u)| UL o™ . C(29)

The supporting planes of the unitsphere C of R at a point p are the planes
transversal to the radius zp. The following counterpart to this fact holds :

(24) The supporting planes of T at a point p are the planes normal to
the radius zp at p.

Proof. With the notations of the preceding section we have ¢ = n,
a=mn—1, b=1, d =0 and are in case 2. The discussion of this case
shows that the hyperplane H with perpendicular » will be normal to the
ray @ if and only if | U(H) |} _, cos(u, @) is maximal or o(u)o'sec(u,G)
is minimal. But o(u)o~! is the (euclidean) distance from z of the sup-
porting plane H of 7' with perpendicular u, and o(u)o! sec (u, @) is
the length of the segment which H intercepts on G'. The endpoint of this
segment will always be outside of 7' unless H passes through the point
p = G ~ T. But this means that H is supporting plane of 7" at p.

Since this supporting plane is unique everywhere if and only if 7 is
differentiable, it follows from (21) that 7' is differentiable when C is
strictly convex. This can also be seen from the fact that Z is strictly
convex with C' and that T is the polar reciprocal of Z with respect to the
unitsphere |z | =1, see [17, § 8].

A consequence of (24) and (20a) applied to 7' is

(25) There are lines B,,..., B, through a given point z such that each
B, is transversal to the hyperplane spanned by the remaining B;.

The representation (5) for area shows that the Mir_l_lf_owski area A (K)
of a convex surface K bounding the convex body K is

AK) = nVEE,...,K,T*) = oVE (&, T
where 7 * is the body bounded by 7™ and VI(K,...,K,T") is the
mixed volume of (n — 1)-times K and T* (compare [7, sections 29

and 37]). Therefore:

169



If K,, K, are convex bodies with boundaries K,, K; and K, ¢ K,, then
A(K,) < A(K,).

If T possesses no point at which n-linearly independent supporting planes
exist, then A(K,)<A(K,) when K, is properly contained in K,.

For the first part see [7, section 29], for the second [17, § 27].
The mixed Minkowskian volumes K(T(-,!Z) of two convex bodies can
be defined in the same way as in the euclidean case. If we put

V:(K,L) =V{(K,L)o then V,(K,L)=|K|,,V,(K,L)=|L]|,
and

| K+hL|,=|K+hL|} 0=

gl 3

(’:) WV K. Do= X (?)himk—’m'

i=0
In particular, if 7 is the body bounded by 7', then

) 4= nhVEIE, T)o+ - -

. s :nA(K) “+ e,
so that
A(K) =nV,(K,T) = lim (|[K+aT|,— |K|,) /b . (27)

h>04

That the first and third terms in (27) are equal was already proved in
[2] for a wider class of surfaces.

The importance of the isoperimetrix makes it desirable to obtain an
intrinsic Minkowskian equation for it. As a convex surface T has almost
everywhere a tangentplane (see for instance [15, p. 24]). If dS and dS
denote the euclidean and Minkowskian area elements of 7' at a point p
where the tangent hyperplane H exists, and if u is the euclidean unit
vector in the direction of the exterior perpendicular to 7' at p, then
dS = o(u)dS. If dV and dV are the euclidean and Minkowskian volumes
of the cones with vertex z and base dS then by (3a) and (23)

AV =dV -0 =n"1lo(u) o7 1dS-c = n1dS . (28)

If r is the Minkowski distance of z and p and W is the ray from z through
p, then
dV =n"1d8-r-sm(W,H) = n1dS-r-a(W) (29)

because H is by (24) normal to W («(W) is defined in (18)). Comparison
of (28) and (29) yields 7 o(W) = 1. This relation was proved for those
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W for which 7T is differentiable at p = 7' ~ W. By continuity it extends
to all W, hence

r = a1 (W) (30)

is what may be called the Minkowskian polar equation of T.
A corollary of (30) is

(31) T covncides with C if and only of o (W) = 1.

Statements (24) and (31) suggest the following, probably difficult
problem : When are the solutions of the isoperimetris problem of the
Minkowskian geometry with 7' as unitsphere homothetic to C? This is
always the case for n = 2, but not for n< 2.

In Minkowskian geometry line segments are shortest connections of
their endpoints and the only ones if C is strictly convex. Our next aim
is to show how the existence of a line transversal to a given hyperplane
implies that pieces of this hyperplane minimize the area.

Let the hyperplane H be perpendicular to the line G'. In H take any
set M with positive finite | M |,_, and denote by Z the cylindrical set
formed by the lines parallel to @ through points of M. If the hyperplane
H* is not parallel to @ then it intersects M in a set M* and if G* denotes
the perpendicular to H*, then the discussion of case 2 in the preceding
section shows that

lM* o =1 M ‘ﬁ—l w(n—l)/l U(H*) ‘{1—1 cos (@, Q")

so that |M*|,_, is minimal when H* is normal to G.

Therefore

(32) Let Z be a cylindrical set with generators parallel to G such that a
hyperplane H not parallel to G intersects Z in a set M (H) with

O<I M(H) In-—l<°° .

Then the planes normal to G minimize | M (H) |,_, among all hyperplanes
not parallel to G .

Let now the hyperplane H be given, in H consider an (n — 2)-dimen-
sional polyhedron B homeomorphic to an (n — 2)-sphere, and let F be
any (n — 1)-dimensional polyhedron of the type of the solid (n — 1)-
dimensional sphere with B as boundary (for the notations compare
[18, p. 124]). Let F,, 1 =1,...,m be the faces of F. If G is trans-
versal to H and F; the projection of F; parallel to G on H, then
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| Fi ey < | Fy s

by (32). On the other hand ¥ F; contains the closed domain £ vounded
by B in H, so that

lEln-—ISE'EIn—ISEIFiln—le(F) .

By methods of approximation by polyhedra known from the theory of
surface area the last relation leads to the following more general theorem.

(33) In a given hyperplane H let B be a surface of class D' homeo-
morphic to the (n — 2)-sphere. Then the area A(F) of any surface F of
class D' and the type of the solid (n — 1)-sphere in R with B as boundary is
at least as large as the area (or measure) of the domain E bounded by Bin H .

If the transversal to H at a given point is unique then A(F)>|FE |,_,
unless F coincides with E .

5. The curvatures of curves

If (x,,...,%,) = x are rectangular coordinates in R and 2°,..., z",
2 <r < n are the vertices of the simplex T, (possibly degenerate) and
TE — | T |E, then

I 0 0 2
i ...y 1 b

L — — X ' (33)
<<
xt 1

,ilc-o 1”

For this and the following formulas see [19].
Let z(S) be a curve of class C* with the euclidean arc length S as para-
meter. If zf= x(S,;), S; #8, for i %4 then for S, -8

D,(8) /r! ! = lim TE. [Te (2t ) =
i=1

|z (S) ...z (S) P 3 (34)
p) : : r! IT 3!

B " (g
wi ) (8) ... x)(S)

The (r — 1)-st curvature %,_,(S) of #(8) at § in R is given analytically

by

%r-—l (S) = D.r (-S-) Er—-z (g) D;? (g) if D_r—l (_S) # 0, where ﬁ0 (—S.) =1.
(35)

172



If T:_l is the simplex with vertices 2,..., 2" and 1054 =|T,|%,

then (33) and (34) yield the following geometric interpretation of %,_, (S) :

_ r2 1 L pk
%®, ,(S) = li r -2
1 (5) r—1 1m e(x, 2"y TE,THE (36)

If V,_, and V,_, are the (r — 1)-flats which carry T,_, and 7' , respec-
tively and if it is kept in mind that an i-box spanned by 7'; has i-dimen-
sional measure ¢! T then (36) may by (9) also be written as

#,_,(8) = rlimsin (V,_,, V) e1(a ) . (37)

Now consider z(S) as a curve z(S) in R with the Minkowskian arc length
as parameter. S is a continuously differentiable function of S with a
positive derivative, so that the relations §; -8 and S, > S are
equivalent for corresponding values S;, S and S;, S. But 8 has in general
not a second derivative with respect to S. The preceding discussion
suggests to define the (r — 1)-st Minkowskian curvature of the curve x(S),

if 2(S) is of class C" and z! = x(8S,) = x(8,), by the formula
r? 1 T.T,,

8S) = li 38
-1 (5) r—1 ;I_?S x(S,) x(S,) T, ,Tr (38)
1 ) ) r—1
where o R
Ti_‘Tiii a’nd Tr-—l““ lT'r—llr-l .
If

D,(S) = r! Mi!lim T,/ (8, = (8,

i=1 1<j
then for D, ,(8) #% 0 by (10)
%,1(8) = D,(8) D,_,(8) D}y (8) = rlim sm (V,_,, V;;) [a®a" . (39)

The lines g(z%, 27), © % j, tend for §;, - 8 to the tangent ¢, of x(8)
at §, hence by (1) and (2)

xt xt-e (2t ) - 2/U () = o(t,) .
More generally V, tends to the osculating r-flat ¢, of «(S) at S hence
by (2) and (3)

T.| Tf — o(t;)
whence it follows that
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72 fim 1 T;T7, o(t)a(ts)
r—1 e (560 , xr) Tf_l T:..L;[ o? (tr—l) o (tl) B
= o o) o(t_y)

=% (8)— .
g (tr-—l) o (tl)

%1 (8) =

(40)

’

for the first curvatures x(S) = %,(8) and %(S) = %,(S) we find
therefore L
% (S) = %#(8) o (t;) 02(t,) - (41)

If the definition of the o (#;) is kept in mind then (40) shows clearly that
#,_, is an integro-differential expression and that x,_, changes contin-
uously when C various continuously.

To agree entirely with the usual definitions an agreement on the signs
of the curvatures has to be added: »x,,..., %, , are always non-nega-
tive because the square root in (33) precludes a geometric interpretation
of the signs. However, in the definition of %,_, the square root in (33)
for T% is accidental and we give %, ,(S) and %,_,(S) the same sign as
the determinant | #!(S),..., 2™ (§)|, or which amounts to the same,
the sign of |af,...,2%,1| for Sy<8,<--- <8, and S, close to S .

One of the important properties of the curvatures x,(S) is that they
,,determine“ the curve in R, at least if they are different from 01°). The
expression ,,determine” may mean either of the following three state-
ments.

1) If 3.(8),...,%,,(8) and z(0) and x'(0) are given then the func-
tions xz;(S) and therefore the curve z(S) are uniquely by determined.

2) If two curves x*(S) and x2(S), where S is the arc length on both curves
have the same curvatures #,(8) £0, i=1,...,n — 1 in some interval
[a,b]:a <8 <b, then e[21(S'), 21(S8")] = ¢[2*(8'), 22(8")] for any
8',8" in [a,8].

3) Under the assumptions of 2) a motion of B exists which carries 21 (S)
into 22(S) for all S in [a, b].

10) Precautions are necessary if K,(s) =0 for some ¢, which are however usually not
discussed in books on differential geometry. For a completely satisfactory treatment
see [20]. A reader not familiar with these difficulties will easily discover them when he
considers the following two curves B,, B, in 3-space: for # << 1 both B, and B, are defined
by the equations y = e=%22%, 2 =0 for —oo<<2<0, y=2=0 for 0 <2< 1.
In the interval 1 <<z <oco the curve B, is defined by y = e~(*-1)7%, 2 =0 and B, by
y=20, z=e @13,
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In a euclidean space the three statements are equivalent. Of the cor-
responding statements in a Minkowski space 3) is the strongest, it implies
1) and 2), but neither 1) or 2) imply 3). A priori it is to be expected that
more invariants will be necessary to determine a geometric object in a
Minkowski space because the group of motions is narrower.

A second set of invariant curvatures is tmmediately available : Let E (R)
be the euclidean metric intrinsically determined by R and defined in sec-
tion 1, and call %Z(S),..., %% (S) the curvatures #»,(S) for R =
E(R). The »?(8) are invariant under all motions of R. It is clear that
they determine the curve in the sense of 1). The problem to find inva-
riants which determine a curve in R in the sense of 2) oder 3) seems to
be quite difficult for n>2. For n = 2 it will be shown below that
%%(S) and »(S) determine the curve in a sense which lies between 2)
and 3). Because of the novelty of the situation an example will be discus-
sed first :

In the plane with rectangular coordinates x, ¥ and corresponding polar
coordinates r, ¢, let C be the curve defined in the first quadrant by :

r = sec ¢ cos /8 for 0<¢p <mn/8
= 1 for #n/8 <¢p <=n/3
=ocscpsinz/3 for =#/3 <¢@ <m/2

and extended to the other quadrants by reflection in the z- and y-axis.

The Loewner ellipse for C is the circle » = 1. This ellipse must have
the coordinate axes as axes because otherwise at least two such ellipses
would exist contradicting the uniqueness. If we write the ellipse in the
standard form x%/a? + »%/b%® = 1 then we know that its (euclidean) area
nwab is at most z since r = 1 is an ellipse which contains C'. For the

point xy= y,>0 of the ellipse we must have =z, > % because

(2"%, 2_'%) lies on C'. Therefore (a—2 + 6-2)/2 <1. This relation yields
together with ab <1 readily that a =b =1 ). Now let p,(S) =
(#,(8), ¥,(S)) be any oriented arc of class (> whose oriented tangent has
direction ¢, (S) with #/8 < ¢,(S) < #/3 and let p,(S) originate from
p,(S) by a rotation in E(R) about the origin through = (7/8 — 1/3) = _
137/24. Then p,(S) and p,(S) are in the relation of statement 2) and
have the same curvature functions »%(S) and x(S). Moreover, there

1) This argument yields the following fact which often allows to determine the Loewner
ellipse: If the ellipse B’ contains C and has four points with C in common which are end-
points of conjugate diameters of E’, then E’ is the Loewner ellipse for C.
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exists a Minkowski metric m(x, y) (in the present case E(x, y)) which
coincides with xy for points of p,(8S) and p,(S) and for which p, (S) and
P, (S) have the relation 3).

Next let p,(S) be any oriented arc of class C* whose oriented tangent
has direction ¢,(S) with — 7/8 < ¢,(8) < =/8 and let p,(S,) originate
from p,(S) by a rotation about the origin through 7/2 followed by a
contraction in the ratio A = sin (%/3) sec #/8. Then §,/S = 4 and §,
is the euclidean arc length on p,. If ¢(S) and ¢(S,) are the tangents of p,
and p, at corresponding points, then o[#(8)]/o[t(S;)] = 4!, hence the
Minkowski lengths of p, and p, at corresponding points § and S, are
equal, moreover p,(S8')p,(S") = Ps(S')ps(8"). The curves p, and p,
are therefore in the relation 2). Since for any three values S,, S,, S, the
areas of the triangles with vertices p,(8,), ¢ = 1, 2, 3, and p,(S,) have
the ratio 42, it follows that the curvatures » of p, and p, have the cons-
tant ratio A% and are therefore not equal. Hence the curvature 5 (S) may
be different for curves which are in the relation 2).

We consider now two curves p,(S) and p,(S) in an arbitrary Min-
kowski plane E (R) which have the same curvatures »Z (S) and % (S). If
t:(S) denotes the tangent of p,(S) at S, then (41) implies

o[ (S)] = o[2(S)] . (42)

Therefore the Minkowski lengths corresponding to equal values of §
are equal. Moreover, for any S, S” there is a value S, between ' and S”
such that t'(S,) is parallel to the chord ¢(p,(S’), p(S")). The motion
of E(R) which carries p,(8) into p,(S) carries ¢'(S,) into the tangent
12(S,) of p,(S) at 8, and g(ﬁl(gl)’ P(_S-”)) into 9'(52 (8'), pe (gﬂ)) , 80 that

this line is parallel to ¢2(S,). Therefore

D1 (E,) Do (Sw) = K [p1 (—Sl) » 1 (gn)] o [tl (Eo)] =
= K [Pz (_S/) sy Pe (-S”)] o ["*2 (go)] = P2 (gl) P2 (—S_”) .

By (42) there is a rotation of £ (R) which carries the arc O, of C' cores-
ponding to the radii which are parallel to the tangent of p, into the arc
C, of C correspondingly derived from p,. If C, contains at least a semi-
circle of C, then this rotation of E (R) carries all of C into itself. Therefore

(43) An arc p,(S) of class C?* whose tangent varies through at least n
can be carried into the arc p,(S) by a motion of the Minkowski plane if and
only if p,(8S) and p,(S) have the same curvature functions % (S) and x%(S).
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The tangent of p,(S) will, of course, always vary through at least =
if p, (S) is closed. The discussion of the general case leads to the following
result which is stated without complete proof :

(44) The curvature functions »(S) and »Z(S) are equal for two curves
P (S) and p,(S) of class C? in a Minkowsks plane R if and only if a Min-
kowski metric R’ exists such that 1) E(R) = E(R'), 2) distances of pairs
of points on p;(S) are the same for R and R', 3) there is a motion of R’
which carries p,(S) wnto p,(S).

6. The Theorems of Meusnier and Euler for the Minkowski curvatures.
Comparison with other curvatures.

Finsler showed in [13] that his curvatures (see the end of this section)
satisfy with his cosine function (14) the theorem of Meusnier. The present
curvatures also satisfy Meusnier’s Theorem, but with the present sine func-
tion. The formulation of the underlying facts for the euclidean case given
below, from which we derive the Minkowskian case, follows Finsler [13].

Let M be an m-dimensional manifold in B, m<mn, of class C™. All
curves 4 through a point p of M which have non-vanishing curvatures
up to order r — 1 at p and have a common r-dimensional osculating
r-flat ¢, intersecting the tangent m-flat H of M at p in a line L (hence
r<mn —m -+ 1) have at p the same osculating flats ¢, = L, ¢,,..., ¢,
and the same curvatures ,,...,%,_, .

All those curves 4 whose osculating (r + 1)-flats contain some per-
pendicular to H (hence r<n — m -4 1) contain the same perpendicular
P and all the osculating (r 4+ 1)-flats of the various curves A form a
pencil through ¢,. If , , is the element of the pencil through P and ¥, is
the r-th curvature of ¢, , ~ M at p, thenMeusnier’s theorem states that
curvature %, of any curve 4 with osculating (r - 1)-flat ¢, , satisfies the
relation

;tr cos (tr+1 ’ t;+1) = ;21’- . (45)
If ¢/, , is the element of the pencil perpendicular to t,_,, that is, the
(r + 1)-flat in the pencil intersecting H in a two-flat, then cos (¢, t,)
=sin (t,,,, ¢,;) so that (45) may be replaced by the statement that
%,sin (t,,,, t;,,) is constant.
It follows from (40) that the curvatures %,,..., %,_, are the same for
all curves A . If Q is the space of the pencil, then (45) may be written as
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0 (@) o(t,) % o(ty1) o (t—1) —
(t11) U'(t:+1) "oo? (t,) o (L)

U(Q) g (tr) byt o (tr"+1) g (tr—l)
G(t:+1) O'(t:+1) Toat(t,) o (t)

which means by (40) and (11) that

Sin (tr+1 ’ t:+1) o

PN, %
= 8in (tr+1 s ber1)

* ’ ’ *
*,8m (tr+1 ’ tr+1) = ¥, 8m (tr+1 ’ tr+1) .

Hence 3, sm(t,.q,t, +1) 8 constant in the pencil, which s Meusnier’s
Theorem. A relation similar to (45) is obtained if a #;_, in the pencil
normal to ¢, , at ¢, in Q is selected. If %, denotes the r-th curvature of
ty..~ M, at p, then

x,8m(t,, y, t:+1) = ”:, “(t:-b-l v by @) . (46)

A remarkable consequence of this relation is that %, is the same for all
t, ., normal to ¢, at ¢, in Q.

In a (two-dimensional) Minkowski plane let Minkowskian parallel
coordinates be introduced, that is ordinary parallel coordinates but such
that the units on the z- and y-axis have Minkowski length 1. If § is the
Minkowski sine of the z- and y-axis then a trivial calculation shows that
a curve of class C2? with the z-axis as tangent at the origin has at (0, 0)
the curvature

x = Bf"(0) = B lim 2f (z) =2 . (47)
x>0
We use this remark to establish by a well known method a close ana-
logue to Euler’s theorem for the normal sections of a hypersurface.

In an n-dimensional Minkowski-space R let M be a hypersurface of class
C?, so that it may locally be represented in the form z = f(«,,..., z,),
where z,,...,%,_,,2 are Minkowskian parallel coordinates and z = 0
is the tangent plane of M at the origin. We form the intersection of
z = f(x) with the planes z = +A/2, h>0, and project this intersec-
tion parallel to the z-axis on the plane z = 0. The locus thus obtained

has the equation
f(x) = 4 h/2, z2=20. (48)

For a ray R in z = 0 issuing from the origin 0 let r(h, R) be the
Minkowski distance from 0 of the point z(h, R) in which R intersects
the locus (48). Since 2f[«(h, R)] = + h it follows from (47) that

lim h/r2(h, R) = 1/[o(R)sm(z,R)] , (49)
h>0
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where 1/p(R) is the curvature »x at 0 of the intersection of M with the
two-flat determined by the z-axis and R. Dilation of the locus (48) in the

ratio 1: h% from O yields the locus

Lo f(Ray, ... Bt e, ) =+hj2, z2=0, (50)

or

+h/2=f(a)=21 5 faga; %% + he(@,h)
where ¢ tends to 0 when % tends to 0. Therefore I, tends to

I:Efz‘-xj(o) x,-x,-Z:‘r_l s (51)

so that I (unless degenerate) is a pair of conjugate quadrics one of which

may be imaginary. The point I, ~ R has distance r(h, R)h_% from 0,
so that I intersects R in a point whose distance from 0 has by (49) the

value [g(R)sm(z,R)]% . Thus we have Euler’s Theorem :

(52) Let M be a hypersurface of class C?in a Minkowski space, p a point of
M, and L a line not in the tangent hyperplane H of M at p. If on each ray R

in H with origin p a segment of Minkowski length [o(R)sm (L, R)]%
18 lavd off from p, where o~ (R) is the curvature » at p of the intersection of
the (two)-plane through L and R with M , then the endpoinis of these segments
traverse a pair of conjugate quadrics vn H .

If L is normal to H, and P(R) is the plane through L and R, we have
sm(z, R) = a(R, n(R)).

Curvatures for curves in Finsler spaces were introduced for n = 2 by
Underhill [3] and Landsberg [4]. For general n they were introduced
by Finsler [5, 13]. The definitions coincide for n = 2. The underlying
idea of these definitions is this: If x(S) is a curve with tangent ¢ at a
given point ¢, then the parallel to ¢ through z intersects C in a point g’
(or rather in a pair of points, but it will not matter which point is chosen).
There is exactly one ellipsoid with z as center through ¢’ which has at ¢’
the same second differential as C'. This ellipsoid determines a euclidean
metric K (q). Finsler defines the curvatures of x(8) at q as the curvatures at q
of £(8) as a curve in E(q). Obviously E(gq) exists only if C has a second
differential at ¢’ and the indicatrix is a non-degenerate ellipse. Actually
the idea is significant only if C is of class C? and has positive Gauss cur-
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vature. Thus z(S) may not even have a curvature when it is analytic 12).
Moreover, small changes of C may induce large changes of the curvatures
of z(S). "

There exists another definition of curvature for curvesin general spaces
which is due to Menger [6] (for modifications of this concept see [21]).
Haantjes’ curvature, see [21], coincides with Finsler’s (see [5, p. 59]).
Hence Haantjes’ main result in [21] means that Menger’s definition of x, 12)
coincides in Minkowski (and even tn general Finsler) spaces with Finsler’s
definition. Although this may seem surprising at first sight, the reason
becomes obvious as soon as Menger’s procedure is analysed : Menger
departs also from (36), but expresses the volumes 7% in terms of the
distances e(z? x7) of the vertices. In these new expressions he replaces
e(x, 27) by a«fa’ and then passes to the limit. Since the points ¢ ap-
proach the same point ¢ = x(S) the distances z*a2’ become better and
better approximations of the distances in E(q).

It is worth while to see the connection of these curvatures with the
present ones at least in the simplest case. Let F'(x) be the distance
function of C' and put

D(x,8) = X x;2, F,, ,, (5) .

To evaluate the Finsler curvature x/ of a given curve x(f) at a given
point ¢, we may by [13, p. 158] procede as follows. If H is a hyperplane
through x(f,) but not through the tangent ¢, of xz(t) at x(f,) we assume
that the parameter ¢ is chosen such that it is proportional to the distance
from z(t,) of the point at which a hyperplane parallel to H through z(t)
intersects £,. Then the Finsler curvature %’ of x(t) at ¢, is given by

(/)2 = D(a", 2') F-3(x') .

In case of a plane we put z, = z, x, = y and choose the coordinate
system such that the x(f,) is the origin, and the x-axis the tangent ¢,.
We can then choose ¢ = x and find that because of z" = 0

(2')* = y"* F, ,(1,0) F-3(1,0) . (53)

12) The contributors to the theory of Finsler spaces were never interested in reducing
differentiability hypotheses, so that the idea of curves of high differentiability in spaces
with metrics of low differentiability could not enter their discussions. It is less under-
standable that this distinction escaped Menger when he introduced his curvature in [6]
because this concept was meant for general spaces.

13) Menger does not define higher curvatures. How this can be done along Menger’s
lines is shown in [19].
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Since F(1,0) = ¢(¢;) and y" = % it remains only to find a geometric
interpretation for F,,(1,0).

The surface Z defined in section 5 is in the plane case obtained from C
by rotation through 7 /2 about z, so that H(x,y) = F(y, — ) is the
distance function of Z. Then T'* has H(x, y) as supporting function.

If 22+ y3=1, then H,,(x,, y,) + H,, (%, y,) is the euclidean
radius of curvature at a point of T'* (see [7, p. 65]) where the normal
has direction x,, y,; in particular, H_, (0, 1) + H,,(0, 1) is the radius
of curvature where the tangent of 7'* is parallel to the z-axis ¢,. The
homogeneity of H(x,y) implies zH,, + yH,, = 0, hence H,,(0, 1)
= 0. Since H,,(0,1)=F,,(1,0) it follows that F, (1, 0) is the ra-
dius of curvature of T, and therefore ¢—'F,,(1, 0) the radius of curva-
ture %" of T at the points where the tangent is parallel to ¢,. Therefore

2% a3(t,)

ot (t,) . Kpo

(#7)> =0 673(t) 2 xp = (54)

(41) and (54) yield :
The Finsler curvature »! and the curvature x» of a curve A (in a Min-
kowski plane) at a point p are related by

( (p)* = #*(p) %7 (P) (55)
where %, (p) 18 the curvature of the isoperimetriz T at a point p where the
tangent of T s parallel to the tangent of A at p.

This relation and similar ones for the curvatures of curves in space
show that Finsler’s curvatures can be expressed in terms of the ;. (55)
also exhibits how the differentiability properties of C enter the defini-
tion of »/. Due to the exclusive use of differential invariants the trend in
Finsler spaces (compare [22]) was to consider these spaces not as point
spaces, but as spaces of line elements, where a euclidean metric is asso-
ciated with each line element, just as E(q) was associated above with
the tangent of x(s) at g. The use of integro-differential expressions like the
present area element and the curvatures x, make a return to the geometrically
much more natural idea of a point space possible.

Y. The elements of surface theory
Let R be a three dimensional Minkowski space and p(u,v) =
[x(u,v),y(u,v),z(u,v)] a surface of class C? where x,y, 2z are
rectangular coordinates in E(R)). We denote the first and second

14) The first part of this section extends without change to hypersurfaces in an n-dimen-
sional space.
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fundamental forms of p(u, v) with respect to E(R)by P¥(du,dv) and
QF (du, dv). They determine p(u,v) up to a motion in E(R). They do
not determine p(u, v) up to a motion in R because in general not every
motion of E(R) is a motion of R.

If F(x,y,2) is the distance function of C, then P(du,dv)=
F(x,du + z,dv, y,du + y,dv, z, du + z,dv) is, up to terms of higher
order, the square of the Minkowski distance of the points p(u, v) and
p(u + du,v + dv). Of course PZ(du,dv) = P(du,dv) if E(R)= R.
The three forms PZ(du, dv), QF(du,dv) and P(du,dv) determine the
surface p(u,v) in the same sense as x» and x* determine a plane curve.

For let p be such that for any two points p, = p(u;,v,), 1 =1,2,a
point p; = p(u;, v;) exists, such that a suitable tangent ¢ of p at p, is
parallel to ¢(p,, p,). Assume that ¢(u,v) is a surface in R for which
the forms P%, QF, P are identical to those of p(u,v). Then a motion ¢
of E(e) exists which carries p(u,v) into q(u, ).

If p, = p(u;,v;), ¢t =1, 2, are arbitrary and p, is chosen as above,
and p;, ¢ = q; = q(u;,v;) then t¢ will be parallel to g(q,, ¢,) because
@ is a motion of E (R). If ¢ corresponds to the ratio du : dv of du and dv,
then t¢ will correspond to the same ratio. But

P(du, dv) | PE(du , dv) = o*(t)

at p(us, v,) and has by hypothesis the same value at ¢(u;, v;) so that
o%(t) = o%(tp). It follows from E(p,,p,) = E(q,,q,) and (1) that
P1P; = 4 Qs

If p(u,v) represents a closed manifold of cass C2 (which does not
exclude selfintersections of p(u,v) in the large), then tangent planes
with any (non-oriented) normal, hence tangents with a given direction
exist. The tangents ¢ for which o(f) = o(t ¢) fill at least a hemisphere
of C so that ¢ carries C into itself and is therefore a motion of R. There-
fore we proved :

(56) Theorem : The closed manifolds p(u, v) and q(u, v) have identical
fundamental forms P, PZ, QF if and only if a motion of R exists which
carries p(u,v) into q(u,v).

The form QF is up to terms of higher order twice the euclidean distance
of p(u + du, v + dv) from the tangent plane of p at (u, v). The Min-
kowskian distance of p(u + du, v 4+ dv) from the tangent plane is pro-
portional to the euclidean distance, so that the Minkowskian second
fundamental form @ (du, dv) is obtained from @¥ by multiplication with
an easily evaluated factor B(u,v).
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Therefore the asymptotic directions are given either by @* = 0 or by
@ = 0; also, conjugate directions can be defined either by means of @
or by @ and have therefore a Minkowskian meaning. This is, of course,
due to the fact that these concepts are affine invariants.

It also follows from (47) and Euler’s Theorem (52) that

Qu,dv) 1
P(du,dv)  o«(du,dv) o(du, dv)

(57)

where o(du, dv) is the a-function (18) for the line with direction du, dv
through p(u, v) and the plane through this line and the Minkowski nor-
mal to p(u,v) at p, and p~'(du, dv) is the curvature » of the inter-
section of this plane with p(u,v) at p. (57) generalizes a well known
relation of ordinary differential geometry (compare [23, p. 59]).

Now let B be an arbitrary associated space to R. If p(u, v) represents
again a surface of class C!, and % (u,v) is the euclidean unitvector per-
pendicular to p at (u,v) so oriented that | p,, p,,n | > 0, then

dd = |p,, p,, n| dudv (58)

is the euclidean area element of p.
If o(u) is defined as in section 5, then

dA = | p,, Py 1 | o(m) du dv (59)

is the Minkowski area element of p. The supporting plane H of 7' parallel
to the tangent plane of p at (u, v) has euclidean distance ¢(n) o' from
the origin z (see (23)). If w is a vector which leads from z to a point of
H ~ T, then

lpu’pwﬁla(ﬁ):'pt"pww'(’ .

If |p,,p,, w|,, denotes the Minkowski volume of the box spanned
by p.,P,, w then we can write d4 in the form

dA = | py, Py, w|odudv = |p,, Py, w|,,dudv . (60)

This relation suggests that the isoperimetrix will be the appropriate sur-
face to use in order to obtain some of the results connected with the sphere
as carrier of the spherical image. In carrying this idea out we use the
results of Miiller [24], but follow the representation of Duschek [25],
where the steps omitted in the following calculations are found.

183



First let S be any convex surface with z as center of class C? with
positive Gauss curvature and choose the vector representation ¢(u, v)
= (x(u,v), y(u, v), 2(u, v)) of § such that the tangentplanes of ¢ and
p are parallel for the same values u,v. Then

p.=0aq,+bgq,,
pv:cqu_'_dQv'

We investigate those directions at a given point (u,v) which are
parallel to their images on ¢: that is for which

dp = Rdq . (61)

Denoting by r any vector with |7 ¢, q,| 7 0 we multiply (61) first by
rXq,, then by rxgq,. Elimination of R from the relations thus ob-
tained yields

lrpuquldw 4+ (| rp. | + 70,0, ) dudv+ | 7p,q,|dv? =0 (62)

as equation for the directions du, dv which satisfy (61). The corresponding
values B!, R! of R are given by the relation

| 7Py Dol —R(l 7P, 0| + 179, P,1) +R2|7q,q,| =0 . (63)
Then
K= (R} (RY) = 1|rq,q,|/|rpyp,| = (ad — bc)? (64)

H=L[(R) T+ (B)] = (Irp.q.| +
+1rqup )/ 217 pup,| = @+ d) 27 (@d —be)™t . (65)

The R? can also be determined as follows : Let I and J be the indicatri-
ces of p and ¢ at (u,v). If J is not homothetic to / then exactly two
values | R?|? of R? exist for which R?J is tangent to I. The points of
contact ‘lie along conjugate directions of both I and J. The directions
du, dv defined by (62) are the only directions which are simultaneously
conjugate for I and J.

R{ and R are undefined if [ is homothetic to J ; that is I = R?.J for
some R2. In that case we put R! = R.

Finally it follows in the usual way (see [23, p. 63]) that the lines on p
defined by the differential equation (62) are characterized by the property
that the lines p(u,v) + A ¢(u,v) parallel to q(u,v) through p(u,v)
form developable surfaces.
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As ratios of distances measured along parallel *lines the R! have a Min-
kowski meaning. Also, the normal sections of p and ¢ at (u, v) in the direc-
tions (du,, dv;) defined by (62) lie in parallel planes, so that by (41) and

(67), if o(du,,dv, ; p) and g(du,, dv,; q) denote the Minkowskian radii
of curvature of p and g,

R? = o(du,, dv, ; p) / o(du,,dv,;q) . (66)

(60) and (64) show that K is the ratio of corresponding area elements
of p and ¢q. We would naturally like K to be the ratio of the area of
either the unit sphere or the isoperimetrix and p. The relation (60)
points to 7', and (68) will corroborate this choice. Using 7' presupposes
that T is of class C? and has positive Gauss curvature, which will be
assumed here. The results can be carried over with some modifications
to general 7' if the methods of Fenchel and Jessen in [26] are used. The
author intends to take this up in another paper.

With T as S the vector ¢ = w is by (24) transversal to the tangent
plane of p at (u, v), sothat p(u, v) - w(u, v) is the mapping of pon T
by parallel transversals. We call principal directions on p those which are
parallel to their images on 7'. Summarizing our results we have

(67) The principal directions are simultaneously conjugate on p and T'.
If the corresponding principal radiv R; are defined by

P, du; + p,dv; = R, (w, du; + w, dv,)
then
R; = o(du;, dv;; p) | o(du,, dv;; w) .

If dA ;, denotes the area element of T', then
K= R1R;'=dA,;/dA . (68)

The lines on p(u,v) whose directions are everywhere principal are
characterized by the property that the transversals of p(w,v) along these
lines form developable surfaces.

(68) is not the only reason for distinguisting 7' among all 8. Duschek
[25] shows that for any variation

Op = €Dy + &Py + 8377 g = & A (u,v)

of p the corresponding variation of _f j' | ¢ Py Py | dudv is
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8§l ap.ps !dudv=‘¢l qopdp |+ f es(19pu g0l + 1294 P,|) dudv (69)

If S is the isoperimetrix 7' or ¢ = w then (60), (65), and (69) yield

6A=)lwopdpln+ [[(B + BV eyddy  (10)

a formula which is surprisingly similar to the euclidean expression for the
first variation of the area (compare [23, p. 173]).

(70) yields

(71) The first variation of the area of a surface in a Minkowsk:-space
vanishes if and only if R+ R;'=0.

These Minkowskian minimal surfaces have many other properties
similar to those of ordinary minimal surfaces: their area can be repre-
sented by an integral along the boundary (see [9, p.205] and [25, p. 6]).
The asymptotic directions of a minimal surface form with the (imaginary)
asymptotic directions at the corresponding point of 7' a harmonic
quadruple. The transversals of a minimal surface form a Ribaucour
congruence etc. For the last two statements compare [24].

(Received August 16, 1949.)
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